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1. Introduction    
 

Many advanced methods proposed for control of robot manipulators are based on the 
dynamic models of the robot systems. Model-based control design needs a correct dynamic 
model and precise parameters of the system. Practically speaking, however, every dynamic 
model has some degrees of incorrectness and every parameter associates with some degrees 
of identification error. The incorrectness and errors eventually result positioning or 
trajectory tracking errors, and even cause the system to be unstable. In the past two decades, 
intensive research activities have been devoted on the design of robust control systems and 
adaptive control systems for the robot in order to overcome the control system drawback 
caused by the model errors and uncertain parameters, and a great number of research 
results have been reported, for example, (Hsia, 1989), (Kou, and Wang, 1989), (Slotine and Li, 
1989), ( Spong, 1992), and (Cheah, Liu and Slotine, 2006). However, almost parts of results 
associate with complicated control system design approaches and difficulties in the control 
system implementation for industrial robot manipulators.   
Recently, neural network technology attracts many attentions in the design of robot 
controllers. It has been pointed out that multi-layered neural network can be used for the 
approximation of any nonlinear function. Other advantages of the neural networks often 
cited are parallel distributed structure, and learning ability. They make such the artificial 
intelligent technology attractive not only in the application areas such as pattern recognition, 
information and graphics processing, but also in intelligent control of nonlinear and 
complicated systems such as robot manipulators (Sanger, 1994), (Kim and Lewis, 1999),  
(Kwan and Lewis, 2000), (Jung and Yim, 2001) (Yu and Wang, 2001). A new field in robot 
control using neural network technology is beginning to emerge to deal with the issues 
related to the dynamics in the robot control design. A neural network based dynamics 
compensation method has been proposed for trajectory control of a robot system (Jung and 
Hsia, 1996). A combined approach of neural network and sliding mode technology for both 
feedback linearization and control error compensation has been presented (Barambones and 
Etxebarria, 2002). Sensitivity of a neural network performance to learning rate in robot 
control has been investigated (Clark and Mills, 2000).  
In the following, we present a simple control system consisting of a traditional controller 
and a neural network controller with parallel structure for trajectory tracking control of 
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industrial robot manipulators. First, a PD controller is designed. Second, a neural network 
with three layers is designed and added to the control system in the parallel way to the PD 
controller. Finally, a learning scheme used to train the weights of each layer of the neural 
network is derived by minimizing a criterion prescribed in a quadratic form of the error 
between a planed trajectory and response of the robot. Control system implementation issue 
is discussed. Both the motivation function of the neural network and dynamic model used 
in the calculation of the learning law are simplified to meet practical needs. An industrial 
manipulator AdeptOne is adopted as an experimental test bed. Trajectory tracking control 
simulations and experiments are carried out. The results demonstrate effectiveness and 
usefulness of the proposed control system. 

 
2. Dynamic models of robot manipulators 
 

2.1 Torque-based dynamic model 
A torque-based dynamic model of robot manipulator describes relationship between motion 
and joint torque of the robot without concerning what generates the torque and how. This 
class of dynamic formulation is most popular and widely used in the control design and 
simulation of the robot manipulator. Usually, a torque-based dynamic model can be 
systematically derived by using the Lagrange method as follows 
 

τθgθθθHθθM  )(),()(              (1) 
 

where, nRθ  and nRτ are joint variable and torque, nnR )(θM is inertia matrix, 
nRθθθH  ),(  contains Coriolis and centrifugal forces, and nR)(θg  denotes 

gravitational force.  
Remarks: In motion equation (1), )(θM  is a symmetric matrix, and ),(2)( θθHθM    is a 
skew symmetric matrix. These properties of robot dynamics allow one to design the control 
system on the basis of dynamic model in an easier way.  

