
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Motion Control 101

Motion Control

Sangchul Won and Jinwook Seok

x 
 

Motion Control 
 

Sangchul Won and Jinwook Seok 
Pohang University of Science and Technology 

South Korea 

 
1. Introduction 
 

This chapter presents an introduction to the various methods of controlling the motion of 
rigid manipulators. Motion control of robotic manipulators has been the subject of 
considerable research, and many control schemes have been evolved. Typical and recently 
proposed motion control strategies are introduced and the strengths and weaknesses of each 
control scheme are also described in this chapter. We assume that the robotic manipulators 
are rigid, that is, the manipulators do not have flexible links and elastic joints. 
In this chapter, we discuss some useful properties of the robot dynamic equations, which are 
used in deriving robot control schemes in section 2. Proportional-integral-derivative (PID) 
control schemes, which are widely used in robotic manipulator control, are introduced in 
section 3. Computed torque control is described in section 4. A modified computed-torque 
control scheme which overcomes some disadvantages of the conventional one is also 
introduced in the section. To compensate for parametric uncertainties in the robot dynamic 
equations, various adaptive strategies for the control of robotic manipulators are introduced 
in section 5. We discuss the robust control that is capable of compensating for both 
structured and unstructured uncertainties in section 6 and conclude the chapter in section 7. 

 
2. Robot Dynamic Equation 
 

In the absence of friction and other disturbances, the dynamic equation of an n-link robot 
manipulator can be written as: 
 

M(q)q C(q,q)q g(q)      , (1) 
 
where q is the 1n  vector of joint variables,   is the 1n  vector of input torques, M(q) is 
the n n  symmetric positive-definite manipulator inertia matrix, C(q,q)q   is the 1n  
vector of centrifugal and Coriolis torques and g(q) is the 1n  vector of gravitational 
torques. The control schemes that will be introduced in this chapter are based on some 
important properties of dynamic equation (1). 
 
Property of Inertia Matrix: 
The inertia matrix M(q) is symmetric positive-definite and bounded as 
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1 2I M(q) I    , (2) 
 
where 1  and 2  are the positive scalars that may be computed for any given arm. 
 
Property of Centrifugal and Coriolis Vector: 
The matrix 
 

M(q) 2C(q,q)   (3) 
 
is skew-symmetric. This property implies that TM(q) C(q,q) C (q,q)    . The matrix C(q,q)  
is quadratic in q  and bounded so that 0C(q,q) c q   for some positive constant 0c . 
 
Property of Linearity in the Parameters: 
(Craig, 1988) exploited a property that the equation (1) is linear in the inertia parameters. 
This is important, because some or all of the parameters may be unknown; thus the 
dynamics are linear in the unknown terms: 
 

M(q)q C(q,q)q g(q) W(q,q,q)        , (4) 
 
where   is a vector of unknown constant parameters and W(q,q,q)   is a known matrix of 
robot functions. 
 
Those properties are used in deriving robot control schemes in subsequent sections. 

 
3. PID Control 
 

The conventional proportional-derivative (PD) and PID controllers are general feedback 
control mechanisms that are widely used in industrial control systems. These controllers 
have a strong point in that they are simple to implement and control. 

 
3.1 PD control 
PD control is useful for fast-response controllers that do not need a steady-state error of zero. 
Fundamentally, PD control is a position and velocity feedback control that gives good 
closed-loop properties when applied to a double integrator system. 
First, consider the regulation problem of the robot manipulator described by (1). Because the 
desired joint velocity dq 0 , the control law of the PD controller with gravity compensation 
is 
 

v pK q K e g(q)     , (5) 
 
where vK  and pK  are positive-definite gain matrices and de q q  . Because this control 
law has no feed-forward term, it can never achieve zero steady-state error. A common 

 

modification is to add an integral term to eliminate steady-state errors. This introduces 
additional complications because care must be taken to maintain stability and to avoid 
integrator windup. When the control law (5) is applied to (1), the closed-loop system 
becomes 
 

v pM(q)q C(q,q)q K q K e 0       . (6) 
 
Now, we investigate the stability achieved by PD control with gravity compensation. We 
choose the Lyapunov function candidate, 
 

T T
p

1 1V(q,q) q M(q)q e K e
2 2

    . (7) 

 
The function V is positive-definite; and has a derivative that is negative semi-definite using 
property (3): 
 

 

 

T T
v

T
v

2
min v

1V(q,q) q K q q M(q) 2C(q,q) q
2

q K q

K q

   

 

 

     

 



 (8) 

 
where min { }   denotes the smallest eigenvalue. By the Lyapunov stability theory and 
LaSalle’s theorem (Khalil, 2002), the regulation error converges to zero asymptotically. 
In case of PD control without gravity compensation 
 

v pK q K e    , (9) 
 
and, the closed-loop dynamic equation becomes 
 

v pM(q)q C(q,q)q g(q) K q K e 0        . (10) 
 
Let us choose Lyapunov function candidate, 
 

T T
p 0

1 1V(q,q) q M(q)q e K e U(q) U
2 2

       (11) 

 
where U(q) is the potential energy generating gravity forces and 0U  is a suitable constant. 
Taking the time derivative of V along the closed-loop dynamics (10) gives the same result (8) 
as the PD control with gravity compensation. In this case, the control system must be stable 
in the sense of Lyapunov, but we cannot conclude that the regulation error will converge to 
zero by LaSalle’s theorem. 
Next, consider tracking control. The control law of PD control with gravity compensation is 
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control mechanisms that are widely used in industrial control systems. These controllers 
have a strong point in that they are simple to implement and control. 
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modification is to add an integral term to eliminate steady-state errors. This introduces 
additional complications because care must be taken to maintain stability and to avoid 
integrator windup. When the control law (5) is applied to (1), the closed-loop system 
becomes 
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Now, we investigate the stability achieved by PD control with gravity compensation. We 
choose the Lyapunov function candidate, 
 

T T
p

1 1V(q,q) q M(q)q e K e
2 2

    . (7) 

 
The function V is positive-definite; and has a derivative that is negative semi-definite using 
property (3): 
 

 

 

T T
v

T
v

2
min v

1V(q,q) q K q q M(q) 2C(q,q) q
2

q K q

K q

   

 

 

     

 
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where min { }   denotes the smallest eigenvalue. By the Lyapunov stability theory and 
LaSalle’s theorem (Khalil, 2002), the regulation error converges to zero asymptotically. 
In case of PD control without gravity compensation 
 

v pK q K e    , (9) 
 
and, the closed-loop dynamic equation becomes 
 

v pM(q)q C(q,q)q g(q) K q K e 0        . (10) 
 
Let us choose Lyapunov function candidate, 
 

T T
p 0

1 1V(q,q) q M(q)q e K e U(q) U
2 2

       (11) 

 
where U(q) is the potential energy generating gravity forces and 0U  is a suitable constant. 
Taking the time derivative of V along the closed-loop dynamics (10) gives the same result (8) 
as the PD control with gravity compensation. In this case, the control system must be stable 
in the sense of Lyapunov, but we cannot conclude that the regulation error will converge to 
zero by LaSalle’s theorem. 
Next, consider tracking control. The control law of PD control with gravity compensation is 
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d d v pM(q)q C(q,q)q g(q) K e K e         . (12) 
 
Then the closed-loop system is  
 

v pM(q)e C(q,q)e K e K e 0       . (13) 
 
To show the stability, we chose the Lyapunov function candidate 
 

T T T
p

1 1V(e,e, t) e M(q)e e K e e M(q)e
2 2

       , (14) 

 
where   is a positive small constant. The derivative of the function V becomes 
 

T T T
v p v

1V(e,e, t) e (K M)e e K e e ( K M)e
2

              . (15) 

 
Choosing   sufficiently small insures that V  is negative-definite and hence that the system 
is exponentially stable by LaSalle’s theorem. It is notable that asymptotic tracking requires 
exact cancelation of gravity and disturbance forces and relies on accurate models of these 
quantities as well as the manipulator inertia matrix. Therefore, in practical implementations, 
modeling errors and disturbances result in tracking errors. 

