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1. Introduction    
 

Due to their multi-loop architecture, parallel manipulators can reach higher stiffness and 
load-bearing capability than serial manipulators of equivalent weight. This feature has made 
them attractive for many applications, including high-precision machining tools, space 
robots and high-speed manipulators. Unfortunately, the drawback of parallel architectures 
is the more entangled kinematics, which causes many a problem during design and 
operation of parallel machines. 
The first problem is that it may be impossible to reach a desired configuration without 
disassembling the mechanism, even though such configuration satisfies all kinematic 
constraints. A classical trivial example is Grashof four-bar linkage (see Paul, 1979), such as 
the one depicted in Fig. 1.  If the mechanism is at configuration 1, it is impossible to reach 
configuration 2 without dismantling the kinematic chain. 
The configuration of a mechanism will be henceforth meant as the ordered set containing 
the actual poses (positions and orientations) of all the links of a mechanism. If the pose of at 
least one link changes, then the configuration changes.  
The configuration space of a mechanism is the manifold containing all allowed 
configurations of the mechanism. The problem of determining whether or not any 
configurations can be reached is strictly connected with the number of disjoint regions 
composing the configuration space. If the configuration space is connected, then any 
configuration can be reached. On the other hand, if the configuration space is composed of 
two or more disjoint regions, there will always exist unreachable configurations.  
Such disjoint regions were named assembly circuits for single-dof mechanism in (Chase & 
Mirth, 1993), where an interesting discussion is provided to discriminate circuits from 
branches. Many authors tackled the problem of counting the different assembly circuits in 
single-dof mechanisms (see for example (Chase & Mirth, 1993), (Mirth &Chase, 1993), 
(Midha et al., 1985)  ). 
The denomination assembly configuration (AC henceforth) was introduced in (Foster & 
Cipra, 1998), to generalize the notion of assembly circuit to multi-dof mechanisms. A 
criterion was given in (Foster & Cipra, 1998) to determine the number of ACs composing the 
configuration space of any single-loop planar kinematic chain, which was proved to be at 
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most two. A counting method for the ACs of two-dof multi-loop mechanisms was given in 
(Foster & Cipra, 2002) and (Dou & Ting, 1998).  
 

 
Fig. 1. A Grashof four-bar likage. 
 
A second hindrance to path-planning toward a target configuration is the presence of 
singularities. In (Gosselin & Angeles, 1998) all manipulator singularities where classified 
into three types. Type 1 singularities occur when the inverse kinematics Jacobian matrix is 
singular. Such singularities are also named serial singularities, because they are typical of 
serial kinematic chains. Type 2 singularities  occur when the direct kinematics Jacobian 
matrix is singular, whereas type 3 singularities occur when both the afore mentioned 
conditions are satisfied. Type 2 and 3 singularities are also named parallel singularities, 
because they are featured by parallel manipulators only.  
Serial singularities might cause some loss of dexterity, but are fairly harmless, whereas 
parallel singularities might trigger the loss of platform control, or the structural break down 
of the machine. Indeed, the actuator forces required to balance the external actions on the 
platform might burst to infinity, while crossing a parallel singularity. 
It is therefore utterly important to know whether a configuration of the manipulator can be 
reached or not without meeting  a parallel singularity. If, at two different configurations of 
the manipulator, the Jacobian determinant has opposite signs, then it is impossible to go 
from one configuration to the other without meeting a singularity, for sooner or later the 
Jacobian determinant must vanish to change its sign. Nevertheless, if the sign is the same, 
the existence of a singularity-free path between the two configurations is uncertain. 
Many solutions to the challenging problem of singularity-free path-planning are available in 
the literature, e.g. the geometrical methods proposed in (Dasgupta, and Mruthyunjaya, 
1998),  and (Bhattacharya et al., 1998), or the variational formulation adopted in (Sen et 
al.,2003). However, the methods hitherto proposed are mainly local, i.e., they might fail to 
find any singularity-free paths, though some do indeed exist. 
The singularity-free path-planning problem is strictly related to the number of disjoint 
regions into which the configuration space is partitioned by the parallel singularity locus, 
i.e. the maximal connected regions free of parallel singularities. These disjoint regions will 
be henceforth named  parallel-singularity-free regions (PSFRs). For the purpose of this 
paper, serial singularities will be ignored, because they are not dangerous for the 
manipulator. 
This paper proposes a method to identify and count all the ACs and PSFRs of a fully-parallel 
(see Chablat & Wenger, 1998) manipulator. Once this identification process is finished, it is 
possible to asses whether any singularity-free path connecting any two configurations of the 
mechanism exists, and whether any path at all exists. The proposed method is based on 
some elements of differential topology, which will be recalled in the next section. The 

 

developed method will be applied to three classes of parallel manipulators with three 
degrees of freedom, and numerical examples will show its effectiveness. 

 
2. Morse Theory 
 

Morse theory is an important branch of differential topology. Its aim is to asses the 
topological properties of a compact manifold through the critical points of a regular function 
defined on it. In this section, the main definitions and results used in the rest of the paper 
will be briefly recalled. Further details may be found in (Milnor, 1969). 
Let M be a smooth n-dimensional compact manifold and f  be a differentiable, real valued 
function on M. In the neighbourhood of any point P of M it is possible to define a local 
system of coordinates (x1, ... ,xn). With reference to these coordinates, the gradient of  f at P is 
defined as 
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The points of M where f  0  are named critical points of f. The property of being critical 
does not depend on the local coordinate system chosen to calculate the gradient. 
The Hessian matrix of f is defined at a point P of M as 
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A critical point C of f is said to be nondegenerate if f C
H is nonsingular. The index  of a 

nondegenerate critical point is defined as the number of negative eigenvalues of the Hessian 
matrix f C

H . Neither the property of being nondegenerate nor the index depend on the 

local coordinate system chosen to compute f C
H .   

For each real value a, let aM
  be 

 

 1[ , ) : ( ) ,aM f a P M f P a       
 

(3) 

the sub-manifold of M where the function f is greater than a. The following two relevant 
topological results can be stated (see (Milnor, 1969)): 
Theorem 1: Let a<b and suppose that the set  1[ , ]f a b , consisting of all points P M with 

(P)a f b  , contains no critical points of f. Then aM
  is diffeomorphic to bM

 . 
 

 
Fig. 2. Attaching a 1-cell to a topological space Y. 
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Theorem 2: Let c be a real value in the image of f. Suppose that 1( )f c contains a 
nondegenerate critical point of f. Then, for all sufficiently small >0, cM 


   is homotopic to  

cM 

  with a k-cell attached. If  is the index of the critical point and n the dimension of M, 

then k equals n. 
Rigorous definitions of diffeomorphism and homotopy can be found in (Hirsch, 1976) and 
(Whitehead, 1978). Connectedness is conserved by homotopy and diffeomorphism: if two 
sets are diffeomorphic or homotopic they must be composed of the same number of disjoint 
regions. Theorems 1 and 2 can be thus specialized in these two corollaries: 
Corollary 1: Let a<b and suppose that the set 1[ , ]f a b  contains no critical points of f. Then 
the number of disjoint regions composing aM

  equals the number of  disjoint regions 
composing bM

 . 
Corollary 2: Let c be a real value in the image of f. Suppose that 1( )f c contains one 
nondegenerate critical point of f. Then, for all sufficiently small >0, cM 


  is composed of 

the same number of disjoint regions as a topological space obtained by attaching a k-cell to 
cM 

 . If  is the index of the critical point and n the dimension of M, then k equals n. 

