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1. Introduction 

 

Surface reconstruction from a point cloud is very useful in many different application areas, 
such as manufacturing (Bernardini et al., 1999), cultural heritage (Bernardini et al., 2002) and 
medicine (Satava & Jones, 1998). Surface reconstructions methods aim to create digital 
models to reproduce an object shape given a set of points sampled from its surface using 3D 
scanning technology. 
Surface reconstruction starting from a cloud of points is a complex problem which raises a 
number of challenging issues: Firstly, the connectivity between the vertices must be 
constructed so that the reconstructed surface has the same topological features as the target 
surface. However no structural information is available in the input data. Instead the only 
items of information available are the 3D coordinates of a set of points sampled from the 
target surface. Secondly, meshes with different resolutions must be generated to fulfil the 
needs of different applications, otherwise additional processing is required to simplify (or 
refine) the mesh constructed. Another issue is that the meshes produced must be two 
dimensional manifolds. Finally, the triangular faces of the mesh should be approximately 
equilateral. 
A lot of research effort has been expended to develop surface reconstruction methods. Some 
of these methods are based on geometric techniques (Amenta et al., 2001), (Hoppe et al., 
1992). Another well known approach is that of dynamic methods (Miller et al., 1991), (Qin et 
al., 1998), based on the evaluation of energy or force functions. A more recent approach to 
the problem of surface reconstruction is that of learning-based methods. Learning 
algorithms are able to process very large and/or noisy data, such as point clouds obtained 
from 3D scanners and have been used to reconstruct surfaces. Following this approach, 
some studies (Brito et al., 2008), (Hoffmann & Varady, 1998), (Yu, 1999), have employed Self-
Organizing Maps (SOM) and their variants for surface reconstruction. SOM is suitable for 
the surface reconstruction problem because it can form topological maps to replicate the 
distribution of input data. In this chapter the authors present two Self-Organizing Maps 
based on what that they have proposed for surface reconstruction. 
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The rest of this chapter is structured as follows: Section 2 presents the necessary background 
for understanding the surface reconstruction methods presented in Sections 4 and 5. The 
self-organizing approach for surface reconstruction is presented in Section 3, where we 
discuss some of the self-organizing models useful for surface reconstructions. In Section 4 
and 5 we present, respectively, the GSRM and GSOSM methods for surface reconstruction. 
Section 6 concludes this chapter.  

 
2. Background 

 

The geometric pipeline presented in (Saleem, 2003) describes the problem of reconstructing 
computational models of real object surfaces (called target objects). The first step of the 
pipeline consists of digitalizing the target object to get a set of points sampled from its 
surface. When no information about the connectivity among the points is available, or 
rather, the only items of information available for the reconstruction are the 3D coordinates 
of the sampled points, the output of the first step of the pipeline is called an unstructured 
point cloud. When additional information about the connectivity among the points is 
available, the point could is deemed to be structured. This study does not investigate the 
techniques available for digitalizing real objects, since the focus here is on the task of 
reconstruction itself (the second step of the pipeline). 
The second step of the pipeline concerns the reconstruction itself, which is, producing a 3D 
model of a target surface. The input for this step is the point cloud produced in the first step. 
This study considers unstructured point clouds. Thus, the only information available for the 
reconstruction are the 3D coordinates of the points sampled from the object surface. No 
information about the connectivity among the points, which depends on how the object was 
digitalized, is required by the methods presented here. Thus, these methods do not depend 
on how the point cloud was acquired. This step outputs a model of the target object surface 
represented by a polygonal mesh, more specifically a mesh of triangles, because a triangle is 
the simplest polygon, consequently it is easier to draw a triangle on the computer screen 
than any other polygon. Section 2.1 presents the polygonal mesh representation. 
The last step of the pipeline is mesh simplification, that is, producing a simpler mesh (a 
mesh with less detail) from the mesh output in the second step. Some applications require 
meshes representing the shape of an object with less detail instead of quite dense meshes 
which a computer screen is slow to render. For this situation, a mesh simplification step is 
necessary. 
Some desirable features of the reconstruction methods are: (a) To produce meshes of 
different resolutions so that the simplification step is not necessary; (b) To produce meshes 
with regular polygons, which in the case of triangles must be approximately equilateral; (c) 
To produce two-dimensional manifold meshes (2-manifolds); (d) To produce meshes that 
are a Delaunay Tesselation. A brief explanation about two-dimensional manifold and about 
the Delaunay Tesselation are presented in Sections 2.2 and 2.3 respectively. 

 
2.1. Polygonal Meshes 
Polygonal mesh representation is a particular case of boundary representation (b-rep), in 
which the faces delimiting the boundary of the solid are polygons, that is, plane figures 
bounded by a closed path, comprising a finite sequence of straight line segments (edges). A 
triangle is the simplest polygon, having only three edges. Most modeling and real-time 

 

rendering software use the representation of triangular faces, because this requires less 
memory, less rendering time, and it adapts to any kind of contour. A surface representation 
in the form of a mesh of triangles consisting of a set of vertices, edges and triangular faces as 
illustrated in Fig. 1. 
 

  
(a) (b) 

Fig. 1. Object surface representation using a mesh of triangles. Note that the two upper faces 
are missing in (b), for this reason the box in (b) seems to be open. 
 
The boundary representation (b-rep) is widely used as a solid modelling technique. 
However, many b-rep systems support only solids the boundaries of which are 2-manifolds. 
The next Section gives a brief explanation of two-dimensional manifolds. 

 
2.2. Two-Manifolds 
A two-dimensional manifold (2-manifold) is a topological space the points of which all have 
a neighborhood homeomorphic to an open disk (Mäntylä, 1988). In a 2-manifold mesh an 
edge is regular if it has exactly two coincident faces, and a vertex is regular if it has the same 
number of edges and faces (Barhak, 2002). If the surface has boundaries, then the mesh also 
has boundary edges and boundary vertices. The boundary edges have only one coincident 
face, and at the boundary vertices the number of coincident faces is one less than the 
number of emanating edges (Barhak, 2002). Thus, in a polygonal mesh, at most two faces 
can share the same edge. If more than two faces share an edge, the resulting mesh is not a 
two-dimensional manifold. 

