
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Open Software Structure for Controlling Industrial Robot Manipulators 497

Open Software Structure for Controlling Industrial Robot Manipulators

Flavio Roberti, Carlos Soria, Emanuel Slawiñski, Vicente Mut and Ricardo Carelli

x

Open Software Structure for
Controlling Industrial

Robot Manipulators

Flavio Roberti, Carlos Soria, Emanuel Slawiñski,
Vicente Mut and Ricardo Carelli

Universidad Nacional de San Juan
Argentina

1. Introduction

Automatic control has become an important part of the modern industrial processes.
Progress both in basic research as applied to automatic control, provide a way to obtain the
optimum performance of the dynamical systems, improve the quality and reduce the costs.
Robotics, as a part of automatics, represents nowadays an important research area, and it
has an essential role in the productive modernization (UNECE and IFR, 2005). The inclusion
of industrial manipulators in the manufacturing process allows obtaining better and cheaper
products. Therefore, the development of an open software structure for the industrial robots
controlling is a very important objective to be achieved (William, 1994), (Frederick and
Albus, 1997).
The main characteristic of an open software structure for robotics applications is the
interface that relates the components of the robot with the basic internal structure. In
industrial area, one of the most important works was developed in the framework of the
European project OSACA (Open System Architecture for Control within Automation
Systems). Similarly, significant contributions were reached in Japan through OSEC (Open
System Environment for Controllers) under IROFA (International Robotics and Factory
Automation Center), (Sawada and Akira, 1997), and in the United States of America through
OMAC (Open Modular Architecture Control). The objective of all these research projects is
to develop an open control system including the reference model of the components, the
general application interface and the structure so that all the components work together. So
far manufacturers do not work together to develop standard control software that could be
applied to any industrial robot.
On the other hand, several commercial software packages, that run under Windows, for
mobile robots can be found. Among the best known ones, Advanced Robotics Interface for
Applications (ARIA) is used in the robots manufactured by Mobile Robots Inc.,
BotController software were developed by MobotSoft and it is used for the well known
Khepera and Koala robots. Even when these software packages are powerful and have
many benefits, they can be applied only to the robots that were developed.

23

www.intechopen.com

Robot Manipulators, Trends and Development498

The main objectives of this chapter are the development and the implementation of an open
software structure with reusable components, which works as a link between the hardware
of an industrial robot manipulator and its control algorithm in order to implement these
control algorithms with minimum efforts. Having this kind of software structure is very
useful for researching and teaching in robotics as well as for industrial applications. The
software structure runs under QNX Real Time operating system (Krten, 1999), and can be
used for a large number of industrial robots.
With the aim of achieving the raised objectives, the developed system is compound by two
different programs. First one is the responsible for the sensors’ data acquisition and sending
the control action to the servos. This program uses a shared memory block to save the data
obtained from the sensors and to get the control action to be sent to the servos. In the second
one runs the control algorithm. This program, similar to the first one, uses the same shared
memory block to get the sensors’ data and to save the control action to be sent to the servos.
This way, the control algorithm execution is isolated from the signals transmission between
the software and the robot’s hardware, allowing a time and efforts reduction in the
implementation of different control algorithms.
Then, two different controllers have been implemented in order to evaluate the performance
of the proposed open software structure, applied to the SCARA robot manipulator Bosch
SR-800. First, a classical PD (proportional-derivative) controller is used to allow the robot to
achieve a desired position on the workspace. This controller uses the position information
from the encoders of the robot. Finally, an advanced passivity based visual servoing with
“eye-in-hand” camera configuration (Weiss et al., 1987) is implemented to allow the robot to
reach a position relative to some static target. Additionally, finite L2-gain for the passivity
based control system is proven when a moving object is considered, allowing the robot to
track the moving target with L2-gain performance. Experimental results for both, the
classical PD controller and the passivity based visual controller are presented in order to
show the good performance of the proposed open software structure when it is applied to
industrial robot manipulators.
This chapter is organized as follows. Section 2 describes the used industrial robot
manipulator. Section 3 presents the open control software developed. Section 4 comments
the control strategies used to evaluate the software structure and shows the experimental
results. Finally, Section 5 presents same conclusions of the work.

2. Industrial robot Bosch SR-800

The robot manipulator Bosch SR-800 is 4 dof SCARA like industrial robotic arm. This kind
of manipulator is useful for smooth and fast movements, especially for assembly tasks. First,
second and fourth joints are rotational and they move on the horizontal plane; and third
joint is linear and it moves on the vertical plane. Figure 1 shows the robot’s configuration
and it physical dimensions. It is important to remark that the third joint is uncoupled by a
mechanical system based on toothed belts. This way, the end effector is always in the same
orientation when no control action is applied to the third joint.
The manipulator Bosch SR-800 has a Riho control unit, provided by the manufacturer,
consisting of four servo-amplifiers and a CPU. The servo-amplifiers command the joints of
the robot and the CPU is used to compute a position control algorithm with internal velocity
loop for each joint.

Fig. 1. Industrial robot Bosch SR-800

In order to reach the proposed objectives, the closed control system, i.e. the CPU provided
by the manufacturer, was replaced by an open control system, i.e. a PC based control
system. This new control system has input-output data boards AD/DA-Q12 from
Microaxial®, to make the data interchange between the control system and the robot’s
hardware. A block diagram of the described system is shown in Fig. 2.The robot was also
equipped was a force sensor FS6-120 and a vision camera Sony XC77, both located at the
end effector of the robot.

Fig. 2. Control diagram of the robot Bosch SR-800

www.intechopen.com

Open Software Structure for Controlling Industrial Robot Manipulators 499

The main objectives of this chapter are the development and the implementation of an open
software structure with reusable components, which works as a link between the hardware
of an industrial robot manipulator and its control algorithm in order to implement these
control algorithms with minimum efforts. Having this kind of software structure is very
useful for researching and teaching in robotics as well as for industrial applications. The
software structure runs under QNX Real Time operating system (Krten, 1999), and can be
used for a large number of industrial robots.
With the aim of achieving the raised objectives, the developed system is compound by two
different programs. First one is the responsible for the sensors’ data acquisition and sending
the control action to the servos. This program uses a shared memory block to save the data
obtained from the sensors and to get the control action to be sent to the servos. In the second
one runs the control algorithm. This program, similar to the first one, uses the same shared
memory block to get the sensors’ data and to save the control action to be sent to the servos.
This way, the control algorithm execution is isolated from the signals transmission between
the software and the robot’s hardware, allowing a time and efforts reduction in the
implementation of different control algorithms.
Then, two different controllers have been implemented in order to evaluate the performance
of the proposed open software structure, applied to the SCARA robot manipulator Bosch
SR-800. First, a classical PD (proportional-derivative) controller is used to allow the robot to
achieve a desired position on the workspace. This controller uses the position information
from the encoders of the robot. Finally, an advanced passivity based visual servoing with
“eye-in-hand” camera configuration (Weiss et al., 1987) is implemented to allow the robot to
reach a position relative to some static target. Additionally, finite L2-gain for the passivity
based control system is proven when a moving object is considered, allowing the robot to
track the moving target with L2-gain performance. Experimental results for both, the
classical PD controller and the passivity based visual controller are presented in order to
show the good performance of the proposed open software structure when it is applied to
industrial robot manipulators.
This chapter is organized as follows. Section 2 describes the used industrial robot
manipulator. Section 3 presents the open control software developed. Section 4 comments
the control strategies used to evaluate the software structure and shows the experimental
results. Finally, Section 5 presents same conclusions of the work.

2. Industrial robot Bosch SR-800

The robot manipulator Bosch SR-800 is 4 dof SCARA like industrial robotic arm. This kind
of manipulator is useful for smooth and fast movements, especially for assembly tasks. First,
second and fourth joints are rotational and they move on the horizontal plane; and third
joint is linear and it moves on the vertical plane. Figure 1 shows the robot’s configuration
and it physical dimensions. It is important to remark that the third joint is uncoupled by a
mechanical system based on toothed belts. This way, the end effector is always in the same
orientation when no control action is applied to the third joint.
The manipulator Bosch SR-800 has a Riho control unit, provided by the manufacturer,
consisting of four servo-amplifiers and a CPU. The servo-amplifiers command the joints of
the robot and the CPU is used to compute a position control algorithm with internal velocity
loop for each joint.

Fig. 1. Industrial robot Bosch SR-800

In order to reach the proposed objectives, the closed control system, i.e. the CPU provided
by the manufacturer, was replaced by an open control system, i.e. a PC based control
system. This new control system has input-output data boards AD/DA-Q12 from
Microaxial®, to make the data interchange between the control system and the robot’s
hardware. A block diagram of the described system is shown in Fig. 2.The robot was also
equipped was a force sensor FS6-120 and a vision camera Sony XC77, both located at the
end effector of the robot.

