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1. Introduction 
 

Automatic control has become an important part of the modern industrial processes. 
Progress both in basic research as applied to automatic control, provide a way to obtain the 
optimum performance of the dynamical systems, improve the quality and reduce the costs. 
Robotics, as a part of automatics, represents nowadays an important research area, and it 
has an essential role in the productive modernization (UNECE and IFR, 2005). The inclusion 
of industrial manipulators in the manufacturing process allows obtaining better and cheaper 
products. Therefore, the development of an open software structure for the industrial robots 
controlling is a very important objective to be achieved (William, 1994), (Frederick and 
Albus, 1997). 
The main characteristic of an open software structure for robotics applications is the 
interface that relates the components of the robot with the basic internal structure. In 
industrial area, one of the most important works was developed in the framework of the 
European project OSACA (Open System Architecture for Control within Automation 
Systems). Similarly, significant contributions were reached in Japan through OSEC (Open 
System Environment for Controllers) under IROFA (International Robotics and Factory 
Automation Center), (Sawada and Akira, 1997), and in the United States of America through 
OMAC (Open Modular Architecture Control). The objective of all these research projects is 
to develop an open control system including the reference model of the components, the 
general application interface and the structure so that all the components work together. So 
far manufacturers do not work together to develop standard control software that could be 
applied to any industrial robot. 
On the other hand, several commercial software packages, that run under Windows, for 
mobile robots can be found. Among the best known ones, Advanced Robotics Interface for 
Applications (ARIA) is used in the robots manufactured by Mobile Robots Inc., 
BotController software were developed by MobotSoft and it is used for the well known 
Khepera and Koala robots. Even when these software packages are powerful and have 
many benefits, they can be applied only to the robots that were developed.   
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The main objectives of this chapter are the development and the implementation of an open 
software structure with reusable components, which works as a link between the hardware 
of an industrial robot manipulator and its control algorithm in order to implement these 
control algorithms with minimum efforts. Having this kind of software structure is very 
useful for researching and teaching in robotics as well as for industrial applications. The 
software structure runs under QNX Real Time operating system (Krten, 1999), and can be 
used for a large number of industrial robots.  
With the aim of achieving the raised objectives, the developed system is compound by two 
different programs. First one is the responsible for the sensors’ data acquisition and sending 
the control action to the servos. This program uses a shared memory block to save the data 
obtained from the sensors and to get the control action to be sent to the servos. In the second 
one runs the control algorithm. This program, similar to the first one, uses the same shared 
memory block to get the sensors’ data and to save the control action to be sent to the servos. 
This way, the control algorithm execution is isolated from the signals transmission between 
the software and the robot’s hardware, allowing a time and efforts reduction in the 
implementation of different control algorithms. 
Then, two different controllers have been implemented in order to evaluate the performance 
of the proposed open software structure, applied to the SCARA robot manipulator Bosch 
SR-800. First, a classical PD (proportional-derivative) controller is used to allow the robot to 
achieve a desired position on the workspace. This controller uses the position information 
from the encoders of the robot. Finally, an advanced passivity based visual servoing with 
“eye-in-hand” camera configuration (Weiss et al., 1987) is implemented to allow the robot to 
reach a position relative to some static target. Additionally, finite L2-gain for the passivity 
based control system is proven when a moving object is considered, allowing the robot to 
track the moving target with L2-gain  performance. Experimental results for both, the 
classical PD controller and the passivity based visual controller are presented in order to 
show the good performance of the proposed open software structure when it is applied to 
industrial robot manipulators. 
This chapter is organized as follows. Section 2 describes the used industrial robot 
manipulator. Section 3 presents the open control software developed. Section 4 comments 
the control strategies used to evaluate the software structure and shows the experimental 
results. Finally, Section 5 presents same conclusions of the work. 