Corollaries 1 and 2 are useful to understand how the number of disjoint regions composing 
aM
  varies as the real value a decreases. As long as the critical points of f contained in aM

   
remain the same, the number of disjoint regions is constant, by virtue of Corollary 1.  As 
soon as a new critical point is included in aM

 , the number of disjoint regions composing it 
may vary. By virtue of corollary 2 this variation is the same as the one obtained by attaching 
a k-cell to aM

 .  
A k-cell is the k-dimensional ball of radius 1. Roughly speaking, to attach a k-cell to a 
topological space Y means to glue k-cell the at its boundary to Y. Fig. 2 shows an example: a 
1-cell is glued to the topological space Y. After attaching the cell, the number of disjoint 
regions of  Y changes: it consists of one region only. 
Not any variation of the number of disjoint regions composing a topological space can be 
obtained through the attachment of a k-cell, for the ensuing three corollaries hold (see 
(Paganelli, 2008)): 
Corollary 3: The number of disjoint regions composing a topological space increases when a 
k-cell is attached to it if and only if k equals 0. In this case only one disjoint region is added. 
Corollary 4: If the number of disjoint regions composing a topological space decreases when 
a k-cell is attached to it, then k equals 1. If a 1-cell is attached to a topological space, the 
number of disjoint regions composing it may remain the same or be diminished at most by 
one. 
Corollary 5: If k is greater than 1, the number of disjoint regions composing any topological 
space does not change after a k-cell is attached to it. 
Finally, note that corollaries 1 and 2 can be analogously formulated for the set aM

 , 
containing all the points of M where f a  (see (Paganelli, 2008)). 

 
 
 

 

3. Analysis of Singularity Loci 
 

In most cases, as it will be shown in section 4, the singularity locus of a manipulator is 
defined on the configuration space by an equation 0J  , where J  is a Jacobian 
determinant. By using the notation of section 2, there is a compact manifold C, the 
configuration space, upon which a differentiable real-valued function J  is defined. It will 
be assumed that the manipulator has three degrees of freedom, as the manipulators 
analyzed in section 4, but all results can be easily generalized for higher mobility 
manipulators.  The aim of this section is to determine how many PSFRs where J  is positive 
exist, i.e. how many disjoint regions compose aC

  according to definition (3). The same 
method will be applied to count the PSFRs in aC

 , and the number of ACs composing C. 
 

 
Fig. 3. Generation and joining of disjoint regions. 
 
The evolution of the set aC

  is studied as the level a decreases, starting from a level above 
the absolute maximum, down to zero level. In order to visualize this process, pretend that 
the manifold C were two-dimensional, and that the graph of J  could be plotted as a three-
dimensional landscape on C (see Fig. 3). This fictitious lower-dimensional representation is 
only adopted for visualizing the real process, which occurs on a four-dimensional landscape 
plotted on the three-dimensional manifold C. Imagine now that the landscape is completely 
flooded with water. Now let the water level a decrease: as the water level reaches the height 
of the highest peak, M1, an island crops out from the water. The set aC

 is the projection on C 
of the section obtained by cutting the landscape with a plane at height a. As soon as a critical 
point of J  is met, the number of disjoint regions composing aC

 varies. Before meeting the 
absolute maximum M1, aC

  was empty: it contained zero disjoint regions. After meeting the 
absolute maximum, the number of disjoint regions composing it changes as if a k-cell were 
attached to it. The maximum is a critical point of index 3 and the dimension of the manifold 
C is also 3, thus, k equals 0 (corollary 2). For corollary 3, if a 0-cell is attached to the set one 
disjoint region is added, thus, after the maximum, the number of disjoint regions is one.  
The level of water a keeps on decreasing: as long as it remains between m1 and m2, the 
heights of the two maxima of Fig. 3, the number of disjoint regions remains equal to one, by 
virtue of corollary 1. There exists only one island above the water. As soon as maximum M2 
is reached, another island appears and a new disjoint region of aC

  is generated. The 
number of disjoint regions remains equal to two until the saddle point S is reached. 
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C is also 3, thus, k equals 0 (corollary 2). For corollary 3, if a 0-cell is attached to the set one 
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The level of water a keeps on decreasing: as long as it remains between m1 and m2, the 
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Consider a point P of aC
 , with a contained in the open interval (s, m2). It is possible to 

establish whether P belongs to the disjoint region generated by M1 or to the disjoint region 
generated by M2. The steepest ascent path starting from P must reach one of the two 
maxima M1 or M2: P belongs to the disjoint region generated by the reached maximum. 
Thus, the maxima work as “labels” for the disjoint regions: each disjoint region is identified 
by the maximum contained in it. 
As the level a reaches the height of the saddlepoint S, another change of the number of 
disjoint regions of aC

  is expected. Suppose that S is a 2-saddle, i.e. the Hessian matrix has 
two negative eigenvalues and the index of S is equal to 2, thus the number of disjoint 
regions composing aC

  changes as if a 1-cell were attached to it. For corollary 4 the number 
of disjoint regions may be diminished by one or remain constant.  
To decide whether or not the number of disjoint regions has decreased, it is necessary to 
find out to which one of the existing disjoint regions the saddle point belongs. The method 
to reach this goal is identical to that proposed for a noncritical point: the steepest ascent path 
is followed, starting from the saddle, until a maximum is reached. There are two different 
steepest ascent paths starting from a 2-saddle. If the steepest ascent paths reach the same 
maximum, then a disjoint region is joining with itself, and the number of disjoint regions 
remains constant. If the steepest ascent paths reach two different maxima, the disjoint 
regions generated by the two maxima join together (Fig. 3). To identify the disjoint region 
generated by the joining, the maxima inside it can be used: the steepest ascent paths starting 
from any points inside the new region will lead to one of  its maxima. 
The procedure is henceforth analogous. Each maximum generates a new disjoint region, and 
each 2-saddle may connect two existing disjoint regions. Following the two steepest ascent 
paths as for the first 2-saddle, two maxima are reached: if they belong to two different 
disjoint regions, such  disjoint regions have joined together. If the reached maxima belong to 
the same disjoint region, the number of disjoint regions remains constant.  
As the level a reaches the value zero, the number of disjoint regions that compose 0C

 is 
determined. These disjoint regions are the PSFRs with a positive sign of the Jacobian 
determinant. Each PSFR is provided with a set of maxima which completely characterizes it. 
Furthermore, all maxima of a PSFR are connected by a network of singularity-free steepest 
ascent paths. Given any two configurations where the Jacobian determinant is positive (e.g. 
P1 and P2 in Fig. 3), it can be assessed whether or not they belong to the same PSFR: if the 
steepest ascent paths starting from the two given points reach two maxima of the same 
PSFR, the two points belong to the same PSFR too, otherwise not. If they do, a singularity-
free path is obtained by joining the steepest ascent paths connecting the two points to the 
maxima and any path in the singularity-free network connecting the maxima of the PSFR. 
The positive minima and the positive 1-saddles (i.e. saddle-points with index λ equal to 1) 
are ignored during the identification of PSFRs. In these two cases, the index λ is lesser than 
2, thus only k-cells with  k greater than 1 are attached to aC

 . Corollary 5 ensures that the 
number of disjoint regions composing aC

  can neither increase nor decrease. Also any 
singular critical point is irrelevant to classify the PSFRs: two disjoint PSFRs may touch on 
the boundary at a saddle point, or a singular isolated point appears at a singular maximum, 
but no regions are generated or joined. 

