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1. Introduction     

Planning a collision-free path for a rigid or articulated robot to move from an initial to a 
final configuration in a static environment is a central problem in robotics and has been 
extensively addressed over the last. The complexity of the problem is NP-hard (Latombe, 
1991). There exist several family sets of variations of the basic problem, that consider flexible 
robots, and where robots can modify the environment. The problem is well known in other 
domains, such as planning for graphics and simulation (Koga et al., 1994), planning for 
virtual prototyping (Chang & Li, 1995), and planning for medical (Tombropoulos et al., 
1999) and pharmaceutical (Finn & Kavraki, 1999) applications.  

 
1.1 Definitions and Terminology 
A robot is defined into the motion planning problems as an object, which is capable to move 
(rotating and translating) in an environment (the workspace) and it may take different 
forms, it can be: a rigid object, an articulated arm, or a more complex form like a car or an 
humanoid form. 
 

Fig. 1. Robot types. 
 
Given different robot types, it is fully and succinctly useful to represent the position of every 
point of the robot in a given moment. As shown in Figure 1. (a), a robot can be represented 
as a point. When the robot is a point, as it is the case in theoretical discussion, it can be 
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completely described by its translational coordinates, (x, y, z). For a robot which is a rigid 
body freely moving in a 3D space (See Figure 1. (b)), the position of every point is 
represented by six parameters (x, y, z) for the position and (α, β, γ) for its rotation in every 
point on the space. Each parameter, or coordinate, necessary to give the full description of 
the robot, is called a degree of freedom (DOF). The seven DOF shown in Figure 1. (c) is a 
spanning wrench. It has the same six DOF as the cube robot plus a seventh DOF, the width 
of the tool jaw. The far right n DOF in Figure 1. (d) demonstrates that the number of DOF 
can become extremely large as robots become more and more complex. 
Not only the number, but the interpretation of each DOF is necessary to fully understand 
the robot’s position and orientation. Figure 2 (a) Shows six DOF that are necessary to 
describe a rigid object moving freely in 3D. Six parameters are also necessary to describe a 
planar robot with a fixed base and six serial links Figure 2. (b). Although the same size, the 
coordinate vectors of each robot are interpreted differently. 
 

Fig. 2. Number of Degrees of freedom for robots. 

 
1.2 Paths and Connectivity 
Throughout the history of artificial intelligence research, the distinction between problem 
solving and planning has been rather elusive (Steven, 2004). For example, (Russell & Norvig, 
2003) devotes a through analysis of “Problem-solving” and “Planning”. The core of the 
motion planning problem is to determine whether “a point of the space” is reachable from 
an initial one by applying a sequence of actions (Russell & Norvig, 2003), p. 375. 
Besides, it is difficult to apply results from computational geometry to robot motion 
planning, since practical aspects relevant to robotics are often ignored in computational 
geometry, e.g. only static environments are considered usually. Since testing for collisions 
between the robot and the environment is essential to motion planning, the representation 
of geometry is an important issue. 
The motion planning problem can be defined (Steven, 2004) as a continuum of actions that 
can lead to a path in a state space. The path is obtained through the integration of a vector 
field computed by using the plan. Thus, the plane has an important role because it describes 
a set of states. 

 

 

1.3 Workspace and Configuration Space 
The robot moves in a workspace, consisting of several objects, guided by natural lows. For 
motion planning algorithms, the concept of workspace can be defined by considering two or 
three dimensions; of course it can be defined by N-dimensions. In this context, the 
workspace consists of rigid objects (obstacles) with six DOF. Initially, obstacles are placed in 
static configurations, so they can not move within the environment. The workspace 
representation is associated to a geometric model used to manipulate the objects. Both 
features must be considered to address the motion planning problem. However, in many 
instances, it may be possible to improve performance by carefully investigating the 
constraints that arise for particular problems once again. It may be possible to optimize 
performance of some of the sampling-based planners in particular contexts by carefully 
considering what information is available directly from the workspace constraints. 

 
1.3.1 Configuration Space 
If the robot has n degrees of freedom, this leads to a manifold of dimension n called the 
configuration space or C-space. It will be generally denoted by C. In the context of this 
document, the configuration space may be considered as a special form of state space. To 
solve a motion planning problem, algorithms must conduct a search in this space. The 
configuration space notion provides a powerful abstraction that converts the complicated 
models and transformations into the general problem of computing a path in a manifold 
(Steven, 2004). 

 
1.3.2 The motion planning problem 
The basic motion planning problem is defined as follows: Given a robot, which can be any 
moving object, a complete description of static workspace and star and goal configurations, 
the objective is to find a valid (i.e., collision free) path for the robot to move through the 
workspace from beginning to goal configurations. The robot must avoid collision with itself 
as well as obstacles in the workspace environment.  

 
1.3.3 Probabilistic roadmap methods 
A class of motion planning methods, known as probabilistic roadmap methods (PRMs), 
have been largely addressed (Ahuactzin, & Gupta, 1997), ( Amato et al.,  1998), ( Boor et al., 
1999). Briefly, PRMs use randomization to construct a graph (a roadmap) in configuration-
space (C-space). PRMs provide heuristics for sampling C-space and C-obstacles without 
explicitly calculating either. 
When PRM maps are built, roadmap nodes correspond to collision-free configurations of the 
robot, i.e. points in the free C-space (C-free). Two nodes are connected by an edge if a 
collision-free path between the two corresponding configurations can be found by a “local 
planning” method. Local planners take as input a pair of configurations and check the path 
(edge) between them for collision. As output they declare the path valid (collision-free) or 
invalid. Because of the large number of calls made to local planners, their design often 
sacrifices sophistication for speed. When local planners (Amato et al., 1998) are 
deterministic, the edges do not need to be saved, only the roadmap adjacency graph must 
saved. PRM methods may include one or more ‘enhancement’ steps in which some areas are 
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can lead to a path in a state space. The path is obtained through the integration of a vector 
field computed by using the plan. Thus, the plane has an important role because it describes 
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The robot moves in a workspace, consisting of several objects, guided by natural lows. For 
motion planning algorithms, the concept of workspace can be defined by considering two or 
three dimensions; of course it can be defined by N-dimensions. In this context, the 
workspace consists of rigid objects (obstacles) with six DOF. Initially, obstacles are placed in 
static configurations, so they can not move within the environment. The workspace 
representation is associated to a geometric model used to manipulate the objects. Both 
features must be considered to address the motion planning problem. However, in many 
instances, it may be possible to improve performance by carefully investigating the 
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performance of some of the sampling-based planners in particular contexts by carefully 
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document, the configuration space may be considered as a special form of state space. To 
solve a motion planning problem, algorithms must conduct a search in this space. The 
configuration space notion provides a powerful abstraction that converts the complicated 
models and transformations into the general problem of computing a path in a manifold 
(Steven, 2004). 

 
1.3.2 The motion planning problem 
The basic motion planning problem is defined as follows: Given a robot, which can be any 
moving object, a complete description of static workspace and star and goal configurations, 
the objective is to find a valid (i.e., collision free) path for the robot to move through the 
workspace from beginning to goal configurations. The robot must avoid collision with itself 
as well as obstacles in the workspace environment.  