 
2. Industrial robot Bosch SR-800 
 

The robot manipulator Bosch SR-800 is 4 dof SCARA like industrial robotic arm. This kind 
of manipulator is useful for smooth and fast movements, especially for assembly tasks. First, 
second and fourth joints are rotational and they move on the horizontal plane; and third 
joint is linear and it moves on the vertical plane. Figure 1 shows the robot’s configuration 
and it physical dimensions. It is important to remark that the third joint is uncoupled by a 
mechanical system based on toothed belts. This way, the end effector is always in the same 
orientation when no control action is applied to the third joint. 
The manipulator Bosch SR-800 has a Riho control unit, provided by the manufacturer, 
consisting of four servo-amplifiers and a CPU. The servo-amplifiers command the joints of 
the robot and the CPU is used to compute a position control algorithm with internal velocity 
loop for each joint. 

 
Fig. 1. Industrial robot Bosch SR-800 
 
In order to reach the proposed objectives, the closed control system, i.e. the CPU provided 
by the manufacturer, was replaced by an open control system, i.e. a PC based control 
system. This new control system has input-output data boards AD/DA-Q12 from 
Microaxial®, to make the data interchange between the control system and the robot’s 
hardware. A block diagram of the described system is shown in Fig. 2.The robot was also 
equipped was a force sensor FS6-120 and a vision camera Sony XC77, both located at the 
end effector of the robot. 
 

 
Fig. 2. Control diagram of the robot Bosch SR-800 
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2.1 Robot kinematic model 
Let’s consider the industrial manipulator briefly described above, with a global coordinate 
system whose origin is located at the intersection between the rotation axis of the first joint 
and the horizontal plane yx, ,  as Fig. 3 shows.  
 

 
Fig. 3. Geometric description of the robot Bosch SR-800 
 
In Fig. 3, l1 and l2 are the length of the first and second links respectively, qi are the joint 
positions of each link, and h is the distance between the first link and the base of the robot.  
Then, the kinematic model that relates the position of the end effector with the joints 
variables are represented by the following set of equations, 
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2.2 Dynamic model 
In the absence of friction or other disturbances, the dynamics of a n-link rigid SCARA robot 
manipulator can be written as (Spong and Vidyasagar, 1989), 
 
 τqCqM    (2) 
 
where: 

1R  nq  is the vector of joint displacements; 
1R  nτ  is the vector of applied joint torques; 

nnRM is the symmetric positive definite manipulator inertia matrix; 
1 nRqC   is the vector of centripetal and Coriolis torques. 
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Some important properties of the robot dynamics are the following. 
 
Property 1—The time derivative of the inertia matrix, and the centripetal and Coriolis 
matrix satisfy 

n

dt
d RT 



  xxCMx 02  

that is,  CM 2 is an antisymmetric matrix. 
 
Property 2 – The dynamic structure of the manipulator can be written as, 

  qqqqCqM  ,,  
where   mnR,, qqq  ; and nR is a vector of parameters. 
 
Property 3 – Matrix M has the following properties, 

 0 TMM  
 Minf  

For the considered robot manipulator Bosch SR-800,  
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2.3 Camera model 
A vision camera transforms a 3D space into a 2D projection on the image plane, where the 
vision sensor is located. This projection causes the lost of the depth perception, which means 
that each point on the image plane corresponds to a ray in the 3D space. 
Several projection models for the representation of the image formation process have been 
proposed. The most used is the perspective projection model or “pin-hole” model. In this 
model, a coordinate system ZYXO CCC

C ,,,  attached to the camera is defined in such a way 

that the X and Y axes define a base for the image plane and the Z axis is parallel to the optic 
axis. The origin of the framework ZYXO CCC

C ,,,  is located at the focus of the camera lens. 

From Fig. 4, a fixed point P in the 3D space with coordinates  TCCC ZYXP  on the 
framework attached to the perspective camera will be projected on the image plane as a 
point with coordinates  Tvuξ  given by (Hutchinson et al., 1996), 
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where   is the focal length of the camera expressed in pixels. 
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where   is the focal length of the camera expressed in pixels. 
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Fig. 4. Perspective projection camera model 

 
2.3.1 Punctual image feature 
An image feature is usually defined as a quantifiable relation on the image plane. In (Jang et 
al., 1991), a formal definition for image features is given, 
 
    dvduvuIvuf ,,,  (4) 
 
where  vuI , is the intensity of the pixel at the position  vu, . Function  can be a linear or a 
non lineal mapping, depending on the considered image feature. It may even be a delta 
function.  
Some common examples of image features are: 

 Cross-correlation correspondence or sum of squares’ difference to determine the 
coordinates of a known pattern of pixels in the image. 