 

If a degenerate critical point is met, it is not possible to know whether the number of disjoint 
regions is changing by means of the Hessian matrix only. Higher derivatives have to be 
considered: the point might be a maximum, thus a new disjoint region is born. Or it might 
be neither a maximum nor a minimum and two or more disjoint regions could join together 
(see for example the “monkey-saddle” in (Milnor, 1969)). 
An analogous method can be used to count and identify the number of PSFRs where the 
Jacobian determinant is negative, thus, at the end of this procedure, it is possible to establish 
to which PSFR any nonsingular point belongs.  
Suppose now that the level a keeps on decreasing, below zero level. The process of 
generation and joining of disjoint regions continues just the same as above zero level: the 
negative maxima generate new disjoint regions, whereas negative 2-saddles may join 
existing disjoint regions, but now if the steepest ascent paths starting from negative 2-
saddles reach positive maxima, they are not singularity-free anymore. However, they are 
still feasible paths, even though control might be lost while crossing parallel singularities. 
There must exist an absolute minimum of the function J  on C, for C is compact and J  is 
continuous. As soon as level a reaches the absolute minimum level, the manifold aC

   
coincides with the whole configuration space C. Therefore, the disjoint regions composing 
aC
  are indeed the ACs composing the whole configuration space C. As for the PSFR, each 

AC is endowed with a set of maxima of the function J , which completely defines it. All the 
maxima contained in the same AC are connected through a network of steepest ascent 
feasible paths.  
In order to assess whether two points belong to the same AC, the steepest ascent paths 
starting from such points can be followed, until any of the maxima is reached. If the two 
maxima belong to the same AC, then there exists at least one feasible path connecting them, 
which can be obtained by joining the steepest ascent paths from the two points to the 
reached maxima, and any of the feasible paths among the network connecting the two 
maxima. This path is singularity-free only if the two points belong to the same PSFR, which 
can be assessed through the method just described. 
This process can be analogously repeated for the manifold aC

 , letting the level a increase 
from the absolute minimum to the absolute maximum. This second procedure is redundant 
for the purpose of determining the ACs, but it might be useful to find out which negative 
PSFRs belong to which AC, and to cross-check the results hitherto obtained. 
The procedure described in the previous two sections can be summarized as follows: 

1) All critical points of the Jacobian determinant J  on the configuration space C are 
determined. 

2) The critical points are classified into positive and negative maxima and into positive 
and negative 1- and 2-saddles.  

3) The two steepest ascent paths are followed, starting from each positive 2-sadlle up to 
two positive maxima. The two positive maxima, and any maxima belonging to their 
PSFRs are assigned to the same PSFR. After all the positive 2-saddles have been 
processed, the positive maxima belonging to each positive PSFR are stored. 

4) The two steepest ascent paths are followed, starting from each negative 2-sadlle up to 
two maxima. The two maxima, and any maxima belonging to their ACs are assigned 
to the same AC. After having processed all negative 2-saddles, the maxima of  each 
AC are stored. 
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5) Step 3) is repeated, suitably modified, for the negative PSFRs, to find the negative 
minima contained in each negative PSFR. 

6) Step 4) is repeated, suitably modified, for the positive 1-saddles, to find the minima 
contained in each AC.  

 
4. Case studies 
 

4.1 3UPS Spherical wrists 
Spherical wrists are manipulators whose task is to position a rigid body with a fixed point. 
Thus, by moving the actuators, the orientation of the platform is varied. 3UPS spherical 
wrists devise a simple parallel architecture to reach this target, which is depicted in Fig. 4. 
A 3UPS spherical wrist is composed of a platform, connected to the base by a spherical joint, 
and three legs, composed of two rigid bodies connected through a prismatic joint. The three 
legs are connected to the base and to the platform by means of a spherical joint and a 
universal joint. The universal joint could possibly be replaced by a spherical joint, but the 
legs would gain a passive rotational degree of freedom which might be undesired. 
Let S and S’ be two reference frames, attached to the base and to the platform respectively, 
and with the origin in the centre of the spherical joint between the platform and the base. Let 
the three points P1, P2, and P3 be the centres of the joints between the base and the legs,  and 
the three points Q1, Q2, and Q3 be the centers of the joints between the platform and the legs. 
The kinematic architecture of any 3UPS wrist is identified by the three vectors p1, p2, and p3, 
containing the coordinates of points P1, P2, and P3 relative to frame S, along with the three 
vectors q1, q2, and q3, containing the coordinates of points Q1, Q2, and Q3 relative to frame 
S’. 
3UPS spherical wrists were first studied in (Innocenti & Parenti-Castelli , 1993), where the 
direct kinematics problem was solved. In (Sefrioui & Gosselin, 1994) the singularity locus of 
3UPS spherical wrists was studied, and a representation method was proposed. However, in 
the following sections a different parameterization and visualization will be adopted. 

 

 
Fig. 4. 3UPS spherical wrist. 
 
The workspace of a 3UPS spherical wrists contains all possible orientations of the platform. 
According to Euler theorem, any possible orientation of a rigid body with a fixed point can 
be obtained from a given reference position of the body by rotating of an angle  about an 

 

axis directed as a unit vector u and containing the fixed point. Therefore, adopted a 
reference position where frames S’ and S coincide, any orientation of the platform can be 
defined by way of a unit vector u and an angle  . The orientations of the platform 
associated to u and  , and to - u and  always coincide, thus the variation range of the 
angle  can be restricted to the interval [0, ]. 
A possible visualization of the workspace can be obtained by considering a ball of radius 
 in the three-dimensional Euclidean space. With reference to Fig. 5., every point P inside 
the ball represents the orientation of the platform identified by the unit vector directed as 
the position vector of P, and by the angle  equal to the length of the position vector of P. 
Thus, every orientation of the platform with an angle  lesser than   corresponds to only 
one point inside the ball, whereas any orientation with    is identified by two 
diametrically opposite points on the boundary sphere of the ball. 
It is useful to introduce a more homogeneous parameterization of the orientation of a rigid 
body, i.e. Euler parameters, which will enable an easier determination of the critical points 
of the Jacobian determinant. We consider the vector e, containing the four Euler parameters 
 0 1 2 3, , ,e e e e , such that: 

 
2 2 2 2
1 2 3 4 1e e e e     

 

(4) 

and 0 0e  . In this section, Euler parameters will be used for the mathematical 
representation of the workspace, whereas the visualisation of Fig. 5. will be adopted to show 
results on a three-dimensional graph. 
Each point of the jointspace can be identified via the three length of the legs, i.e. the three 
distances li between points Pi and Qi of Fig. 4.  
The vector  0 1 2 3 1 2 3, , , , , ,e e e e l l l  can be used to identify a configuration of the parallel wrist, 
yet, not any such vector determines an allowed configuration of the wrist, for three 
constraints must be satisfied. The equations expressing these constraints are derived by 
means of Carnot theorem applied to the three triangles PiOQi, as shown in Fig. 6. For each of 
such triangles one can write the constraint: 
 

 
2 T
i i il  p R q  

 

(5) 

 
where R is the rotation matrix ruling the coordinate change from S’ to S, whereas pi and Rqi 
are the column vectors containing the coordinates of points Pi and Qi in the fixed frame S. 
The rotation matrix can be written as a quadratic function of the four Euler parameters, , 
thus Eq. (5) represents a set of three quadratic equations in Euler parameters and leg 
lengths. If only positive leg lengths are accepted, which indeed does not exclude any 
configuration of the wrist, there is only one set of leg lengths for any orientation of the 
platform. Thus, the workspace alone can be used to represent the whole configuration space 
of the wrist, and there is only one AC. 
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where R is the rotation matrix ruling the coordinate change from S’ to S, whereas pi and Rqi 
are the column vectors containing the coordinates of points Pi and Qi in the fixed frame S. 
The rotation matrix can be written as a quadratic function of the four Euler parameters, , 
thus Eq. (5) represents a set of three quadratic equations in Euler parameters and leg 
lengths. If only positive leg lengths are accepted, which indeed does not exclude any 
configuration of the wrist, there is only one set of leg lengths for any orientation of the 
platform. Thus, the workspace alone can be used to represent the whole configuration space 
of the wrist, and there is only one AC. 
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Fig. 5. Workspace of a 3UPS wrist. 
 