 
2.3. Voronoi Diagrams and Delaunay Triangulations 
The surface reconstruction problem boils down to creating a mesh establishing its vertices 
and the connections between them forming triangular faces. For this reason, a geometric 
construction defining a triangle as the simplex building block is a suitable tool. Many 
studies (Amenta et al., 2001), (Edelsbrunner et al., 1983) have shown that Delaunay 
triangulations and its dual graph, the Voronoi Diagram, are well suited for surface 
reconstruction. The Delaunay triangulation presents the property of maximizing the 
minimum angle of the triangles in the mesh, thus avoiding skinny triangles. The reasons 
why skinny triangles should be avoided are explained in (de Berg et al., 2008). In this section 
we give a brief introduction to Voronoi diagrams and Delaunay triangulation. More details 

www.intechopen.com



THE SELF-ORGANZING APPROACH FOR SURFACE  
RECONSTRUCTION FROM UNSTRUCTURED POINT CLOUDS 169

 

The rest of this chapter is structured as follows: Section 2 presents the necessary background 
for understanding the surface reconstruction methods presented in Sections 4 and 5. The 
self-organizing approach for surface reconstruction is presented in Section 3, where we 
discuss some of the self-organizing models useful for surface reconstructions. In Section 4 
and 5 we present, respectively, the GSRM and GSOSM methods for surface reconstruction. 
Section 6 concludes this chapter.  
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rather, the only items of information available for the reconstruction are the 3D coordinates 
of the sampled points, the output of the first step of the pipeline is called an unstructured 
point cloud. When additional information about the connectivity among the points is 
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The second step of the pipeline concerns the reconstruction itself, which is, producing a 3D 
model of a target surface. The input for this step is the point cloud produced in the first step. 
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information about the connectivity among the points, which depends on how the object was 
digitalized, is required by the methods presented here. Thus, these methods do not depend 
on how the point cloud was acquired. This step outputs a model of the target object surface 
represented by a polygonal mesh, more specifically a mesh of triangles, because a triangle is 
the simplest polygon, consequently it is easier to draw a triangle on the computer screen 
than any other polygon. Section 2.1 presents the polygonal mesh representation. 
The last step of the pipeline is mesh simplification, that is, producing a simpler mesh (a 
mesh with less detail) from the mesh output in the second step. Some applications require 
meshes representing the shape of an object with less detail instead of quite dense meshes 
which a computer screen is slow to render. For this situation, a mesh simplification step is 
necessary. 
Some desirable features of the reconstruction methods are: (a) To produce meshes of 
different resolutions so that the simplification step is not necessary; (b) To produce meshes 
with regular polygons, which in the case of triangles must be approximately equilateral; (c) 
To produce two-dimensional manifold meshes (2-manifolds); (d) To produce meshes that 
are a Delaunay Tesselation. A brief explanation about two-dimensional manifold and about 
the Delaunay Tesselation are presented in Sections 2.2 and 2.3 respectively. 
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bounded by a closed path, comprising a finite sequence of straight line segments (edges). A 
triangle is the simplest polygon, having only three edges. Most modeling and real-time 

 

rendering software use the representation of triangular faces, because this requires less 
memory, less rendering time, and it adapts to any kind of contour. A surface representation 
in the form of a mesh of triangles consisting of a set of vertices, edges and triangular faces as 
illustrated in Fig. 1. 
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Fig. 1. Object surface representation using a mesh of triangles. Note that the two upper faces 
are missing in (b), for this reason the box in (b) seems to be open. 
 
The boundary representation (b-rep) is widely used as a solid modelling technique. 
However, many b-rep systems support only solids the boundaries of which are 2-manifolds. 
The next Section gives a brief explanation of two-dimensional manifolds. 

 
2.2. Two-Manifolds 
A two-dimensional manifold (2-manifold) is a topological space the points of which all have 
a neighborhood homeomorphic to an open disk (Mäntylä, 1988). In a 2-manifold mesh an 
edge is regular if it has exactly two coincident faces, and a vertex is regular if it has the same 
number of edges and faces (Barhak, 2002). If the surface has boundaries, then the mesh also 
has boundary edges and boundary vertices. The boundary edges have only one coincident 
face, and at the boundary vertices the number of coincident faces is one less than the 
number of emanating edges (Barhak, 2002). Thus, in a polygonal mesh, at most two faces 
can share the same edge. If more than two faces share an edge, the resulting mesh is not a 
two-dimensional manifold. 

 
2.3. Voronoi Diagrams and Delaunay Triangulations 
The surface reconstruction problem boils down to creating a mesh establishing its vertices 
and the connections between them forming triangular faces. For this reason, a geometric 
construction defining a triangle as the simplex building block is a suitable tool. Many 
studies (Amenta et al., 2001), (Edelsbrunner et al., 1983) have shown that Delaunay 
triangulations and its dual graph, the Voronoi Diagram, are well suited for surface 
reconstruction. The Delaunay triangulation presents the property of maximizing the 
minimum angle of the triangles in the mesh, thus avoiding skinny triangles. The reasons 
why skinny triangles should be avoided are explained in (de Berg et al., 2008). In this section 
we give a brief introduction to Voronoi diagrams and Delaunay triangulation. More details 
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about these constructions can be found in (de Berg et al., 2008) and (Aurenhammer & Klein, 
2000). 
Given a space �� and a set � of nodes together with a notion of the influence that a node �� � �  with weight ��� � �� exerts on a point �� � ��, then the Voronoi region of �� 
consists of all points �� for which the influence of �� is the strongest, over all �� � � , � � � 
(Aurenhammer & Klein, 2000). Therefore, the Voronoi region of a node �� in a map � ؿ �ଷ is 
formally defined by (1) and the Voronoi diagram of the map �, denoted by ����, is a cell 
decomposition of �ଷ in convex polyhedrons. Each Voronoi cell around a node �� contains all 
points of �ଷ that are closer to �� than to any other node ��. The complete diagram of the 
nodes and their Voronoi regions is called Voronoi diagram, as instanced in Fig. 2 (a). 
 �ܴ���� � � � �ଷ | ���� � �� � ���� � �� ��� � � , � � � (1) 
 
A Delaunay Tessellation of �, ܶܦ���, is obtained by connecting any two nodes �� and �� of � 
for which a circle ܥ exists that passes through �� and �� and does not contain any other node 
in its interior or boundary. And if there are not four cocircular nodes of �, then ܶܦ��� - the 
dual of the Voronoi diagram ���� - is a triangulation of �, called the Delaunay Triangulation 
(Aurenhammer & Klein, 2000). 
It is known that there is a unique Delaunay triangulation for �, if � is a set of points in a 
general position; that is, no three points are on the same line and no four are on the same 
circle, for a two dimensional set of points. For a set of points on the same line there is no 
Delaunay triangulation (in fact, the notion of triangulation is undefined for this case). For 4 
points on the same circle (e.g., the vertices of a rectangle) the Delaunay triangulation is not 
unique: clearly, the two possible triangulations that split the quadrangle into two triangles 
satisfy the Delaunay condition. For a set of points � in 3d space, a Delaunay triangulation is 
such that every tetrahedron in ܶܦ��� has an empty circum-sphere. A set of points in n-
dimensional Euclidean space is in a general position if no n + 1 points are on the same 
hyperplane and no n + 2 points are on the same hyper-sphere. 
 