 Spatial or central moments of the image. 
 Length or orientation of objects’ borders. 
 Length or orientation of the segments that connect different objects in the scene.  

In (Kelly et al., 2000), it is presented the relation between the time variation of the image 
feature vector and the movement velocity of an object relative to the vision system placed at 
the end effector of the robot, when a punctual image feature is considered. 
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where W

C R is the rotation matrix of the coordinate system attached to the robot’s base 
relative to the coordinate system attached to the vision camera; GJ is the geometric Jacobian 
of the robot (Sciavicco and Siciliano, 2001); and imgJ  and OJ  are the image and the object 
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3. Open software design 
 

3.1 Users 
The software system developed in this chapter is expected to be useful in control system 
teaching, human resources training, research, as well as in industrial area. Users in all these 
areas can be classified in four different levels, depending on how they would use the 
software system. 
 

 Level 1: those users who do not need to make any changes in the software system, 
for example: undergraduate students.    

 
 Level 2: those users who need to evaluate the performance of new control 

algorithms. They would need to modify just the implemented control law, using 
the rest of the system without any change. Those users have to have minimum 
knowledge about data structures and the system operation in order to make 
appropriate modifications. For example: postgraduate students, researchers.  
 

 Level 3: those users who want to make they own control software implementation, 
using only the sensors’ data acquisition program. 

 
 Level 4: those users who need to add one or more sensors or actuators in the system. 

Those users have to be knowledgeable about data structures and the system 
operation. 

 
3.2 Operational requirements 
Based on the main objectives of this development, the operational requirements of the 
software system are: 
 

 The control software for the industrial robot manipulator Bosch SR-800 must allow 
implementing and evaluating different control algorithms, using the information 
from the force sensor, position sensors, and visual sensor. All relevant data of the 
experiments have to be saved for later analysis.  

 The software developed must be flexible and with an open architecture in order to 
facilitate the incorporation of new components, such as sensors, actuators, 
teleoperation devices, etc. 

 
3.3 Reuse-based design 
In many engineering disciplines, like mechanical of electrical engineering, the design 
process is based on the reuse of the components. In the last decades, software engineering 
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has directed its efforts to imitate these techniques by encapsulating software units for its 
later reuse (Sommerville, 2000). With this aim, object oriented architecture is developed to 
handle different devices and hardware components, such as sensors, actuators, 
teleoperation devices. Therefore, data and inner tasks of each device are encapsulated, 
running in independents threads. This way, the software modules designed for each device 
can be reused for the inclusion of some new hardware component. 

 
3.4 Operating system and programming environment 
All the software development was made under platform QNX (Krten, 1999). This operating 
system has been selected because it is one of the best real time operating systems with high 
stability and robustness of operation. Additionally, QNX support multi-processors systems 
and several benefits can be obtained from the memory management unit (MMU) protection. 
The programming language chosen is C++, and the user interface has been implemented by 
using the Photon microGui. 
Different objects in the software are implemented in classes, which are initialized at the 
beginning of the program but they do not star working until their activation function is 
called.  In the particular cases of objects related to the sensors and the actuators, each one of 
them has an associated function that runs in a different thread, with a suitable sample time 
for each device.  

 
3.5 Design of the software structure 
The software structure is designed with independent modules for the user interface, the 
hardware devices, and the control algorithm. Figure 5 shows a block diagram of the 
software structure. The different tasks are divided into two processes or programs that 
communicate each other and work cooperatively. Communication task between the 
software and the hardware devices, and the synchronization of the control sample time are 
carried out by the so called Critic Time Program; whereas the control algorithm runs in the so 
called Control Program.    
The function that implements the control algorithm can be easily modified to allow 
evaluating different control strategies with a minimum effort. This function is called at each 
control sample instant, which is defined by the user through the user interface.  
In the following sections, main characteristics of both the Critic Time Program and the Control 
Program of the software are briefly described. 