In order to determine the singularity locus of the 3UPS spherical wrist, Eq. (5)  is 
differentiated, obtaining the ensuing relationship between the virtual displacement of the 
platform and the virtual variations of leg lengths: 
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where A and B are the Jacobian matrices of Eq. (5) with respect to leg lengths and Euler 
parameters respectively. 
Moreover, not any virtual variation of Euler parameters is allowed, for  Eq.(4) must hold for 
first order variations too. Thus, differentiation of Eq.(4) yields the ensuing constraint upon 
the virtual variations of Euler parameters: 
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(7) 

If equations (7) and (6) are put together, the ensuing relation is obtained: 
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(8) 

Parallel singularities occur whenever a nonzero virtual displacement of the platform is 
allowed by the constraints, although the actuators undergo no virtual displacements.  
This implies that the determinant of the matrix at the right-hand side of Eq. (8) vanishes. 
Thus the parallel singularity locus is defined as the zero level set of a function J  on the 
configuration space, which contains all possible orientations of the platform. The function 
J  can be obtained as: 

0 1 2 3

detJ
e e e e
 

  
 

B
 (9) 

 

 
Fig. 6. Constraints of the spherical wrist through Carnot theorem 
 
Each element of matrix B is linear and homogeneous in the four Euler parameters, therefore 
J is a fourth-order homogeneous polynomial in the four Euler parameters. The singularity 

locus 0J   can be represented as a two-dimensional surface cutting the workspace, and the 
method developed in Section 3 can be used to determine how many PSFRs are partitioned 
by the singularity locus, and to find out whether it is possible or not to reach a desired 
position in the workspace without crossing a parallel singularity. 
The toughest and most important task is the determination of all critical points of the 
function J on the configuration space, which coincides in this case with the workspace. For 
the case at hand, a redundant parameterization is used, because the four Euler parameters, 
tied by Eq.(4) identify a point of the three dimensional manifold containing all possible 
orientations of a rigid body. 
The most straightforward way to tackle the problem is to resort to Lagrange's multipliers. At 
the critical points of J , the gradient of J is parallel to the gradient of the constraint, 
formalized by Eq.(4), i.e.: 
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
e
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(10) 

where   is a Lagrange multiplier, and can be easily eliminated considering the ensuing 
equation set: 

 

   
   
   

1 0 0 1

2 0 0 2

3 1 1 3

/ / 0

/ / 0

/ / 0

J e e J e e

J e e J e e

J e e J e e

     

     

     

 

 

(11) 

which stems from Eq. (10)  by multiplying the ith equation by ej and by subtracting the result 
from the product of the jth equation by ej, with a proper choice of i and j. 
Eq.(11) is set of three homogeneous fourth-order polynomial equations, in the four Euler 
parameters. Each solution in the projective space of such equation, when properly 
normalized, is a set of Euler parameters defining a critical point of J on the workspace, 
except some extraneous solutions introduced while passing from Eq. (10)  to Eq.(11). Such 
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where A and B are the Jacobian matrices of Eq. (5) with respect to leg lengths and Euler 
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Parallel singularities occur whenever a nonzero virtual displacement of the platform is 
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which stems from Eq. (10)  by multiplying the ith equation by ej and by subtracting the result 
from the product of the jth equation by ej, with a proper choice of i and j. 
Eq.(11) is set of three homogeneous fourth-order polynomial equations, in the four Euler 
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except some extraneous solutions introduced while passing from Eq. (10)  to Eq.(11). Such 
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extraneous solutions are obtained when e0  or e1 are posed equal to zero. If 0 0e  , Eq.(11) 
becomes: 
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where the first two equations degenerate into the same one. Therefore, Eq.(12) is a set of two 
homogeneous equations, the first of degree three and the second of degree four, in three 
unknowns. By virtue of Bezout theorem, Eq.(12) admits 12 solutions, which are extraneous 
solutions to Eq. (10) , that does not admit, in general, solutions with 0 0e  . 
Analogously, if 1 0e   Eq.(11) degenerates again into two equations, that yield twelve 
additional extraneous solutions. Eq.(11) is a set of three homogeneous equations of degree 4, 
therefore, by virtue of Bezout theorem, it admits 43=64 solutions in the complex projective 
space. Since 24 solutions are extraneous for Eq. (10) , there are 40 solutions to Eq.(11), and 
the real ones are critical points of J . 
Such forty solutions can be obtained by partial homogenization. First of all, Eq.(11) is 
transformed into a non homogeneous system of equations, by posing 0 1e  . In this way, any 
homogeneous solution with 0 0e   becomes a solution at infinity, included 12 of the 24 
extraneous solutions. Then, Eq.(11) is partially homogenized, by posing 2 1 0/e x x  and 

3 2 0/e x x , and by simplifying the denominators. In this way, Eq.(11) becomes a system of 
three homogeneous equations of degree four in the three variables 1x , 2x , and 0x , where 
variable 1e , that has been left out of partial homogenization, is hidden in the coefficients. 
Variables 1x , 2x , and 0x can be got rid of by means of classical elimination methods, ( see for 
example (Salmon, 1885) ), obtaining a polynomial in the hidden variable 1e .  
Stemming from a homogeneous equation set that should have 64 solutions, the resultant 
polynomial should be of degree 64. However, since the homogeneous equation set always 
possesses 12 solutions with 0 0e  , the resultant polynomial must have at least 12 solutions 
at infinity, and its degree will be at most 52.  
Furthermore, since there are always twelve extraneous solutions with 1 0e  , the resultant 
polynomial will be divisible by the monomial 12

1e . By dividing the resultant by 12
1e , a final 

equation of degree 40 is obtained, that is completely purged from extraneous solutions.  
The polynomial of degree 40 is solved numerically, and the values of 2e  and 

3e corresponding to each solution in 1e are easily found (Salmon, 1885) . The values obtained 
are homogeneous solutions with 0 1e  .In order to obtain the four Euler parameters 
identifying the orientation of the rigid body, the four values just obtained must be 
normalized, so that Eq.(4) is satisfied. Should there be any critical point with 0 0e  , this 
would be another solution at infinity to the resultant polynomial, whose degree would be 
lesser than 40. In this case, the loss of a solution is easily detected by the loss of one degree 
of the final polynomial, and the lost solution can easily be found by substituting 0 0e  into 
Eq. (10) . 

 

In this way, all 40 complex solutions to Eq. (10)  are found, and the real ones are the critical 
points of the function J . These critical points must be classified into maxima, minima, 1-
saddles and 2-saddles. In order to perform the classification, a local coordinate system could 
be chosen, and the Hessian matrix could be calculated and analyzed. However, this is not 
the most straightforward way to proceed, for the parameterization used henceforth is 
redundant, and represents no local coordinate system. At the same way Lagrange 
multipliers enable determination of critical points  with no need of local coordinate systems, 
it is possible to intrinsically analyze second order variations of J in the neighborhood of a 
critical point through the following eigenvalue problem (see (Fletcher, 1987)): 

 

 * * * 0
e
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(13) 

where: 
 *

e
H   is the bordered Hessian, i.e. the Hessian matrix of the Lagrangian function, 
calculated at the critical point e . The Lagrangian function is defined as 
     ,L J c   e e e , where   1Tc  e e e   is the optimization constraint. 

 *I is equal to the 5x5 identity matrix, save the fifth element of the fifth row, 
which is equal to zero. 

 *a is a five-dimensional vector obtained appending a dummy variable to a four 
dimensional vector, representing a small variation of Euler parameters in the 
neighbourhood of the critical point. 

The steepest increase or decrease directions are the directions for which the ensuing 
condition is satisfied: 

 * *det 0
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Fig. 7.  Critical points in the workspace of W1 
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Eq.(14)  is always a third order polynomial in the eigenvalue  , therefore three solutions 
are expected. For each solution, Eq.(13)   yields the corresponding direction of steepest 
variation of J : it is represented by the first four components of the eigenvector *a of each 
eigenvalue  . The eigenvectors corresponding to positive eigenvalues are steepest increase 
directions, whereas the eigenvectors corresponding to negative eigenvalues are steepest 
descent directions. The index of the critical point is thus the number of negative solutions to 
Eq.(14)  , which enables the classification of any possible critical point of J . 
Also the generation of the steepest ascent or descent paths does not require the use of a local 
coordinate system. A small displacement in the steepest ascent direction just found is used 
to leave a saddle point. Then, small displacements following the projection of the gradient of 
J along the constraint surface described by Eq.(4) will build the steepest variation path, 

ending upon a maximum or a minimum. Whenever, while following a steepest ascent or 
descent path, a set of Euler parameters e  with 0 0e   is reached, it is immediately replaced 
with e , which is the same position of the platform, in order that 0e is always greater than 
zero, as discussed above. 
The 3UPS spherical wrist W1 will be used as a numerical application. The parameters 
defining manipulator W1 are reported in Table 1. 