 
3.2 PID control 
We have seen that PD control makes the system exponentially stable. However, in practical 
implementation, in the presence of constant disturbance (from the local point of view), PD 
control gives a nonzero steady-state error. Consequently, adding an integral action to the 
controller can compensate for the constant disturbance. The PID controller has the form 
 

p i v

p v

i 0

K e K e dt K e

K e K e
K e,       (0) ,

   

   

    

 




 (16) 

 
where iK  is a positive-definite gain matrix. Choose any positive diagonal matrix pK  and let 
 

p p i
1K : K K 


, (17) 

 
where   is a positive small constant to be determined. Then the error dynamics become 
 

v p i

i

1M(q)q C(q,q)q K q K e K e

K e,

     


  

    


 (18) 

 

where   denotes dg(q )  . To analyze the stability of the closed loop system, we choose 
the following Lyapunov function candidate with cross terms (Loria et al., 2000) 
 

T
T T T 1 T

d d p i i i
1 1 1 1V q Mq U(q) U(q ) e g(q ) e K e K e K K e e Mq
2 2 2

                      
     . (19) 

 
Using property of inertia matrix (2), rewriting T T

p 1 2 3 pe K e ( )e K e        and 
T T

1 2 3q M(q)q ( )q M(q)q          with i0 1   , one can show that if 
 

 
2

g 2
min p

1 1 2

c
K max ,

     
   

, (20) 

 
then the function V satisfies the inequality 
 

T T3 2 3
pV e K e q M(q)q

2 2
       . (21) 

 
Hence, V is positive-definite and radially unbounded. Next, using the property of the matrix 
C(q,q)  and the inequality d gg(q ) g(q) c e  , the time derivative of V along the 
trajectories of (16) satisfies 
 

       2 2
min v max v 0 2 min p g max v

1V K K c e q K c K e
2 2
                    

   
  , (22) 

 
which is negative semi-definite if 
 

   

   

 

min v max v 2

min p g max v

min v

0

K ( K 2 )
1K c K
2
K

e ,
2 c

     

   






 
(23) 

 
where max { }   denotes the largest eigenvalue. Then the local asymptotic stability of the 
origin x=0 follows by LaSalle’s theorem. 
(Qu & Dorsey, 1991) proposed a similar proof for the uniform ultimate boundedness of the 
error in the trajectory tracking problem. (Rocco, 1996) proposed a stability analysis method 
different from other approaches. The proof is based on a formulation of the robot dynamic 
model where the nominal, decoupled and linear closed loop system is emphasized, whereas 
the nonlinear terms are split into terms dependent on the control parameters and other 
norm-bounded terms. However, PID control lacks a global asymptotic stability proof. 
Moreover, to ensure local stability, the gain matrices must satisfy complicated inequalities. 
 

www.intechopen.com



Motion Control 105

 

d d v pM(q)q C(q,q)q g(q) K e K e         . (12) 
 
Then the closed-loop system is  
 

v pM(q)e C(q,q)e K e K e 0       . (13) 
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T T T
p

1 1V(e,e, t) e M(q)e e K e e M(q)e
2 2

       , (14) 
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T T T
v p v

1V(e,e, t) e (K M)e e K e e ( K M)e
2

              . (15) 
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p i v

p v

i 0

K e K e dt K e

K e K e
K e,       (0) ,

   

   
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 




 (16) 

 
where iK  is a positive-definite gain matrix. Choose any positive diagonal matrix pK  and let 
 

p p i
1K : K K 


, (17) 

 
where   is a positive small constant to be determined. Then the error dynamics become 
 

v p i

i

1M(q)q C(q,q)q K q K e K e

K e,

     


  

    


 (18) 

 

where   denotes dg(q )  . To analyze the stability of the closed loop system, we choose 
the following Lyapunov function candidate with cross terms (Loria et al., 2000) 
 

T
T T T 1 T

d d p i i i
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2 2 2
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Using property of inertia matrix (2), rewriting T T
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 
2

g 2
min p

1 1 2

c
K max ,

     
   

, (20) 

 
then the function V satisfies the inequality 
 

T T3 2 3
pV e K e q M(q)q

2 2
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C(q,q)  and the inequality d gg(q ) g(q) c e  , the time derivative of V along the 
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       2 2
min v max v 0 2 min p g max v

1V K K c e q K c K e
2 2
                    

   
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which is negative semi-definite if 
 

   

   

 

min v max v 2

min p g max v

min v

0

K ( K 2 )
1K c K
2
K

e ,
2 c

     

   






 
(23) 

 
where max { }   denotes the largest eigenvalue. Then the local asymptotic stability of the 
origin x=0 follows by LaSalle’s theorem. 
(Qu & Dorsey, 1991) proposed a similar proof for the uniform ultimate boundedness of the 
error in the trajectory tracking problem. (Rocco, 1996) proposed a stability analysis method 
different from other approaches. The proof is based on a formulation of the robot dynamic 
model where the nominal, decoupled and linear closed loop system is emphasized, whereas 
the nonlinear terms are split into terms dependent on the control parameters and other 
norm-bounded terms. However, PID control lacks a global asymptotic stability proof. 
Moreover, to ensure local stability, the gain matrices must satisfy complicated inequalities. 
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3.3 Saturated PID control 
In implementing PID control on any actual robot manipulator, one effect can cause serious 
problems: any real robot arm will have limits on the voltages and torques of its actuators. 
These limits may or may not cause a problem with PD control, but are virtually guaranteed 
to cause problems with integral control due to a phenomenon known as integrator windup 
(Lewis, 1992). 
To account for bounded control torques, i.e., 
 

i i ,max ,     i 1, ,n     , (24) 
 
the actual control torque equipped with a saturation function is defined as 
 

 d p v i maxˆSat g(q ) K e K e K e dt ,      , (25) 

 
where T

max 1,max n ,max[ , , ]    , and maxSat( , )   is a strictly increasing saturation function 
with upper limit max  and lower limit max . The assumption that the saturation function 
dominates over gravitational torques should be considered. The assumption becomes a 
necessary condition for the manipulator to be stabilizable at any desired equilibrium 
configuration n

dq .  In the presence of uncertainty in the gravitational force vector g(q), 

i ,max  should be chosen such that it is acceptably lower than the maximum torque. Under 

this assumption, if pK  and vK  are large enough, and IK  is small enough, the saturated 

PID control (25) yields semi-global asymptotic stabilization of the robot dynamics at any 
desired position n

dq   (Alvarez-Ramirez et al., 2008). (Sun et al., 2009) presented global 
stability of a saturated nonlinear PID controller with a new class of saturated function. 

 
3.4 Summary 
In this section, we have presented various PID control methods. Although the success of 
industrial applications has proven the effectiveness of the PD and PID controllers for 
complex nonlinear robotic manipulators, PID control is cannot cope with highly nonlinear 
systems for tracking problems. To overcome these limitations, several types of modified PID 
controllers were introduced subsequently. These are described in the next section. 