 
3.5.1 Critic Time Program 
The Time Critic Program is responsible for communicating with the sensors and the actuators 
through the data acquisition and control hardware, updating the sensors’ data in the shared 
memory block, and it is also responsible for synchronizing the Control Program for the 
correct running of the control algorithm at each sample instant.  
This program has four different classes, 
 

 Motor: this object is responsible for applying the control actions obtained by the 
control algorithm to the motors of the industrial manipulator through the D/A 
converter of the data acquisition and control hardware. 

 Vision system: this object uses the TCP/IP connection functions to receive the 
visual information from the vision PC. This vision PC process the image obtained 
through the camera and sends the image features to the Critic Time Program via 
the TCP/IP connection. 

 Position:  this object is responsible for obtaining the position data from the internal 
encoders of each joint of the industrial robot. The data acquisition hardware is used 
to carry out this task. 

 Force: this object is responsible for obtaining the force data from the force sensor 
FS6-120. The serial port RS232 of the control PC is used. 

 
Additionally, a timer is used in this program to determine the sample instant of the control 
algorithm; and a graphic user interface is also implemented. Through this interface, users 
have a set of graphic controls that allow them to select the desired sensors and set their 
parameters, set the sample period, and start or stop the experiment.  
 

 
Fig. 5. Block diagram of the developed software system 
 
3.5.2 Control Program 
As explained above, the control algorithm runs in this program. Since the Control Program 
may be modified by users of Level 2, who may have not a large experience in software 
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has directed its efforts to imitate these techniques by encapsulating software units for its 
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and several benefits can be obtained from the memory management unit (MMU) protection. 
The programming language chosen is C++, and the user interface has been implemented by 
using the Photon microGui. 
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beginning of the program but they do not star working until their activation function is 
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them has an associated function that runs in a different thread, with a suitable sample time 
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carried out by the so called Critic Time Program; whereas the control algorithm runs in the so 
called Control Program.    
The function that implements the control algorithm can be easily modified to allow 
evaluating different control strategies with a minimum effort. This function is called at each 
control sample instant, which is defined by the user through the user interface.  
In the following sections, main characteristics of both the Critic Time Program and the Control 
Program of the software are briefly described. 
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The Time Critic Program is responsible for communicating with the sensors and the actuators 
through the data acquisition and control hardware, updating the sensors’ data in the shared 
memory block, and it is also responsible for synchronizing the Control Program for the 
correct running of the control algorithm at each sample instant.  
This program has four different classes, 
 

 Motor: this object is responsible for applying the control actions obtained by the 
control algorithm to the motors of the industrial manipulator through the D/A 
converter of the data acquisition and control hardware. 

 Vision system: this object uses the TCP/IP connection functions to receive the 
visual information from the vision PC. This vision PC process the image obtained 
through the camera and sends the image features to the Critic Time Program via 
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have a set of graphic controls that allow them to select the desired sensors and set their 
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development, some issues are commented. These issues should be taken into account to 
develop a program that efficiently uses the available hardware resources. 

 Determine the correct number of threads of the program, according to available PC 
hardware. 

 Avoid high time demanding operations. Perform I/O operations on files and 
communication devices asynchronously. 

 Do not use global variables. The reuse-based design using object oriented 
programming is desirable.  

 Use shared memory blocks for the data interchange between different processes. 
 Use events for the system synchronization. 
 If an on-line data writing to a hard disk device is needed, use a double buffer 

structure and an asynchronous writing. 
 Determine and set the correct priority of each thread according to its tasks. 

 
4. Implemented control laws 
 

The open software system developed has been tested by the implementation of two different 
control strategies. First, a classical PD position controller was implemented, based in the 
robot position information obtained from the internal encoders of the robot.  Then, a 
passivity based visual controller was implemented. This way, the performance of the 
software system is evaluated not only when internal sensors are used, but also when a 
vision camera placed at the end effector of the robot is used as sensor of the control system. 
In addition, it allows showing the possibility of a fast and easy control law interchange. 
Throughout this Section, a brief description of the control laws and some experimental 
results will be presented.  