 

p1 p2 p3 q1 q2 q3 
(1,0,0) (0,1,0) (0,1,1) (-9,2,6)/11 (6,6,7)/11 (-1,1,0) 

Table 1. Parameters defining manipulator W1 

 

Through the elimination method just described, 32 critical points are determined, among 
which there are 4 positive maxima, 2 positive 2-saddles,  4 negative minima, 12  negative 1-
saddles, and 10 singular 2-saddles. 

 
Fig. 7 shows the workspace of the spherical wrist, through the representation proposed in 
Fig. 5. The four positive maxima M1, M2, M3 and M4, are depicted as cones, and the two 
positive 2-saddles S1 and S2, depicted as spheres.  

 

The steepest ascent paths starting from the two 2-saddles S1 and S2 join M1to M2 and M3 to 
M4 respectively, thus there are two positive PSFRs. The steepest ascent paths are 
represented in 

 
Fig. 7 as black lines. 
Given the three points P1, P2, and P3, where J is positive, it can be assessed to which one of 

the two positive regions they do belong by following the steepest ascent paths (black lines in 

 
Fig. 7. The steepest ascent paths starting from P1, P2, and P3 reach the maxima M1, M2 and 
M3, respectively. Therefore P1 and P2 belong to the same region, and the path P1 -M1 -S1 -M2 
-P2, connecting P1 to P2 is singularity-free. The steepest ascent path starting from P3 reaches 
M3, which belongs to a different region, therefore there exists no singularity-free path at all 
to reach  P1or P2 starting from P3. 
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Fig. 8. Kinematic architecture of a 3UPU translational manipulator. 
 
The four minima are all connected through a network of steepest descent paths starting 
from the negative saddles, therefore there is only one negative singularity-free region. 

 
4.2 3UPU Translational Manipulators 
3UPU translational manipulators have been proposed and analyzed in (Tsai, 1996), (Di 
Gregorio & Parenti Castelli, 1998), and (Parenti Castelli et al.., 1998). 
The architecture that will be hereafter considered is that proposed in (Di Gregorio & Parenti 
Castelli, 1998), and sketched in Fig. 8. The platform is connected to the base by means of 
three legs, consisting of two links connected to each other by a prismatic joint and to the 
base and the platform through universal joints. The universal joints satisfy the ensuing two 
geometrical requirements: 

 in each leg, the axes of the two revolute joints connected to the base and to the 
platform are parallel; 

 in each leg, the axes of the two middle revolute joints, not connected to the base 
nor to the platform, are parallel. 

It can be proved that this architecture constrains the platform to pure translational motions 
(see (Di Gregorio & Parenti Castelli, 1998)). 
With reference to Fig. 8, the geometry of 3UPU translational manipulators, can be 
parametrized in the ensuing way: 

 two reference frames S and S’ with parallel axes, attached to the base and to the 
platform respectively, are defined; 

 on the ith leg, the center Pi of the universal joint attached to the base is identified 
through its coordinate vector pi in frame S; 

 on the ith leg, the center Qi of the universal joint attached to the platform is 
identified through its coordinate vector qi in frame S’; 

 on the ith leg, the common directions of the axes of the revolute joints attached to 
the base or to the platform is identified by way of a unit vector ri 

Therefore, the nine vectors pi , qi, and ri , for i=1,2,3,  completely define the kinematic 
architecture of 3UPU translational manipulators. 
The workspace of a 3UPU translational manipulator is the manifold containing all possible 
positions of the platform. Each point of the workspace can be identified by means of the 

 

coordinate vector  , ,x y zx  of a point, for example the origin O’ of S’, with respect to the 
fixed frame S. Therefore the workspace is the whole three dimensional Euclidean space. 
Any point of the jointspace is defined by the vector l=(l1, l2, l3), containing the lengths of the 
three actuated legs, thus the jointspace is a subset of the three dimensional Euclidean space, 
too. More specifically, the length li is equal to the distance between points Pi and Qi. No 
limits will be considered for leg length, thus each li  can range from zero to infinity. 
The vector  1 2 3, , , , ,l l l x y z  identifies a configuration of the manipulator only if the ensuing 
constraints are satisfied: 

 

   2 22
i i i i il Q P    q x p  

 

(15) 

Like the spherical wrists, if only positive lengths are accepted to describe the length of the 
legs, there exists only one point of the jointspace that defines a configuration along with a 
given point in the workspace, which means that the workspace and the configuration space 
can be considered as the same manifold. In other words, the vector (x,y,z) identifies both a 
position of the platform and a configuration of the manipulator, and there is only one AC. 
Eq. (15) can be differentiated, obtaining the ensuing relation: 

 

 A l B x  
 

(16) 

where the ith row of matrix B is the vector 2(Qi -Pi) , which can be written as 2(x+ci), where ci  
is a constant vector for the ith row. This means that the determinant of B is linear in the 
variables x, y, and z. 
The parallel singularity locus is therefore a plane in the three-dimensional Euclidean space, 
because it is determined by the equation: 

 
det 0pJ  B  

 
(17) 

which is linear in the variables x, y, and z. 
Parallel singularities derived by Eq. (17) are not the only dangerous configurations for a 
3UPU manipulator. Eq. (17) is based upon the implicit assumption that only translational 
virtual displacement of the platform are allowed, but there is no direct kinematic constraint 
enforcing this condition. Translational motion is the result of the particular choice of the U-
joint axes, which might be unable to hinder virtual rotations at some singular positions. 
These singular positions were named in (Zlatanov et al., 2002) constraint singularities, 
because at such positions some constraints of the parallel architecture are locally lost. 
Constraint singularities are typical of lower mobility parallel manipulators where the 
platform possesses less than six degrees of freedom. In such manipulators, some of the six 
degrees of freedom of the platform are controlled through the actuators of the manipulator, 
whereas some other (the rotational ones, in the case at hand) are passively constrained 
through the geometry of the legs. Parallel singularities are always detected by 
differentiating the equations connecting the input variables of the jointspace to the output 
variables of the workspace, but constraint singularities may not. In order to detect constraint 
singularities is always necessary to consider all six degrees of freedom of the platform, and 
to investigate under which conditions the constraints upon the degrees of freedom that are 
not controlled by the actuators might fail.  
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Constraint singularities of translational 3UPU manipulators were studied and rigorously 
determined in  (Parenti Castelli & Di Gregorio, 2002). Constraint singularities are organized 
in a locus, which is defined by the ensuing equation: 

 
det 0cJ  C  

 
(18) 

The ith column of the 3x3 matrix C is the axis direction of the rotation hindered by the ith leg, 
that can be expressed as follows: 

 

   Ti i i i i i it        q x p q x p r r  
 

(19) 

Eq. (19) is a third order polynomial in the coordinates x, y and z, identifying the 
configuration of the manipulator. 
Both constraints and parallel singularities are equally dangerous for a 3UPU translational 
manipulator, and must be avoided while moving from a configuration to another. The 
surface to be avoided is the zero level set of the function p cJ J  on the workspace of the 
3UPU translational manipulator. Unfortunately, the workspace of a translational 
manipulator is the three-dimensional Euclidean space, which is not compact. Thus, the 
method developed in Section 3 cannot be straightforwardly applied, because it works on 
compact manifolds only.  
Yet, it is possible to transform the three-dimensional Euclidean space into a compact 
manifold. First of all, consider the three-dimensional real projective space associated to the 
three-dimensional Euclidean space, i.e. each vector  0 1 2 3, , ,x x x x of the projective space is 

such that  1 0 2 0 3 0( , , ) / , / , /x y z x x x x x x . Each point of the projective space corresponds to one 
point of the Euclidean space, except the points with x0=0, i.e. points at infinity, that do not 
exist in the Euclidean space.  
We can imagine the workspace of the 3UPU manipulator as the projective space, where the 
points with 0 0x  must never be crossed, exactly like singularities. Thus, the locus of 
''forbidden'' points, is defined by the ensuing equation in the real projective space: 

 

0 0p cJ x J J   
 

(20) 

where pJ  and cJ  are properly converted to homogeneous coordinates.  
 