 
Fig. 2. Voronoi diagram and Delaunay triangulation. The dotted lines form the Voronoi 
diagram and the solid lines forms a Delaunay triangulation. 

 
3. Using Self-Organizing Maps for Surface Reconstruction. 

 

When self-organizing maps are employed for reconstruction, the mesh vertices correspond 
to the output nodes of the map. The weight vector of the nodes determines the positions of 

 

the vertices in the mesh, whereas the connections between the nodes correspond to the 
edges of the mesh.  
Self-Organizing Maps, a kind of Artificial Neural Network with unsupervised learning, 
consist of an input and an output layer. Each input node is connected to every output node. 
The output nodes may be connected to each other. When self-organizing maps are 
employed for reconstruction, the input message and the nodes in the output layer have a 
weight vector representing a 3D coordinate �ݔ, ,ݕ  The output layer represents the .்�ݖ
polygonal mesh being reconstructed: The mesh vertices correspond to the output nodes of 
the map; the weight vector of the output nodes determines the positions of the vertices in 
the mesh; the connections between the output nodes correspond to the edges of the mesh. 
For this reason, the words node and vertex, connection and edge, are used interchangeably. 
The faces of a polygonal mesh, however, do not have a direct representative in the Self-
Organizing Map. If the connections between the nodes are fixed, as in the Self-Organizing 
Map (SOM) originally proposed in (Kohonen, 1998), then the faces can be established in 
advance. The faces of a triangular mesh can also be represented by the basic building block 
of a SOM variant called Growing Cell Structures (GCS) (Fritzke, 1994). Other SOM variants, 
such as the Topology Representing Network (TRN) (Martinez & Schulten, 1994) and 
Growing Neural Gas (GNG) (Fritzke, 1995), do not have a direct representative for the faces 
of a polygonal mesh. 
In the original SOM (Kohonen, 1998) the connections among nodes are defined by their 
position in the lattice, so that a planar mesh is defined. The learning phase deforms and 
adjusts this initial mesh to couple with the objective surface. So, at the end of this phase, the 
distribution of the weight vectors of the nodes in the lattice comes with the surface folds. To 
obtain this, an important issue is the way in which the samples are presented to the SOM 
network. The learning phase produces a map that represents the probability density 
function (pdf) of the input data. For a 2D surface immersed into 3D space, this is one for all 
points on the surface and zero otherwise. However, this is not sufficient because the 
scanning phase could produce a point cloud where the occurrence of each sample is not 
equal. Some surface parts could be over sampled resulting in a point cloud in which some 
samples are repetitive, or which has a lot of very similar samples. Therefore a pre-
processing step is need. Moreover, to avoid the effects of over-fitting nodes, the samples 
should be presented to the Network in a random sequence. Another relevant issue is the 
size of the lattice which has to be specified in advance. This implicitly specifies the level of 
detail preserved by the reconstructed surface model. To specify a suitable size, one should 
consider the total area of the surface and the size of the triangles in the mesh in order to 
preserve the richness of the details as required. Despite all these achievements, SOM has 
displayed difficulties in reconstructing concave regions. That is, to say, after the learning 
process has taken place, some vertices or triangles may be unstable, and dangle among 
regions densely populated by the data. 
As in SOM the TRN model begin with a pre-defined number of nodes. However, the TRN 
initial map does not define an initial mesh as in SOM. TRN is a combination of Neural Gas 
(NG) (Martinez & Schulten, 1991) and Competitive Hebbian Learning (CHL) (Martinez, 
1993). The former distributes the nodes according to the probability density function of 
input data, while the latter builds a mesh connecting these nodes in a fashion that 
reproduces the topology of the objective surface. As the connections between nodes are 
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the vertices in the mesh, whereas the connections between the nodes correspond to the 
edges of the mesh.  
Self-Organizing Maps, a kind of Artificial Neural Network with unsupervised learning, 
consist of an input and an output layer. Each input node is connected to every output node. 
The output nodes may be connected to each other. When self-organizing maps are 
employed for reconstruction, the input message and the nodes in the output layer have a 
weight vector representing a 3D coordinate �ݔ, ,ݕ  The output layer represents the .்�ݖ
polygonal mesh being reconstructed: The mesh vertices correspond to the output nodes of 
the map; the weight vector of the output nodes determines the positions of the vertices in 
the mesh; the connections between the output nodes correspond to the edges of the mesh. 
For this reason, the words node and vertex, connection and edge, are used interchangeably. 
The faces of a polygonal mesh, however, do not have a direct representative in the Self-
Organizing Map. If the connections between the nodes are fixed, as in the Self-Organizing 
Map (SOM) originally proposed in (Kohonen, 1998), then the faces can be established in 
advance. The faces of a triangular mesh can also be represented by the basic building block 
of a SOM variant called Growing Cell Structures (GCS) (Fritzke, 1994). Other SOM variants, 
such as the Topology Representing Network (TRN) (Martinez & Schulten, 1994) and 
Growing Neural Gas (GNG) (Fritzke, 1995), do not have a direct representative for the faces 
of a polygonal mesh. 
In the original SOM (Kohonen, 1998) the connections among nodes are defined by their 
position in the lattice, so that a planar mesh is defined. The learning phase deforms and 
adjusts this initial mesh to couple with the objective surface. So, at the end of this phase, the 
distribution of the weight vectors of the nodes in the lattice comes with the surface folds. To 
obtain this, an important issue is the way in which the samples are presented to the SOM 
network. The learning phase produces a map that represents the probability density 
function (pdf) of the input data. For a 2D surface immersed into 3D space, this is one for all 
points on the surface and zero otherwise. However, this is not sufficient because the 
scanning phase could produce a point cloud where the occurrence of each sample is not 
equal. Some surface parts could be over sampled resulting in a point cloud in which some 
samples are repetitive, or which has a lot of very similar samples. Therefore a pre-
processing step is need. Moreover, to avoid the effects of over-fitting nodes, the samples 
should be presented to the Network in a random sequence. Another relevant issue is the 
size of the lattice which has to be specified in advance. This implicitly specifies the level of 
detail preserved by the reconstructed surface model. To specify a suitable size, one should 
consider the total area of the surface and the size of the triangles in the mesh in order to 
preserve the richness of the details as required. Despite all these achievements, SOM has 
displayed difficulties in reconstructing concave regions. That is, to say, after the learning 
process has taken place, some vertices or triangles may be unstable, and dangle among 
regions densely populated by the data. 
As in SOM the TRN model begin with a pre-defined number of nodes. However, the TRN 
initial map does not define an initial mesh as in SOM. TRN is a combination of Neural Gas 
(NG) (Martinez & Schulten, 1991) and Competitive Hebbian Learning (CHL) (Martinez, 
1993). The former distributes the nodes according to the probability density function of 
input data, while the latter builds a mesh connecting these nodes in a fashion that 
reproduces the topology of the objective surface. As the connections between nodes are 
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defined later, after the nodes have been placed next to their final position, the learning 
process is improved. 
A solution for the limitation represented by size of the of network, which in SOM and TRN 
needs to be specified in advance, is found in Growing models such as (GCS) and (GNG). 
These models build maps that grow incrementally as the samples are presented. The GCS 
generates maps consisting only of a basic building blocks type, triangles for surface 
reconstruction. As opposed to GCS, a map generated by GNG may have nodes with 
different connectivity and the topology may have different dimensionalities in different 
parts of the map. Like the TRN, the GNG is able to learn the topology of input data through 
Competitive Hebbian Learning. Hence, GNG can be seen as a GCS variant without its 
topological restrictions or as a growing version of TRN. 
The Neural Mesh (NM) (Ivrissimtzis et al., 2004a) is a growing model that starts from an 
initial mesh forming a tetrahedron and grows or diminishes by splitting the more active 
vertex or removing the least active vertex. This is a probabilistic algorithm in which the 
output is dependent on the presentation sequence of the samples. Thus, an ensemble 
combining several reconstructions into a single one, may be necessary in order to reach a 
quality reconstruction. The most undesirable NM limitation is the absence of any guarantee 
that a sufficiently good point cloud will result in a correct and faithful reconstruction 
(Ivrissimtzis et al., 2004b). In particular, the algorithm has difficulties in distinguishing 
between two close sheets. 
Growing Self-Reconstruction Meshes (GSRM) (do Rêgo et al., 2007, 2009) extend Growing 
Neural Gas (Fritzke, 1995) by including the concept of triangular faces in the learning 
algorithm and additional conditions in order to include and remove connections, so that it 
can produce a triangular 2-manifold mesh representation of a target object given an 
unstructured point cloud of its surface. The main modifications concern Competitive 
Hebbian Learning, the vertex insertion operation and the edge removal mechanism. GSRM 
is able to reproduce the shape of the original object by learning the geometry and topology 
of the surface represented in the point cloud. Also, GSRM generates meshes with different 
resolutions during the learning process. 
The Growing Self-Organizing Surface Map (GSOSM) (DalleMole & Araújo, 2008a, 2008b, 
2009) aims to produce a mesh of equilateral triangles faithful to the object surface. The mesh 
is constructed in a growing fashion by a learning process starting from a cloud of points 
sampled on the object surface. The learning process inserts nodes and connections to 
represent the vertices and the edges of triangles of the mesh aimed at. The insertion of nodes 
considers an empty receptive field whereas the triangles edges are learned using a new 
learning rule called Competitive Connection Hebbian Learning (CCHL). This rule considers 
the three nodes closest to each input sample as candidate to form a triangle. Thus, for each 
input sample, CCHL inserts only one new edge. The approximate equilaterally of triangles 
is obtained as a consequence of the adaptation steps of the learning process. The final mesh 
is generally a two-manifold mesh without holes. 
The last two models are novel and attempt to overcome several of the limitations of their 
predecessors, for example, dependence on cycle counters and error accumulators (GSOSM); 
topology learning and multi-resolution meshes (GSRM). These models are presented in 
detail below. 
 