 
1.3.3 Probabilistic roadmap methods 
A class of motion planning methods, known as probabilistic roadmap methods (PRMs), 
have been largely addressed (Ahuactzin, & Gupta, 1997), ( Amato et al.,  1998), ( Boor et al., 
1999). Briefly, PRMs use randomization to construct a graph (a roadmap) in configuration-
space (C-space). PRMs provide heuristics for sampling C-space and C-obstacles without 
explicitly calculating either. 
When PRM maps are built, roadmap nodes correspond to collision-free configurations of the 
robot, i.e. points in the free C-space (C-free). Two nodes are connected by an edge if a 
collision-free path between the two corresponding configurations can be found by a “local 
planning” method. Local planners take as input a pair of configurations and check the path 
(edge) between them for collision. As output they declare the path valid (collision-free) or 
invalid. Because of the large number of calls made to local planners, their design often 
sacrifices sophistication for speed. When local planners (Amato et al., 1998) are 
deterministic, the edges do not need to be saved, only the roadmap adjacency graph must 
saved. PRM methods may include one or more ‘enhancement’ steps in which some areas are 
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sampled more intensively either before or after the connection phase. The process is 
repeated as long as connections are found or a threshold is reached. 
A particular characteristic of PRM is that queries are processed by connecting the initial and 
goal configurations to the roadmap, and then searching for a path in the roadmap between 
these two connection points. 
The following pseudo-code summarizes the high-level algorithm steps for both roadmap 
construction and usage (query processing). Lower-level resources include distance metrics 
for evaluating the promise of various edges local planners for validating proposed edges, 
and collision detectors for distinguishing between valid (collision free) and invalid (in 
collision) robot configurations. 
 
Pre-processing: Roadmap Construction 
1. Node Generation (find collision-free configurations) 
2. Connection (connect nodes to form roadmap) 
 
(Repeat the node generation as desired) 
 
On Line: Query Processing 
 
1. Connect start/goal to roadmap 
2. Find roadmap path between connection nodes 
 
(repeat for all start/goal pairs of interest) 

 
1.4 The narrow corridor problem 
A narrow passage occurs when in order to connect two configurations a point from a very 
small set must be generated. This problem occurs independently of the combinatorial 
complexity of the problem instance. There have been several variants proposed to the basic 
PRM method which do address the “narrow passage problem”. Workspaces are difficult to 
handle when they are “cluttered”. In general, the clutter is made up of closely positioned 
workspace obstacles. Identifying “difficult” regions is a topic of debate. Nevertheless when 
such regions are identified the roadmap can be enhanced by applying additional sampling. 
Naturally, many of the nodes generated in a difficult area will be in collision with whatever 
obstacles are making that area difficult. Some researchers, not wishing to waste computation 
invested in generating nodes discovered to be in-collision, are considering how to “salvage” 
such nodes by transforming them in various ways until they become collision-free. 

 
2. Probabilistic Roadmap Methods 

This section presents fundamental concepts about PRM, including a complete description of 
PRM, OBPRM, Visibility Roadmap, RRT and Elastic Band algorithms. These methods are 
important because they are the underlying layer of this topic. The parametric concept of 
configuration space and its importance to build the roadmap is also presented. 
 
 
 

 

The world (Workspace or W) generally contains two kinds of entities: 
 
1. Obstacles: Portions of the world that are “permanently” occupied, for example, as in the 
walls of a building. 
 
2. Robots: Geometric bodies that are controllable via a motion plan.  
 
The dimension of the workspace determines the particular characteristic of W. Formulating 
and solving motion planning problems requires defining and manipulating complicated 
geometric models of a system of bodies in space. Because physical objects define spatial 
distributions in 3D-space, geometric representations and computations play an important 
role in robotics. 
 
There are four major representation schemata for modelling solids in the physical space 
(Christoph, 1997). They are the follows. In constructive solid geometry (CSG) the objects are 
represented by unions, intersections, or differences of primitive solids. The boundary 
representation (BRep) defines objects by quilts of vertices, edges, and faces. If the object is 
decomposed into a set of nonintersecting primitives we speak of spatial subdivision. Finally, 
the medial surface transformation is a closure of the locus of the centres of maximal 
inscribed spheres, and a function giving the minimal distance to the solid boundary. We 
describe the boundary representation because this is related to our work. 

 
2.1 Geometric Modelling 
There exists a wide variety of approaches and techniques for geometric modelling. Most 
solid models use BRep and there are many methods for converting other schemata into 
BRep (Christoph, 1997). Research has focused on algorithms for computing convex hulls, 
intersecting convex polygons and polyhedron, intersecting half-spaces, decomposing 
polygons, and the closest-point problem. And the particular choice usually depends on the 
application and the difficulty of the problem. In most cases, such models can be classified as:  
1) a boundary representation, and 2) a solid representation. 
 

Fig. 3. Triangle strips and triangle fans can reduce the number of redundant points. 
 
Suppose W = 3 . One of the most convenient models to express the elements in W is a set 
of triangles, each of which is specified by three points, (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3). It 
is assumed that the interior of the triangle is part of the model. Thus, two triangles are 
considered as colliding if one pokes into the interior of another. This model is flexible 
because there are no constraints on the way in which triangles must be expressed. However, 
there exists redundancy to specify the points. Representations that remove this redundancy 
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sampled more intensively either before or after the connection phase. The process is 
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for evaluating the promise of various edges local planners for validating proposed edges, 
and collision detectors for distinguishing between valid (collision free) and invalid (in 
collision) robot configurations. 
 
Pre-processing: Roadmap Construction 
1. Node Generation (find collision-free configurations) 
2. Connection (connect nodes to form roadmap) 
 
(Repeat the node generation as desired) 
 
On Line: Query Processing 
 
1. Connect start/goal to roadmap 
2. Find roadmap path between connection nodes 
 
(repeat for all start/goal pairs of interest) 
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A narrow passage occurs when in order to connect two configurations a point from a very 
small set must be generated. This problem occurs independently of the combinatorial 
complexity of the problem instance. There have been several variants proposed to the basic 
PRM method which do address the “narrow passage problem”. Workspaces are difficult to 
handle when they are “cluttered”. In general, the clutter is made up of closely positioned 
workspace obstacles. Identifying “difficult” regions is a topic of debate. Nevertheless when 
such regions are identified the roadmap can be enhanced by applying additional sampling. 
Naturally, many of the nodes generated in a difficult area will be in collision with whatever 
obstacles are making that area difficult. Some researchers, not wishing to waste computation 
invested in generating nodes discovered to be in-collision, are considering how to “salvage” 
such nodes by transforming them in various ways until they become collision-free. 

 
2. Probabilistic Roadmap Methods 

This section presents fundamental concepts about PRM, including a complete description of 
PRM, OBPRM, Visibility Roadmap, RRT and Elastic Band algorithms. These methods are 
important because they are the underlying layer of this topic. The parametric concept of 
configuration space and its importance to build the roadmap is also presented. 
 
 
 

 

The world (Workspace or W) generally contains two kinds of entities: 
 
1. Obstacles: Portions of the world that are “permanently” occupied, for example, as in the 
walls of a building. 
 
2. Robots: Geometric bodies that are controllable via a motion plan.  
 
The dimension of the workspace determines the particular characteristic of W. Formulating 
and solving motion planning problems requires defining and manipulating complicated 
geometric models of a system of bodies in space. Because physical objects define spatial 
distributions in 3D-space, geometric representations and computations play an important 
role in robotics. 
 