Fig. 2. Control diagram of the robot Bosch SR-800

www.intechopen.com

Robot Manipulators, Trends and Development500

2.1 Robot kinematic model
Let’s consider the industrial manipulator briefly described above, with a global coordinate
system whose origin is located at the intersection between the rotation axis of the first joint
and the horizontal plane yx, , as Fig. 3 shows.

Fig. 3. Geometric description of the robot Bosch SR-800

In Fig. 3, l1 and l2 are the length of the first and second links respectively, qi are the joint
positions of each link, and h is the distance between the first link and the base of the robot.
Then, the kinematic model that relates the position of the end effector with the joints
variables are represented by the following set of equations,

 
 

3

21211

21211

sinsin
coscos

qhz
qqlqly
qqlqlx





 (1)

2.2 Dynamic model
In the absence of friction or other disturbances, the dynamics of a n-link rigid SCARA robot
manipulator can be written as (Spong and Vidyasagar, 1989),

 τqCqM   (2)

where:

1R  nq is the vector of joint displacements;
1R  nτ is the vector of applied joint torques;

nnRM is the symmetric positive definite manipulator inertia matrix;
1 nRqC  is the vector of centripetal and Coriolis torques.

q3 q4

q2
q1

h

X Y

Z

l1 l2

Some important properties of the robot dynamics are the following.

Property 1—The time derivative of the inertia matrix, and the centripetal and Coriolis
matrix satisfy

n

dt
d RT 



  xxCMx 02

that is,  CM 2 is an antisymmetric matrix.

Property 2 – The dynamic structure of the manipulator can be written as,

  qqqqCqM  ,,
where   mnR,, qqq  ; and nR is a vector of parameters.

Property 3 – Matrix M has the following properties,

 0 TMM
 Minf

For the considered robot manipulator Bosch SR-800,

   
  













0918.0cos0954.00918.0
cos0954.00918.0cos1908.07277.1

2

22

q
qq

M ;

    
  







 


5783.12sin3418.0
sin0954.0sin0954.08192.31

12

21222

qq
qqqqq




C

2.3 Camera model
A vision camera transforms a 3D space into a 2D projection on the image plane, where the
vision sensor is located. This projection causes the lost of the depth perception, which means
that each point on the image plane corresponds to a ray in the 3D space.
Several projection models for the representation of the image formation process have been
proposed. The most used is the perspective projection model or “pin-hole” model. In this
model, a coordinate system ZYXO CCC

C ,,, attached to the camera is defined in such a way

that the X and Y axes define a base for the image plane and the Z axis is parallel to the optic
axis. The origin of the framework ZYXO CCC

C ,,, is located at the focus of the camera lens.

From Fig. 4, a fixed point P in the 3D space with coordinates  TCCC ZYXP on the
framework attached to the perspective camera will be projected on the image plane as a
point with coordinates  Tvuξ given by (Hutchinson et al., 1996),

 









C

C

C Y
X

Z
ξ (3)

where  is the focal length of the camera expressed in pixels.

www.intechopen.com

Open Software Structure for Controlling Industrial Robot Manipulators 501

2.1 Robot kinematic model
Let’s consider the industrial manipulator briefly described above, with a global coordinate
system whose origin is located at the intersection between the rotation axis of the first joint
and the horizontal plane yx, , as Fig. 3 shows.

Fig. 3. Geometric description of the robot Bosch SR-800

In Fig. 3, l1 and l2 are the length of the first and second links respectively, qi are the joint
positions of each link, and h is the distance between the first link and the base of the robot.
Then, the kinematic model that relates the position of the end effector with the joints
variables are represented by the following set of equations,

 
 

3

21211

21211

sinsin
coscos

qhz
qqlqly
qqlqlx





 (1)

2.2 Dynamic model
In the absence of friction or other disturbances, the dynamics of a n-link rigid SCARA robot
manipulator can be written as (Spong and Vidyasagar, 1989),

 τqCqM   (2)

where:

1R  nq is the vector of joint displacements;
1R  nτ is the vector of applied joint torques;

nnRM is the symmetric positive definite manipulator inertia matrix;
1 nRqC  is the vector of centripetal and Coriolis torques.

q3 q4

q2
q1

h

X Y

Z

l1 l2

Some important properties of the robot dynamics are the following.

Property 1—The time derivative of the inertia matrix, and the centripetal and Coriolis
matrix satisfy

n

dt
d RT 



  xxCMx 02

that is,  CM 2 is an antisymmetric matrix.

Property 2 – The dynamic structure of the manipulator can be written as,

  qqqqCqM  ,,
where   mnR,, qqq  ; and nR is a vector of parameters.

Property 3 – Matrix M has the following properties,

 0 TMM
 Minf

For the considered robot manipulator Bosch SR-800,

   
  













0918.0cos0954.00918.0
cos0954.00918.0cos1908.07277.1

2

22

q
qq

M ;

    
  







 


5783.12sin3418.0
sin0954.0sin0954.08192.31

12

21222

qq
qqqqq




C

2.3 Camera model
A vision camera transforms a 3D space into a 2D projection on the image plane, where the
vision sensor is located. This projection causes the lost of the depth perception, which means
that each point on the image plane corresponds to a ray in the 3D space.
Several projection models for the representation of the image formation process have been
proposed. The most used is the perspective projection model or “pin-hole” model. In this
model, a coordinate system ZYXO CCC

C ,,, attached to the camera is defined in such a way

that the X and Y axes define a base for the image plane and the Z axis is parallel to the optic
axis. The origin of the framework ZYXO CCC

C ,,, is located at the focus of the camera lens.

From Fig. 4, a fixed point P in the 3D space with coordinates  TCCC ZYXP on the
framework attached to the perspective camera will be projected on the image plane as a
point with coordinates  Tvuξ given by (Hutchinson et al., 1996),

 









C

C

C Y
X

Z
ξ (3)

where  is the focal length of the camera expressed in pixels.

www.intechopen.com

Robot Manipulators, Trends and Development502

Fig. 4. Perspective projection camera model

2.3.1 Punctual image feature
An image feature is usually defined as a quantifiable relation on the image plane. In (Jang et
al., 1991), a formal definition for image features is given,

    dvduvuIvuf ,,, (4)

where  vuI , is the intensity of the pixel at the position  vu, . Function  can be a linear or a
non lineal mapping, depending on the considered image feature. It may even be a delta
function.
Some common examples of image features are:

 Cross-correlation correspondence or sum of squares’ difference to determine the
coordinates of a known pattern of pixels in the image.

 Spatial or central moments of the image.
 Length or orientation of objects’ borders.
 Length or orientation of the segments that connect different objects in the scene.

In (Kelly et al., 2000), it is presented the relation between the time variation of the image
feature vector and the movement velocity of an object relative to the vision system placed at
the end effector of the robot, when a punctual image feature is considered.

 PJqJ
R

RJξ 
OG

W
C

W
C

img 













0
0 (5)

where W

C R is the rotation matrix of the coordinate system attached to the robot’s base
relative to the coordinate system attached to the vision camera; GJ is the geometric Jacobian
of the robot (Sciavicco and Siciliano, 2001); and imgJ and OJ are the image and the object
Jacobians respectively, with:

P

YC
XC

ZC

CX

CY

CZ

u
v

OC

λ




























uuvv

Z
v

Z

vu
f

uv
Z
u

Z
img







22

22

0

0

CC
CCJ ; W

C
O

Z
Y
Z
X

Z
RJ
























CC
CCC 10

01


3. Open software design

3.1 Users
The software system developed in this chapter is expected to be useful in control system
teaching, human resources training, research, as well as in industrial area. Users in all these
areas can be classified in four different levels, depending on how they would use the
software system.

 Level 1: those users who do not need to make any changes in the software system,
for example: undergraduate students.

 Level 2: those users who need to evaluate the performance of new control

algorithms. They would need to modify just the implemented control law, using
the rest of the system without any change. Those users have to have minimum
knowledge about data structures and the system operation in order to make
appropriate modifications. For example: postgraduate students, researchers.

 Level 3: those users who want to make they own control software implementation,
using only the sensors’ data acquisition program.

 Level 4: those users who need to add one or more sensors or actuators in the system.

Those users have to be knowledgeable about data structures and the system
operation.

3.2 Operational requirements
Based on the main objectives of this development, the operational requirements of the
software system are:

 The control software for the industrial robot manipulator Bosch SR-800 must allow
implementing and evaluating different control algorithms, using the information
from the force sensor, position sensors, and visual sensor. All relevant data of the
experiments have to be saved for later analysis.

 The software developed must be flexible and with an open architecture in order to
facilitate the incorporation of new components, such as sensors, actuators,
teleoperation devices, etc.