 
4.1 PD controller 
The PD controller is a typical control algorithm used in robotics teaching. With the proposed 
open software structure, teaching duties relative to the laboratory experimentation can be 
fast and easy, bringing more time to the theoretical classes. Next, a brief explanation of the 
PD controller is presented.  
The PD position controller is defined as, 
 
 qKqKτ ~~

vp   (6) 
 
where  pip kdiagK  and  viv kdiagK  are positive definite gain matrices; qqq  d

~ is 

the joint position error; and qq  ~ since a position problem is considered . A block diagram 
of the control system is shown in Fig. 6. 
By equating the control law (6) with the robot’s dynamic model (2), the close loop equation 
is obtained, 
 qKqKqCqM  vp  ~  (7) 
 
Considering the following Lyapunov candidate function and its time derivative (Slotine and 
Li, 2001; Khalil, 2001), 
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and recalling La Salle theorem (Slotine and Li, 2001; Khalil, 2001), the asymptotic stability of 
the control system can be proven.  
 

 
Fig. 6. PD controller block diagram 

 
4.2 Passivity based visual controller 
The proposed open software structure can also be used for the experimentation of new 
advanced control algorithms, such as passivity based visual servoing. This way, researchers 
can find in the proposed software system a useful experimentation platform, saving time in 
the implementation, focusing their efforts on the controllers design. Next, a brief 
explanation of the passivity based visual controller is presented. 
Passivity is an important property between input and output of a system that has been 
widely used in the stability analysis of non-lineal systems (Hill and Moylan, 1976; Lin, 1995; 
Willems, 1972a; Willems, 1972b) and the stability analysis of interconnected systems, 
especially in cascade structures (Vidyasagar, 1979; Byrnes et al., 1991; Ortega et al., 1995). 
The concept of passivity shows, in an intuitive way, that a passive system cannot provide 
more energy than the energy received, and it allows to prove that a non linear passive 
system can be stabilized by a simple negative output feedback ykv  , with 0k (see Fig. 
7). Therefore, passivity is a useful property for the non linear systems analysis and design, 
representing a good alternative to the Lyapunov method. 
 

 
Fig. 7. Stabilized passive system 
 
Some important definitions about the passive systems theory are (Ortega et al., 1998; van 
der Schaft, 2000), 
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development, some issues are commented. These issues should be taken into account to 
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control strategies. First, a classical PD position controller was implemented, based in the 
robot position information obtained from the internal encoders of the robot.  Then, a 
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software system is evaluated not only when internal sensors are used, but also when a 
vision camera placed at the end effector of the robot is used as sensor of the control system. 
In addition, it allows showing the possibility of a fast and easy control law interchange. 
Throughout this Section, a brief description of the control laws and some experimental 
results will be presented.  

 
4.1 PD controller 
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Definition 1 – The mapping ee LLH 22:   is passive if there exist some constant  such 
that, 

  ,0;, 2 TLxxHx
T

  
Definition 2 – The mapping ee LLH 22:   is strictly passive if there exist some constants 

0  and  such that, 

  ,0;, 2
2
,2

TLxxxHx TT   

Definition 3 – The mapping ee LLH 22:   is strictly input passive if there exist some 
constants   and  such that, 

  ,0;, 2
2
,2

TLxxxHx TT   

Definition 4 – The mapping ee LLH 22:   is strictly output passive if there exist some 
constants   and  such that, 

  ,0;, 2
2
,2

TLxHxxHx TT   

 
4.2.1 Passivity property of the vision system 
Considering a static object 0P  , equation (5) can be written as,  
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Taking the energy function ξξξ
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2
1

V  and making its time derivative (Fujita et al., 2007), 

 qJξξξξ  TT V  (10) 
and integrating in  T,0  
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where ξJνξ

T . 
Therefore, it can be concluded that the mapping qνξ   is passive. 

 
4.2.2 Control system design 
Considering now the variable     dξξξ  tt

~
 instead of  tξ  in order to contemplate the 

regulation problem, and also considering perfect velocity tracking ( uq  ), it is possible to 
prove that the passivity property of the vision system is preserved, that is,  
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Then, the following control law is proposed, according to the general structure of Fig. 7, 
 

 
ξKJu

Kνu ξ~
~T


 (13) 

 
where K  is a symmetric and positive definite gain matrix. The control structure is shown in 
Fig. 8. 
 