There are four major representation schemata for modelling solids in the physical space 
(Christoph, 1997). They are the follows. In constructive solid geometry (CSG) the objects are 
represented by unions, intersections, or differences of primitive solids. The boundary 
representation (BRep) defines objects by quilts of vertices, edges, and faces. If the object is 
decomposed into a set of nonintersecting primitives we speak of spatial subdivision. Finally, 
the medial surface transformation is a closure of the locus of the centres of maximal 
inscribed spheres, and a function giving the minimal distance to the solid boundary. We 
describe the boundary representation because this is related to our work. 

 
2.1 Geometric Modelling 
There exists a wide variety of approaches and techniques for geometric modelling. Most 
solid models use BRep and there are many methods for converting other schemata into 
BRep (Christoph, 1997). Research has focused on algorithms for computing convex hulls, 
intersecting convex polygons and polyhedron, intersecting half-spaces, decomposing 
polygons, and the closest-point problem. And the particular choice usually depends on the 
application and the difficulty of the problem. In most cases, such models can be classified as:  
1) a boundary representation, and 2) a solid representation. 
 

Fig. 3. Triangle strips and triangle fans can reduce the number of redundant points. 
 
Suppose W = 3 . One of the most convenient models to express the elements in W is a set 
of triangles, each of which is specified by three points, (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3). It 
is assumed that the interior of the triangle is part of the model. Thus, two triangles are 
considered as colliding if one pokes into the interior of another. This model is flexible 
because there are no constraints on the way in which triangles must be expressed. However, 
there exists redundancy to specify the points. Representations that remove this redundancy 
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are triangle strips. Triangle strips is a sequence of triangles such that each adjacent pair 
shares. Triangle fan is triangle strip in which all triangles share a common vertex, as shown 
in Figure 3. 

 
2.2 Rigid body transformations 
Once we have defined the geometric model used to represent the objects in the workspace, it 
is necessary to know how these objects are going to be manipulated (the robot as a 
particular case) through the workspace. Let O refer to the obstacle region, which is a subset 
of W. Let A refer to the robot, which is a subset of 2  2 or 3  , matching the dimension of 
W. Although O remains fixed in the world, W, motion planning problems will require 
“moving” the robot, A. 
Let A be a rigid body which we want to translate by some xt, yt, zt �   by mapping every (x, 
y, z) � A to (x + xt, y + yt, z + zt). Primitives of the form Hi =(x, y, z) �� W | fi(x, y, z) ≤  0, are 
transformed to (x, y, z) ��W | fi(x − xt, y − yt, z − zt) ≤ 0. The translated robot is denoted as 
A(xt, yt, zt). Note that a 3D body can be independently rotated around three orthogonal axes, 
as shown in Figure 4.   
 
1. A yaw is a counter clockwise rotation of α about the Z-axis. The rotation is given by the 
following matrix. 

 cos -sin 0 

RZ ()= sin cos 0 
                   0 0 1 
    

 
Note that the upper left entries of RZ () form a 2D rotation applied to the XY coordinates, 
while the Z coordinate remains constant.  

 
Fig. 4. Any rotation in 3D can be described as a sequence of yaw, pitch, and roll rotations. 
 
2. A pitch is a counter clockwise rotation of β about the Y-axis. The rotation is given by the 
following matrix. 
 

 cos β 0 sin β 

(1) 

(2) 

 

RY (β)= 0 1 0 
                   -sin β 0 Cos β 
    

3. A roll is a counter clockwise rotation of γ about the X-axis. The rotation is given by the 
following matrix. 
 

 1 0 0 
Rx (γ)= 0 cos γ -sin γ 
                   0 sin γ cos γ 
    

 
As in the 2D case, a homogeneous transformation matrix can be defined. For the 3D case, a 4 
X 4 matrix is obtained that performs the rotation given by R(, β, γ), followed by a 
translation given by xt, yt, zt. The result is defined as: 
 
 coscosβ cossin β cos γ - sin cos γ cos sin β cos γ + sin sin γ xt 

T= cosβ sin sinβsinγ + cos cos γ  sin sinβ cos γ - cos sin γ  yt 

          β cosβsin γ cosβcos γ zt 

 0 0 0 1 

The triangle meshes associated to the robot (using a triangle as primitive) can be 
transformed, to yield A(xt, yt, zt, , β, γ). 

 
2.3 Configuration Space 
Configuration-space (C-space) is an abstraction of the motion planning problem. Briefly, the 
motion planning problem is expressed in a n-dimensional space, where n represents the 
number of DOF of the robot, and a robot configuration (all the necessary DOF’s for fully 
describing the robot’s position and pose) is a point. The C-space consist ALL possible points, 
those of free collision configuration corresponding to the robot free space and collision 
configuration corresponding to the robot in collision with or more obstacles or itself. In a 3D 
workspace, the path between any starting and configuration is a swept volume. In a given 
C-space, the same path is a one-dimensional curve traced by the C-space point representing 
the robot moving from a start to configuration. Only when the robot is really a point robot 
(as in theoretical discussion) the workspace and the robot’s C-space are the same. 
If the robot has n degrees of freedom, this leads to a manifold of dimension the configuration 
space or C-space. It will be generally denoted by C. Configurations space has different 
properties, next paragraphs describes them. 

 
2.3.1 Paths 
Let X be a topological space, which is a manifold. A path, τ , in X is a continuous function, τ : 
[0, 1] →X. Other intervals of   may alternatively be used for the domain of τ . Note that a 
path is a function, not a set of points. Each point along the path is given by τ (s) for some s � 

(3) 

(4) 
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The triangle meshes associated to the robot (using a triangle as primitive) can be 
transformed, to yield A(xt, yt, zt, , β, γ). 

 
2.3 Configuration Space 
Configuration-space (C-space) is an abstraction of the motion planning problem. Briefly, the 
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If the robot has n degrees of freedom, this leads to a manifold of dimension the configuration 
space or C-space. It will be generally denoted by C. Configurations space has different 
properties, next paragraphs describes them. 

 
2.3.1 Paths 
Let X be a topological space, which is a manifold. A path, τ , in X is a continuous function, τ : 
[0, 1] →X. Other intervals of   may alternatively be used for the domain of τ . Note that a 
path is a function, not a set of points. Each point along the path is given by τ (s) for some s � 
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[0, 1]. Recall in that case, a countable set of stages was denned, and the states visited could 
be represented as x1, x2,.... In the current setting τ (s) is used, in which s replaces the stage 
index. To make connection clearer, we could use x instead of τ, to obtain x(s) for each s ��� [0, 
1]. 

 
3. Traditional Roadmap Methods 

A class of motion planning methods, known as probabilistic roadmap methods (PRMs), 
have made large recent gains in popularity. In general roadmap methods solve the motion 
planning problem in two phases: roadmap construction and roadmap querying (runtime). It 
is important to understand that the objective of the pre-processing phase is to build an 
adequate roadmap for any particular problem. Such result is used to quickly satisfy 
(typically within a few seconds) a large number of different queries to the same roadmap at 
execution time. It is not assumed that any crucial start and goal configurations are known a 
priori but rather that the entire workspace must be explored and mapped before the robot 
can efficiently operate there. The process is analogous to that of cartographers making a 
map of a country’s road system. When they finish, many drivers can all obtain the same 
map and use it for their individual navigation purposes. There is no single start to goal; 
rather all possible routes must be explored and charted. 