 

 

4. Growing Self-Organizing Meshes (GSRM) 
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where, ���  is the weight vector of node ��. 

6. Adapt the weight vector of the winner node �� and its neighbors. 
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7. Update the age of all edges � emanating from ��. 
 ���� � ���� � � (5) 
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defined later, after the nodes have been placed next to their final position, the learning 
process is improved. 
A solution for the limitation represented by size of the of network, which in SOM and TRN 
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Neural Gas (Fritzke, 1995) by including the concept of triangular faces in the learning 
algorithm and additional conditions in order to include and remove connections, so that it 
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is obtained as a consequence of the adaptation steps of the learning process. The final mesh 
is generally a two-manifold mesh without holes. 
The last two models are novel and attempt to overcome several of the limitations of their 
predecessors, for example, dependence on cycle counters and error accumulators (GSOSM); 
topology learning and multi-resolution meshes (GSRM). These models are presented in 
detail below. 
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post-processing step necessary to complete the triangulation of the mesh output by GSRM. 
Some experimental results of the GSRM reconstruction are presented in Section 4.8. 
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1. Initialize the map � with three nodes with weight vectors randomly chosen from 
a point cloud �. 

2. Present a sample �, randomly chosen from �. 
3. Find the two nodes (�� and ��) of the map that are nearest to � according to the 

Euclidean distance. 
4. Create connections and faces according to the ECHL (Section 4.3). Sometimes 

connections are reinforced instead of created. In this case, other edges are 
checked against a condition for edge removal based on the Thales Sphere concept 
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where, ���  is the weight vector of node ��. 
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7. Update the age of all edges � emanating from ��. 
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8. Remove the faces coincident to an old edge � (���� � ������� and remove this 
edge (Section 4.4). 

9. If the number of samples presented so far is greater than � , insert a new node in 
the map (Section 4.5). 

10. Decrease the error variables of all nodes: 
 ��� � ���� , �s � A  (6) 
 

11.  If the map has achieved the desired resolution, complete the topological learning 
(Section 4.6). 

 
4.2. Parameters 
The GSRM learning algorithm relies on six parameters: �� and �� – learning rate of the 
winner node and its neighbors, respectively (�� � ��); � – the frequency at which a new 
node is inserted; � – the error reduction rate of the nodes that are neighbors of a node that 
has just been inserted; � – the error reduction rate that aims at stressing the impact of 
recently accumulated errors (� �  �); ������ – the maximum age at which an edge can be 
removed. 

 
4.3. Creation of Edges and Faces 
The mechanism that GSRM uses for the creation of edges and faces is an extension of 
standard Competitive Hebbian Learning (CHL) that we call Extended Competitive Hebbian 
Learning (ECHL). The goal is to extend the CHL so that instead of defining only edges, it 
can also define the faces of a triangular mesh representation. Moreover, ECHL avoids the 
creation of overlapping edges and non-manifold meshes. The ECHL algorithm is described 
below: 

1. Present a randomly chosen sample �.  
2. Select the nodes of the map �� and �� that are nearest to � according to the 

Euclidian distance. See Fig. 3 (a) for an example. 
3. If s� and �� are not connected by an edge, create such an edge, since �� and �� do 

not have more than two neighbors in common. This condition avoids more than 
two faces incident on the same edge, so that the mesh remains a 2-manifold Fig. 
3 (b) illustrates what would happen without this condition). 