 
2.2 Voltage-based dynamics model 
In the almost cases of industrial robot manipulators, the torque-based dynamic model 
cannot be used directly because most industrial manipulators are not functionally designed 
on the basis of torque/force control but servo control. In the other words, as actuators 
almost all robot manipulators are equipped with servo motors that are controlled by input 
voltage not by current. The former results the so-called velocity servo, and the later meets 
the needs of the torque-based control that may require the torque-based dynamic model.  
For, the robot with servo-controlled motors, we need to take the characteristics of the motors 
and servo-units into consideration in the dynamic modeling, parameter identification and 
control design. Generally, the dynamic model of the motor with a servo unit can be given as 
follows.  
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For the n-link robot manipulator, the dyanmic characteristics of the motors and servo 
units can be rewritten in a compact form as  
 

uθDθfτRατLα   )(11  v                                               (3) 
 

Though rates of amplifiers of the servo units are included in the parameters in the above 
equation, in the following, we rather like to use the nominal terms of parameters that are 
often referred directly to a servo motor. ),,,( 21 nuuudiag u  denotes the input voltage of 
the servo units; ),,,( 21 nLLLdiag L , ),,,( 21 nRRRdiag R  are matrices of inductance 
and resistance; and ),,,( 21 ndiag  α is the matrix with the elements being the back 
electromotive constant of each servo motor; ),,,( 21 vnvvv fffdiag f  denotes matrix of 
viscous friction constants, and  )(θD  is a diagonal matrix that diagonal elements indicate the 
constants of Coulomb frictions and electrical dead zones of the motors. Combining (1) and 
(3) together, after some simple manipulations we obtain 
 

  uθθ,Hθθθ,RθθL  )(ˆ)(ˆ)(ˆ                                                            (4) 
where 

)()(ˆ 1 θMLaθL                                                                      (5) 
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3. Control problem statement 
 

Standing on the theoretical view point, the dynamic model given by (4) can be used in 
model-based control system design with a kind of computed-torque like control method. 
Implementation of such a control system, however, is difficult to carry out since either 
acceleration sensors or numerical derivative approaches are necessary for calculating the 
control input that contains acceleration feedback. Acceleration sensors are not available in 
industrial robots, and the numerical derivative approaches would result high frequency 
noises and phase lag. On the other hand, every dynamic model contains more or less 
modeling errors and/or parameter uncertainties that cause imprecise trajectory tracking in 
the control based on the dynamic model. 
Although what we are discussing here is about high-performance advanced control 
methods, the practical world that we have to face is that all commercialized industrial robot 
manipulators associate with built-in traditional PID controllers. However, a significant 
drawback of the PID control system is that it cannot guarantee a precise tracking result for 
given dynamic trajectories since such the control system is essentially driven by trajectory 
error itself. 
From the above discussion, we clarified the problems in dynamic trajectory control of robot 
manipulators, and found two key points for the problem-solving in the dynamic trajectory 
tracking control system design: one is how to utilize the built-in PID controller of the robot 
system; another one is how to take the dynamic characteristics of the robot into 
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industrial robot manipulators. First, a PD controller is designed. Second, a neural network 
with three layers is designed and added to the control system in the parallel way to the PD 
controller. Finally, a learning scheme used to train the weights of each layer of the neural 
network is derived by minimizing a criterion prescribed in a quadratic form of the error 
between a planed trajectory and response of the robot. Control system implementation issue 
is discussed. Both the motivation function of the neural network and dynamic model used 
in the calculation of the learning law are simplified to meet practical needs. An industrial 
manipulator AdeptOne is adopted as an experimental test bed. Trajectory tracking control 
simulations and experiments are carried out. The results demonstrate effectiveness and 
usefulness of the proposed control system. 
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A torque-based dynamic model of robot manipulator describes relationship between motion 
and joint torque of the robot without concerning what generates the torque and how. This 
class of dynamic formulation is most popular and widely used in the control design and 
simulation of the robot manipulator. Usually, a torque-based dynamic model can be 
systematically derived by using the Lagrange method as follows 
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model-based control system design with a kind of computed-torque like control method. 
Implementation of such a control system, however, is difficult to carry out since either 
acceleration sensors or numerical derivative approaches are necessary for calculating the 
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noises and phase lag. On the other hand, every dynamic model contains more or less 
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methods, the practical world that we have to face is that all commercialized industrial robot 
manipulators associate with built-in traditional PID controllers. However, a significant 
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consideration in the trajectory control. The neural network provides us with some new 
options in the control design in many ways: to approximate dynamics and/or inverse 
dynamics, to compensate dynamic effects, to be a controller itself, etc. In this chapter, we 
combine the built-in controller and a neural network together to design a new control 
system for trajectory control of the robot. We aim at high precision trajectory tracking 
control of the industrial robot manipulators using simple and applicable control method. 
We design a control strategy with both technologies of PID control a neural network for 
taking the advantages of both simplicity on design and implementation of a PID controller, 
and learning capacity of neural network control. The main idea is to establish a control 
system with the PID controller and a neural network control scheme which are parallel to 
each other in structure for achieving precise tracking control of dynamic trajectories. The 
detail description of the control system design yields to the next section. 