 
4. Computed-Torque Control 
 

A special application of the feedback linearization of nonlinear systems is computed-torque 
control, which consists of an inner nonlinear compensation loop and an outer feedback loop 
(Fig. 1). In this section, we cover computed-torque and computed-torque with a 
compensation control scheme which is a dynamic controller. 

 
4.1 Computed-torque control 
The computed-torque control law with a PD outer-loop controller is given by 
 

 

 dM(q) q u C(q,q)q g(q)       , (26) 
 
where the auxiliary control signal v pu K e K e   , which is of the PD feedback. Computed-
torque control is a model-based motion control approach created for manipulators, that is, 
in which one makes explicit use of the knowledge of the matrices M(q), C(q,q)q   and g(q). 
Furthermore, the control action (26) is computed using the desired trajectory of motion 

dq (t) , and its derivatives dq (t)  and dq (t) , as well as the position and velocity 
measurements q(t) and q(t) . 
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Fig. 1. Computed-torque control 
 
The closed-loop error dynamics of the system (Fig. 1) have the form 
 

v pe K e K e 0    . (27) 
 
The error dynamics (27) can also be rewritten in state-space form as 
 

p v
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      
              


   . (28) 

 
Because the error dynamics (28) is linear, its solutions may be obtained in closed form and 
used to assess the stability of the origin. 
We start by introducing the small constant   satisfying 
 

min v{K } 0    . (29) 
 
Multiplying by Tx x  where 2nx  is any nonzero vector yields T T

min v{K }x x x x   . 
Because vK  is a symmetric and positive-definite matrix, T T

v min vx K x {K }x x   and therefore, 
 

 T n
vx K I x 0     x 0      . (30) 

 
This means that the matrix vK I   is positive-definite. Considering all this, we conclude 
that 
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3.3 Saturated PID control 
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i i ,max ,     i 1, ,n     , (24) 
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 d p v i maxˆSat g(q ) K e K e K e dt ,      , (25) 
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3.4 Summary 
In this section, we have presented various PID control methods. Although the success of 
industrial applications has proven the effectiveness of the PD and PID controllers for 
complex nonlinear robotic manipulators, PID control is cannot cope with highly nonlinear 
systems for tracking problems. To overcome these limitations, several types of modified PID 
controllers were introduced subsequently. These are described in the next section. 
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The closed-loop error dynamics of the system (Fig. 1) have the form 
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Because the error dynamics (28) is linear, its solutions may be obtained in closed form and 
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We start by introducing the small constant   satisfying 
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2
p vK K I 0     . (31) 

 
We choose the total energy of the system as Lyapunov function, 
 

T
p v

T T T
p v

e K K I e1V(e,e)
e I I e2

1 1e e e K K e e e.
2 2

       
           

       


 

  
 (32) 

 
Taking the derivative and applying (26) yields, 
 

 

T T T T
p v

T T
v p

V(e,e) e e e K K e e e e e

e K I e e K e.

         
     

       

 
 (33) 

 
Because vK I   is positive-definite (30), the function V(e,e)   is globally negative-definite. 
By the Barbashin-Krasovskii theorm (Khalil, 2002), we conclude that the origin T T T[e ,e ]  of 
the closed-loop equation is globally uniformly asymptotically stable. 

 
4.2 Computed-torque control with compensation 
The computed-torque method is an approach that makes direct use of the complete dynamic 
model of the manipulator. Therefore, we have to know accurate parameters of the model. To 
compensate modeling errors, we introduce a computed-torque controller with 
compensation which consists of the computed-torque control law (26), and dynamic terms. 
The control law (Kelly et al., 2005) is 
 

 d v pM(q) q K e K e C(q,q)q g(q) C(q,q)            , (34) 
 
where   represents the filtered errors of the position and velocity. We choose   as 
 

 v p
bp be K e K e

p p
    

   
  , (35) 

 
where p is the differential operator d/dt ;   and b are positive design constants. For 
simplicity, and without loss of generality, we take b=1. Due to the presence of the vector   
the computed-torque with compensation control law is dynamic, that is, the control action 
  depends not only on the actual values of the state vector formed by q and q , but also on 
its past values. As a consequence of this fact, additional state variables are defined as (37) to 
characterize the control law completely. The state space realization of (35) is a linear 
autonomous system given by 
 

 

1 1 p v

22

I 0 K K e
0 I 0 I e

          
                      



  , (36) 

 

   1

2

e
I I 0 I

e
   

          
, (37) 

 
where n

1 2,    are the new state variables. 
To derive the closed-loop equation, we substitute the control law (34)  into (1). 
 

 v pM(q) e K e K e C(q,q) 0        (38) 
 
In terms of the state vector T T T T T 4n

1 2[e ,e , , ]    , equations (36) to (38) can be used to obtain 
the closed-loop equation 
 

1 1 1
p v

1 p v 1

22

e 0 I 0 0 e
e K M (q)C(q,q) K M (q)C(q,q) M (q)C(q,q) e

K K I 0
0 0 I

  

     
                     
     

        


    




 (39) 

 
of which the origin T T T T T

1 2[e ,e , , ] 0    is an equilibrium point. 
To analyze the control system we first write it in a different but equivalent form. For this, 
notice that the expression for   given in (35) allows one to derive 
 

 v pe K e K e         . (40) 
 
Substituting (40) into (38) yields 
 

 M(q) C(q,q) 0       . (41) 
 
Equation (40) is the starting point in the following stability analysis. Consider the Lyapunov 
function 
 

T1V( ,e) M(q)
2

    . (42) 

 
The derivative of V with respect to time is given by 
 

T T

T

1V( ,e) M(q) M(q)
2

M(q) 0.

      

    

 
 (43) 
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Because vK I   is positive-definite (30), the function V(e,e)   is globally negative-definite. 
By the Barbashin-Krasovskii theorm (Khalil, 2002), we conclude that the origin T T T[e ,e ]  of 
the closed-loop equation is globally uniformly asymptotically stable. 

 
4.2 Computed-torque control with compensation 
The computed-torque method is an approach that makes direct use of the complete dynamic 
model of the manipulator. Therefore, we have to know accurate parameters of the model. To 
compensate modeling errors, we introduce a computed-torque controller with 
compensation which consists of the computed-torque control law (26), and dynamic terms. 
The control law (Kelly et al., 2005) is 
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where p is the differential operator d/dt ;   and b are positive design constants. For 
simplicity, and without loss of generality, we take b=1. Due to the presence of the vector   
the computed-torque with compensation control law is dynamic, that is, the control action 
  depends not only on the actual values of the state vector formed by q and q , but also on 
its past values. As a consequence of this fact, additional state variables are defined as (37) to 
characterize the control law completely. The state space realization of (35) is a linear 
autonomous system given by 
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where n

1 2,    are the new state variables. 
To derive the closed-loop equation, we substitute the control law (34)  into (1). 
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In terms of the state vector T T T T T 4n
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of which the origin T T T T T

1 2[e ,e , , ] 0    is an equilibrium point. 
To analyze the control system we first write it in a different but equivalent form. For this, 
notice that the expression for   given in (35) allows one to derive 
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Substituting (40) into (38) yields 
 

 M(q) C(q,q) 0       . (41) 
 
Equation (40) is the starting point in the following stability analysis. Consider the Lyapunov 
function 
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    . (42) 

 
The derivative of V with respect to time is given by 
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Considering V and V  
 

V( ,e) 2 V( ,e)     , (44) 
 
which implies that 
 

V( (t),e(t)) V( (0),e(0))exp( 2 t)     . (45) 
 
From the property of inertia matrix (2), 
 

T T
1

T

1

M(q) 2V( (t),e(t))
2V( (0),e(0)) exp( 2 t).