3.1. If �� and �� have two common neighbors (�� and ��) connected by an edge, 
this edge is removed together with its coincident faces. This step avoids 
overlapping edges. In the example of Fig. 3 (b) the edge between �� and �� 
would be removed, so the it does not overlap that new edge ���,�� . 

3.2. Create new face(s) comprising ��, �� and each of their common neighbors, if 
any. See Fig. 3 (c) for an example. 

4. Otherwise 
4.1. Reinforce the existing edge ���,��  by setting its age to zero. This reduces the 

possibility of the edge connecting s1 and s2 being removed. 
4.2. Check if some edge emanating from �� against the edge removal condition 

based on the Thales sphere concept (Section 4.4). 
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Fig. 3. Extended Competitive Hebbian Learning: a) The nearest nodes �� and �� for the 
sample � and its common neighbors �� and ��; b) The manifoldness of the mesh is broken, if 
the connection between the nodes �� and �� is created; c) The sample � induces the 
establishment of a connection between the nodes �� and �� crossing the connection between 
the nodes �� and �� which is removed.  

 
4.4. Removal of Edges and Faces  
GSRM uses two schemes to decide whether an edge is obsolete and should be removed. The 
first is the edge ageing scheme used in the standard GNG.  The second is based on the 
Thales sphere concept, and it is also used in GSOSM. The edge ageing scheme removes an 
edge when its age becomes greater than a given threshold (������). The age of an edge is 
zero when it is created, and increases as described in step 7 of the algorithm presented in 
Section 4.1. The age of an edge can be reset, as described in step 4.1. of the algorithm 
presented in Section 4.3. 
As the position of the nodes change during the learning process, two connected nodes may 
become distant from each other, implying that the mesh has long edges. These long edges 
should be removed; otherwise, the algorithm fails to meet the goal of having triangular faces 
which are approximately equilateral. To remove these long edges an edge removal scheme 
based on the ideas of (Jockusch & Ritter, 1993) is applied. According to this scheme, 
whenever a connection to be generated by a sample presentation already exists, the edges 
connecting the winner node �� to each of their neighbors �� are considered candidates for 
removal. A connection between �� and �� is removed when the second winner node �� is 
inside the Thales sphere with a diameter of ���� � ����, where ���  and ���  are respectively 
the weight vectors of the nodes �� and ��. To verify this condition the angle between the 
vectors � � ��� � ���  and � � ��� � ��� is determined. If this angle is greater than  ��� , 
then the condition is satisfied and the edge between �� and �� is removed (Fig. 11 (a) 
illustrates this situation). Otherwise, the condition is false. 
If an edge must be removed, either because of its age or because of the Thales sphere based 
condition, the removal of this edge is performed after the removal of every incident face. 
After the removal of the edge, the vertices of the newly removed edge may not have an edge 
emanating from it, and must be removed as well. 

 
4.5. Node Insertion 
A new node is always inserted in the map after a number � of adaptation steps. The new 
node �� is inserted between the node �� with the highest error counter and its neighbor �� 
with highest error counter, this means that the weight vector of �� is initialized as: ��� �
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8. Remove the faces coincident to an old edge � (���� � ������� and remove this 
edge (Section 4.4). 

9. If the number of samples presented so far is greater than � , insert a new node in 
the map (Section 4.5). 

10. Decrease the error variables of all nodes: 
 ��� � ���� , �s � A  (6) 
 

11.  If the map has achieved the desired resolution, complete the topological learning 
(Section 4.6). 
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creation of overlapping edges and non-manifold meshes. The ECHL algorithm is described 
below: 
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2. Select the nodes of the map �� and �� that are nearest to � according to the 

Euclidian distance. See Fig. 3 (a) for an example. 
3. If s� and �� are not connected by an edge, create such an edge, since �� and �� do 

not have more than two neighbors in common. This condition avoids more than 
two faces incident on the same edge, so that the mesh remains a 2-manifold Fig. 
3 (b) illustrates what would happen without this condition). 

3.1. If �� and �� have two common neighbors (�� and ��) connected by an edge, 
this edge is removed together with its coincident faces. This step avoids 
overlapping edges. In the example of Fig. 3 (b) the edge between �� and �� 
would be removed, so the it does not overlap that new edge ���,�� . 

3.2. Create new face(s) comprising ��, �� and each of their common neighbors, if 
any. See Fig. 3 (c) for an example. 

4. Otherwise 
4.1. Reinforce the existing edge ���,��  by setting its age to zero. This reduces the 

possibility of the edge connecting s1 and s2 being removed. 
4.2. Check if some edge emanating from �� against the edge removal condition 

based on the Thales sphere concept (Section 4.4). 
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establishment of a connection between the nodes �� and �� crossing the connection between 
the nodes �� and �� which is removed.  

 
4.4. Removal of Edges and Faces  
GSRM uses two schemes to decide whether an edge is obsolete and should be removed. The 
first is the edge ageing scheme used in the standard GNG.  The second is based on the 
Thales sphere concept, and it is also used in GSOSM. The edge ageing scheme removes an 
edge when its age becomes greater than a given threshold (������). The age of an edge is 
zero when it is created, and increases as described in step 7 of the algorithm presented in 
Section 4.1. The age of an edge can be reset, as described in step 4.1. of the algorithm 
presented in Section 4.3. 
As the position of the nodes change during the learning process, two connected nodes may 
become distant from each other, implying that the mesh has long edges. These long edges 
should be removed; otherwise, the algorithm fails to meet the goal of having triangular faces 
which are approximately equilateral. To remove these long edges an edge removal scheme 
based on the ideas of (Jockusch & Ritter, 1993) is applied. According to this scheme, 
whenever a connection to be generated by a sample presentation already exists, the edges 
connecting the winner node �� to each of their neighbors �� are considered candidates for 
removal. A connection between �� and �� is removed when the second winner node �� is 
inside the Thales sphere with a diameter of ���� � ����, where ���  and ���  are respectively 
the weight vectors of the nodes �� and ��. To verify this condition the angle between the 
vectors � � ��� � ���  and � � ��� � ��� is determined. If this angle is greater than  ��� , 
then the condition is satisfied and the edge between �� and �� is removed (Fig. 11 (a) 
illustrates this situation). Otherwise, the condition is false. 
If an edge must be removed, either because of its age or because of the Thales sphere based 
condition, the removal of this edge is performed after the removal of every incident face. 
After the removal of the edge, the vertices of the newly removed edge may not have an edge 
emanating from it, and must be removed as well. 