 
Fig. 9. Singularity locus of the 3UPU translational manipulator. 

 

The real projective space can be represented as a ball, analogous to the manifold containing 
all orientations of a rigid body. With reference to Fig. 9, a three-dimensional ball with radius 
1 is considered. For any point inside the ball, the coordinates of the point are the 
homogeneous coordinates x1, x2, and x3, of the corresponding point in the projective space. 
The projective coordinate x0 is defined as 2 2 2

0 1 2 31x x x x    . In this way, all the points of 
the ball correspond to one point of the projective space. Furthermore, all points on the 
spherical boundary of the ball are points with 0 0x  , i.e. points at infinity. Like Euler 
parameters, we represent a point of the projective space as a four-dimensional vector 

 * 0 1 2 3, , ,x x x xx  with the constraint: 
 

* * 1Tc  x x  
 

(21) 

The critical points of J  on the configuration space must be found. The configuration space 
is the three-dimensional real projective space, and the critical points can be found through 
Lagrange multipliers method: 

 

* *

J c 


 x x
 (22) 

Lagrange multiplier   can be easily eliminated considering the equation set: 
 

   
   
   

1 1 0 0 1

2 2 0 0 2

3 3 0 0 3

/ / 0
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T J x x J x x

T J x x J x x

T J x x J x x

      

      

      

 

 

(23) 

obtained by extracting   from the first equation and then substituting it into the remaining 
three. Eq. (23) is a set of three homogeneous equations of degree five. Any critical point with 

0 0x  must not be considered, because it lies on the locus 0J  . Thus 0 1x   can be 
substituted into Eq. (23), which is solved in terms of 1x , 2x , and 3x . 
Since J is divisible by cJ and pJ , Eq. (23) can be written in the ensuing form: 

 

c

p

c p

J
J
J J

 
 

 
 
 

M 0  

 

(24) 

Therefore all points where 0c pJ J   are critical points of J . These points form in general 
a curve in the workspace, and, not being isolated, are always degenerate critical points. 
Fortunately, the critical points where 0c pJ J  are all singular, and must be ruled out of 
the analysis. Thus, only critical points where either cJ or pJ  do not vanish must be 
considered, which, along with Eq. (24) yields the additional equation: 

 

4 det 0T  M  
 

(25) 

Eq.(25)  is a third order equation in 1x , 2x , and 3x  and can be used to reduce the degree of 
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Constraint singularities of translational 3UPU manipulators were studied and rigorously 
determined in  (Parenti Castelli & Di Gregorio, 2002). Constraint singularities are organized 
in a locus, which is defined by the ensuing equation: 

 
det 0cJ  C  

 
(18) 

The ith column of the 3x3 matrix C is the axis direction of the rotation hindered by the ith leg, 
that can be expressed as follows: 

 

   Ti i i i i i it        q x p q x p r r  
 

(19) 

Eq. (19) is a third order polynomial in the coordinates x, y and z, identifying the 
configuration of the manipulator. 
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such that  1 0 2 0 3 0( , , ) / , / , /x y z x x x x x x . Each point of the projective space corresponds to one 
point of the Euclidean space, except the points with x0=0, i.e. points at infinity, that do not 
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We can imagine the workspace of the 3UPU manipulator as the projective space, where the 
points with 0 0x  must never be crossed, exactly like singularities. Thus, the locus of 
''forbidden'' points, is defined by the ensuing equation in the real projective space: 
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where pJ  and cJ  are properly converted to homogeneous coordinates.  
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The critical points of J  on the configuration space must be found. The configuration space 
is the three-dimensional real projective space, and the critical points can be found through 
Lagrange multipliers method: 
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Lagrange multiplier   can be easily eliminated considering the equation set: 
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(23) 

obtained by extracting   from the first equation and then substituting it into the remaining 
three. Eq. (23) is a set of three homogeneous equations of degree five. Any critical point with 

0 0x  must not be considered, because it lies on the locus 0J  . Thus 0 1x   can be 
substituted into Eq. (23), which is solved in terms of 1x , 2x , and 3x . 
Since J is divisible by cJ and pJ , Eq. (23) can be written in the ensuing form: 
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J J
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 
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 
 
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Therefore all points where 0c pJ J   are critical points of J . These points form in general 
a curve in the workspace, and, not being isolated, are always degenerate critical points. 
Fortunately, the critical points where 0c pJ J  are all singular, and must be ruled out of 
the analysis. Thus, only critical points where either cJ or pJ  do not vanish must be 
considered, which, along with Eq. (24) yields the additional equation: 

 

4 det 0T  M  
 

(25) 

Eq.(25)  is a third order equation in 1x , 2x , and 3x  and can be used to reduce the degree of 
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Eq. (23). Each of the three polynomials 1T , 2T , and 3T  can be written as follows: 
 

4i i iT T Q R   (26) 

where Qi and Ri are the quotient and the remainder of a polynomial division on Ti through 
the divisor T4  with respect to a given variable xj. At every point where all Ti  vanish along 
with T4, all remainders Ri  must vanish too. Therefore the equation set 

 

1 2 3 4 0R R R T     
 

(27) 

is always equivalent to Eq. (23), along with the condition 4 0T  . If R1 , R2, and R3 are 
remainders of polynomial divisions with respect to variables x2, x1, and x1, respectively, R1 , 
R2, and R3 are polynomials of degree four in the two variables x2 and x3. Therefore the 
equation set: 

 

1 2 3 0R R R    
 

(28) 

can be solved with a method similar to that used for spherical wrists. Variable x1 can be 
hidden in the coefficients, and a partial homogenization with respect to x2 and x3 yields a set 
of three homogeneous equations in three unknowns of degree four. A resultant polynomial 
in x1 can then be found through classical elimination methods. 
 

    
a)                                                                   b) 

Fig. 10. a) Positive critical points of manipulator T1; 

            b) All critical points of manipulator T1. 

 
Fig. 11. The steepest ascent and descent paths are all singularity-free. 

 

Unfortunately, in this way the condition 4 0T   has not been directly imposed: Eq.(28) is not 
completely equivalent to Eq.(27), which introduces extraneous solutions. The author has 
found no way to factor out such extraneous solutions from the resultant polynomial, 
however they can be easily detected, for they do not satisfy the condition 4 0T  . 
Once all real solutions have been found by numerically solving the resultant polynomial, 
and all extraneous solutions have been cancelled, all critical points of J are known. The 
classification of critical points, and the determination of steepest ascent paths is then 
analogous to the one proposed in Section 4.1 for spherical wrists. 
Manipulator T1 is now considered as a numerical example. According to the conventional 
parameterization adopted before, T1, is defined by vectors reported in Table 2. 
 

p1 p2 p3 q1 q2 q3 r1 r2 r3 

(1,0,0) (0,1,0) (0,1,-1) (1,1,1) (0,1,-1) (1,1,1) (1,0,1) / 2
 

(1,0,1) / 2
 

(1,0,1) / 2
 

Table 2. Parameters defining manipulator T1 

 
In the workspace of T1 there are three positive maxima and two positive 2-saddles, shown in 
Fig. 10. a) Positive critical points of manipulator T1;Fig. 10a through the conventional ball 
visualization proposed in Fig. 9. Fig. 10a also shows the steepest ascent paths (black lines), 
departing from the positive 2-saddles and reaching the maxima. It can be seen that maxima 
M2 and M3 are joined, while no paths reach maximum M1. Therefore there are two positive 
regions, free of parallel and constraint singularities. 
There are five negative minima and four negative 1-saddles, and the network of steepest 
descent paths is such that there are also two negative regions. 
Fig. 10b shows all relevant critical points: the positive maxima are depicted as upward 
bound cones, the negative minima as downward bound cones, and the saddle points as 
spheres. The network of singularity-free steepest ascent and descent paths is represented as 
black lines.  
Fig. 11 shows two rotated views of the locus 0J  . The outer spherical boundary belongs to 
the locus, but it has not been plotted, in order for the inside of the ball to be visible. The 
darker surface inside the ball represents the locus of parallel singularities, whereas the 
brighter surface the locus of constraint singularities. The intersection curve of the two 
surfaces is a set of singular degenerate critical points, that have been ruled out from the 
determination of critical points by means of the polynomial division. It is possible to verify 
that the steepest ascent and descent paths never cross the spherical boundary, nor the 
parallel and constraint singularity loci.  