3.3 Reuse-based design
In many engineering disciplines, like mechanical of electrical engineering, the design
process is based on the reuse of the components. In the last decades, software engineering

www.intechopen.com

Open Software Structure for Controlling Industrial Robot Manipulators 503

Fig. 4. Perspective projection camera model

2.3.1 Punctual image feature
An image feature is usually defined as a quantifiable relation on the image plane. In (Jang et
al., 1991), a formal definition for image features is given,

    dvduvuIvuf ,,, (4)

where  vuI , is the intensity of the pixel at the position  vu, . Function  can be a linear or a
non lineal mapping, depending on the considered image feature. It may even be a delta
function.
Some common examples of image features are:

 Cross-correlation correspondence or sum of squares’ difference to determine the
coordinates of a known pattern of pixels in the image.

 Spatial or central moments of the image.
 Length or orientation of objects’ borders.
 Length or orientation of the segments that connect different objects in the scene.

In (Kelly et al., 2000), it is presented the relation between the time variation of the image
feature vector and the movement velocity of an object relative to the vision system placed at
the end effector of the robot, when a punctual image feature is considered.

 PJqJ
R

RJξ 
OG

W
C

W
C

img 













0
0 (5)

where W

C R is the rotation matrix of the coordinate system attached to the robot’s base
relative to the coordinate system attached to the vision camera; GJ is the geometric Jacobian
of the robot (Sciavicco and Siciliano, 2001); and imgJ and OJ are the image and the object
Jacobians respectively, with:

P

YC
XC

ZC

CX

CY

CZ

u
v

OC

λ




























uuvv

Z
v

Z

vu
f

uv
Z
u

Z
img







22

22

0

0

CC
CCJ ; W

C
O

Z
Y
Z
X

Z
RJ
























CC
CCC 10

01


3. Open software design

3.1 Users
The software system developed in this chapter is expected to be useful in control system
teaching, human resources training, research, as well as in industrial area. Users in all these
areas can be classified in four different levels, depending on how they would use the
software system.

 Level 1: those users who do not need to make any changes in the software system,
for example: undergraduate students.

 Level 2: those users who need to evaluate the performance of new control

algorithms. They would need to modify just the implemented control law, using
the rest of the system without any change. Those users have to have minimum
knowledge about data structures and the system operation in order to make
appropriate modifications. For example: postgraduate students, researchers.

 Level 3: those users who want to make they own control software implementation,
using only the sensors’ data acquisition program.

 Level 4: those users who need to add one or more sensors or actuators in the system.

Those users have to be knowledgeable about data structures and the system
operation.

3.2 Operational requirements
Based on the main objectives of this development, the operational requirements of the
software system are:

 The control software for the industrial robot manipulator Bosch SR-800 must allow
implementing and evaluating different control algorithms, using the information
from the force sensor, position sensors, and visual sensor. All relevant data of the
experiments have to be saved for later analysis.

 The software developed must be flexible and with an open architecture in order to
facilitate the incorporation of new components, such as sensors, actuators,
teleoperation devices, etc.

3.3 Reuse-based design
In many engineering disciplines, like mechanical of electrical engineering, the design
process is based on the reuse of the components. In the last decades, software engineering

www.intechopen.com

Robot Manipulators, Trends and Development504

has directed its efforts to imitate these techniques by encapsulating software units for its
later reuse (Sommerville, 2000). With this aim, object oriented architecture is developed to
handle different devices and hardware components, such as sensors, actuators,
teleoperation devices. Therefore, data and inner tasks of each device are encapsulated,
running in independents threads. This way, the software modules designed for each device
can be reused for the inclusion of some new hardware component.

3.4 Operating system and programming environment
All the software development was made under platform QNX (Krten, 1999). This operating
system has been selected because it is one of the best real time operating systems with high
stability and robustness of operation. Additionally, QNX support multi-processors systems
and several benefits can be obtained from the memory management unit (MMU) protection.
The programming language chosen is C++, and the user interface has been implemented by
using the Photon microGui.
Different objects in the software are implemented in classes, which are initialized at the
beginning of the program but they do not star working until their activation function is
called. In the particular cases of objects related to the sensors and the actuators, each one of
them has an associated function that runs in a different thread, with a suitable sample time
for each device.

3.5 Design of the software structure
The software structure is designed with independent modules for the user interface, the
hardware devices, and the control algorithm. Figure 5 shows a block diagram of the
software structure. The different tasks are divided into two processes or programs that
communicate each other and work cooperatively. Communication task between the
software and the hardware devices, and the synchronization of the control sample time are
carried out by the so called Critic Time Program; whereas the control algorithm runs in the so
called Control Program.
The function that implements the control algorithm can be easily modified to allow
evaluating different control strategies with a minimum effort. This function is called at each
control sample instant, which is defined by the user through the user interface.
In the following sections, main characteristics of both the Critic Time Program and the Control
Program of the software are briefly described.

3.5.1 Critic Time Program
The Time Critic Program is responsible for communicating with the sensors and the actuators
through the data acquisition and control hardware, updating the sensors’ data in the shared
memory block, and it is also responsible for synchronizing the Control Program for the
correct running of the control algorithm at each sample instant.
This program has four different classes,

 Motor: this object is responsible for applying the control actions obtained by the
control algorithm to the motors of the industrial manipulator through the D/A
converter of the data acquisition and control hardware.

 Vision system: this object uses the TCP/IP connection functions to receive the
visual information from the vision PC. This vision PC process the image obtained
through the camera and sends the image features to the Critic Time Program via
the TCP/IP connection.

 Position: this object is responsible for obtaining the position data from the internal
encoders of each joint of the industrial robot. The data acquisition hardware is used
to carry out this task.

 Force: this object is responsible for obtaining the force data from the force sensor
FS6-120. The serial port RS232 of the control PC is used.

Additionally, a timer is used in this program to determine the sample instant of the control
algorithm; and a graphic user interface is also implemented. Through this interface, users
have a set of graphic controls that allow them to select the desired sensors and set their
parameters, set the sample period, and start or stop the experiment.

Fig. 5. Block diagram of the developed software system

3.5.2 Control Program
As explained above, the control algorithm runs in this program. Since the Control Program
may be modified by users of Level 2, who may have not a large experience in software

Particular software
implementation

Graphic interface

Sensors’ Objects

New software
object

Actuators’ Objects

Shared Memory: Data Structure

Control Program

Critic Time Program

Control
algorithm

New hardware
component

-Vision system
-Force sensor
-Encoders

-Motors

Users Level 1

Users Level 2

Users Level 3

Users Level 4

www.intechopen.com

Open Software Structure for Controlling Industrial Robot Manipulators 505

has directed its efforts to imitate these techniques by encapsulating software units for its
later reuse (Sommerville, 2000). With this aim, object oriented architecture is developed to
handle different devices and hardware components, such as sensors, actuators,
teleoperation devices. Therefore, data and inner tasks of each device are encapsulated,
running in independents threads. This way, the software modules designed for each device
can be reused for the inclusion of some new hardware component.

3.4 Operating system and programming environment
All the software development was made under platform QNX (Krten, 1999). This operating
system has been selected because it is one of the best real time operating systems with high
stability and robustness of operation. Additionally, QNX support multi-processors systems
and several benefits can be obtained from the memory management unit (MMU) protection.
The programming language chosen is C++, and the user interface has been implemented by
using the Photon microGui.
Different objects in the software are implemented in classes, which are initialized at the
beginning of the program but they do not star working until their activation function is
called. In the particular cases of objects related to the sensors and the actuators, each one of
them has an associated function that runs in a different thread, with a suitable sample time
for each device.

3.5 Design of the software structure
The software structure is designed with independent modules for the user interface, the
hardware devices, and the control algorithm. Figure 5 shows a block diagram of the
software structure. The different tasks are divided into two processes or programs that
communicate each other and work cooperatively. Communication task between the
software and the hardware devices, and the synchronization of the control sample time are
carried out by the so called Critic Time Program; whereas the control algorithm runs in the so
called Control Program.
The function that implements the control algorithm can be easily modified to allow
evaluating different control strategies with a minimum effort. This function is called at each
control sample instant, which is defined by the user through the user interface.
In the following sections, main characteristics of both the Critic Time Program and the Control
Program of the software are briefly described.

3.5.1 Critic Time Program
The Time Critic Program is responsible for communicating with the sensors and the actuators
through the data acquisition and control hardware, updating the sensors’ data in the shared
memory block, and it is also responsible for synchronizing the Control Program for the
correct running of the control algorithm at each sample instant.
This program has four different classes,

 Motor: this object is responsible for applying the control actions obtained by the
control algorithm to the motors of the industrial manipulator through the D/A
converter of the data acquisition and control hardware.