 
4.5. Node Insertion 
A new node is always inserted in the map after a number � of adaptation steps. The new 
node �� is inserted between the node �� with the highest error counter and its neighbor �� 
with highest error counter, this means that the weight vector of �� is initialized as: ��� �
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0.5���೜ � ��೑�. The edge connecting �� to �� is removed together with its coincident faces. 
New edges connecting �� to �� and �� to �� are created. Fig. 4 illustrates this process: (a) it 
presents a mesh before insertion of the node, and (b) it presents the same mesh after the 
node has been inserted. The error counters of nodes �� and �� are decreased according to 
parameter � (��� � �����. Finally, the error counter of the new node is interpolated from 
the error counter of �� and �� (��ೝ � 0.5���೜ � ��೑�). 
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(a) (b) 

Fig. 4. Example of a mesh before (a) and after (b) a new node insertion. 

 
4.6. Topology Learning 
The GSRM learning algorithm behaves non-deterministically. Some edges needed for the 
reconstructed mesh may not have been created when the learning process finishes, because 
no sample that would trigger these edges was presented at the appropriate moment of the 
learning process. Also, some long edges may not have been removed since the Thales sphere 
based condition to verify if an edge is long enough and must be removed is not checked at 
each iteration, but only periodically. Thus, to complete the topological learning, a 
deterministic topological learning step is performed after the main learning processing is 
finished. At this moment, the vertices no longer change their position (weight vectors). First, 
every edge is checked against the Thales sphere based condition to verify if any edge is too 
long and must therefore be removed. Secondly, every sample is presented so that, all the 
necessary edges, that is, connections between nodes, are created. Note that since the vertices 
are no longer changing their positions, no edge becomes unseful during this final 
topological learning step. 

 
4.7. Post Processing Step 
After the topology learning step, some approximately regular polygons remain 
untriangulated because the two winner nodes for any sample internal to these polygons are 
already connected (see Fig. 8). In our experiments, the vast majority of the untriangulated 
polygons had four or five vertices, a few of them had six vertices, and none of them had 
more than six vertices. The post processing step aims at triangulating these polygons. 
As to the quadrilaterals, triangulation is performed by creating one of their edges and 
replacing the quadrilateral with two triangles. See Fig. 5 for an example. The diagonal 
chosen is the one that makes the sum of the opposite angles in the adjacent triangles less 
than �. This choice leads to edges that satisfy the local Delaunay condition for piecewise flat 

 

surfaces (Bobenko & Springborn, 2007), (Fisher et al., 2007). The triangulation of polygons 
with more than four vertices is performed by inserting a new vertex at the geometric center 
of the polygon and connecting this new vertex to each of the vertices of the polygons. See 
Fig. 6 for an example. 
 

  
(a) (b) 

Fig. 5. Quadrilateral before (a) and after (b) triangulation. 
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Fig. 6. Pentagon before (a) and after (b) triangulation. 

 
4.8. Experimental Results 
This Section presents some reconstructions produced by GSRM. Fig. 7 shows pictures of 
three synthetic objects: Bunny and Dragon available at the Stanford Repository 
(graphics.stanford.edu/data/3Dscanrep), and Hand, donated by Ioannis Ivrissimtzis 
(Ivrissimtzis et al., 2004). All the reconstructions presented in this Section have about 20,000 
vertices. Note that the shape of the objects is represented in the GSRM reconstructions as are 
their concave regions and holes (Fig. 7 (b)). 
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0.5���೜ � ��೑�. The edge connecting �� to �� is removed together with its coincident faces. 
New edges connecting �� to �� and �� to �� are created. Fig. 4 illustrates this process: (a) it 
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parameter � (��� � �����. Finally, the error counter of the new node is interpolated from 
the error counter of �� and �� (��ೝ � 0.5���೜ � ��೑�). 
 

fS
qS

 

fS
qS

rS

 
(a) (b) 

Fig. 4. Example of a mesh before (a) and after (b) a new node insertion. 

 
4.6. Topology Learning 
The GSRM learning algorithm behaves non-deterministically. Some edges needed for the 
reconstructed mesh may not have been created when the learning process finishes, because 
no sample that would trigger these edges was presented at the appropriate moment of the 
learning process. Also, some long edges may not have been removed since the Thales sphere 
based condition to verify if an edge is long enough and must be removed is not checked at 
each iteration, but only periodically. Thus, to complete the topological learning, a 
deterministic topological learning step is performed after the main learning processing is 
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long and must therefore be removed. Secondly, every sample is presented so that, all the 
necessary edges, that is, connections between nodes, are created. Note that since the vertices 
are no longer changing their positions, no edge becomes unseful during this final 
topological learning step. 
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After the topology learning step, some approximately regular polygons remain 
untriangulated because the two winner nodes for any sample internal to these polygons are 
already connected (see Fig. 8). In our experiments, the vast majority of the untriangulated 
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As to the quadrilaterals, triangulation is performed by creating one of their edges and 
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chosen is the one that makes the sum of the opposite angles in the adjacent triangles less 
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surfaces (Bobenko & Springborn, 2007), (Fisher et al., 2007). The triangulation of polygons 
with more than four vertices is performed by inserting a new vertex at the geometric center 
of the polygon and connecting this new vertex to each of the vertices of the polygons. See 
Fig. 6 for an example. 
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Fig. 5. Quadrilateral before (a) and after (b) triangulation. 
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Fig. 6. Pentagon before (a) and after (b) triangulation. 

 
4.8. Experimental Results 
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(a) (b) (c) (d) 

Fig. 7. Example of two reconstructions produced with GSRM: a) and b) are respectively a 
lateral view and a view of the underside of reconstructed version of the Bunny model; c) 
and d) lateral views of reconstructed versions of the Hand and the Dragon models. 

The numerical results concern: distance from the target object, valence distribution, polygon 
conformity and the number of Delaunay edges. The Hausdorff distance between the target 
and the reconstructed objects was calculated with the Metro tool (Cignoni et al., 1998). 
Valence distribution refers to the number of neighbors of the mesh vertices. Valences must 
be distributed as evenly as possible, i.e., ideally all vertices should have the same valence. 
Polygon conformity R(P) is measured as the ratio between the smallest and the largest 
distance of its vertices (s) to the polygon baricenter (bp). The Delaunay condition of 
piecewise flat surfaces presented in (Bobenko & Springborn, 2007) has been applied to verify 
the number of valid Delunay edges of the GSRM reconstructions. Table 1 shows the 
following measurements: the Hausdorff Distance, the average polygon conformity and the 
percentage of Delaunay edges of the meshes reconstructed with GSRM. The average 
percentage of the valences presented by the vertices of the meshes reconstructed with GSRM 
is shown in Table 2. 
 

Model Hausdorff Distance Polygon Conformity (avg) Delaunay Edges (%) 
Bunny 0.001510 0.688785 99.86 
Dragon 0.023644 0.684732 99.81 
Hand 0.001364 0.689153 99.83 
Table 1. The Hausdorff distance, the average polygon conformity and the percentage of 
Delaunay edges of GRSM reconstructions. 
 