       


    


 (46) 

 
This means that (t)  tends to zero exponentially as time t is increasing. Equation (40) may 
also be written as 
 

  12
v pe (p ) p I pK K


       . (47) 

 
The input to the linear system (47) is   which tends to zero exponentially, and the output is 
e. Because system (47) is a strictly proper linear system which is asymptotically stable, we 
invoke the fact that a stable strictly proper filter with an exponentially decaying input 
produces an exponentially decaying output, that is, 
 

t
lim  e(t) 0


 , (48) 
 
which means that the motion control objective is verified. 
We need an accurate dynamic model or must calculate the control input in real time because 
computed-torque methods are an approach that makes direct use of the complete dynamic 
model of the manipulator. To avoid these conditions, various kind of modified computed-
torque control schemes are introduced in the following section. 

 
5. Adaptive Control 
 

Adaptive controllers are formulated by updating controller parameters on-line and are 
adequate for systems that have structured uncertainties. Designing an adaptive controller is 
to develop an estimation algorithm, called the adaptation law, that guarantees convergence 
of the controller parameters as well as stability. 

 
5.1 Adaptive computed-torque control 
Because the computed-torque method needs exact dynamic model of the manipulator,  
performance and stability of the system cannot be guaranteed when parametric mismatches 

 

exist. One way to solve the problem of parameter uncertainties is to use the computed-
torque controller with estimates of the unknown parameters in place of the actual 
parameters. Based on computed-torque control law (26), the adaptive computed-torque 
controller has the form 
 

 d v p
ˆˆ ˆM(q) q K e K e C(q,q)q g(q)         , (49) 

 
where M̂(q) , Ĉ(q,q)  and ĝ(q)  are the estimations of M(q), C(q,q)  and g(q). The adaptive 
controller is based on the fact that the parameters appear linearly in the robot model as (4). 
By utilizing (4), control law (49) can be written as 
 

 v p
ˆ ˆM(q) e K e K e W(q,q,q)         , (50) 

 
where ̂  is an r 1  vector that represents a time-varying estimate of the unknown constant 
parameters. Using (1) and (4), we have the tracking error system 
 

1
v p

ˆe K e K e M (q)W(q,q,q)        , (51) 
 
where ˆ      is the parameter error. To obtain an adaptive control law, (51) can be 
rewritten in the state-space form 
 

n n n 1 1

p v n

0 I 0
M (q)W(q,q,q) A BM (q)W(q,q,q)K K I

    
           

e e e       , (52) 

 
where the tracking error vector T T T[e ,e ] e . We select the Lyapunov function 
 

T T 1V P      e e , (53) 
 
where P is a 2n 2n  positive symmetric matrix, and   is a diagonal positive-definite r r  
matrix. The derivative of (53) is 
 

   
 

T T T 1

TT 1 1 T 1

T T 1 T 1 T

V P P 2

ˆ ˆP A BM (q)W(q,q,q) A BM (q)W(q,q,q) P 2

ˆQ 2 W (q,q,q)M (q)B P



  

 

     

         

      

    

       

   

e e e e

e e e e

e e e

 (54) 

 
where Q is the positive-definite symmetric matrix that satisfies the Lyapunov equation 
 

TA P PA Q   . (55) 
 
To have V  negative semi-definite, the adaptive update rule is chosen as 
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Considering V and V  
 

V( ,e) 2 V( ,e)     , (44) 
 
which implies that 
 

V( (t),e(t)) V( (0),e(0))exp( 2 t)     . (45) 
 
From the property of inertia matrix (2), 
 

T T
1

T

1

M(q) 2V( (t),e(t))
2V( (0),e(0)) exp( 2 t).

       


    


 (46) 

 
This means that (t)  tends to zero exponentially as time t is increasing. Equation (40) may 
also be written as 
 

  12
v pe (p ) p I pK K


       . (47) 

 
The input to the linear system (47) is   which tends to zero exponentially, and the output is 
e. Because system (47) is a strictly proper linear system which is asymptotically stable, we 
invoke the fact that a stable strictly proper filter with an exponentially decaying input 
produces an exponentially decaying output, that is, 
 

t
lim  e(t) 0


 , (48) 
 
which means that the motion control objective is verified. 
We need an accurate dynamic model or must calculate the control input in real time because 
computed-torque methods are an approach that makes direct use of the complete dynamic 
model of the manipulator. To avoid these conditions, various kind of modified computed-
torque control schemes are introduced in the following section. 

 
5. Adaptive Control 
 

Adaptive controllers are formulated by updating controller parameters on-line and are 
adequate for systems that have structured uncertainties. Designing an adaptive controller is 
to develop an estimation algorithm, called the adaptation law, that guarantees convergence 
of the controller parameters as well as stability. 

 
5.1 Adaptive computed-torque control 
Because the computed-torque method needs exact dynamic model of the manipulator,  
performance and stability of the system cannot be guaranteed when parametric mismatches 

 

exist. One way to solve the problem of parameter uncertainties is to use the computed-
torque controller with estimates of the unknown parameters in place of the actual 
parameters. Based on computed-torque control law (26), the adaptive computed-torque 
controller has the form 
 

 d v p
ˆˆ ˆM(q) q K e K e C(q,q)q g(q)         , (49) 

 
where M̂(q) , Ĉ(q,q)  and ĝ(q)  are the estimations of M(q), C(q,q)  and g(q). The adaptive 
controller is based on the fact that the parameters appear linearly in the robot model as (4). 
By utilizing (4), control law (49) can be written as 
 

 v p
ˆ ˆM(q) e K e K e W(q,q,q)         , (50) 

 
where ̂  is an r 1  vector that represents a time-varying estimate of the unknown constant 
parameters. Using (1) and (4), we have the tracking error system 
 

1
v p

ˆe K e K e M (q)W(q,q,q)        , (51) 
 
where ˆ      is the parameter error. To obtain an adaptive control law, (51) can be 
rewritten in the state-space form 
 

n n n 1 1

p v n

0 I 0
M (q)W(q,q,q) A BM (q)W(q,q,q)K K I

    
           

e e e       , (52) 

 
where the tracking error vector T T T[e ,e ] e . We select the Lyapunov function 
 

T T 1V P      e e , (53) 
 
where P is a 2n 2n  positive symmetric matrix, and   is a diagonal positive-definite r r  
matrix. The derivative of (53) is 
 

   
 

T T T 1

TT 1 1 T 1

T T 1 T 1 T

V P P 2

ˆ ˆP A BM (q)W(q,q,q) A BM (q)W(q,q,q) P 2

ˆQ 2 W (q,q,q)M (q)B P



  

 

     

         

      

    

       

   

e e e e

e e e e

e e e

 (54) 

 
where Q is the positive-definite symmetric matrix that satisfies the Lyapunov equation 
 

TA P PA Q   . (55) 
 
To have V  negative semi-definite, the adaptive update rule is chosen as 
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T 1 TˆW (q,q,q)M (q)B P     e , (56) 
 
which implies that TV Q e e . Equation (56) gives the adaptive update rule for the 
parameter estimate vector ̂  because   is equal to zero. Substituting ˆ      into (56) 
gives the adaptive update rule: 
 

T 1 Tˆˆ W (q,q,q)M (q)B P     e  (57) 
 
for the parameter estimate vector ̂ . 
Detailed stability analysis (Craig, 1988) shows that the tracking error vector e approaches to 
zero asymptotically. The adaptive computed-torque controller has some restrictions 
required for the implementation. That is, the controller needs to measure accurate 
acceleration q  and to ensure that 1M̂ (q)  exists. To avoid these restrictions, other adaptive 
control schemes are introduced in following sections. 