 
3.1 General PRM 
Briefly, PRMs use randomization to construct a graph (a roadmap) in a configuration space 
(C-space) taking into account that there exist forbidden and feasible spaces. Therefore the 
algorithm computes configurations in both regions and tests for collision to determine 
which configurations are going to be retained. Once the configuration space has been 
sampled using a tool called “Local Planner”. This local planner verifies if there exists a 
collision free path between two corresponding configurations. The path exists if two nodes 
are directly or transitively connected by an edge. As output the local planner declares a 
valid path (collision-free) or invalid. 
Finally, queries are processed by connecting the initial and goal configurations to the 
roadmap, and then searching for a path in the roadmap between these two connection points, 
see Figure 5. As described (Kavraki& Latombe, 1994), ( Kavraki et al., 1996), ( Overmars & 
Svestka, 1994) the basic PRM uses uniform sampling to generate, uniformly and randomly 
configurations (nodes) of the robot in the workspace. The local planner that is likely to return 
failure by submitting only pairs of configurations whose relative distance (according to the 
distance function D) is smaller than some constant threshold MAXDIST. Thus, Nq define: 
 

Nq = { q’� N | D(q, q’) ≤MAXDIST }                                       (5) 
 
Additionally, according to the algorithm, the authors try to connect q with all nodes in Nq in 
order to increase the distance from q and another configuration. They skip those nodes 
which are in the same connected component as q. By considering elements of Nq in this 
order they expect to maximize the chances of quickly connecting q to other configurations 
and, consequently, reduce the number of calls to the local planner, (Nice every successful 
connection results in merging two connected components into one). In ( Kavraki et al., 1996), 
is found it a useful to bound the size of the set Nq by the constant K.  

 

 
Fig. 5. The PRM is searched for a path from s to g through a graph which represent la 
connectivity of configuration space.  
 
The distance function. The function D is used both to construct and sort the set Nq of 
candidate neighbours of each new node q. It should be defined so that, for any pair (q, q’) of 
configurations, D(q, q’) reflects the possibility that the local planner will fail to compute a 
feasible path between these configurations. One possibility is to define D(q, q’) as a measure 
(area/volume) of the workspace region swept by the robot when it moves along the path 
computed by the local planner between q and q’ in the absence of obstacles. Thus, each local 
planner would automatically induce its own specific distance function. Since exact 
computation of swept areas/volumes tends to be rather time-consuming, a rough but 
inexpensive measure of the swept-region gives better practical results. Very simple distance 
measure also seems to give good results. For example, when the general local planner 
described above is used to connect q and q’, D(q, q’) may be defined as follows: 
 

D(q, q’) = maxx�robot║x(q) − x(q’) ║, 
 
Where x denotes a point on the robot, x(q) is the position of x in the workspace when the 
robot is at configuration q, and ║x(q) − x(q’) ║ is the Euclidean distance between x(q) and 
x(q’). 

 
3.2 The Obstacle Based PRM 
In (Amato & Wu, 1996) presents a randomized roadmap method for motion planning for 
several DOF robots. The general approach follows traditional roadmap methods: during 
pre-processing a roadmap is built in C-space; planning consists of connecting the initial and 
goal configuration to the roadmap, and then finding a path in the roadmap between these 
two connection points. The main novelty in their approach is a method for generating 
roadmap candidate points. In particular, they attempt to generate candidate points 
uniformly distributed on the surface of each C-obstacle. 

 
3.2.1 Sampling and connection strategies 
This planner samples the obstacle surfaces without explicitly calculating those surfaces. The 
OBPRM generation strategy provides information which make possible to find a connection 
strategy where every node generated can be considered for connection with its k closest 
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pre-processing a roadmap is built in C-space; planning consists of connecting the initial and 
goal configuration to the roadmap, and then finding a path in the roadmap between these 
two connection points. The main novelty in their approach is a method for generating 
roadmap candidate points. In particular, they attempt to generate candidate points 
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neighbours on each obstacle in the environment. OBPRM shows marked success in 
discovering and navigating narrow passages in C-space. They evaluate various sampling 
and connection strategies within the context of OBPRM in (Amato et al., 1998). A multi-
strategy for connecting roadmap nodes where different local planners are used at different 
stages is shown to enhance the connectivity of the resulting roadmap significantly. The most 
common local planner used by PRM methods is a straight line in C-space. They evaluate 
distance metrics and local planner methods in (Amato et al., 1998) where they propose the 
rotate − at − s local planner. Rotate − at − s divides the usual straight line path into three 
straight line segments to be tested for collision. The first and final segments consist of pure 
translation while the intervening segment is pure rotation. The choice of strategy depends 
on the value of s � [0, 1] which is in general provided by the user. Briefly, for each obstacle 
X: 
 
PROTOTYOE NODE GENERATION 

1. Cin:= collinding robot cfg with C-obtacle X 
2. D:= m random directions emanating out from Cin 
3. for each d � D 
4. Cout:- free cfg in direction d (if exists) 
5. find contact cfg on (Cin, Cout) by binary search 
6. end for 

 
This example strategy was sufficient to establish the potential of the method. However, it is 
clear that more sophisticated node generation strategies are needed for more complex 
objects to produce a ‘good’ distribution of nodes in all the ‘different’ regions of C-free. 
Outline below are some of the methods we’ve implemented and tested. Keeping in the spirit 
of OBPRM, all these method employ information regarding the environment to guide node 
generation. Briefly, the methods are designed to generate three types of nodes: (i) contact 
configuration, (ii) free configuration (near contact surfaces), and (iii) sets of configuration 
(shells) surrounding C-obstacles. 
Generating contact configurations. The node generation strategy used in the prototype 
version of OBPRM is attractive due to its simplicity and its efficiency (node generation 
typically accounted for 1-2% of pre-processing time). However, the distribution of the 
generated nodes is clear very sensitive to both the shape of the C-obstacle and to the seed 
(origin Cin for the binary search). That is, no single seed will yield a good distribution of 
configuration on the surface of the C-obstacle if its shape is not roughly spherical, and even 
if the C-obstacle is spherically shape, a seed configurations on the region of its surface 
closest to the seed. 
GENERRATE CONTACT CONFIGURATION 

1. prob:= point associated with root 
2. pobε:= point associated with obstacle of interest 
3. Cin:= translate robot so prob and pobε  coincide an rotate robot randomly until 

collision 
4. d:= random direction emanating out from Cin 
5. Cout:= free cfg in direction d (if exists) 
6. Find contact on (Cin, Cout) by binary search 

  

 