Model Valence Distribution (%) 
4 5 6 7 8 others 

Bunny 4.32 25.76 42.49 21.87 4.76 0.8 
Dragon 5.55 25.66 41.10 22.15 5.38 1.15 
Hand 4.27 25.7 42.45 25.03 4.88 0.66 
Table 2. Valence distribution of the vertices of GSRM reconstructions. 

 
 
 

 

5. Growing Self-Organizing Surface Map (GSOSM). 
 

This model overcomes several restrictions of its predecessors, the mapping process is 
incremental and there are no dependences on error accumulators or cycle counters. 
Moreover, the model is able to handle correlated samples and disjoint close surface parts 
and to recover a surface representation from multiple subsets of an entire point cloud 
blending the surface parts automatically, in response to the presentation of data. However, 
GSOSM is not suitable for producing surface representation with different levels of detail. 
The GSOSM learns the surface starting from an empty map and inserts nodes and 
connections between them, thus producing a mesh of equilateral triangles. This mesh is the 
surface representation and, therefore, the preservation of richness of detail is dependent 
only on the length of the edges of the triangles. 

 
5.1. The GSOSM Algorithm 
The GSOSM algorithm comprises nine steps:  

1. Parameter setup;  
2. Presentation of a new sample;  
3. Determination of the three closest nodes to the current sample;  
4. Insertion of a new node;  
5. Weight vector update;  
6. Node collapse;  
7. Determination of the connection that captures the current sample;  
8. Insertion or substitution of connection;  
9. Removal or swap of connections. 

 
5.2. Parameters 
The GSOSM has four parameters: ���� - defines the size of edges of triangles; � - the 
learning rate; ���� - specifies the largest value allowed for an internal angle of a triangle; 
and  ���� – represents a constraint to connection insertion and is employed to distinguish 
between parallel close sheets of surface. 

 
5.3. The Nodes Insertion Operator 
A GSOSM reconstruction starts with an empty map � and the first node is inserted with the 
first input signal. A spherical receptive field with a radius of  ���� is considered for each 
node and a new node is inserted only if the input signal � is out of any receptive field. When 
a new node  ���� is inserted its weight vector  �����  is equal to the current sample �, and the 
node does not have any initial connection. 

 
5.4. The Adaptation Operator 
The objective of the adaptation is to adjust the map to the surface and consists of two 
distinct sub-operations. The first is the original SOM adaptation step (7) and moves the 
winner node towards the input signal � according to the learning rate α. This step is applied 
only if the three nodes closest to the input signal are not connected and do not form a 
triangle. The second sub-operation (8) rotates the triangle about the axis defined by the 
second and third closest nodes, towards the input signal. 
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Fig. 7. Example of two reconstructions produced with GSRM: a) and b) are respectively a 
lateral view and a view of the underside of reconstructed version of the Bunny model; c) 
and d) lateral views of reconstructed versions of the Hand and the Dragon models. 
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Delaunay edges of GRSM reconstructions. 
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A GSOSM reconstruction starts with an empty map � and the first node is inserted with the 
first input signal. A spherical receptive field with a radius of  ���� is considered for each 
node and a new node is inserted only if the input signal � is out of any receptive field. When 
a new node  ���� is inserted its weight vector  �����  is equal to the current sample �, and the 
node does not have any initial connection. 

 
5.4. The Adaptation Operator 
The objective of the adaptation is to adjust the map to the surface and consists of two 
distinct sub-operations. The first is the original SOM adaptation step (7) and moves the 
winner node towards the input signal � according to the learning rate α. This step is applied 
only if the three nodes closest to the input signal are not connected and do not form a 
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where: ۾� is the normal vector of plane � formed by the three closest nodes for �, and ���, �� 
is the distance of � to the plane �. 
The original SOM adaptation operator applied to correlated and repetitive samples pulls the 
winner node towards the second closest node undoing the equilateral triangles. However, 
this does not occur when the schema above is employed. Therefore, the GSOSM is able to 
handle repetitive samples. 

 
5.5. The Merging Operator 
The operator of insertion of new nodes ensures a minimal distance, greater than ����, 
between any two nodes. However, all nodes are subject to being repositioned by the 
adaptation operator. As a consequence, a repositioned node can invade the receptive field of 
another node. Thus, the GSOSM applies the merging operator and transforms these nodes 
into one that is positioned midway between them. 

 
5.6. The CCHL Learning Rule 
The GSOSM introduces a very nice learning rule named Competitive Connection Hebbian 
Learning (CCHL). This new learning rule was proposed to substitute the CHL (Martinez & 
Schulten, 1991) as the rule to learn the node-neighborhood relationships among nodes. The 
new rule overcomes the failure of CHL to complete a triangulation inside polyhedrons such 
as a quadrilateral as illustrated in the Fig. 8. 
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Fig. 8. A case where CHL Learning rule fail to complete the triangulation. 
 
The CHL rule performs a competition among all nodes and the two nodes closest to the 
current sample are selected to be connected. Now consider four interconnected nodes 
forming a quadrilateral without any diagonal and an input signal � within it (Fig. 8). In this 
configuration, the most activated nodes are �� and ��. Therefore, CHL would insert a 
connection between them. However, this is an existing link and to complete the local 
triangulation a new connection should be inserted between �� and ��, to form two triangles. 
The pentagon and hexagon are similar cases. 

 

The basis of the CCHL learning rule is Voronoi diagrams, that is a cell decomposition of the 
space into convex polyhedrons. Similar to the Voronoi cell of a node (Fig. 9 (a)), each 
Voronoi cell around a connection �����  contains all points that are closer to �����  than to any 
other ����� . A sample of a diagram of connection Voronoi cells ����� in the �� space is 
shown in Fig. 9 (b). If all triangles are equilateral, then ����� is equal to the second order 
Voronoi diagram. 
 

  
(a) (b) 

Fig. 9. �� Voronoi Diagrams: a) Node receptive field Voronoi cells; b) Connection Voronoi 
cells. 
 
In CCHL, the competition for the connection insertion has two distinct phases. The first one 
determines the three nodes closest to the current sample. The second phase considers the 
three nodes as vertices of an imaginary triangle and the closest edge to � is the connection 
that should be inserted, if it does not already exist. So, the CCHL can be stated as: given an 
input signal � and its three closest nodes � ��,  ��,  ���, the pair to be connected is that forming 
the edge closest to �. 
Return to Fig. 8, notice the stippled lines denoting the Connection Voronoi Cells and the 
winner connection linking the nodes �� and ��. This connection split the lozenge into two 
triangles, thus completing the local triangulation. Nonetheless, CHL would recommend 
inserting the connection between nodes ��and ��, thus not completing the triangulation. 