 
4. Structures of the robot control system using neural network 
 

It is usual that the neural network controllers are structurely degined as the feedback 
controllers in the control system. The neural networks are trained such that the trjactory 
tracking erorr e converge to zero.   Fig.1 and  Fig.2  show two kinds of block structures of the  
 

 
Fig. 1. Structure of a neural network control system with the trajectory error being the input 
of the neural network. 
 

    
Fig. 2. Structure of a neural network control system with the state variable being the input of 
the neural network. 
 
neural network system. In Fig.1, the neural network is driven by the trajectory trcking error, 
whereas in Fig.2 the neural network is dirven by the states of the robot system.  
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To combine a neural network controller and a built-in PID controller together in parallel, we 
have two ways according to two structures shown in Fig.1 and Fig.2. In detail, the control 
system black diagrams are given in Fig. 3 and Fig.4. 

 

 
Fig. 3. Structure of robot control system with the trajectory error being the input of the 
neural network. 
 

 
Fig. 4. Structure of robot control system with the state variable being the input of the neural 
network. 
 
In control system of Fig.3, what role the neural network controller plays is no more than a 
controller since the neural network’s input is trajectory error. On the other hand, the neural 
network controller given in Fig.4 has possibility to work as not only a controller but also a 
dynamic compensator. The later generates the forces/torques to compensate the gravity and 
other dynamic forces/torques according to the dynamic trajectories so that the trajectory 
tracking may be more accurately achieved.  In the rest part of this chapter, we will mainly 
discuss the design of control system that the structure is shown in Fig.4. 

 
5. Control system design 
 

5.1 The control strategy 
In the control system shown in Fig.4, the total control scheme is given as follows. 
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where dθ and dθ are planned trajectories of joint displacements and velocities, vk , pk , and 

ik  are gain matrices.   

nu  is the control input of the neural network controller being designed. The structure of 
neural network controller is shown in Fig. 5. The detail mathematical description of the 
neural network is given by  
 

f(Wq)Vu n                                                            (10) 
 
where nT

nn R2
2121 ],,,,,[   q  denotes input vector with elements being each 

joint variable, velocity;  m
nmnnn Ruuu  ],[ 21 u  is output vector, lnR  2W  and 

mlR V  with their elements being expressed by ijw  and jkv , are weight matrices from 

input nodes to the hidden layer and from hidden layer to the output layer; lR)(f  is an 
activation function vector of the hidden layer with elements being selected as a saturation 
function, such as a sigmoid function; l is the number of hidden nodes. Though the 
dimension of robot joint inputs equals joint numbers n, here we denote it as m in order to 
describe the network controller design clearer.  
 

 
Fig. 5. Multilayer neural network controller. 

 
2.2 Detail design of the neural network controller 
For tracking control of a robot with a designed dynamic trajectory, only the PD controller is 
not enough to ensure a proper tracking precision. For this reason, we design the neural 
network controller such that it takes the important part on which the PD controller has 
shown its limitation and/or powerlessness. In doing so, the neural network controller 
should be trained in such the way: the trajectory tracking error getting smaller and smaller 
while training. First, we choose a performance criterion of the whole control system with a 
quadratic form of the trajectory tracking error and velocity tracking error, as follows.  
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The weights’ learning algorithm is derived based on the back-propagation approach. The 
tuning law is to give weights’ increments to be proportional to the negative gradient of the 
performance criterion with respect to the weights. For updating of the weights between the 
hidden layer and the output layer, we define an increment as   
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where,  j and  k indicate the one between jth node of the hidden layer and kth node of the 
output layer , and jk  is a constant of proportionality, to be designed as a learning rate.  
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where ij  is a learning rate to be designed by the user.  

Using the chain rule and noting that the weights are independent with lu , the partial 
derivative of (12) can be expressed as follows, 
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where jf  is the output of jth node of the hidden layer.  