3.3 Visibility roadmap 
In the visibility roadmap method proposed in (Laumond &  Siméon, 2000), roadmap nodes 
are randomly generated just as in a Basic − PRM but connection is done as they are 
generated in the following way. For each generated node, if it can be connected to more than 
one currently existing connected component or to no currently existing connected 
component, it is retained and the connecting edges (if any) are added to the roadmap. If the 
node can be connected to only one of the existing connected component, it is discarded. 
Multiple connectable nodes are assumed to yield important information about the 
connectivity of free space. Isolated nodes are assumed to point to unexplored areas of free 
space. Singly connectable nodes are assumed to represent another sample in an already 
explored region and are discarded rather than allowing them to increase the size of the 
roadmap. Because nodes are generated randomly in the basic PRM manner, this method is 
not better than the basic PRM at handling narrow passages. 
This method proposes a variant of the Probabilistic Roadmap  (PRM) algorithm introduced 
in (Kavraki  & Latombe, 1994) (and independently in (Overmars  &  Svestka, 1995) as the 
Probabilistic Path Planner). These algorithms generate collision-free configurations 
randomly and try to link them with a simple local path planning method. A roadmap is then 
generated, tending to capture the connectivity of the collision-free configuration space CSfree. 
This variant of these approaches takes advantage of the visibility notion. While usually each 
collision-free configuration generated by the PRM algorithm is integrated to the roadmap, 
our algorithm keeps only configurations which either connect two connected components of 
the roadmap, or are not “visible” by some so-called guard configurations. This approach 
computes roadmaps with small number of nodes. It integrates a termination condition 
related to the volume of the free space covered by the roadmap.  Experimental comparison 
shows good performances in terms of computation time, especially when applied to 
configuration spaces with narrow passages. 
Roadmaps A roadmap is a graph whose nodes are collision-free configurations. 
Two nodes q and q’ are adjacent if the path L  (q,q‘) computed by the local method lies in 
CSfree.  Roadmaps are used to solve motion planning problems by the so called query  
procedure: given two configurations qinit and qgoal, the procedure  first connects qinit (resp.qgoal) 
to the roadmap R if there exists q*init (resp. q*goal ) goal such that L  ( qinit , q*init )  ˝   CSfree  and 
L  ( qgoal, q*goal) ˝   CSfree . Then the procedure searches for a path in the extended roadmap. If 
such a path exists, the solution of the motion planning problem appears as a path 
constituted by a finite connected sequence of subpaths computed by L . 
 
Visibility domains For a given local method  L , the visibility domain of a configuration q is 
defined as the domain: 
 
 V is L  (q) ={ q’  � CSfree such that L  (q, q’) ̋   CSfree } (7) 
 
Configuration q is said to be the guard of V is L  (q). 
 
 
 
 

www.intechopen.com



Key Elements for Motion Planning Algorithms 161

 

neighbours on each obstacle in the environment. OBPRM shows marked success in 
discovering and navigating narrow passages in C-space. They evaluate various sampling 
and connection strategies within the context of OBPRM in (Amato et al., 1998). A multi-
strategy for connecting roadmap nodes where different local planners are used at different 
stages is shown to enhance the connectivity of the resulting roadmap significantly. The most 
common local planner used by PRM methods is a straight line in C-space. They evaluate 
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rotate − at − s local planner. Rotate − at − s divides the usual straight line path into three 
straight line segments to be tested for collision. The first and final segments consist of pure 
translation while the intervening segment is pure rotation. The choice of strategy depends 
on the value of s � [0, 1] which is in general provided by the user. Briefly, for each obstacle 
X: 
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4. Cout:- free cfg in direction d (if exists) 
5. find contact cfg on (Cin, Cout) by binary search 
6. end for 

 
This example strategy was sufficient to establish the potential of the method. However, it is 
clear that more sophisticated node generation strategies are needed for more complex 
objects to produce a ‘good’ distribution of nodes in all the ‘different’ regions of C-free. 
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configuration, (ii) free configuration (near contact surfaces), and (iii) sets of configuration 
(shells) surrounding C-obstacles. 
Generating contact configurations. The node generation strategy used in the prototype 
version of OBPRM is attractive due to its simplicity and its efficiency (node generation 
typically accounted for 1-2% of pre-processing time). However, the distribution of the 
generated nodes is clear very sensitive to both the shape of the C-obstacle and to the seed 
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Probabilistic Path Planner). These algorithms generate collision-free configurations 
randomly and try to link them with a simple local path planning method. A roadmap is then 
generated, tending to capture the connectivity of the collision-free configuration space CSfree. 
This variant of these approaches takes advantage of the visibility notion. While usually each 
collision-free configuration generated by the PRM algorithm is integrated to the roadmap, 
our algorithm keeps only configurations which either connect two connected components of 
the roadmap, or are not “visible” by some so-called guard configurations. This approach 
computes roadmaps with small number of nodes. It integrates a termination condition 
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Fig. 6. Visibility domain of a configuration and the visibility roadmap defined by three 
guards nodes (black) and three connection nodes (white). Here paths L  (q, q’) are the 
straight-line segments [q, q’]. 
 

 Free-space Coverage A set of guards constitutes a coverage of CSfree  if the union of 
their visibility domains covers the free space CSfree. Note that the existence of finite 
coverage both depends on the shape of CSfree and on the local method L . Such 
finite coverage may not always exist. This issue is related to the notion of �‐
goodness introduced in (Overmars  &  Svestka, 1995). 

 
Visibility Roadmaps Consider now s visibility domains V is L  (qi) such that the s guards do 
not “see”  mutually through the local method,  i.e., L  (qi, q’j)  CSfree  for any pair of guards  
(qi, q’j). Then we build the following graph R. Guards { qi } i=1,s  are nodes of the graph.  For 
any two intersecting visibility domains V is L  (qi) and V is L  (qj), we add a node q, called a 
connection node,  and two edges (q, q’i)  and  (q, q’j). (see Figure 6) The graph R is said to be a 
visibility roadmap.  R clearly verifies the following property: 
 
Property: Let us assume a visibility roadmap R whose set of guards covers CSfree. Let us consider any 
two configurations qinit and qgoal such as there exists a connected sequence of collision-free paths of 
type L  between them. Then there is a guard node q1 and a guard node q2  in R such as:  qinit �� V is L  
(q1),  qgoal �� V is L  (q2) with q1 and q2 lying in a same connected component of R. 
 
The notion of visibility roadmap raises several comments: 

 Since the definition of the visibility domains is related to a local method, it would 
have been better to use the term of “reachable domain”. Both notions are identical 
when the local method simply computes straight line segments. 
We keep the word “visibility” because it is more intuitive. 

 We consider implicitly that R is an undirected graph: that means that L  is assumed 
to be symmetric. 

 Finally the number of guards is not required to be optimal. Optimality refers to the 
well known and challenging art gallery problem (Goodman  & O’Rourke,  1997) 

 
Description The algorithm, called Visib-PRM iteratively processes two sets of nodes:  Guard 

and Connection. The nodes of Guard belonging to a same connected component ( i.e. 
connected by nodes of Connection) are gathered in subsets Gi. 