 
5.2 Adaptive inertia-related control 
(Slotine & Li, 1987) proposed an adaptive inertia-related control scheme that does not need 
to measure joint acceleration and ensure inversion of the estimated inertia matrix. 
Consider the control input 
 

   d d v
ˆˆ ˆM(q) q e C(q,q) q e g(q) K r            , (58) 

 
where the auxiliary signal r is defined as r e e    , with   being an n n  positive-definite 
diagonal matrix. Using dq q e r     , dq q e r        and property (4), the robot dynamic 
equation (1) can be rewritten as 
 

Y( ) M(q)r C(q,q)r       , (59) 
 
where 
 

   d dY( ) M(q) q e C(q,q) q e g(q)            , (60) 
 
and Y( )  is an n r  matrix of known time functions. Equation (60) is the same type of 
parameter separation that was used in the formulation of the adaptive computed-torque 
controller. However, here Y( )  is independent of the joint acceleration q . Similar to the 
formulation (60), we also have 
 

   d d
ˆˆ ˆ ˆM(q) q e C(q,q) q e g(q) Y( )             . (61) 

 
To form the error system, substituting the control input (58) into the equation of motion (1) 
yields 

 

   d d v
ˆˆ ˆM(q)q C(q,q)q g(q) M(q) q e C(q,q) q e g(q) K r                . (62) 

 
Substituting dq q e     and dq q e     into (62), and using (60) and (61), the equation (62) 
can be rewritten as 
 

vM(q)r C(q,q)r K r Y( )       , (63) 
 
where ˆ      is the parameter error. To show the convergence of the tracking error to 
zero, (Slotine & Li, 1987) selected the inertia-related Lyapunov-like function that is a 
function of the tracking error and the parameter error: 
 

T T 11 1V r M(q)r
2 2

      , (64) 

 
where   is defined as in (53). Differentiating (64) with respect to time yields 
 

 

 
 

T T T -1
v

T T -1
v

T T -1 T
v

1V = r Y( ) - K r + r M(q) - C(q,q) r + Γ
2

= r Y( ) - K r + Γ

= -r K r + Γ + Y ( )r .

     
 

   

  

    

  
 

 (65) 

 
By selecting adaptive update rule as 
 

 Tˆ Y ( ) e e       , (66) 
 
(65) becomes T

vV = -r K r , which is negative semi-definite. Detailed analysis (Slotine & Li, 
1987) shows that the tracking error e and e  are asymptotically stable. 

 
5.3 Adaptive control based on passivity 
To unify many adaptive control schemes that have different torque control laws or adaptive 
update rules, an adaptive control scheme has been developed based on the passivity 
approach. It requires neither feedback of joint accelerations nor inversion of the estimated 
inertia matrix. First, we define an auxiliary filtered tracking error variable r(s) that is similar 
to that defined for the adaptive inertia-related controller: 
 

-1r(s) = H (s)e(s) , (67) 
 
where 
 

-1
n

1H (s) = sI + K(s)
s

 
  

, (68) 
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T 1 TˆW (q,q,q)M (q)B P     e , (56) 
 
which implies that TV Q e e . Equation (56) gives the adaptive update rule for the 
parameter estimate vector ̂  because   is equal to zero. Substituting ˆ      into (56) 
gives the adaptive update rule: 
 

T 1 Tˆˆ W (q,q,q)M (q)B P     e  (57) 
 
for the parameter estimate vector ̂ . 
Detailed stability analysis (Craig, 1988) shows that the tracking error vector e approaches to 
zero asymptotically. The adaptive computed-torque controller has some restrictions 
required for the implementation. That is, the controller needs to measure accurate 
acceleration q  and to ensure that 1M̂ (q)  exists. To avoid these restrictions, other adaptive 
control schemes are introduced in following sections. 

 
5.2 Adaptive inertia-related control 
(Slotine & Li, 1987) proposed an adaptive inertia-related control scheme that does not need 
to measure joint acceleration and ensure inversion of the estimated inertia matrix. 
Consider the control input 
 

   d d v
ˆˆ ˆM(q) q e C(q,q) q e g(q) K r            , (58) 

 
where the auxiliary signal r is defined as r e e    , with   being an n n  positive-definite 
diagonal matrix. Using dq q e r     , dq q e r        and property (4), the robot dynamic 
equation (1) can be rewritten as 
 

Y( ) M(q)r C(q,q)r       , (59) 
 
where 
 

   d dY( ) M(q) q e C(q,q) q e g(q)            , (60) 
 
and Y( )  is an n r  matrix of known time functions. Equation (60) is the same type of 
parameter separation that was used in the formulation of the adaptive computed-torque 
controller. However, here Y( )  is independent of the joint acceleration q . Similar to the 
formulation (60), we also have 
 

   d d
ˆˆ ˆ ˆM(q) q e C(q,q) q e g(q) Y( )             . (61) 

 
To form the error system, substituting the control input (58) into the equation of motion (1) 
yields 

 

   d d v
ˆˆ ˆM(q)q C(q,q)q g(q) M(q) q e C(q,q) q e g(q) K r                . (62) 

 
Substituting dq q e     and dq q e     into (62), and using (60) and (61), the equation (62) 
can be rewritten as 
 

vM(q)r C(q,q)r K r Y( )       , (63) 
 
where ˆ      is the parameter error. To show the convergence of the tracking error to 
zero, (Slotine & Li, 1987) selected the inertia-related Lyapunov-like function that is a 
function of the tracking error and the parameter error: 
 

T T 11 1V r M(q)r
2 2

      , (64) 

 
where   is defined as in (53). Differentiating (64) with respect to time yields 
 

 

 
 

T T T -1
v

T T -1
v

T T -1 T
v

1V = r Y( ) - K r + r M(q) - C(q,q) r + Γ
2

= r Y( ) - K r + Γ

= -r K r + Γ + Y ( )r .

     
 

   

  

    

  
 

 (65) 

 
By selecting adaptive update rule as 
 

 Tˆ Y ( ) e e       , (66) 
 
(65) becomes T

vV = -r K r , which is negative semi-definite. Detailed analysis (Slotine & Li, 
1987) shows that the tracking error e and e  are asymptotically stable. 