 Vision system: this object uses the TCP/IP connection functions to receive the
visual information from the vision PC. This vision PC process the image obtained
through the camera and sends the image features to the Critic Time Program via
the TCP/IP connection.

 Position: this object is responsible for obtaining the position data from the internal
encoders of each joint of the industrial robot. The data acquisition hardware is used
to carry out this task.

 Force: this object is responsible for obtaining the force data from the force sensor
FS6-120. The serial port RS232 of the control PC is used.

Additionally, a timer is used in this program to determine the sample instant of the control
algorithm; and a graphic user interface is also implemented. Through this interface, users
have a set of graphic controls that allow them to select the desired sensors and set their
parameters, set the sample period, and start or stop the experiment.

Fig. 5. Block diagram of the developed software system

3.5.2 Control Program
As explained above, the control algorithm runs in this program. Since the Control Program
may be modified by users of Level 2, who may have not a large experience in software

Particular software
implementation

Graphic interface

Sensors’ Objects

New software
object

Actuators’ Objects

Shared Memory: Data Structure

Control Program

Critic Time Program

Control
algorithm

New hardware
component

-Vision system
-Force sensor
-Encoders

-Motors

Users Level 1

Users Level 2

Users Level 3

Users Level 4

www.intechopen.com

Robot Manipulators, Trends and Development506

development, some issues are commented. These issues should be taken into account to
develop a program that efficiently uses the available hardware resources.

 Determine the correct number of threads of the program, according to available PC
hardware.

 Avoid high time demanding operations. Perform I/O operations on files and
communication devices asynchronously.

 Do not use global variables. The reuse-based design using object oriented
programming is desirable.

 Use shared memory blocks for the data interchange between different processes.
 Use events for the system synchronization.
 If an on-line data writing to a hard disk device is needed, use a double buffer

structure and an asynchronous writing.
 Determine and set the correct priority of each thread according to its tasks.

4. Implemented control laws

The open software system developed has been tested by the implementation of two different
control strategies. First, a classical PD position controller was implemented, based in the
robot position information obtained from the internal encoders of the robot. Then, a
passivity based visual controller was implemented. This way, the performance of the
software system is evaluated not only when internal sensors are used, but also when a
vision camera placed at the end effector of the robot is used as sensor of the control system.
In addition, it allows showing the possibility of a fast and easy control law interchange.
Throughout this Section, a brief description of the control laws and some experimental
results will be presented.

4.1 PD controller
The PD controller is a typical control algorithm used in robotics teaching. With the proposed
open software structure, teaching duties relative to the laboratory experimentation can be
fast and easy, bringing more time to the theoretical classes. Next, a brief explanation of the
PD controller is presented.
The PD position controller is defined as,

 qKqKτ ~~

vp  (6)

where  pip kdiagK and  viv kdiagK are positive definite gain matrices; qqq  d

~ is

the joint position error; and qq  ~ since a position problem is considered . A block diagram
of the control system is shown in Fig. 6.
By equating the control law (6) with the robot’s dynamic model (2), the close loop equation
is obtained,
 qKqKqCqM  vp  ~ (7)

Considering the following Lyapunov candidate function and its time derivative (Slotine and
Li, 2001; Khalil, 2001),

0

~~
2
1

2
1





qKq

qKqqMq





v
T

p
TT

V

V (8)

and recalling La Salle theorem (Slotine and Li, 2001; Khalil, 2001), the asymptotic stability of
the control system can be proven.

Fig. 6. PD controller block diagram

4.2 Passivity based visual controller
The proposed open software structure can also be used for the experimentation of new
advanced control algorithms, such as passivity based visual servoing. This way, researchers
can find in the proposed software system a useful experimentation platform, saving time in
the implementation, focusing their efforts on the controllers design. Next, a brief
explanation of the passivity based visual controller is presented.
Passivity is an important property between input and output of a system that has been
widely used in the stability analysis of non-lineal systems (Hill and Moylan, 1976; Lin, 1995;
Willems, 1972a; Willems, 1972b) and the stability analysis of interconnected systems,
especially in cascade structures (Vidyasagar, 1979; Byrnes et al., 1991; Ortega et al., 1995).
The concept of passivity shows, in an intuitive way, that a passive system cannot provide
more energy than the energy received, and it allows to prove that a non linear passive
system can be stabilized by a simple negative output feedback ykv  , with 0k (see Fig.
7). Therefore, passivity is a useful property for the non linear systems analysis and design,
representing a good alternative to the Lyapunov method.

Fig. 7. Stabilized passive system

Some important definitions about the passive systems theory are (Ortega et al., 1998; van
der Schaft, 2000),

Passive
System

y

k

v=-ky

Robot

Kv

Kp
qd

q
q

qd=0

τ

www.intechopen.com

Open Software Structure for Controlling Industrial Robot Manipulators 507

development, some issues are commented. These issues should be taken into account to
develop a program that efficiently uses the available hardware resources.

 Determine the correct number of threads of the program, according to available PC
hardware.

 Avoid high time demanding operations. Perform I/O operations on files and
communication devices asynchronously.

 Do not use global variables. The reuse-based design using object oriented
programming is desirable.

 Use shared memory blocks for the data interchange between different processes.
 Use events for the system synchronization.
 If an on-line data writing to a hard disk device is needed, use a double buffer

structure and an asynchronous writing.
 Determine and set the correct priority of each thread according to its tasks.

4. Implemented control laws

The open software system developed has been tested by the implementation of two different
control strategies. First, a classical PD position controller was implemented, based in the
robot position information obtained from the internal encoders of the robot. Then, a
passivity based visual controller was implemented. This way, the performance of the
software system is evaluated not only when internal sensors are used, but also when a
vision camera placed at the end effector of the robot is used as sensor of the control system.
In addition, it allows showing the possibility of a fast and easy control law interchange.
Throughout this Section, a brief description of the control laws and some experimental
results will be presented.

4.1 PD controller
The PD controller is a typical control algorithm used in robotics teaching. With the proposed
open software structure, teaching duties relative to the laboratory experimentation can be
fast and easy, bringing more time to the theoretical classes. Next, a brief explanation of the
PD controller is presented.
The PD position controller is defined as,

 qKqKτ ~~

vp  (6)

where  pip kdiagK and  viv kdiagK are positive definite gain matrices; qqq  d

~ is

the joint position error; and qq  ~ since a position problem is considered . A block diagram
of the control system is shown in Fig. 6.
By equating the control law (6) with the robot’s dynamic model (2), the close loop equation
is obtained,
 qKqKqCqM  vp  ~ (7)

Considering the following Lyapunov candidate function and its time derivative (Slotine and
Li, 2001; Khalil, 2001),

0

~~
2
1

2
1





qKq

qKqqMq





v
T

p
TT

V

V (8)

and recalling La Salle theorem (Slotine and Li, 2001; Khalil, 2001), the asymptotic stability of
the control system can be proven.

Fig. 6. PD controller block diagram

4.2 Passivity based visual controller
The proposed open software structure can also be used for the experimentation of new
advanced control algorithms, such as passivity based visual servoing. This way, researchers
can find in the proposed software system a useful experimentation platform, saving time in
the implementation, focusing their efforts on the controllers design. Next, a brief
explanation of the passivity based visual controller is presented.
Passivity is an important property between input and output of a system that has been
widely used in the stability analysis of non-lineal systems (Hill and Moylan, 1976; Lin, 1995;
Willems, 1972a; Willems, 1972b) and the stability analysis of interconnected systems,
especially in cascade structures (Vidyasagar, 1979; Byrnes et al., 1991; Ortega et al., 1995).
The concept of passivity shows, in an intuitive way, that a passive system cannot provide
more energy than the energy received, and it allows to prove that a non linear passive
system can be stabilized by a simple negative output feedback ykv  , with 0k (see Fig.
7). Therefore, passivity is a useful property for the non linear systems analysis and design,
representing a good alternative to the Lyapunov method.

Fig. 7. Stabilized passive system

Some important definitions about the passive systems theory are (Ortega et al., 1998; van
der Schaft, 2000),

Passive
System

y

k

v=-ky

Robot

Kv

Kp
qd

q
q

qd=0

τ

www.intechopen.com

Robot Manipulators, Trends and Development508

Definition 1 – The mapping ee LLH 22:  is passive if there exist some constant  such
that,

  ,0;, 2 TLxxHx
T


Definition 2 – The mapping ee LLH 22:  is strictly passive if there exist some constants

0 and  such that,

  ,0;, 2
2
,2

TLxxxHx TT 

Definition 3 – The mapping ee LLH 22:  is strictly input passive if there exist some
constants  and  such that,

  ,0;, 2
2
,2

TLxxxHx TT 

Definition 4 – The mapping ee LLH 22:  is strictly output passive if there exist some
constants  and  such that,

  ,0;, 2
2
,2

TLxHxxHx TT 

4.2.1 Passivity property of the vision system
Considering a static object 0P  , equation (5) can be written as,

 qJξ   (9)

where G
W

C
W

C

img J
R

RJJ













0
0 ; being imgJ the image Jacobian matrix, and GJ the robot

geometric Jacobian (Kelly et al., 2000).