 
 
 
 

 

Algorithm Visib-PRM 

Guard ← Ø; Connection← Ø;  ntry ← 0 
While (ntry <  M) 
      Select a random free configuration q 

      gvis ← Ø;Gvis ← Ø 
     For all components Gi of Guard do 

          found  FALSE 
        For all nodes g of Gi do 
            If (q belongs to V is(g)) then 

                found  TRUE 

               If (gvis =
 Ø ) then gvis

←  g; Gvis
←  Gi 

               Else /* q is a connection node */ 
                 Add q  to Connection 
                 Create edges (q, g) and (q, gvis ) 
                  Merge components Gvis and Gi  
     until found =TRUE 
     If (gvis = Ø)then /* q is a guard node */ 

          Add{q} to Guard; ntry ← 0 

      Else ntry←  ntry +1 
End 

 
3.4 Rapidly Random Tee (RRT) 
The idea behind this method is to incrementally construct a search tree that gradually 
improves the resolution but does not need to explicitly set any resolution parameters. A 
dense sequence of samples is used as a guide in the incremental construction of the tree. If 
this sequence is random, the resulting tree is called a rapidly exploring random tree (RRT). 
In general, this family of trees, whether the sequence is random or deterministic, will be 
referred to as rapidly exploring dense trees (RDTs) to indicate that a dense covering of the 
space is obtained.  
This method uses the term state space to indicate a greater generality than is usually 
considered in path planning. For a standard problem, X= C, wich is the configuration space 
of a rigid body or system of bodies in a 2D or 3D world (Latombe, 1991). 
For a given initial state,  xinit, an RRT,  T, with K vertices is constructed as shown below: 

1. GENERATE_RRT (xinit, K, ∆t)  
2. T.init(xinit); 
3. For k=1 to K do 

4.      xrand 
← RANDOM_STATE(); 

5.      xnear
← NEAREST_NEIGHBOR (xrand, T); 

6.     u←SELECT_INPUT (xrand, xnear); 
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      gvis ← Ø;Gvis ← Ø 
     For all components Gi of Guard do 

          found  FALSE 
        For all nodes g of Gi do 
            If (q belongs to V is(g)) then 

                found  TRUE 

               If (gvis =
 Ø ) then gvis

←  g; Gvis
←  Gi 

               Else /* q is a connection node */ 
                 Add q  to Connection 
                 Create edges (q, g) and (q, gvis ) 
                  Merge components Gvis and Gi  
     until found =TRUE 
     If (gvis = Ø)then /* q is a guard node */ 

          Add{q} to Guard; ntry ← 0 

      Else ntry←  ntry +1 
End 

 
3.4 Rapidly Random Tee (RRT) 
The idea behind this method is to incrementally construct a search tree that gradually 
improves the resolution but does not need to explicitly set any resolution parameters. A 
dense sequence of samples is used as a guide in the incremental construction of the tree. If 
this sequence is random, the resulting tree is called a rapidly exploring random tree (RRT). 
In general, this family of trees, whether the sequence is random or deterministic, will be 
referred to as rapidly exploring dense trees (RDTs) to indicate that a dense covering of the 
space is obtained.  
This method uses the term state space to indicate a greater generality than is usually 
considered in path planning. For a standard problem, X= C, wich is the configuration space 
of a rigid body or system of bodies in a 2D or 3D world (Latombe, 1991). 
For a given initial state,  xinit, an RRT,  T, with K vertices is constructed as shown below: 

1. GENERATE_RRT (xinit, K, ∆t)  
2. T.init(xinit); 
3. For k=1 to K do 

4.      xrand 
← RANDOM_STATE(); 

5.      xnear
← NEAREST_NEIGHBOR (xrand, T); 

6.     u←SELECT_INPUT (xrand, xnear); 
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7.      xnew
←NEW_STATE (xnear, u, ∆t) 

8.       T.add_vertex(xnew); 
9.      T.add_edge(xnea, xnew , u); 
10. Return T 

 
3.4.1 Nice properties of RRTs 
The key advantages of RRTs are: 1) the expansion of a RRT is heavily biased toward 
unexplored portion of the states space; 2) the distribution, leading to consistent behaviour; 
3) an RRT probabilistically complete under very general condition; 4) the RRT algorithm is 
relatively simple, which facilitates  performance analysis (this is also a preferred feature of 
probabilistic roadmaps): 5) an RRT always remains connected, even though the number of 
edges is minimal; 6) an RRT can be considered as a path planning module, which can be 
adapted and incorporated into a wide  variety of planning system; 7) entire path planning 
algorithms can be  constructed without requiring the ability to steer the system between two 
prescribed states, which greatly broadens the applicability of RRTs.  

 
3.5 PRM based on Obstacles Geometry 
The method is based on obstacles geometric for addressing narrow corridors problems 
(Antonio & Vallejo, 2004). The method takes advantage of geometric properties for 
computing free configurations in both, first approximation and improving phase. 
A geometric representation of the workspace (the obstacles and the robot) is given through 
triangle meshes, including their positions and orientations. Each object in the environment is 
associated whit its straightness and volume. The following defines volume and straightness 
feature for each object in the environment. 
 “Straightness” indicates the direction of an object with respect its longest side. We 
represents this property using a vector denoted as vi and its represents the direction of the 
straightness of each body. During the construction phase, we use this vector as the most 
convenient direction of the rotation axis of an object Bi. The direction of the rotation axis is 
very important, because, when the algorithm attempts to rotate the robot, it assumes that, 
the best selection to rotate the body is around vi.  
The “volume” of the body gives an approximation of the size of an object respect to the 
volume of its surrounding sphere. This feature is given as parameter for each object within 
the environment. The value is proportional to the surrounding sphere.  
 
It is important to take into account that our algorithm takes advantage of the form of the 
bodies. Provided that an obstacle is built by smaller ones, “straightness” and “volume” are 
defined for each element part. 

 
3.5.1 First approximation of the configuration space 
The objective of the construction step is to obtain a reasonably connected graph and to make 
sure that most “difficult” regions in this space contain at least a few nodes. In particular, the 
objective of the first approximation of the roadmap is to obtain an initial sampling using an 
economic and fast process. 

 

The nodes of R should constitute a uniform sampling of Cfree. Every such configuration is 
obtained by drawing each of its coordinates from the interval of allowed values of the 
corresponding DOF using a uniform probability distribution over this interval. This 
sampling is computed using spheres which surround the objects. Figure 7 illustrate these 
sampling surrounding spheres of objects. During this stage, the center of gravity and the 
radius are used to compute the size of the surrounding sphere of each body in the 
environment. Two advantages can be seen: the collision detection algorithm, (which is a 
deterministic used to decide if the position and orientation where the robot is placed does 
not collide with any object into the environment), is reduced to verify intersection between 
spheres. And the fact that these free configurations is involved into a sphere, having the 
possibility to rotate to any direction. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. The sampling of the roadmap is computed using a uniform distribution on the C-
space and keeping the free configurations. 
 
Collision detection is implemented using spheres, which means that we surround the robot 
and the obstacles within a sphere and the collision verification is reduced to compute the 
intersection among spheres. The computed configuration is labeled as far configurations). 
This property is used when the algorithm will tries to connect this configuration with its k-
nearest neighbors. 

 
3.5.2 Expanding the roadmap 
If the number of nodes computed during the first approximation of the roadmap is large 
enough, the set N gives a fairly uniform covering of Cfree. In easy scenes R is well connected. 
But in more constrained ones where Cfree is actually connected, R often consists of a few large 
components and several small ones. It therefore does not effectively capture the connectivity 
of Cfree. The purpose of the expansion is to add more nodes for facilitating the construction of 
the large components comprising as many nodes as possible for covering the most difficult 
narrow parts of Cfree.  

 
3.5.3 Elastic band algorithm
The “elastic band” algorithm attempts to find a free configuration from a collision one. To 
reach such goal, the algorithm moves the configuration using a small step for each iteration. 
This process is the result of applying the combination of both features (straightness and 
volume). First, the algorithm calculates the distance vector di between the obstacle position 
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Collision detection is implemented using spheres, which means that we surround the robot 
and the obstacles within a sphere and the collision verification is reduced to compute the 
intersection among spheres. The computed configuration is labeled as far configurations). 
This property is used when the algorithm will tries to connect this configuration with its k-
nearest neighbors. 