 
5.3 Adaptive control based on passivity 
To unify many adaptive control schemes that have different torque control laws or adaptive 
update rules, an adaptive control scheme has been developed based on the passivity 
approach. It requires neither feedback of joint accelerations nor inversion of the estimated 
inertia matrix. First, we define an auxiliary filtered tracking error variable r(s) that is similar 
to that defined for the adaptive inertia-related controller: 
 

-1r(s) = H (s)e(s) , (67) 
 
where 
 

-1
n

1H (s) = sI + K(s)
s

 
  

, (68) 
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and s is the Laplace transform variable. The n n  gain matrix K(s) is chosen such that H(s) 
is a strictly proper, stable transfer function matrix with relative degree 1. As in the preceding 
schemes, the adaptive control strategies require that the known time functions can be 
separated from the unknown constant parameters. Therefore, using dq q (1/s)K(s)e r    , 

dq q K(s)e r      and the property (4), the robot dynamic equation (1) can be rewritten as 
 

Z( ) M(q)r C(q,q)r       , (69) 
 
where 
 

 d d
1Z( ) M(q) q K(s)e C(q,q) q K(s)e g(q)
s

        
 

   , (70) 

 
and Z( )  is a known n r  regression matrix. The equation (70) can be arranged such that Z 
and r do not depend on the measurements of the joint acceleration q . The adaptive control 
scheme given here is called the passivity approach because the mapping of r Z( )     is 
constructed to be a passive mapping (Ortega & Spong, 1988). That is, we construct an 
adaptive update rule such that 
 

t T

0
r ( )Z( ) ( ) d             (71) 

 
is satisfied for all time and for some positive scalar constant  . We use the concept of 
passivity to analyze the stability of a class of adaptive controllers. For this class of adaptive 
controllers, the torque control is given by 
 

 d d v

v

1ˆˆ ˆM(q) q K(s)e C(q,q) q K(s)e g(q) K r
s

ˆZ( ) K r

        
 

   

  
. (72) 

 
Similar to the formulation from (62) to (63), the tracking error system can be expressed in 
terms of the tracking error variable r and regression matrix Z( )  as 
 

v ˆM(q)r C(q,q)r K r Z( )      . (73) 
 
To analyze the stability of this system, we choose the Lyapunov-like function 
 

tT T

0

1V r M(q)r r ( )Z( ) ( ) d
2

          , (74) 

 
and note from (71) that V 0 . Differentiating V and substituting (73) into (75) give 
 

 

 

T T T

T T
v

T
v

1 ˆV r M(q)r r M(q)r r Z( )
2

1r K r r M(q) 2C(q,q) r
2

r K r,

    

   

 

 

   (75) 

 
which is negative semi-definite. The passivity approach gives a general class of torque 
control laws. (Lewis et al., 2003) showed the type of stability for the tracking error which is 
asymptotically stable and some examples that unify some of the research in adaptive control. 

 
6. Robust Control 
 

Robust control is a control of fixed structure that guarantees stability and performance in 
uncertain systems. Its design only requires some knowledge about bounding functions on 
the largest possible size of the uncertainties. This limited requirement implies that robust 
control is capable of compensating for both structured and unstructured uncertainties, and 
this is one of the major advantages of robust control over adaptive control. Compared to 
adaptive control, other advantages of robust control are computational simplicity in 
implementation, better compensation for time-varying parameters and for unstructured 
nonlinear uncertainties, and guaranteed stability. 

 
6.1 Passivity-based approach 
First, we present controllers that rely directly on the passive structure of rigid robots. Based 
on the passivity theorem (Ortega & Spong, 1988), if one can show the passivity of the system 
which maps control input   to a new vector r which is a filtered version of e, then a 
controller which closes the loop between –r and   will guarantee the asymptotic stability of 
both e and e . Consider the following controller (Abdallah et al., 1991) 
 

 d d v
1M(q) q K(s)e C(q,q) q K(s)e g(q) K r
s

        
 

   , (76) 

 
where K(s) and r are defined in (67) and (68). Substituting (76) into (1), yields the tracking 
error system in terms of the tracking error variable r as 
 

vM(q)r C(q,q)r K r 0    . (77) 
 
Then it may be shown that both e and e  are asymptotically stable. This passivity-based 
approach was introduced in section 5.3, but its modification in the design of robust 
controllers when M(q), C(q,q)  and g(q) are not exactly known is not obvious. 
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and s is the Laplace transform variable. The n n  gain matrix K(s) is chosen such that H(s) 
is a strictly proper, stable transfer function matrix with relative degree 1. As in the preceding 
schemes, the adaptive control strategies require that the known time functions can be 
separated from the unknown constant parameters. Therefore, using dq q (1/s)K(s)e r    , 

dq q K(s)e r      and the property (4), the robot dynamic equation (1) can be rewritten as 
 

Z( ) M(q)r C(q,q)r       , (69) 
 
where 
 

 d d
1Z( ) M(q) q K(s)e C(q,q) q K(s)e g(q)
s

        
 

   , (70) 

 
and Z( )  is a known n r  regression matrix. The equation (70) can be arranged such that Z 
and r do not depend on the measurements of the joint acceleration q . The adaptive control 
scheme given here is called the passivity approach because the mapping of r Z( )     is 
constructed to be a passive mapping (Ortega & Spong, 1988). That is, we construct an 
adaptive update rule such that 
 

t T

0
r ( )Z( ) ( ) d             (71) 

 
is satisfied for all time and for some positive scalar constant  . We use the concept of 
passivity to analyze the stability of a class of adaptive controllers. For this class of adaptive 
controllers, the torque control is given by 
 

 d d v

v

1ˆˆ ˆM(q) q K(s)e C(q,q) q K(s)e g(q) K r
s

ˆZ( ) K r

        
 

   

  
. (72) 

 
Similar to the formulation from (62) to (63), the tracking error system can be expressed in 
terms of the tracking error variable r and regression matrix Z( )  as 
 

v ˆM(q)r C(q,q)r K r Z( )      . (73) 
 
To analyze the stability of this system, we choose the Lyapunov-like function 
 

tT T

0

1V r M(q)r r ( )Z( ) ( ) d
2

          , (74) 

 
and note from (71) that V 0 . Differentiating V and substituting (73) into (75) give 
 

 

 

T T T

T T
v

T
v

1 ˆV r M(q)r r M(q)r r Z( )
2

1r K r r M(q) 2C(q,q) r
2

r K r,

    

   

 

 

   (75) 

 
which is negative semi-definite. The passivity approach gives a general class of torque 
control laws. (Lewis et al., 2003) showed the type of stability for the tracking error which is 
asymptotically stable and some examples that unify some of the research in adaptive control. 

 
6. Robust Control 
 

Robust control is a control of fixed structure that guarantees stability and performance in 
uncertain systems. Its design only requires some knowledge about bounding functions on 
the largest possible size of the uncertainties. This limited requirement implies that robust 
control is capable of compensating for both structured and unstructured uncertainties, and 
this is one of the major advantages of robust control over adaptive control. Compared to 
adaptive control, other advantages of robust control are computational simplicity in 
implementation, better compensation for time-varying parameters and for unstructured 
nonlinear uncertainties, and guaranteed stability. 

 
6.1 Passivity-based approach 
First, we present controllers that rely directly on the passive structure of rigid robots. Based 
on the passivity theorem (Ortega & Spong, 1988), if one can show the passivity of the system 
which maps control input   to a new vector r which is a filtered version of e, then a 
controller which closes the loop between –r and   will guarantee the asymptotic stability of 
both e and e . Consider the following controller (Abdallah et al., 1991) 
 

 d d v
1M(q) q K(s)e C(q,q) q K(s)e g(q) K r
s

        
 

   , (76) 

 
where K(s) and r are defined in (67) and (68). Substituting (76) into (1), yields the tracking 
error system in terms of the tracking error variable r as 
 

vM(q)r C(q,q)r K r 0    . (77) 
 
Then it may be shown that both e and e  are asymptotically stable. This passivity-based 
approach was introduced in section 5.3, but its modification in the design of robust 
controllers when M(q), C(q,q)  and g(q) are not exactly known is not obvious. 
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 q(s) r

 
Fig. 2. Passivity-based control 
 
The passivity-based control input is given by 
 

2(s)e u    , (78) 
 
where  (s)  is a strictly proper and stable transfer function, and the external input 2u  is 
bounded in the 2L  norm. Using the control law (78), we get from Fig. 2, 
 

r (s)e   . (79) 
 
By an appropriate choice of (s)  and 2u , we can apply the passivity theorem and deduce 
that e  and r are bounded in the 2L  norm. Because 1(s)  is strictly proper and stable 
function, we can conclude that e  is asymptotically stable because 
 

1e (s)r  . (80) 
 
This implies that the position error e is bounded but the asymptotic stability is not 
guaranteed in case of trajectory tracking problem. However, in the regulation problem, the 
asymptotic stability of e can be guaranteed using LaSalle’s theorem. 
 