Taking the energy function ξξξ
T

2
1

V and making its time derivative (Fujita et al., 2007),

 qJξξξξ  TT V (10)
and integrating in  T,0

      00
000 ξξξξξ qνqJξ VVTVdtdtdtV TTT

   TT (11)

where ξJνξ

T .
Therefore, it can be concluded that the mapping qνξ  is passive.

4.2.2 Control system design
Considering now the variable     dξξξ  tt

~
 instead of  tξ in order to contemplate the

regulation problem, and also considering perfect velocity tracking (uq ), it is possible to
prove that the passivity property of the vision system is preserved, that is,

 TβdtT

0
 ξνu ~T ; then ξνu ~ is passive. (12)

where ξJν ξ
~

~ T and  0~
ξV with ξξξ

~~
2
1

~ TV .

Then, the following control law is proposed, according to the general structure of Fig. 7,

ξKJu

Kνu ξ~
~T


 (13)

where K is a symmetric and positive definite gain matrix. The control structure is shown in
Fig. 8.

Fig. 8. Block diagram of the passivity based control approach

4.2.2 Control system analysis
From (12), and replacing the control law expression (13),

   dtλdtdt T

0

2T

0

T

0   ξξξξ νKKννuν ~~~~ minTT (14)

Or,

   dtλdt T

0

2T

0   ξξ νKuν ~~)(minT (15)

where  Kminλ represents the minimum eigenvalue of matrix K . Therefore, from Definition
3, the controller is strictly input passive from u ν ξ ~ . This way, the closed loop system of

Fig. 8 is built by the interconnections of passive subsystems.
By adding equations (12) and (15), the following inequality can be obtained

 

 K
ν

νK

ξ

ξ

min
min

λ
βdt

βdtλ
T

0

2

T

0

2








~

~ 0
 (16)

which implies that 2~ L ξν . Then, for  L ξν~ , the Barbalat’s lemma allows concluding

that   0~ tξν , and therefore 0ξ 
~

 with t , achieving the control objective.

Robot

K

-u

JT

ξ

ξ q

ξ
νξ

Vision
system

www.intechopen.com

Open Software Structure for Controlling Industrial Robot Manipulators 509

Definition 1 – The mapping ee LLH 22:  is passive if there exist some constant  such
that,

  ,0;, 2 TLxxHx
T


Definition 2 – The mapping ee LLH 22:  is strictly passive if there exist some constants

0 and  such that,

  ,0;, 2
2
,2

TLxxxHx TT 

Definition 3 – The mapping ee LLH 22:  is strictly input passive if there exist some
constants  and  such that,

  ,0;, 2
2
,2

TLxxxHx TT 

Definition 4 – The mapping ee LLH 22:  is strictly output passive if there exist some
constants  and  such that,

  ,0;, 2
2
,2

TLxHxxHx TT 

4.2.1 Passivity property of the vision system
Considering a static object 0P  , equation (5) can be written as,

 qJξ   (9)

where G
W

C
W

C

img J
R

RJJ













0
0 ; being imgJ the image Jacobian matrix, and GJ the robot

geometric Jacobian (Kelly et al., 2000).

Taking the energy function ξξξ
T

2
1

V and making its time derivative (Fujita et al., 2007),

 qJξξξξ  TT V (10)
and integrating in  T,0

      00
000 ξξξξξ qνqJξ VVTVdtdtdtV TTT

   TT (11)

where ξJνξ

T .
Therefore, it can be concluded that the mapping qνξ  is passive.

4.2.2 Control system design
Considering now the variable     dξξξ  tt

~
 instead of  tξ in order to contemplate the

regulation problem, and also considering perfect velocity tracking (uq ), it is possible to
prove that the passivity property of the vision system is preserved, that is,

 TβdtT

0
 ξνu ~T ; then ξνu ~ is passive. (12)

where ξJν ξ
~

~ T and  0~
ξV with ξξξ

~~
2
1

~ TV .

Then, the following control law is proposed, according to the general structure of Fig. 7,

ξKJu

Kνu ξ~
~T


 (13)

where K is a symmetric and positive definite gain matrix. The control structure is shown in
Fig. 8.

Fig. 8. Block diagram of the passivity based control approach

4.2.2 Control system analysis
From (12), and replacing the control law expression (13),

   dtλdtdt T

0

2T

0

T

0   ξξξξ νKKννuν ~~~~ minTT (14)

Or,

   dtλdt T

0

2T

0   ξξ νKuν ~~)(minT (15)

where  Kminλ represents the minimum eigenvalue of matrix K . Therefore, from Definition
3, the controller is strictly input passive from u ν ξ ~ . This way, the closed loop system of

Fig. 8 is built by the interconnections of passive subsystems.
By adding equations (12) and (15), the following inequality can be obtained

 

 K
ν

νK

ξ

ξ

min
min

λ
βdt

βdtλ
T

0

2

T

0

2








~

~ 0
 (16)

which implies that 2~ L ξν . Then, for  L ξν~ , the Barbalat’s lemma allows concluding

that   0~ tξν , and therefore 0ξ 
~

 with t , achieving the control objective.

Robot

K

-u

JT

ξ

ξ q

ξ
νξ

Vision
system

www.intechopen.com

Robot Manipulators, Trends and Development510

4.2.3 Robustness to the object movement: L2-gain performance design
In this section, the possibility of moving objects existence is considered and the control
system’s performance for tracking tasks is evaluated. With this aim, the object’s velocity is
considered as an external disturbance of the control system and a robust controller with L2-
gain performance criteria is designed (Fujita et al., 2007).
The system ξw

~
 would have finite L2-gain if (van der Schaft, 2000),

 0;
~

0

22
0

2
  Tdtdt TT

 wξ (17)

being PJw 

O the object’s velocity on the image plane, considered as an external
disturbance; 0 ; and 0 . In this context,  represents an indicator of the system’s
tracking performance. The proposed control system will have finite L2-gain if

 





 

222~
~

2
1 ξwξ V (18)

As can be easily verified by integrating (18) in  T,0 . In order to find a gain matrix K that
fulfils the L2-gain performance criteria (18), it is considered again the positive definite
function ξ

~V and its time derivative,

 PJqJξξξ

ξξ

ξ

ξ


OV

V



 TT
T

~~

~~
2
1

~

~
 (19)

Considering again perfect velocity tracking (uq ), the control law (13) is introduced in
(19),
 wξξJKJξξξξ

TTTT ~~~~
~  V (20)

and imposing L2-gain performance condition (18) to (20), the following inequality is
obtained,

 





 

222~
~

2
1~~~~

ξwwξξJKJξξξξ γV TTTT  (21)

Reorganizing (21), the following matrix inequality is obtained,

   0
~

22

22~
2


































w
ξ

II

IIJKJ
wξ



TTT (22)

The problem now is to find a symmetric and positive definite matrix K and a value for  ,
such that the matrix inequality (22) is fulfilled. With this aim, the LMI technique (Boyd et al.,

1994) is used by restricting the Jacobian matrix J to a convex set. The only restriction
imposed to the gain matrix K is that it must be symmetric and positive definite (in order to
fulfill the passivity property of the controller (15)), and the condition of be diagonal is not
imposed allowing the controller to incorporate dynamics coupling, obtaining better
performances.
Now, the problem that immediately rises in the selection of the gain matrix K is that, if a
small value for  is adopted for a good performance in moving objects tracking, actuators
could be saturated in presence of large image features errors. On the other hand, if a large
value for  is adopted, the saturation of the actuators would be avoided to de detriment of
the tracking performance. The proposed solution to this problem lies in the use of a variable
gain matrix, as a function of the image features error. With this aim, two different gain
matrices 1K and 2K are found by solving the matrix inequality (22) (1K for small features
errors and 2K for large features errors), and the gain matrix K is obtained as,

 21)1(KKK   (23)

where

max

~

~

ξ

ξ
 ; and being

max

~
ξ the maximum image features error. This way, matrix

K always fulfils the performance condition  , accepting a large value for large image
features errors and adopting a smaller value for small image features errors, according to
the design specifications.

4.3 Experimental results
Both the PD controller and the passivity based visual controller explained above were
implemented in the industrial robot manipulator Bosch SR-800 shown in Fig. 9, with the
open software developed. For the first experiment, as well as for the second one, it could be
confirmed the fast implementation of the control algorithms.