Similarly, one can use the chain rule to (13) to obtain 
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The weights’ learning algorithm is derived based on the back-propagation approach. The 
tuning law is to give weights’ increments to be proportional to the negative gradient of the 
performance criterion with respect to the weights. For updating of the weights between the 
hidden layer and the output layer, we define an increment as   
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where ij  is a learning rate to be designed by the user.  

Using the chain rule and noting that the weights are independent with lu , the partial 
derivative of (12) can be expressed as follows, 
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where jf  is the output of jth node of the hidden layer.  

Similarly, one can use the chain rule to (13) to obtain 
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where jz  is the summation of input signals to jth node of the hidden layer, i.e. 
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In (19), b is a matrix depended on the dynamics of the robot, and will be specified in the next 
subsection. kb  in (16) is the kth column vector of b.  
The fourth partial derivative term of right side of (18) can be determined directly using 
partial derivative jjjjj zzfzf  /)(/  for a designed activation function )( jj zf . 

 
5.3 An implementation issue 
In the design of the neural network controller, since we aimed at trajectory tracking 
performance of the system, we designed the performance criterion using error’s quadratic 
form of the inputs of the neural network other than using error’s quadratic form of the 
outputs of the neural network, though the later is much usual in neural network design. It 
eventually results the use of dynamics of the system in deriving the learning law with back 
propagation method since the inputs and outputs of the robot system and neural network 
controller are contrary to each other. Ignoring the small parameters, usually dynamics (3) 
can be simplified as  
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Generally, the solution of (23) can be given by 
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One can numerically calculate b in a real time control process as 
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where it  indicates the ith sampling time.  

 
6. Simulation and experimental studies 
 

6.1 The test bed 
The experimental test bed used in this research is an AdeptOne XL robot manipulator 
shown in Fig.6. It is a SCARA type high performance Direct Drive (DD) industrial robot 
manipulator possessed with 4 joints. Except the third joint being a prismatic joint, all joints 
are revolute. Though a closed-loop servo system is built-in by Adept Technology 
Corporation on the basis of servo units and servo motors, using the Advanced Servo Library 
the user is allowed to access the D/A converter directly to establish a user-designed close-
loop servo system for the development of more advanced control system by V+ language. 
We developed control software on such the software and hardware environment. 
Since the third joint is prismatic and dynamically independent with other joints, control 
subsystem for the third joint can be designed independently and easily.  
 

  
Fig. 6. AdeptOne robot manipulator 
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Focusing on control of the most complex part of the robot, we do not take the third joint into 
consideration in the control design. The fourth joint is extremely light-weight designed 
comparing with other joints and its link length is zero. Fourth joint does not cause dynamic 
coupling to the others. Therefore, we do not take it into consideration as well in control 
design and experiments. 

 
6.2 Trajectory tracking control simulations 
The joint trajectory tracking control simulations were carried out based on a simplified 
dynamic model of (3). The neural network controller was designed with three layers, four 
nodes for the input layer and hidden layer respectively, and two nodes for the output layer. 
The learning scheme was designed using the method given in section IV. The desired joint 
trajectories are designed using triangle functions with amplitudes to be 45 and 30 degrees 
for joint1 and joint2. The feedback gain matrices of the PD controller were determined 
as )1.0,6.0(diagp k , )3.0,8.0(diagv k . Learning rates in (12) and (13) were chosen 

as 07.01 j , 04.02 j  )4.,1( j , )4.,1;4,,1(01.0   jiij . Simulations were taken 

place under Matlab environment.  
Fig.7 ~ Fig.10 show an example of the simulations. Fig.7 gives the planned joint trajectories 
and tracking control results. The broken lines indicate the planned trajectories which are not 
easy to be seen since they are almost completely covered by the thick lines i.e. the tracking 
results in fourth time learning. The dotted lines indicate results according PD control only, 
and the thin lines are first learning results.  
Fig.8 gives velocity tracking results with the lines’ types being the same meaning as 
described for Fig.7. Fig.9 shows control inputs of joint 1, (b) and (c) are control input 
generated by PD controller and neural network controller, respectively. (a) is the whole 
control input, i.e. the summation of (b) and (c). Fig.10 shows control inputs of joint 2. 
From the simulation results it is seen that using the combined control system with PD 
controller and neural net work controller high precise joint trajectory tracking performance 
can be achieved under learning process of the weights of the neural network. 