 
3.5.2 Expanding the roadmap 
If the number of nodes computed during the first approximation of the roadmap is large 
enough, the set N gives a fairly uniform covering of Cfree. In easy scenes R is well connected. 
But in more constrained ones where Cfree is actually connected, R often consists of a few large 
components and several small ones. It therefore does not effectively capture the connectivity 
of Cfree. The purpose of the expansion is to add more nodes for facilitating the construction of 
the large components comprising as many nodes as possible for covering the most difficult 
narrow parts of Cfree.  

 
3.5.3 Elastic band algorithm
The “elastic band” algorithm attempts to find a free configuration from a collision one. To 
reach such goal, the algorithm moves the configuration using a small step for each iteration. 
This process is the result of applying the combination of both features (straightness and 
volume). First, the algorithm calculates the distance vector di between the obstacle position 
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and the configuration c(Bi) position. Next, a value between the MIN and MAX parameters 
associated to the volume is computed and used as scalar quantity to increase or decrease the 
vector di. The following algorithm describes the operations used to compute the distance 
vector. Figure 8 presents a graphic illustration. 
The main idea behind this scalar operation is to approach and move the robot away from 
the obstacle. To compute this operation, the process scales the di vector using the values 
computed with respect the “volume” feature to calculate the next position where the c(Bi) 
will be placed. The following algorithm describes this process. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Graphical representation of distance vector between the mass center of the Object and 
the mass center of the robot. 
 
The elastic band process works with parallel and perpendicular configurations. Both types 
of configurations are computed around the obstacle. Configurations calculated in this phase 
are called near configurations. While the distance vector is computing the next configuration 
to be tested, the robot is rotated around its rotation axis, searching to find a free 
configuration and taking advantage of the “straightness”, sweeping the minor volume as 
result of this rotation.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Elastic Band approach and move the robot away from the obstacle to compute free 
configurations. 
 
Figures 8 and Figure 9, shows how the parallel and perpendicular configurations are 
computed around the obstacle and how the scalar vector is changing, approaching and 

 

moving away the robot from the obstacle. The configurations marked with dots are 
calculated during the elastic band process. 
 
Elastic Band Heuristic 
 
1.  Bi ← obstacle[i] 
2.  q ← robot_configuration 
3.  robot.get_parameters_obstacle ( MIN, MAX ) 
4.  ci_init ← position_of(Bi) 
5.  k ←− 0 
6.  scalar ←− MIN 
7.  di ←− distancebetween(ci init, q) 
8.  do 
9.   scale(di,, scalar) 
10.   q ←− get configuration on(di) 
11.   q ←− rotate robot(q) 
12.   k ←− k + 1 
13.  while (q is in collision and k ≤CTE) 
14.  if(q is free ) 
15.  N ←− N U q 

 
4. Collision Detection Algorithms 

Collision detection is a fundamental problem in robotics, computer animation, physically-
based modeling, molecular modeling and computer-simulated environments. In these 
applications, an object's motion is constrained by collisions with other objects and by other 
dynamic constraints. The problem has been well studied in the literature. A realistic 
simulation system, which couples geometric modeling and physical prototyping, can 
provide a useful toolset for applications in robotics, CAD/CAM design, molecular 
modeling, manufacturing design simulations, etc. In Figure 10. two sceneries are presented 
as a sample of environments that use collision detection. Such systems create electronic 
representations of mechanical parts, tools, and machines, which need to be tested for 
interconnectivity, functionality, and reliability. A fundamental component of such a system 
is to model object interactions precisely. 
 

 
Fig. 10. 3-D Environments uses collision detection algorithms to restrict the movement ranks 
of several elements. 
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dynamic constraints. The problem has been well studied in the literature. A realistic 
simulation system, which couples geometric modeling and physical prototyping, can 
provide a useful toolset for applications in robotics, CAD/CAM design, molecular 
modeling, manufacturing design simulations, etc. In Figure 10. two sceneries are presented 
as a sample of environments that use collision detection. Such systems create electronic 
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interconnectivity, functionality, and reliability. A fundamental component of such a system 
is to model object interactions precisely. 
 

 
Fig. 10. 3-D Environments uses collision detection algorithms to restrict the movement ranks 
of several elements. 
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The interactions may involve objects in the simulation environment pushing, striking, or 
smashing other objects. Detecting collisions and determining contact points is a crucial step 
in portraying these interactions accurately. The most challenging problem in a simulation, 
namely the collision phase, can be separated into three parts: collision detection, contact area 
determination, and collision response.  

 
4.1 Rapid version 2.01  
RAPID is a robust and accurate polygon interference detection library for large environments 
composed of unstructured models (http://www.cs.unc.edu/~geom/OBB/OBBT.html).  
 

 It is applicable to polygon soups - models which contain no adjacency information, 
and obey no topological constraints. The models may contain cracks, holes, self-
intersections, and nongeneric (e.g. coplanar and collinear) configurations.  

 It is numericaly robust - the algorithm is not subject to conditioning problems, and 
requires no special handling of nongeneric cases (such as parallel faces).  

The RAPID library is free for non-commercial use. Please use this request form to download 
the latest version. It has a very simple user interface: the user need noncommercial use. Be 
familiar with only about five function calls. A C++ sample client program illustrates its use.  
The fundamental data structure underlying RAPID is the OBBTree, which is a hierarchy of 
oriented bounding boxes (a 3D analog to the "strip trees" of Ballard). (Gottschalk et al., 
1996). 

 
5. GEMPA: Graphic Environment for Motion Planning Algorithms  

Computer graphics has grown phenomenally in recent decades, progressing from simple 2-
D graphics to complex, high-quality, three-dimensional environments. In entertainment, 
computer graphics is used extensively in movies and computer games. Animated movies 
are increasingly being made entirely with computers. Even no animated movies depend 
heavily on computer graphics to develop special effects. The capabilities of computer 
graphics in personal computers and home game consoles have now improved to the extent 
that low-cost systems are able to display millions of polygons per second. 
The representation of different environments in such a system is used for a widely 
researched area, where many different types of problems are addressed, related to 
animation, interaction, and motion planning algorithms to name a few research topics. 
Although there are a variety of systems available with many different features, we are still a 
long way from a completely integrated system that is adaptable for many types of 
applications. This motivates us to create and build a visualization tool for planners capable 
of using physics-based models to generate realistic-looking motions. The main objective is to 
have a solid platform to create and develop algorithms for motion planning methods that 
can be launched into a digital environment. The developed of these tools allows to modify 
or to adapt the visualization tool for different kind of problems (Benitez & Mugarte, 2009). 

 

 

5.1 GEMPA Architecture 
GEMPA architecture is supported by necessary elements to represent objects, geometric 
transformation tools and visualization controls. These elements are integrated to reach 
initial goals of visualization and animation applied to motion planning problems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11. Several modules are coupled to integrate the initial GEMPA architecture which offer 
interesting functionalities; visualization 3-D environments as well as animation of motion 
planning algorithms. 