Fig. 9. Industrial robot manipulator Bosch SR-800, at the National University of San Juan,
Argentina

www.intechopen.com

Open Software Structure for Controlling Industrial Robot Manipulators 511

4.2.3 Robustness to the object movement: L2-gain performance design
In this section, the possibility of moving objects existence is considered and the control
system’s performance for tracking tasks is evaluated. With this aim, the object’s velocity is
considered as an external disturbance of the control system and a robust controller with L2-
gain performance criteria is designed (Fujita et al., 2007).
The system ξw

~
 would have finite L2-gain if (van der Schaft, 2000),

 0;
~

0

22
0

2
  Tdtdt TT

 wξ (17)

being PJw 

O the object’s velocity on the image plane, considered as an external
disturbance; 0 ; and 0 . In this context,  represents an indicator of the system’s
tracking performance. The proposed control system will have finite L2-gain if

 





 

222~
~

2
1 ξwξ V (18)

As can be easily verified by integrating (18) in  T,0 . In order to find a gain matrix K that
fulfils the L2-gain performance criteria (18), it is considered again the positive definite
function ξ

~V and its time derivative,

 PJqJξξξ

ξξ

ξ

ξ


OV

V



 TT
T

~~

~~
2
1

~

~
 (19)

Considering again perfect velocity tracking (uq ), the control law (13) is introduced in
(19),
 wξξJKJξξξξ

TTTT ~~~~
~  V (20)

and imposing L2-gain performance condition (18) to (20), the following inequality is
obtained,

 





 

222~
~

2
1~~~~

ξwwξξJKJξξξξ γV TTTT  (21)

Reorganizing (21), the following matrix inequality is obtained,

   0
~

22

22~
2


































w
ξ

II

IIJKJ
wξ



TTT (22)

The problem now is to find a symmetric and positive definite matrix K and a value for  ,
such that the matrix inequality (22) is fulfilled. With this aim, the LMI technique (Boyd et al.,

1994) is used by restricting the Jacobian matrix J to a convex set. The only restriction
imposed to the gain matrix K is that it must be symmetric and positive definite (in order to
fulfill the passivity property of the controller (15)), and the condition of be diagonal is not
imposed allowing the controller to incorporate dynamics coupling, obtaining better
performances.
Now, the problem that immediately rises in the selection of the gain matrix K is that, if a
small value for  is adopted for a good performance in moving objects tracking, actuators
could be saturated in presence of large image features errors. On the other hand, if a large
value for  is adopted, the saturation of the actuators would be avoided to de detriment of
the tracking performance. The proposed solution to this problem lies in the use of a variable
gain matrix, as a function of the image features error. With this aim, two different gain
matrices 1K and 2K are found by solving the matrix inequality (22) (1K for small features
errors and 2K for large features errors), and the gain matrix K is obtained as,

 21)1(KKK   (23)

where

max

~

~

ξ

ξ
 ; and being

max

~
ξ the maximum image features error. This way, matrix

K always fulfils the performance condition  , accepting a large value for large image
features errors and adopting a smaller value for small image features errors, according to
the design specifications.

4.3 Experimental results
Both the PD controller and the passivity based visual controller explained above were
implemented in the industrial robot manipulator Bosch SR-800 shown in Fig. 9, with the
open software developed. For the first experiment, as well as for the second one, it could be
confirmed the fast implementation of the control algorithms.

Fig. 9. Industrial robot manipulator Bosch SR-800, at the National University of San Juan,
Argentina

www.intechopen.com

Robot Manipulators, Trends and Development512

4.3.1 Experimental results for the PD controller
Some experiments are carried out with the classical PD controller, considering only first and
second joint of the robot. The controller is implemented in the Control Program and runs
with a sample time of 1 msec. In the first experiment, the end effector of the robots must
achieve the desired position  30,50 (expressed in centimetres) on the Cartesian space,
which means that the desired joint positions are rad194.11 q and rad52.12 q . On the
other hand, in the second experiment, the end effector of the robots must achieve the desired
position  30,50  (expressed in centimetres) on the Cartesian space, which means that the
desired joint positions are rad113.01 q and rad52.12 q . In both experiments, the
following gain matrices were used,











39.460
085.40

pK











62.130
074.12

vK

Figures 10, 11 and 12 show the results for the first experiment. Figures 10 and 11 show the
time evolution of the joint positions; and Fig. 12 shows the trajectory described by the end
effector on the Cartesian space. Figures 13, 14 and 15 show the results for the second
experiment. Figures 13 and 14 show the time evolution of the joint positions; and Fig. 15
shows the trajectory described by the end effector on the Cartesian space.

0 2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

0.8

1

1.2

Time [sec]

q 1 [r
ad

]

Reference
q1

Fig. 10. Time evolution of 1q

0 2 4 6 8 10 12 14 16
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Time [sec]

q 2 [r
ad

]

Reference
q2

Fig. 11. Time evolution of 2q

-20 -10 0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

Y axis

X
 a

xi
s

Initial
position

Final
position

Trajectory

Fig. 12. Trajectory described on the Cartesian space

www.intechopen.com

Open Software Structure for Controlling Industrial Robot Manipulators 513

4.3.1 Experimental results for the PD controller
Some experiments are carried out with the classical PD controller, considering only first and
second joint of the robot. The controller is implemented in the Control Program and runs
with a sample time of 1 msec. In the first experiment, the end effector of the robots must
achieve the desired position  30,50 (expressed in centimetres) on the Cartesian space,
which means that the desired joint positions are rad194.11 q and rad52.12 q . On the
other hand, in the second experiment, the end effector of the robots must achieve the desired
position  30,50  (expressed in centimetres) on the Cartesian space, which means that the
desired joint positions are rad113.01 q and rad52.12 q . In both experiments, the
following gain matrices were used,











39.460
085.40

pK











62.130
074.12

vK

Figures 10, 11 and 12 show the results for the first experiment. Figures 10 and 11 show the
time evolution of the joint positions; and Fig. 12 shows the trajectory described by the end
effector on the Cartesian space. Figures 13, 14 and 15 show the results for the second
experiment. Figures 13 and 14 show the time evolution of the joint positions; and Fig. 15
shows the trajectory described by the end effector on the Cartesian space.

0 2 4 6 8 10 12 14 16

0

0.2

0.4

0.6

0.8

1

1.2

Time [sec]

q 1 [r
ad

]

Reference
q1

Fig. 10. Time evolution of 1q

0 2 4 6 8 10 12 14 16
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Time [sec]

q 2 [r
ad

]

Reference
q2

Fig. 11. Time evolution of 2q

-20 -10 0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

Y axis

X
 a

xi
s

Initial
position

Final
position

Trajectory

Fig. 12. Trajectory described on the Cartesian space

www.intechopen.com

Robot Manipulators, Trends and Development514

0 2 4 6 8 10 12 14 16 18
0

0.02

0.04

0.06

0.08

0.1

0.12

Time [sec]

q 1[ra
d]

Reference
q1

Fig. 13. Time evolution of 1q

0 2 4 6 8 10 12 14 16 18
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Time [sec]

q 2 [r
ad

]

Reference
q2

Fig. 14. Time evolution of 2q

-60 -40 -20 0 20 40 60
0

10

20

30

40

50

60

70

80

Y axis

X
 a

xi
s

Initial
position

Final
position

Trajectory

Fig. 15. Trajectory described on the Cartesian space

4.3.2 Experimental results for the visual controller
Third experiment is carried out with the passivity based visual controller, considering only
first and second joint of the robot. The controller is implemented in the Control Program
and runs with a sample time of 1 msec. for the controller and 33 msec. for the image
processing. The gain matrices, obtained with the LMI-tool (El Ghaoui et al., 1995) are,












 

4096.01443.0
1443.01443.0

10 5
1K with 9.3












 

1399.00496.0
0496.00496.0

10 4
2K with 9.0

The experiment starts with an initial vector of image features  6548)0(ξ pixels and
the first reference on the image plane is chosen as  201 dξ pixels, and then the reference
changes to  64722 dξ pixels. At instant 15t sec. the object starts moving.
Figures 16 and 17 show the time evolution of the image features 1ξ and 2ξ respectively,
being 1ξ and 2ξ the components of the vector ξ . The time evolution of the features error
norm can be seen in Fig. 18. In this last plot, it can be seen that the image error is below 2
pixels when the object is not moving (15t sec); and with a moving object, the features error
is below 10 pixels. Figure 19 shows the control actions for 1q and 2q . Finally, Fig. 20 shows
the evolution of the image features on the image plane.

www.intechopen.com

Open Software Structure for Controlling Industrial Robot Manipulators 515

0 2 4 6 8 10 12 14 16 18
0

0.02

0.04

0.06

0.08

0.1

0.12

Time [sec]

q 1[ra
d]