6.2 Variable-structure controllers 
The variable-structure theory has been applied to the control of many nonlinear processes. 
One of the main features of this approach is that one only needs to drive the error to a 
switching surface, after which the system is in sliding mode and will not be affected by any 
modeling uncertainties and disturbances. The first application of this theory to robot control 
seems to be in (Young, 1978), where the set-point regulation problem was solved using the 
following controller: 
 

i i

i i

i i

,    if  r 0
0,      if  r 0

,    if  r 0





 
  
 

, (81) 

 
where i 1, ,n   for an n-link robot. The switching planes ir  are defined as 
 

r e e    , (82) 

 

where  1 ndiag     with i 0  . Let the control input be 
 

 dM(q) e q K sgn(r) C(q,q)q g(q)          , (83) 
 
where  1 nK diag k k   with ik 0  and 
 

i
i

i

1,    if r 0
sgn(r )

1,    if r 0
 

  
. (84) 

 
Choose TV (1/2)r r  as a Lyapunov candidate. Differentiating V and using (1) and (82), 
 

 
T

T 1 1 1
d

V(r) r r

r M (q)C(q,q)q M (q)g M q e  



      

 

   
. (85) 

 
Substituting the control input (83) into (85) yields 
 

 T

n

i i
i 1

V(r) r K sgn(r)

k r 0


 

  



. (86) 

 
According to the Lyapunov stability theorem, the origin is stable equilibrium point. When 
r=0 in the sliding mode, the tracking error e decays at an exponential rate. Therefore, the 
control system is asymptotically stable with the switching function (82) and the control law 
(83). 
For most of these schemes, the control effort is discontinuous along is 0 ; this causes 
chattering which may excite unmodeled high-frequency dynamics. (Slotine, 1985) modified 
the variable-structure controller. (Chen et al., 1990) introduced a variable-structure 
controller which avoided the need to invert of the inertia matrix. 

 
6.3 Adaptive robust control 
Robust controls ensure robust stability for robotic systems. Robust controls can be defined in 
terms of a bounding function; determination of this function requires information on the 
bound of the uncertainties, such as maximum load variation. Without specifying 
applications, this size information may be difficult to obtain. While under-estimation is not 
permitted when considering robustness, and over-estimating the maximum size of 
uncertainties can potentially give robust control an unnecessarily large magnitude and gain, 
and consequently put too many requirements on the actuators. One approach to 
maintaining robustness while reducing conservatism is to introduce an adaptive scheme 
into robust control, that is, to design a so-called adaptive robust control that estimates on-
line the size of the uncertainties. 
Suppose that the dynamic equation given by 
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Fig. 2. Passivity-based control 
 
The passivity-based control input is given by 
 

2(s)e u    , (78) 
 
where  (s)  is a strictly proper and stable transfer function, and the external input 2u  is 
bounded in the 2L  norm. Using the control law (78), we get from Fig. 2, 
 

r (s)e   . (79) 
 
By an appropriate choice of (s)  and 2u , we can apply the passivity theorem and deduce 
that e  and r are bounded in the 2L  norm. Because 1(s)  is strictly proper and stable 
function, we can conclude that e  is asymptotically stable because 
 

1e (s)r  . (80) 
 
This implies that the position error e is bounded but the asymptotic stability is not 
guaranteed in case of trajectory tracking problem. However, in the regulation problem, the 
asymptotic stability of e can be guaranteed using LaSalle’s theorem. 
 
6.2 Variable-structure controllers 
The variable-structure theory has been applied to the control of many nonlinear processes. 
One of the main features of this approach is that one only needs to drive the error to a 
switching surface, after which the system is in sliding mode and will not be affected by any 
modeling uncertainties and disturbances. The first application of this theory to robot control 
seems to be in (Young, 1978), where the set-point regulation problem was solved using the 
following controller: 
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
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where i 1, ,n   for an n-link robot. The switching planes ir  are defined as 
 

r e e    , (82) 

 

where  1 ndiag     with i 0  . Let the control input be 
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Choose TV (1/2)r r  as a Lyapunov candidate. Differentiating V and using (1) and (82), 
 

 
T
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   
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Substituting the control input (83) into (85) yields 
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V(r) r K sgn(r)

k r 0


 

  


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According to the Lyapunov stability theorem, the origin is stable equilibrium point. When 
r=0 in the sliding mode, the tracking error e decays at an exponential rate. Therefore, the 
control system is asymptotically stable with the switching function (82) and the control law 
(83). 
For most of these schemes, the control effort is discontinuous along is 0 ; this causes 
chattering which may excite unmodeled high-frequency dynamics. (Slotine, 1985) modified 
the variable-structure controller. (Chen et al., 1990) introduced a variable-structure 
controller which avoided the need to invert of the inertia matrix. 

 
6.3 Adaptive robust control 
Robust controls ensure robust stability for robotic systems. Robust controls can be defined in 
terms of a bounding function; determination of this function requires information on the 
bound of the uncertainties, such as maximum load variation. Without specifying 
applications, this size information may be difficult to obtain. While under-estimation is not 
permitted when considering robustness, and over-estimating the maximum size of 
uncertainties can potentially give robust control an unnecessarily large magnitude and gain, 
and consequently put too many requirements on the actuators. One approach to 
maintaining robustness while reducing conservatism is to introduce an adaptive scheme 
into robust control, that is, to design a so-called adaptive robust control that estimates on-
line the size of the uncertainties. 
Suppose that the dynamic equation given by 
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   d dw M(q) q e C(q,q) q e g(q)        , (87) 
 
represents the uncertainty for a given robot controller. It is assumed that a positive scalar 
function   can be used to bound the uncertainty as follows (Lewis et al., 2003) 
 

2
0 1 2 w       e e , (88) 

 
where T T T[e ,e ] e  is the tracking error vector and the values of i  represent the positive 
bounding constants that are based on such quantities as the largest possible payload mass, 
link mass and disturbances. The adaptive robust controller learns these bounding constants 
on-line as the manipulator moves. In the control implementation, knowledge of the 
bounding constants is not required; only the existence of the bounding constants defined in 
(88) is required. 
The adaptive robust controller has the following form 
 

2

v

ˆrK r
ˆ r


  

  
 (89) 

 
where the filtered tracking error r e e    and 
 

k ,    (0) 0      , (90) 
 
where k  is a positive scalar control constant. ̂  is a scalar function defined as 
 

2
0 1 2

ˆ ˆ ˆ̂      e e , (91) 
 
and the values of i̂  are the dynamic estimates of the corresponding bounding constants i . 
(91) can be rewritten in the matrix form 
 

T2
0 1 2

ˆ ˆ ˆ ˆˆ S 1           e e . (92) 

 
Similar to (92), the actual bounding function   can be also be written as 
 

 T2
0 1 2S 1        e e . (93) 

 
Then the bounding estimates defined in (92) are updated on-line by the update rule 
 

Tˆ S r   , (94) 
 
where   is a positive scalar control constant and the filtered tracking error r e e   . 