 
5.2 Recovering Objects Representation 
People focus to solve problems using computer graphics, virtual reality and simulation of 
motion planning techniques used to recover information related to objects inside the 
environment through files which can storage information about triangle meshes. Hence, 
several objects can be placed on different positions and orientations to simulate a three-
dimensional environment. There exist different formats to represent objects in three-
dimensional spaces (3-D), however, two conventions used for many tools to represent 
triangle meshes are the most popular; objects based on off - files and objects based on txt - 
files. In motion planning community there exist benchmarks represented through this kind 
of files. GEMPA is able to load the triangle meshes used to represent objects from txt or off – 
files. On the other hand, GEMPA allows the user to built news environments using 
predefined figures as spheres, cones, cubes, etc. These figures are chosen from a option 
menu and the user build environments using translation, rotation and scale transformations.  
Each module on GEMPA architecture is presented in Figure 11 There, we can see that 
initially, the main goal is the visualization of 3-D environments and the animation of motion 
planning algorithms. In the case of visualization of 3-D environments, information is 
recovered form files and the user can navigate through the environment using mouse and 
keyboard controls. In the second case, the animation of motion planning algorithms, 
GEMPA needs information about the problem. This problem is described by two elements; 
the first one is called workspace, where obstacles (objects), robot  representation and 
configuration (position and orientation) is recovered from files; the second, a set of free 
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several objects can be placed on different positions and orientations to simulate a three-
dimensional environment. There exist different formats to represent objects in three-
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planning algorithms. In the case of visualization of 3-D environments, information is 
recovered form files and the user can navigate through the environment using mouse and 
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www.intechopen.com



Robot Localization and Map Building170

 

collision configuration conform a path, this will be used to animate the robot movement 
from initial to goal configuration. An example of 2D environment can be seen in Figure 12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12. Two different views of two-dimensional environment since the X-Y plane are 
painted. 

 
5.3 GUI and Navigation Tools 
GEMPA has incorporated two modes to paint an object; wire mode and solid mode. Next, 
Lambert illumination is implemented to produce more realism, and finally transparency 
effects are used to visualize the objects. Along the GUI, camera movements are added to 
facilitate the navigation inside the environment to display views from different locations. In 
Figure 13.  Two illumination techniques are presented when GEMPA recover information 
since off-files to represent a human face. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13. Light transparency. In the left side, an object is painted using Lambert illumination, 
in the right side, transparency effect is applied on the object.   Both features are used to give 
more realism the environment.   

 

 

5.4 Simulation of Motion Planning Algorithms 
Initially, only PRM for free flying objects are considered as an initial application of GEMPA. 
Taking into account this assumption, the workspace is conformed by a set of obstacles 
(objects) distributed on the environment, these objects has movement restrictions that mean 
that, the obstacles can not change their position inside the environment. In addition, an 
object that can move through the workspace is added to the environment and is called 
robot. The robot can move through the workspace using the free collision path to move from 
the initial configuration to the goal configuration. For PRM for free flying objects, only a 
robot can be defined and the workspace can include any obstacles as the problem need. 
GEMPA also includes the capability to recover from an environment – file information about 
the position and orientation for each object inside a workspace including the robot 
configuration. Hence, GEMPA can draw each element to simulate the workspace associated. 
Therefore, initially GEMPA can recover information about the workspace, an example of 
this file can be see in Figure 14, where the environment  file (left side), include initial and 
goal configuration for the robot, beside includes x,y,z parameter for position and (α, β, γ) 
parameters for orientation for every objects inside the workspace. Along with this 
environment file, a configuration - file can also be loaded to generate the corresponding 
animation of the free collision path. This configuration - file has the form presented in Figure 
14 (right side). This file is conformed by n six-tuples (x, y, z,α, β, γ) to represent each 
configuration included in the free collision path.  
 

Fig. 14. On the left side, an example of environment - file (robot and obstacles representations) 
is presented, and on the right side a configuration file (free collision path) is shown. 
 
Once GEMPA has recovered information about workspace and collision free path, the tool 
allows the user to display the animation on three different modes. 

 
Mode 1: Animation painting all configurations.  
Mode 2: Animation painting configurations using a step control. 
Mode 3: Animation using automatic step.  

 
From Figures 15 to Figure 18, we can see four different samples of motion planning 
problems which are considered as important cases.  For each one, different views are 
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in the right side, transparency effect is applied on the object.   Both features are used to give 
more realism the environment.   

 

 

5.4 Simulation of Motion Planning Algorithms 
Initially, only PRM for free flying objects are considered as an initial application of GEMPA. 
Taking into account this assumption, the workspace is conformed by a set of obstacles 
(objects) distributed on the environment, these objects has movement restrictions that mean 
that, the obstacles can not change their position inside the environment. In addition, an 
object that can move through the workspace is added to the environment and is called 
robot. The robot can move through the workspace using the free collision path to move from 
the initial configuration to the goal configuration. For PRM for free flying objects, only a 
robot can be defined and the workspace can include any obstacles as the problem need. 
GEMPA also includes the capability to recover from an environment – file information about 
the position and orientation for each object inside a workspace including the robot 
configuration. Hence, GEMPA can draw each element to simulate the workspace associated. 
Therefore, initially GEMPA can recover information about the workspace, an example of 
this file can be see in Figure 14, where the environment  file (left side), include initial and 
goal configuration for the robot, beside includes x,y,z parameter for position and (α, β, γ) 
parameters for orientation for every objects inside the workspace. Along with this 
environment file, a configuration - file can also be loaded to generate the corresponding 
animation of the free collision path. This configuration - file has the form presented in Figure 
14 (right side). This file is conformed by n six-tuples (x, y, z,α, β, γ) to represent each 
configuration included in the free collision path.  
 

Fig. 14. On the left side, an example of environment - file (robot and obstacles representations) 
is presented, and on the right side a configuration file (free collision path) is shown. 
 
Once GEMPA has recovered information about workspace and collision free path, the tool 
allows the user to display the animation on three different modes. 

 
Mode 1: Animation painting all configurations.  
Mode 2: Animation painting configurations using a step control. 
Mode 3: Animation using automatic step.  

 
From Figures 15 to Figure 18, we can see four different samples of motion planning 
problems which are considered as important cases.  For each one, different views are 
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presented to show GEMPA’s functionalities. Besides, we have presented motion planning 
problems with different levels of complexity.  
In Figure 15.  (Sample 1) The collision free path is painted as complete option and as 
animation option. In this sample a tetrahedron is considered as the robot. 
Next, Figure 16: (Sample 2). A cube is presented as the robot for this motion planning 
problem. Here, GEMPA presents the flat and wire modes to paint the objects. 
In Figure 17: (Sample 3). Presents a robot which has a more complex for and the problem 
becomes difficult to solve because the motion planning method needs to compute free 
configuration in the narrow corridor. 
Finally in Figure 18: (Sample 4). Animation painting all configurations (left side), and 
animation using automatic step (right side) are displayed. Although the robot has not a 
more complex form, there are various narrow corridors inside the environment. 
 
 
 
 
  

 
 
 
 

 
 
 
 
 
 
 
Fig. 15. Sample 1. The robot is presented as a tetrahedron. 
 

Fig. 16. Sample 2. The robot is presented as a cube. 

 

 

Fig. 17. Sample 3. The robot’s form is more complex. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18. Sample 4. More complex environment where various narrow corridors are presented. 
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