 
Fig. 8. Block diagram of the passivity based control approach 
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where  Kminλ represents the minimum eigenvalue of matrix K . Therefore, from Definition 
3, the controller is strictly input passive from u ν ξ ~ . This way, the closed loop system of 

Fig. 8 is built by the interconnections of passive subsystems.  
By adding equations (12) and (15), the following inequality can be obtained 
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4.2.3 Robustness to the object movement: L2-gain performance design 
In this section, the possibility of moving objects existence is considered and the control 
system’s performance for tracking tasks is evaluated. With this aim, the object’s velocity is 
considered as an external disturbance of the control system and a robust controller with L2-
gain performance criteria is designed (Fujita et al., 2007).   
The system ξw

~
 would have finite L2-gain if (van der Schaft, 2000), 
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O  the object’s velocity on the image plane, considered as an external 
disturbance; 0 ; and 0 . In this context,   represents an indicator of the system’s 
tracking performance. The proposed control system will have finite L2-gain if 
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Considering again perfect velocity tracking ( uq  ), the control law (13) is introduced in 
(19),   
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and imposing L2-gain performance condition (18) to (20), the following inequality is 
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The problem now is to find a symmetric and positive definite matrix K  and a value for  , 
such that the matrix inequality (22) is fulfilled. With this aim, the LMI technique (Boyd et al., 

1994) is used by restricting the Jacobian matrix J  to a convex set. The only restriction 
imposed to the gain matrix K  is that it must be symmetric and positive definite (in order to 
fulfill the passivity property of the controller (15)), and the condition of be diagonal is not 
imposed allowing the controller to incorporate dynamics coupling, obtaining better 
performances.  
Now, the problem that immediately rises in the selection of the gain matrix K  is that, if a 
small value for   is adopted for a good performance in moving objects tracking, actuators 
could be saturated in presence of large image features errors. On the other hand, if a large 
value for   is adopted, the saturation of the actuators would be avoided to de detriment of 
the tracking performance. The proposed solution to this problem lies in the use of a variable 
gain matrix, as a function of the image features error. With this aim, two different gain 
matrices 1K  and 2K  are found by solving the matrix inequality (22) ( 1K  for small features 
errors and 2K  for large features errors), and the gain matrix K  is obtained as,  
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K  always fulfils the performance condition  , accepting a large value for large image 
features errors and adopting a smaller value for small image features errors, according to 
the design specifications. 

 
4.3 Experimental results 
Both the PD controller and the passivity based visual controller explained above were 
implemented in the industrial robot manipulator Bosch SR-800 shown in Fig. 9, with the 
open software developed. For the first experiment, as well as for the second one, it could be 
confirmed the fast implementation of the control algorithms. 
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4.3.1 Experimental results for the PD controller 
Some experiments are carried out with the classical PD controller, considering only first and 
second joint of the robot. The controller is implemented in the Control Program and runs 
with a sample time of 1 msec. In the first experiment, the end effector of the robots must 
achieve the desired position  30,50 (expressed in centimetres) on the Cartesian space, 
which means that the desired joint positions are rad194.11 q and rad52.12 q . On the 
other hand, in the second experiment, the end effector of the robots must achieve the desired 
position  30,50  (expressed in centimetres) on the Cartesian space, which means that the 
desired joint positions are rad113.01 q and rad52.12 q . In both experiments, the 
following gain matrices were used, 
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Figures 10, 11 and 12 show the results for the first experiment. Figures 10 and 11 show the 
time evolution of the joint positions; and Fig. 12 shows the trajectory described by the end 
effector on the Cartesian space. Figures 13, 14 and 15 show the results for the second 
experiment. Figures 13 and 14 show the time evolution of the joint positions; and Fig. 15 
shows the trajectory described by the end effector on the Cartesian space. 
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Fig. 10. Time evolution of 1q  
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Fig. 11. Time evolution of 2q  
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Fig. 12. Trajectory described on the Cartesian space 
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Fig. 13. Time evolution of 1q  
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Fig. 14. Time evolution of 2q  
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Fig. 15. Trajectory described on the Cartesian space 