 
4.3 3RRR Planar manipulators 
A 3RRR planar manipulator with general structure is depicted in Fig. 12. The platform is 
connected to the rigid frame through three legs, composed of two connecting rods and three 
revolute joints, with the middle one actuated. 
The center of the ith leg revolute joint on the fixed frame is indicated by Pi, whereas the 
center of the ith leg revolute joint on the platform is indicated by Qi. The center of the 
actuated revolute joint of the ith leg is denoted by Ri. 
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Eq. (23). Each of the three polynomials 1T , 2T , and 3T  can be written as follows: 
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A 3RRR planar manipulator with general structure is depicted in Fig. 12. The platform is 
connected to the rigid frame through three legs, composed of two connecting rods and three 
revolute joints, with the middle one actuated. 
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The kinematic structure of the platform can be determined through the three parameters u2, 
u3, and v3, defining the coordinates of Q1, Q2, and Q3 in the reference frame uQ1v attached to 
the platform, as shown in Fig. 12..  Analogously, the kinematic structure of the fixed frame is 
given by the three parameters a2, a3, and b3, defining the coordinates of P1, P2, and P3 in the 
fixed reference frame xP1 y. The ith leg can be defined through the lengths of the two 
connecting rods: li and mi (see Fig. 12). Thus twelve parameters are used to define a 3RRR 
manipulator. 
This class of planar manipulators have been widely studied, and often used as an example, 
due to its simple kinematic architecture. Workspace analysis methods for similar 
manipulators were proposed in (Pennock & Kassner, 1993) and (Merlet et al.,1998) and the 
singularity locus of analogous manipulators was defined and studied in (Sefrioui & 
Gosselin, 1995) and (Wang & Gosselin, 1997). 
The workspace of a 3RRR planar manipulator is a subset of the manifold containing all 
possible positions of the platform in the plane. Each point of the workspace will be 
identified by the coordinates x and y of point Q1 in the fixed reference frame xP1y and by the 
angle   between x- and u-axes. 

 
Fig. 12. A 3RRR manipulator. 
 
The position of the ith actuator is given by the angle  , between the two rods composing 
each leg. Any point in the jointspace is therefore identified by the three angles 1 2 3( , , )   .   
Any configuration of the manipulator can be represented through the six parameters  

1 2 3( , , , , , )x y     . However, not any combination of these six parameters identifies a 
configuration of the manipulator, for the ensuing constraints imposed by the three legs must 
be satisfied: 

 

f 0  
 

(29) 

where f=( f1,  f2,  f3), and 
 

2 2 2(P Q ( , , )) 2 cos ,        1,2,3i i i i i i i if x y l m m l i        
 

(30) 

Eq.(29) can be easily derived by expressing the coordinates of each Qi in the fixed reference 
frame xP1y, and by applying Carnot theorem to the three triangles PiQiRi. 
The configuration space can be represented as the three dimensional manifold C described 
by Eq. (29) and embedded in the six dimensional manifold containing all the possible 
vectors 1 2 3( , , , , , )x y     . 

 

Unlike the manipulators presented so far, the configuration space of planar 3RRR 
manipulators does not coincide with the workspace, and might be composed of more than 
one assembly configuration, therefore the proposed method will be applied to determine 
also the number of ACs and existence of feasible paths between any two configurations. 
In order to derive the equation of the singularity locus the relationship between the first 
order displacements of the platform and the actuators is needed. Such relationship is 
obtained by differentiating Eq. (29): 

 

  
 

 
f fs q 0
s q

 

 

(31) 

where s=(x, y,  ) and q=(1, 2, 3). Parallel singularities occur when the platform can 
undergo infinitesimal displacements s, even though all actuators are locked, i.e. q 
vanishes. Thus all singular points must satisfy the condition: 

 

( , , ) det 0J x y      

f
s

 

 

(32) 

The singularity locus is a two-dimensional manifold defined by the zero level-set of the 
function J , on the three-dimensional configuration space C.  
Lagrange’s optimization method is used again to find out critical points. The Lagrangian 
function L can be defined as: 

 

1 2 3 1 2 3 1 1 2 2 3 3( , , , , , , , , )L x y J f f f              
 

(33) 

where f1,  f2, and f3, are defined by Eq.(30). The critical points of J  constrained on C are the 
points where the gradient of L with respect to all its nine variables vanishes.  
By equating to zero the derivatives of L with respect to the ith actuator angle i, the ensuing 
equations are obtained: 

 

sin( ) 0,           =1,2,3.i i i    
 

(34) 

Therefore, the following four cases are given. 
Case a): All Lagrange’s multipliers i are not equal to zero. 
In this case the sine of the three angles i must vanish (Eq.(34)), thus all three legs are 
completely outstretched or folded-up, for i is equal to 0 or . Such positions can be obtained 
by substituting all possible combinations of 0 and  into each i of Eq.(29), which is 
reobtained as derivatives of L with respect to Lagrange’s multipliers. By subtracting the first 
equation of Eq.(29) from the last two, two linear equations in x and y are obtained. From 
these linear equations, x and y can be determined as functions of the sine and cosine of , 
and back substituted into the first of Eq. (29), yielding a trigonometric equation in , which 
is easily solved through standard techniques. Lagrange’s multipliers, which are useful for 
the classification of critical points, can be determined through the remaining derivatives of 
L. 
Case b): ith Lagrange’s multiplier is equal to zero. 
In this case, only the sines of j and k vanish, with j and k different from i. Analogous to the 
previous case, two equations for x, y, and  are obtained by substituting all possible 
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The kinematic structure of the platform can be determined through the three parameters u2, 
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given by the three parameters a2, a3, and b3, defining the coordinates of P1, P2, and P3 in the 
fixed reference frame xP1 y. The ith leg can be defined through the lengths of the two 
connecting rods: li and mi (see Fig. 12). Thus twelve parameters are used to define a 3RRR 
manipulator. 
This class of planar manipulators have been widely studied, and often used as an example, 
due to its simple kinematic architecture. Workspace analysis methods for similar 
manipulators were proposed in (Pennock & Kassner, 1993) and (Merlet et al.,1998) and the 
singularity locus of analogous manipulators was defined and studied in (Sefrioui & 
Gosselin, 1995) and (Wang & Gosselin, 1997). 
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possible positions of the platform in the plane. Each point of the workspace will be 
identified by the coordinates x and y of point Q1 in the fixed reference frame xP1y and by the 
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Fig. 12. A 3RRR manipulator. 
 
The position of the ith actuator is given by the angle  , between the two rods composing 
each leg. Any point in the jointspace is therefore identified by the three angles 1 2 3( , , )   .   
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1 2 3( , , , , , )x y     . However, not any combination of these six parameters identifies a 
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(29) 

where f=( f1,  f2,  f3), and 
 

2 2 2(P Q ( , , )) 2 cos ,        1,2,3i i i i i i i if x y l m m l i        
 

(30) 

Eq.(29) can be easily derived by expressing the coordinates of each Qi in the fixed reference 
frame xP1y, and by applying Carnot theorem to the three triangles PiQiRi. 
The configuration space can be represented as the three dimensional manifold C described 
by Eq. (29) and embedded in the six dimensional manifold containing all the possible 
vectors 1 2 3( , , , , , )x y     . 