 

 
Fig. 7. Simulation results: planned joint trajectories and tracking results. 

 

 
Fig. 8. Simulation results: planned joint velocity trajectories and tracking results. 
 

 
Fig. 9. Simulation results: control inputs of joint 1. 
 

 
Fig. 10. Simulation results: control inputs of joint 2.  
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www.intechopen.com



Robot Manipulators, Trends and Development372

 

6.3 Trajectory tracking control experiments  
The joint trajectory tracking control experiments were carried out under almost same 
conditions of the simulation except the feedback gain matrices were chosen as 

)6.0,5.1(diagp k , )4.0,3.1(diagv k , and amplitudes of the trajectories of joint 1 and 2 are 

planned as 25 and 20 degrees. 
Fig.11~Fig.14 show the experimental results. Meaning of each figure stands for the same 
corresponding to the simulation results shown in the last subsection, as well as the lines in 
figures. 
From the experimental results, it can be seen that though the trajectory tracking accuracy is a 
little bit lower comparing with the simulation results, the trajectory tracking error becomes 
less and less when learning time increases. It confirms the effectiveness and usefulness of 
the proposed control method. 
 

 
Fig. 11. Experimental results: planned joint trajectories and tracking results. 
 

 
Fig. 12 Experimental results: planned joint velocity trajectories and tracking results. 

 

 
Fig. 13. Experimental results: control inputs of joint 1. 

 
Fig. 14. Experimental results: control inputs of joint 2. 

 
6.4 Discussion 
PID controller controlled robot system is essentially driven by position error or trajectory 
tracking error. In dynamic trajectory tracking of a robot under PD control, the PD controller 
plays two important roles: one is motion regulation for guaranteeing stability of the robot 
system; another one is to generate force/torque required by the dynamic trajectory to drive 
the robot such that it would follow the trajectory.  The latter needs a big enough tracking 
error in order to generate actuating force/torque required by the trajectory for the robot.  
From the simulation results one can see that the tracking error significantly decreases as 
learning time increases while the control inputs generated by the neural network controller. 
Comparing Fig.9 (b) with (c) or Fig.10 (b) with (c) it can be interestingly found that learning 
for four times the neural network controller took PD controller over and played the main 
role in generating actuation voltages for the robot. On the other hand, in the experimental 
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results Fig.13 and Fig.14 “the roles changing” seems not as evident as in their simulation 
counterparts. The reason lies on a fact that we had added the dead-zone compensating 
inputs into PD control inputs.  
Standing on the dynamics point of view, with the same tracking accuracy to a designed 
dynamic trajectory, the whole control input should be the same judging with the same unit 
of the input (whatever it counted by torque/force or voltage) regardless what kind of 
control method is adopted. In robot control with neural network, it is a popular way to use a 
neural network to approximate dynamics of the robot rather than use it as a controller itself. 
From the simulation and experimental results, it can be concluded that the neural network 
controller proposed in this paper not only plays the role as a controller but also play the role 
to generate force/torque required by dynamic trajectories just as an approximated dynamic 
model using neural network in computed torque control. 
Though the results given here are limited on 4th time learning for the simulation and 6th time 
learning for the experiment, we carried out much more simulations and experiments, 
learning for 20 times, for example. The results show that after some specified time the 
learning effect will remain unchanged.  

 
7. Conclusions 
 

In this article, we presented dynamic trajectory tracking control of industrial robot 
manipulators using a PD controller and a neural network controller. Some different kinds 
strucutres of neural network control systems were discuessed. The neural network 
controller was designed as a three layers feed-forward network. The learning law of weights 
of the neural network was derived using a simplified dynamic model of the robot and back 
propagation approach. Dynamic trajectory tracking control simulations and experiments 
were carried out using an industrial manipulator AdeptOne XL robot. The results showed 
the effectiveness and usefulness of the proposed control method. From the simulations and 
experiments, it was seen that according the increase of learning times the neural network 
controller took over of the PD controller on playing the role in generating actuating 
force/torque required by the dynamic trajectory. It also was clarified that the learning effect 
of the neural network has some limitation, i.e. after some specified time of learning, 
trajectory tracking accuracy remains unchanged. 
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