Reference
q1

Fig. 13. Time evolution of 1q

0 2 4 6 8 10 12 14 16 18
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Time [sec]

q 2 [r
ad

]

Reference
q2

Fig. 14. Time evolution of 2q

-60 -40 -20 0 20 40 60
0

10

20

30

40

50

60

70

80

Y axis

X
 a

xi
s

Initial
position

Final
position

Trajectory

Fig. 15. Trajectory described on the Cartesian space

4.3.2 Experimental results for the visual controller
Third experiment is carried out with the passivity based visual controller, considering only
first and second joint of the robot. The controller is implemented in the Control Program
and runs with a sample time of 1 msec. for the controller and 33 msec. for the image
processing. The gain matrices, obtained with the LMI-tool (El Ghaoui et al., 1995) are,












 

4096.01443.0
1443.01443.0

10 5
1K with 9.3












 

1399.00496.0
0496.00496.0

10 4
2K with 9.0

The experiment starts with an initial vector of image features  6548)0(ξ pixels and
the first reference on the image plane is chosen as  201 dξ pixels, and then the reference
changes to  64722 dξ pixels. At instant 15t sec. the object starts moving.
Figures 16 and 17 show the time evolution of the image features 1ξ and 2ξ respectively,
being 1ξ and 2ξ the components of the vector ξ . The time evolution of the features error
norm can be seen in Fig. 18. In this last plot, it can be seen that the image error is below 2
pixels when the object is not moving (15t sec); and with a moving object, the features error
is below 10 pixels. Figure 19 shows the control actions for 1q and 2q . Finally, Fig. 20 shows
the evolution of the image features on the image plane.

www.intechopen.com

Robot Manipulators, Trends and Development516

0 5 10 15 20 25 30 35
-80

-70

-60

-50

-40

-30

-20

-10

0

10

Time [sec]

 1 [p
ix

el
s]

d1

1

Fig. 16. Time evolution of the image feature 1ξ

0 5 10 15 20 25 30 35
-80

-60

-40

-20

0

20

40

60

80

Time [sec]

 2 [p
ix

el
s]

d2

2

Fig. 17. Time evolution of the image feature 2ξ

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

Time [sec]

||
 d

 -


||
[p

ix
el

s]

Fig. 18. Time evolution of the image features error norm ξ

~

0 5 10 15 20 25 30 35
-0.1

0

0.1

0.2

C
on

tr
ol

 a
ct

io
n

q 1 [
ra

d/
se

c]

0 5 10 15 20 25 30 35
-0.2

-0.1

0

0.1

0.2

Time [sec]

C
on

tr
ol

 a
ct

io
n

q 2 [
ra

d/
se

c]

Fig. 19. Control actions for 1q and 2q

www.intechopen.com

Open Software Structure for Controlling Industrial Robot Manipulators 517

0 5 10 15 20 25 30 35
-80

-70

-60

-50

-40

-30

-20

-10

0

10

Time [sec]

 1 [p
ix

el
s]

d1

1

Fig. 16. Time evolution of the image feature 1ξ

0 5 10 15 20 25 30 35
-80

-60

-40

-20

0

20

40

60

80

Time [sec]

 2 [p
ix

el
s]

d2

2

Fig. 17. Time evolution of the image feature 2ξ

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

80

90

100

Time [sec]

||
 d

 -


||
[p

ix
el

s]

Fig. 18. Time evolution of the image features error norm ξ

~

0 5 10 15 20 25 30 35
-0.1

0

0.1

0.2

C
on

tr
ol

 a
ct

io
n

q 1 [
ra

d/
se

c]

0 5 10 15 20 25 30 35
-0.2

-0.1

0

0.1

0.2

Time [sec]

C
on

tr
ol

 a
ct

io
n

q 2 [
ra

d/
se

c]

Fig. 19. Control actions for 1q and 2q

www.intechopen.com

Robot Manipulators, Trends and Development518

-80 -70 -60 -50 -40 -30 -20 -10 0 10
-80

-60

-40

-20

0

20

40

60

80

X Axis [pixels]

Y
 A

xi
s

[p
ix

el
s]

Fig. 20. Image features trajectory on the image plane

5. Conclusions

In this chapter, the design, implementation and experimentation of an open software
structure for industrial robot manipulators have been presented. The developed software
allows the users to save time and efforts in the implementation and performance evaluation
of new control algorithms, as well as in the addition of new hardware components, i.e.
sensors or actuators. Therefore, the developed software is useful for research in the field of
robotics and human resource training, with potential impact in industry.
The software system has been split into two different programs that communicate each
other, clearly dividing different tasks of the control system. This way, a modular reuse
based system is obtained. First program (Critic Time Program) is responsible for
communicating with the sensors and the actuators through the data acquisition and control
hardware, updating the sensors’ data in the shared memory block, and it is also responsible
for synchronization of the two programs. Each one of the hardware devices is handled with
a different object, obtaining the desirable encapsulation for the data and methods associated
to each device. Second program (Control Program) is responsible for running the control
algorithm and updating the control actions in the shared memory block.
Additionally, the proposed open software structure has been evaluated with two different
control algorithms: first, a classical PD controller using the internal position sensors of the
robot; and second, a passivity based visual controller using a vision system placed at the
end effector of the robot. Both, the classical PD controller and the visual controller were
successfully implemented in the proposed software structure, showing that the main
objectives of the work presented in this chapter have been achieved.

6. Acknowledgment

Authors thank to the National Council of Scientific and Technical Research of Argentina
(CONICET) for partially supporting this research.

7. References

Boyd, S.; El Ghaoui, L.; Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in
Systems and Control Theory, Society for Industrial Mathematics, ISBN: 0-89871-334-X,
Philadelphia, PA, USA.

El Ghaoui, L.; Nikoukhah, R. and Delebecque, F. (1995). LMITOOL: a Package for LMI
Optimization, Proceedings IEEE Conference on Decision and Control, pp. 3096-3101,
ISBN: 0-7803-2685-7, New Orleans, LA, USA, December 1995.

Frederick, M. P. and Albus, J. S. (1997). Open architecture controllers, IEEE Spectrum, Vol. 34,
Nº 6, (June, 1997) 60-64, ISSN: 0018-9235.

Fujita, M.; Kawai, H. and Spong, M. W. (2007). Passivity-based Dynamic Visual Feedback
Control for Three Dimensional Target Tracking: Stability and L2-gain Performance
Analysis. IEEE Transactions on Control Systems Technology, Vol. 15, Nº 1, (January
2007) 40-52, ISSN: 1063-6536.

Hill, D. and Moylan, P. (1976). Stability results for nonlinear feedback systems. Automatica,
Vol. 13, Nº 4, (July 1976) 377-382. ISSN: 0005-1098.

Hutchinson, S.; Hager, G. and Corke, P. (1996). A tutorial on visual servo control. IEEE
Transactions on Robotics and Automation, Vol. 12, Nº 5, (October 1996) 651-670,
ISSN: 1042-296X.

Jang, W. and Bien, Z. (1991). Feature-based visual servoing of an eye-in-hand robot with
improved tracking performance, Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 2254-2260, ISBN: 0-8186-2163-X, Sacramento, USA,
April 1991.

Kelly, R.; Carelli, R.; Nasisi, O.; Kuchen, B. and Reyes, F. (2000). Stable Visual Servoing of
Camera-in-Hand Robotic Systems. IEEE Transactions on Mechatronics, Vol. 5, Nº 1,
(March 2000) 39–48, ISSN: 1083-4435.

Khalil, H. K. (2001). Non-linear Systems, Prentice-Hall, ISBN: 978-0130673893, New Jersey,
USA.

Krten, R. (1999), Getting Started with QNX Neutrino 2: A Guide for Realtime Programmers,
PARSE Software Devices, ISBN: 978-0968250112, Ottawa, Canada.

Lin, W. (1995). Feedback Stabilization of General Nonlinear Control System: A Passive
System Approach. Systems & Control Letter, Vol. 25, Nº 1, (May 1995) 41-52, ISSN:
0167-6911.

Ortega, R.; Loria, A.; Kelly, R. and Praly, L. (1995). On passivity based output feedback
global stabilization of Euler-Lagrange systems. International Journal of Robust and
Nonlinear Control, Vol. 5, Nº 4, 313-323, ISSN: 1049-8923.