 

Because i  are constants, (94) can be rewritten as 
 

TS r   , (95) 
 
where ˆ     . 
Substituting the adaptive robust controller (89) into the robot dynamic equation (1) gives the 
error system: 
 

2

v

ˆrM(q)r C(q,q)r K r w 0
ˆ r


    

  
  . (96) 

 
Now, let us investigate the stability of the corresponding error system (96) for the adaptive 
robust controller (89). We choose the Lyapunov function candidate as follows 
 

T T 1 11 1V r M(q)r k
2 2

 
        . (97) 

 
The time derivative of (97) is 
 

T T T 1 1

2
T T 1

v

1V r M(q)r r M(q)r k
2

ˆrr K r S r r w k .
ˆ r

 





       

 
            

    

 
 (98) 

 
Using (88), we can place an upper bound on V  in the following manner: 
 

T 2
T 1

v

T 2
T

v

T
v

ˆr rV r K r S r S r k
ˆ r

ˆr rˆr K r S r
ˆ r

ˆS rr K r .ˆS r





        

  


      

  

 
    

  

  

 (99) 

 
Because the sum of the last two terms in (99) is always less than zero, we can place the new 
upper bound on V : 
 

T
vV r K r  , (100) 

 
which is negative semi-definite and used to know the type of stability for the tracking error 
which is asymptotically stable (Corless & Leitmann, 1983). 
In the conventional adaptive robust control methods, however, the explicit quantitative 

www.intechopen.com



Motion Control 119

 

   d dw M(q) q e C(q,q) q e g(q)        , (87) 
 
represents the uncertainty for a given robot controller. It is assumed that a positive scalar 
function   can be used to bound the uncertainty as follows (Lewis et al., 2003) 
 

2
0 1 2 w       e e , (88) 

 
where T T T[e ,e ] e  is the tracking error vector and the values of i  represent the positive 
bounding constants that are based on such quantities as the largest possible payload mass, 
link mass and disturbances. The adaptive robust controller learns these bounding constants 
on-line as the manipulator moves. In the control implementation, knowledge of the 
bounding constants is not required; only the existence of the bounding constants defined in 
(88) is required. 
The adaptive robust controller has the following form 
 

2

v

ˆrK r
ˆ r


  

  
 (89) 

 
where the filtered tracking error r e e    and 
 

k ,    (0) 0      , (90) 
 
where k  is a positive scalar control constant. ̂  is a scalar function defined as 
 

2
0 1 2

ˆ ˆ ˆ̂      e e , (91) 
 
and the values of i̂  are the dynamic estimates of the corresponding bounding constants i . 
(91) can be rewritten in the matrix form 
 

T2
0 1 2

ˆ ˆ ˆ ˆˆ S 1           e e . (92) 

 
Similar to (92), the actual bounding function   can be also be written as 
 

 T2
0 1 2S 1        e e . (93) 
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TS r   , (95) 
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2

v
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
    

  
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Now, let us investigate the stability of the corresponding error system (96) for the adaptive 
robust controller (89). We choose the Lyapunov function candidate as follows 
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 
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T T 1
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 
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Because the sum of the last two terms in (99) is always less than zero, we can place the new 
upper bound on V : 
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vV r K r  , (100) 

 
which is negative semi-definite and used to know the type of stability for the tracking error 
which is asymptotically stable (Corless & Leitmann, 1983). 
In the conventional adaptive robust control methods, however, the explicit quantitative 
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relation between the tracking error bound and the design parameters is not clear. The 
tracking error precision is explicitly specified based on the quantitative relation between the 
control error and the design parameters (Imura et al., 1994). The conventional adaptive 
robust control has been extended so that the bounding function can be parameterized in 
terms of time varying parameters defined by exogenous systems (Qu, 2000). 

 
6.4 Disturbance observer based control 
Disturbance observer based (DOB) control is one of the most useful robot control techniques. 
The DOB method was designed to estimate the sum of the disturbance torques due to the 
combined modeling error, nonlinear terms in the dynamic equation and unknown external 
torque. In DOB control, the difference between the actual output and the output of the 
nominal model is regarded to be an equivalent disturbance applied to the nominal model. 
For a multi-link robotic system, the DOB control regards the coupling torques from other 
links as an unknown external torque; this enables independent joint control for a multi-link 
robotic manipulator. Hence, a simple controller can be designed for the independent 
nominal model. 

P(s)

Q(s)

1
nP (s)

r
d



 





 q

d̂








 
Fig. 3. Disturbance observer 
 
In the classical disturbance observer structure (Fig. 3), P(s) represents the linear time 
invariant plant to be controlled, 1

nP (s)  is inverse of nominal plant model nP (s) , Q(s) is a 
low pass filter, d  represents disturbance torque and   represents measurement noise. 
From Fig. 2, the input-output relation is obtained as follows: 
 

rq r dq d qq G (s) G (s) G (s) ,       (101) 
 
where 
 

 
 
 

 

n
rq

r n n

n
dq

d n n

q
n n

q P(s)P (s)G (s)
P (s) Q(s) P(s) P (s)

P(s)P (s) 1 Q(s)qG (s)
P (s) Q(s) P(s) P (s)

q P(s)Q(s)G (s) .
P (s) Q(s) P(s) P (s)

 
  


 
  

 
  

 (102) 

 

 

For low frequencies Q(s) 1 , rq nG (s) P (s) , dqG (s) 0  and qG (s) 1  . For high frequencies 

Q(s) 0 , rqG (s) P(s) , dqG (s) P(s)  and qG (s) 0  . This implies that the disturbance 

observer rejects low-frequency disturbances and high-frequency measurement noise. 
Selection of a low-pass filter Q(s) is an important factor for designing the disturbance 
observer, because this selection constitutes a design trade-off between disturbance rejection 
versus noise rejection and robust stability. Because the disturbance observer uses a low-
pass-filter to reduce the measurement noise of the output and to make the transfer function 

1Q(s)P (s)  proper, the performance of the observer mainly depends on the designed filter. 
Hence, many studies have dealt with design methods of robust disturbance observer and of 
Q(s). However most of these studies of design and analysis are based on linear system 
techniques (Umeno et al., 1993; Choi et al., 2003; Kobayashi et al., 2007). Those techniques 
are not applicable when the system does not work as a nominal linear plant. For this reason, 
nonlinear disturbance observers for nonlinear dynamics of the system have been proposed 
to overcome the limitation of analysis based on linear system (Chen, 2004; Liu & Svoboda, 
2006). 

 
7. Conclusion 
 

In this chapter, various motion control schemes for rigid robotic manipulator were 
introduced. The first control schemes were conventional PD and PID control which have 
simple structures. However, PID control methods have limitations for nonlinear robotic 
manipulators. To overcome these disadvantages, modified PID control and computed-
torque control were introduced as a special application of the feedback linearization of 
nonlinear systems. 
To handle uncertainties in the robotic manipulator, adaptive and robust control methods 
were discussed. Adaptive controllers are formulated by updating controller parameters on-
line; these controllers are suited for systems with structured uncertainties. In robust control 
of fixed structure, the stability and performance in uncertain systems is guaranteed. Robust 
control schemes can be combined with adaptive control techniques effectively. The bounds 
of uncertainties are estimated by adding an adaptive scheme to the robust controller. Some 
disturbance observer based control schemes are also shown to be robust control methods. By 
compensating for all disturbances which consist of system uncertainties and disturbances, 
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