 

Unlike the manipulators presented so far, the configuration space of planar 3RRR 
manipulators does not coincide with the workspace, and might be composed of more than 
one assembly configuration, therefore the proposed method will be applied to determine 
also the number of ACs and existence of feasible paths between any two configurations. 
In order to derive the equation of the singularity locus the relationship between the first 
order displacements of the platform and the actuators is needed. Such relationship is 
obtained by differentiating Eq. (29): 

 

  
 

 
f fs q 0
s q

 

 

(31) 

where s=(x, y,  ) and q=(1, 2, 3). Parallel singularities occur when the platform can 
undergo infinitesimal displacements s, even though all actuators are locked, i.e. q 
vanishes. Thus all singular points must satisfy the condition: 

 

( , , ) det 0J x y      

f
s

 

 

(32) 

The singularity locus is a two-dimensional manifold defined by the zero level-set of the 
function J , on the three-dimensional configuration space C.  
Lagrange’s optimization method is used again to find out critical points. The Lagrangian 
function L can be defined as: 

 

1 2 3 1 2 3 1 1 2 2 3 3( , , , , , , , , )L x y J f f f              
 

(33) 

where f1,  f2, and f3, are defined by Eq.(30). The critical points of J  constrained on C are the 
points where the gradient of L with respect to all its nine variables vanishes.  
By equating to zero the derivatives of L with respect to the ith actuator angle i, the ensuing 
equations are obtained: 

 

sin( ) 0,           =1,2,3.i i i    
 

(34) 

Therefore, the following four cases are given. 
Case a): All Lagrange’s multipliers i are not equal to zero. 
In this case the sine of the three angles i must vanish (Eq.(34)), thus all three legs are 
completely outstretched or folded-up, for i is equal to 0 or . Such positions can be obtained 
by substituting all possible combinations of 0 and  into each i of Eq.(29), which is 
reobtained as derivatives of L with respect to Lagrange’s multipliers. By subtracting the first 
equation of Eq.(29) from the last two, two linear equations in x and y are obtained. From 
these linear equations, x and y can be determined as functions of the sine and cosine of , 
and back substituted into the first of Eq. (29), yielding a trigonometric equation in , which 
is easily solved through standard techniques. Lagrange’s multipliers, which are useful for 
the classification of critical points, can be determined through the remaining derivatives of 
L. 
Case b): ith Lagrange’s multiplier is equal to zero. 
In this case, only the sines of j and k vanish, with j and k different from i. Analogous to the 
previous case, two equations for x, y, and  are obtained by substituting all possible 
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combinations of 0 and  into the cosine of j and k, in the jth and the kth equations of Eq. (29). 
By subtracting one of such equations from the other, a linear equation in x is obtained: 

 

( , ) ( , ) 0g y x h y    (35) 

which yields x as a function of y and . By equating to zero the derivatives of L with respect 
to x, y, and , the ensuing equation is obtained: 

 

( , , ) (1, , )Tj kx y      A 0  
 

(36) 

where A is a 33 matrix, whose columns contain the gradients of J , fj, and fk with respect to 
variables x, y, and . Eq.(36) implies that the determinant of A must vanish, which yields the 
third condition in x, y, and . By substituting the expression of x obtained from Eq.(35) into 
this equation and into the jth equation of Eq.(29), the variable x is eliminated, and two 
polynomial equations in y and the tangent of /2 are obtained, which can be easily solved 
through Sylvester dyalitic elimination method (see Salmon, 1885). Among the solutions just 
obtained, there are some extraneous solutions, which can be easily got rid of, for at such 
solutions the two coefficients g and h of Eq.(35) vanish. The angles j and k are equal to 0 or 
, whilst the angle i can be derived from the ith equation of Eq. (29). The jth and kth 
Lagrange’s multipliers are obtained from Eq. (36), and the ith is obviously zero. 
Case c): ith and jth Lagrange’s multipliers vanish. 
By equating to zero the derivatives of L with respect to x, y, and , the ensuing equation is 
obtained: 

 

( , , ) (1, )Tkx y    B 0  
 

(37) 

Where B is a 32 matrix, whose columns contain the gradients of J  and fk with respect to 
variables x, y, and . Eq.(37) implies that all the three 22 minors of B are singular, which 
yields three equations. By considering two of the three conditions just derived, along with 
the equation obtained by substituting 0 or  into k in the kth equation of Eq. (29), three 
equations in the variables x, y, and   are obtained, which can be solved analogously to case 
b). It is possible to prove that, by equating to zero only two of the three 22 minor 
determinants, some extraneous solutions are introduced, which do not make the third 
determinant vanish. By imposing this last condition, it is possible get rid of such extraneous 
solutions. 
Case d): All Lagrange’s multipliers are equal to zero. 
In this case the gradient of J  with respect to x, y, and  must vanish, which yields two 
linear equations in x and y, and a quadratic equation in x and y. This equation set can be 
solved by techniques analogous to case a). 
 Once the critical points are determined, they are all classified by means of the bordered 
Hessian, as discussed in Section 4.1, and the maximum increase and decrease directions in 
the neighbourhoods of the saddle points are determined. 
Two numerical examples are presented hereafter, manipulators P1 and P2. The kinematical 
structure of the two examples is summarized in Table 3, according to the parameterization 
adopted. 
 

 

a2 a3 b3 u2 u3 v3 l1 m1 l2 m2 l3 m3 

P1 10 3 10 10 3 3 1 2 10 2 6 7 
P2 10 3 10 10 3 3 1 2 4 2 5 6 

Table 3. Parameters defining manipulators P1 and P2 . 
 
In manipulator P1 there are four positive maxima, nine positive 2-saddles, four negative 2-
saddles, and no negative maxima. The four positive maxima are shown in Fig. 13a. Maxima 
M1 and M2 are joined by steepest ascent paths starting from some of the positive 2-saddles, 
while M3 and M4 are not connected to any other maximum by any steepest ascent path 
starting from any positive or negative 2-saddle. There are three ACs: one containing M1 and 
M2, and the other two containing M3 and M4. Manipulator P1 was generated by imposing 
that the loop composed by leg 1, leg 2, the platform and the frame have two ACs, through 
the condition derived in (Foster & Cipra, 1998), and that leg 3 be able to completely 
outstretch in one of such ACs, but not in the other. Therefore one of the two ACs of the loop 
is split into two ACs by the fact that leg 3 can never outstretch, nor fold back. 
 

    
a)                                                                      b) 

Fig. 13. a) The four maxima of manipulator P1. 
              b) Three maxima of manipulator  P2. 
 
The analysis of the negative critical points shows that each of the tree ACs is split into two 
PSFRs, one positive, and one negative. Therefore, if the sign of the Jacobian determinant is 
the same at two configurations belonging to the same AC, a singularity-free path connecting 
them always exists. 
However, the ACs are not always split into two PSFRs only, as manipulator P2 shows. In 
manipulator P2 there is only one AC, therefore any configuration of the manipulator is 
reachable, but this AC is split into four PSFRs, three positive and one negative. Fig. 12b 
shows three positive maxima belonging to the three positive PSFRs: many feasible paths 
connect these three configurations where the Jacobian determinant is positive, but none of 
them is free of parallel singularities. 
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7. Conclusion 
 

This work presented a numerical method able to count and identify the PSFRs and the ACs 
carved by the singularity locus in the configuration space of a manipulator, and its 
application to three types of parallel manipulators.  
In principle, this method works for any manipulator, but some very particular cases, where 
there are degenerate critical points of the Jacobian determinant. The application is rather 
simple, except the determination of all critical points of the Jacobian determinant on the 
configuration space. This part of the procedure reduces in most cases to the determination of 
all solutions to a polynomial equation set, that might be a very hard task in practice, 
although it is always theoretically possible.  
However, if the determination of the critical points of the Jacobian determinant is viable, like 
the presented examples, the proposed method represents a stable and powerful tool for 
analyzing the topology of the singularity locus and for planning singularity-free paths. 
The proposed method does not take into account the possible reduction of configuration 
space of a manipulator due to the mechanical interference between the links, or by actuator 
limits. The analysis of the singularity locus under the additional constraint that no collision 
between the links takes place is a possible future development of the proposed method, as 
well as its application to more parallel manipulators with six degrees of freedom.  
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