Ortega, R.; Loria, A.; Nicklasson, P. J. and Sira-Ramirez, H. (1998). Passivity--based control of
Euler-Lagrange systems: Mechanical, Electrical and Electromechanical Applications,
Springer-Verlag, ISBN: 978-1852330163, Berlin.

www.intechopen.com

Open Software Structure for Controlling Industrial Robot Manipulators 519

-80 -70 -60 -50 -40 -30 -20 -10 0 10
-80

-60

-40

-20

0

20

40

60

80

X Axis [pixels]

Y
 A

xi
s

[p
ix

el
s]

Fig. 20. Image features trajectory on the image plane

5. Conclusions

In this chapter, the design, implementation and experimentation of an open software
structure for industrial robot manipulators have been presented. The developed software
allows the users to save time and efforts in the implementation and performance evaluation
of new control algorithms, as well as in the addition of new hardware components, i.e.
sensors or actuators. Therefore, the developed software is useful for research in the field of
robotics and human resource training, with potential impact in industry.
The software system has been split into two different programs that communicate each
other, clearly dividing different tasks of the control system. This way, a modular reuse
based system is obtained. First program (Critic Time Program) is responsible for
communicating with the sensors and the actuators through the data acquisition and control
hardware, updating the sensors’ data in the shared memory block, and it is also responsible
for synchronization of the two programs. Each one of the hardware devices is handled with
a different object, obtaining the desirable encapsulation for the data and methods associated
to each device. Second program (Control Program) is responsible for running the control
algorithm and updating the control actions in the shared memory block.
Additionally, the proposed open software structure has been evaluated with two different
control algorithms: first, a classical PD controller using the internal position sensors of the
robot; and second, a passivity based visual controller using a vision system placed at the
end effector of the robot. Both, the classical PD controller and the visual controller were
successfully implemented in the proposed software structure, showing that the main
objectives of the work presented in this chapter have been achieved.

6. Acknowledgment

Authors thank to the National Council of Scientific and Technical Research of Argentina
(CONICET) for partially supporting this research.

7. References

Boyd, S.; El Ghaoui, L.; Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in
Systems and Control Theory, Society for Industrial Mathematics, ISBN: 0-89871-334-X,
Philadelphia, PA, USA.

El Ghaoui, L.; Nikoukhah, R. and Delebecque, F. (1995). LMITOOL: a Package for LMI
Optimization, Proceedings IEEE Conference on Decision and Control, pp. 3096-3101,
ISBN: 0-7803-2685-7, New Orleans, LA, USA, December 1995.

Frederick, M. P. and Albus, J. S. (1997). Open architecture controllers, IEEE Spectrum, Vol. 34,
Nº 6, (June, 1997) 60-64, ISSN: 0018-9235.

Fujita, M.; Kawai, H. and Spong, M. W. (2007). Passivity-based Dynamic Visual Feedback
Control for Three Dimensional Target Tracking: Stability and L2-gain Performance
Analysis. IEEE Transactions on Control Systems Technology, Vol. 15, Nº 1, (January
2007) 40-52, ISSN: 1063-6536.

Hill, D. and Moylan, P. (1976). Stability results for nonlinear feedback systems. Automatica,
Vol. 13, Nº 4, (July 1976) 377-382. ISSN: 0005-1098.

Hutchinson, S.; Hager, G. and Corke, P. (1996). A tutorial on visual servo control. IEEE
Transactions on Robotics and Automation, Vol. 12, Nº 5, (October 1996) 651-670,
ISSN: 1042-296X.

Jang, W. and Bien, Z. (1991). Feature-based visual servoing of an eye-in-hand robot with
improved tracking performance, Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 2254-2260, ISBN: 0-8186-2163-X, Sacramento, USA,
April 1991.

Kelly, R.; Carelli, R.; Nasisi, O.; Kuchen, B. and Reyes, F. (2000). Stable Visual Servoing of
Camera-in-Hand Robotic Systems. IEEE Transactions on Mechatronics, Vol. 5, Nº 1,
(March 2000) 39–48, ISSN: 1083-4435.

Khalil, H. K. (2001). Non-linear Systems, Prentice-Hall, ISBN: 978-0130673893, New Jersey,
USA.

Krten, R. (1999), Getting Started with QNX Neutrino 2: A Guide for Realtime Programmers,
PARSE Software Devices, ISBN: 978-0968250112, Ottawa, Canada.

Lin, W. (1995). Feedback Stabilization of General Nonlinear Control System: A Passive
System Approach. Systems & Control Letter, Vol. 25, Nº 1, (May 1995) 41-52, ISSN:
0167-6911.

Ortega, R.; Loria, A.; Kelly, R. and Praly, L. (1995). On passivity based output feedback
global stabilization of Euler-Lagrange systems. International Journal of Robust and
Nonlinear Control, Vol. 5, Nº 4, 313-323, ISSN: 1049-8923.

Ortega, R.; Loria, A.; Nicklasson, P. J. and Sira-Ramirez, H. (1998). Passivity--based control of
Euler-Lagrange systems: Mechanical, Electrical and Electromechanical Applications,
Springer-Verlag, ISBN: 978-1852330163, Berlin.

www.intechopen.com

Robot Manipulators, Trends and Development520

Sawada, C. and Akira, O. (1997). Open controller architecture OSEC-II: architecture
overview and prototype system, Proceedings of International Conference of Emerging
Technologies and Factory Automation, pp. 543-550, ISBN: 0-7803-4192-9, Los Angeles,
CA, USA, September 1997.

Sciavicco, L. and Siciliano, B. (2001). Modelling and Control of Robot Manipulators, Springer-
Verlag, ISBN: 978-1852332211, London, Great Britain.

Slotine, J and Li, W. (1991). Applied non linear control, Prentice-Hall, ISBN: 978-0130408907,
New Jersey, USA.

Sommerville, I. (2000). Software Engineering, Pearson Education, ISBN: 978-0201398151, USA.
Spong, M. and Vidyasagar, M. (1989). Robot dynamics and control, John Wiley & Sons, ISBN:

978-0471612438.
United Nations Economic Commission for Europe (UNECE) and International Federation of

Robotics (IFR). (2005). World Robotics – Statistics, Market Analysis, Forecasts, Case
Studies and Probability of Robot Investment, International Federation of Robotics and
United Nations Publication, ISBN: 92-1-1011000-05, Geneva, Switzerland.

van der Schaft, A. (2000), L2-Gain and Passivity Techniques in Nonlinear Control, Springer-
Verlag, ISBN: 978-1852330736, London, Great Britain.

Vidyasagar M. (1979). New passivity-type criteria for large-scale interconnected systems.
IEEE Transactions on Automatic Control, Vol. 24, Nº 4, (August 1979) 575-579, ISSN:
0018-9286.

Weiss, L. E.; Sanderson, A. and Neuman, P. (1987). Dynamic Sensor-based Control of
Robots With Visual Feedback. IEEE Journal of Robotics and Automation, Vol. 3, Nº 9,
(October 1987) 404-417, ISSN: 0882-4967.

Willems J. C. (1972a). Dissipative dynamical systems part I: General theory. Archive for
Rational Mechanics and Analysis, Vol. 45, Nº 5, (January 1972) 325-351, ISSN 0003-
9527.

Willems J. C. (1972b). Dissipative dynamical systems part II: Linear systems with quadratic
supply rates. Archive for Rational Mechanics and Analysis, Vol. 45, Nº 5, (January
1972) 352-393, ISSN 0003-9527.

William, E. F. (1994). What is an open architecture robot controller?, Proceedings of IEEE
International Symposium on Intelligent Control, pp. 27-32, ISBN: 0-7803-1990-7,
Columbus, Ohio, USA, August, 1994.

www.intechopen.com

Robot Manipulators Trends and Development

Edited by Agustin Jimenez and Basil M Al Hadithi

ISBN 978-953-307-073-5

Hard cover, 666 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book presents the most recent research advances in robot manipulators. It offers a complete survey to

the kinematic and dynamic modelling, simulation, computer vision, software engineering, optimization and

design of control algorithms applied for robotic systems. It is devoted for a large scale of applications, such as

manufacturing, manipulation, medicine and automation. Several control methods are included such as optimal,

adaptive, robust, force, fuzzy and neural network control strategies. The trajectory planning is discussed in

details for point-to-point and path motions control. The results in obtained in this book are expected to be of

great interest for researchers, engineers, scientists and students, in engineering studies and industrial sectors

related to robot modelling, design, control, and application. The book also details theoretical, mathematical

and practical requirements for mathematicians and control engineers. It surveys recent techniques in

modelling, computer simulation and implementation of advanced and intelligent controllers.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Flavio Roberti, Carlos Soria, Emanuel Slawinski, Vicente Mut and Ricardo Carelli (2010). Open Software

Structure for Controlling Industrial Robot Manipulators, Robot Manipulators Trends and Development, Agustin

Jimenez and Basil M Al Hadithi (Ed.), ISBN: 978-953-307-073-5, InTech, Available from:

http://www.intechopen.com/books/robot-manipulators-trends-and-development/open-software-structure-for-

controlling-industrial-robot-manipulators

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