 
4.3.2 Experimental results for the visual controller 
Third experiment is carried out with the passivity based visual controller, considering only 
first and second joint of the robot. The controller is implemented in the Control Program 
and runs with a sample time of 1 msec. for the controller and 33 msec. for the image 
processing. The gain matrices, obtained with the LMI-tool (El Ghaoui et al., 1995) are, 
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The experiment starts with an initial vector of image features  6548)0( ξ  pixels and 
the first reference on the image plane is chosen as  201 dξ  pixels, and then the reference 
changes to  64722 dξ  pixels. At instant 15t sec. the object starts moving.  
Figures 16 and 17 show the time evolution of the image features 1ξ  and 2ξ  respectively, 
being 1ξ  and 2ξ  the components of the vector ξ . The time evolution of the features error 
norm can be seen in Fig. 18. In this last plot, it can be seen that the image error is below 2 
pixels when the object is not moving ( 15t sec); and with a moving object, the features error 
is below 10 pixels. Figure 19 shows the control actions for 1q  and 2q . Finally, Fig. 20 shows 
the evolution of the image features on the image plane. 
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Fig. 13. Time evolution of 1q  

 

0 2 4 6 8 10 12 14 16 18
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Time [sec]

q 2 [r
ad

]

Reference
q2

 
Fig. 14. Time evolution of 2q  
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the first reference on the image plane is chosen as  201 dξ  pixels, and then the reference 
changes to  64722 dξ  pixels. At instant 15t sec. the object starts moving.  
Figures 16 and 17 show the time evolution of the image features 1ξ  and 2ξ  respectively, 
being 1ξ  and 2ξ  the components of the vector ξ . The time evolution of the features error 
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Fig. 16. Time evolution of the image feature 1ξ  
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Fig. 17. Time evolution of the image feature 2ξ  
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Fig. 18. Time evolution of the image features error norm ξ
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Fig. 19. Control actions for 1q and 2q  
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Fig. 16. Time evolution of the image feature 1ξ  
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Fig. 17. Time evolution of the image feature 2ξ  
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Fig. 18. Time evolution of the image features error norm ξ
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Fig. 19. Control actions for 1q and 2q  
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Fig. 20. Image features trajectory on the image plane 

 
5. Conclusions 
 

In this chapter, the design, implementation and experimentation of an open software 
structure for industrial robot manipulators have been presented. The developed software 
allows the users to save time and efforts in the implementation and performance evaluation 
of new control algorithms, as well as in the addition of new hardware components, i.e. 
sensors or actuators. Therefore, the developed software is useful for research in the field of 
robotics and human resource training, with potential impact in industry. 
The software system has been split into two different programs that communicate each 
other, clearly dividing different tasks of the control system. This way, a modular reuse 
based system is obtained. First program (Critic Time Program) is responsible for 
communicating with the sensors and the actuators through the data acquisition and control 
hardware, updating the sensors’ data in the shared memory block, and it is also responsible 
for synchronization of the two programs. Each one of the hardware devices is handled with 
a different object, obtaining the desirable encapsulation for the data and methods associated 
to each device. Second program (Control Program) is responsible for running the control 
algorithm and updating the control actions in the shared memory block. 
Additionally, the proposed open software structure has been evaluated with two different 
control algorithms: first, a classical PD controller using the internal position sensors of the 
robot; and second, a passivity based visual controller using a vision system placed at the 
end effector of the robot. Both, the classical PD controller and the visual controller were 
successfully implemented in the proposed software structure, showing that the main 
objectives of the work presented in this chapter have been achieved. 
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Fig. 20. Image features trajectory on the image plane 
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to each device. Second program (Control Program) is responsible for running the control 
algorithm and updating the control actions in the shared memory block. 
Additionally, the proposed open software structure has been evaluated with two different 
control algorithms: first, a classical PD controller using the internal position sensors of the 
robot; and second, a passivity based visual controller using a vision system placed at the 
end effector of the robot. Both, the classical PD controller and the visual controller were 
successfully implemented in the proposed software structure, showing that the main 
objectives of the work presented in this chapter have been achieved. 
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