 
5.7. The Connection Insertion Operator 
In the GSOSM, the mesh that represents the surface is implicitly defined by the nodes and 
its connections. The CCHL rule is used to decide the connection ������� , ���  that should be 
inserted. However, the GSOSM imposes three other conditions that need to be satisfied 
before creating a connection. 
1) The coefficient of correlation � (9) between the activation of �� and �� needs to satisfy (10). 
This condition is used to verify the continuity of the input space between the nodes �� and ��.  
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Fig. 8. A case where CHL Learning rule fail to complete the triangulation. 
 
The CHL rule performs a competition among all nodes and the two nodes closest to the 
current sample are selected to be connected. Now consider four interconnected nodes 
forming a quadrilateral without any diagonal and an input signal � within it (Fig. 8). In this 
configuration, the most activated nodes are �� and ��. Therefore, CHL would insert a 
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determines the three nodes closest to the current sample. The second phase considers the 
three nodes as vertices of an imaginary triangle and the closest edge to � is the connection 
that should be inserted, if it does not already exist. So, the CCHL can be stated as: given an 
input signal � and its three closest nodes � ��,  ��,  ���, the pair to be connected is that forming 
the edge closest to �. 
Return to Fig. 8, notice the stippled lines denoting the Connection Voronoi Cells and the 
winner connection linking the nodes �� and ��. This connection split the lozenge into two 
triangles, thus completing the local triangulation. Nonetheless, CHL would recommend 
inserting the connection between nodes ��and ��, thus not completing the triangulation. 

 
5.7. The Connection Insertion Operator 
In the GSOSM, the mesh that represents the surface is implicitly defined by the nodes and 
its connections. The CCHL rule is used to decide the connection ������� , ���  that should be 
inserted. However, the GSOSM imposes three other conditions that need to be satisfied 
before creating a connection. 
1) The coefficient of correlation � (9) between the activation of �� and �� needs to satisfy (10). 
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As the projection of ξ approximates to the connection midpoint (Fig. 10) the probability of 
inserting a connection crossing an empty area between two close sheets vanishes. 
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Fig. 10. Visualization of coefficient � as a projection of the input signal over the winner 
connection. 
 
2) The coefficient of similarity � (11) between �� and ��  with respect to node ��  is greater 
than or equal to ����. Geometrically, � represents the cosine of the angle between vectors � � ��� �  ���   and  � � ��� � ��� , with �� and �� being the nodes in the extremities of the 
winner connection and �� the other closest node. This condition assures the formation of 
triangles that are approximately equilateral. 
 � � ��� � ������� � ���� · ��� � ������� � ���� (11) 

3) The winner connection ������� , ��� does not cross the Voronoi region of any other 
connection, thus avoiding the creation of overlapping triangle faces. The crossings can be 
found using the CCHL to verify if the sample midpoint of ���� is within a Voronoi region of 
another connection �����  , � � �, �. If an overlap is detected the value of the coefficient � of 
each overlapping connection is used to decide which should be removed. The coefficient � 
(12) is a measure of the adherence of the connection to the objective surface and is obtained 
as follows: 
 

� � �� � |� � 0.5| � �������,������ � �������
 (12) 

with � ������,�� � ����� � � ���� � ����� � ��  

 
where: ���  and ���  are the weight vectors of the nodes at the extremities of the 
connection ����� . 

 

5.8. The Connection Removal Operator 
The connection removal operator in GSOSM consists of two steps. The first removes or 
swaps connections that could produce triangles with an internal � angle the cosine (13) of 
which is lower than the parameter ���� as shown in Fig. 11 (a). 
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(a) (b) 
Fig. 11. The process of detection and removal or swap of connections: a) long connections; b) 
crossing connections forming overlapping triangles. 
 
The second step is used to eliminate overlapping triangle faces. The removal of cross 
connections is carried out using the CCHL to verify if the midpoint of ���� is within another 
connection Voronoi region, as discussed earlier. If an intersection is detected (Fig. 11(b)), the 
operator removes the connection with the smallest � value (12). 

 
5.9. Experimental Results 
In this Section, numerical and visual results of GSOSM reconstructions are reported. The 
models used come from the Stanford 3D Scanning Repository (graphics.stanford.edu/data 
/3Dscanrep) and the AIM@Shape Repository (www.aimatshape.net). The general quality of 
GSOSM reconstructions can be visually accessed in Fig. 12 which shows views of four 
reconstructed object models. Notice that GSOSM preserves the details of the original surface 
in the reconstructed version (Fig. 12 (a) and (d)) and the suavity of the curves of the surface 
(Fig. 12 (b)). Moreover, the ability of GSOSM in reproducing close sheets correctly is showed 
in the Fig. 12 (c). The equilaterality quality of the triangles in a mesh produced by GSOSM 
can be inspected visually at Fig. 13.  
Table 3 shows measurements on the quality of the meshes produced by GSOSM. The 
columns under the caption “Valence” show that the meshes produced are very regular with 
each vertex being a centre of a hexagon. The next column shows that GSOSM is able to 
produce a mesh in which most of its edges are valid Delaunay edges. The last columns, 
under the caption “Equilaterality” show the measured quality of the triangles in terms of 
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The second step is used to eliminate overlapping triangle faces. The removal of cross 
connections is carried out using the CCHL to verify if the midpoint of ���� is within another 
connection Voronoi region, as discussed earlier. If an intersection is detected (Fig. 11(b)), the 
operator removes the connection with the smallest � value (12). 
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In this Section, numerical and visual results of GSOSM reconstructions are reported. The 
models used come from the Stanford 3D Scanning Repository (graphics.stanford.edu/data 
/3Dscanrep) and the AIM@Shape Repository (www.aimatshape.net). The general quality of 
GSOSM reconstructions can be visually accessed in Fig. 12 which shows views of four 
reconstructed object models. Notice that GSOSM preserves the details of the original surface 
in the reconstructed version (Fig. 12 (a) and (d)) and the suavity of the curves of the surface 
(Fig. 12 (b)). Moreover, the ability of GSOSM in reproducing close sheets correctly is showed 
in the Fig. 12 (c). The equilaterality quality of the triangles in a mesh produced by GSOSM 
can be inspected visually at Fig. 13.  
Table 3 shows measurements on the quality of the meshes produced by GSOSM. The 
columns under the caption “Valence” show that the meshes produced are very regular with 
each vertex being a centre of a hexagon. The next column shows that GSOSM is able to 
produce a mesh in which most of its edges are valid Delaunay edges. The last columns, 
under the caption “Equilaterality” show the measured quality of the triangles in terms of 
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their equilaterality. These values were calculated using the equilaterality quality measure 
defined by Rypl (2005), that is. � � � ��� � �� � �� (14) 

 
where, A represents the area of the triangle, a, b and c are the lengths of its edges and � � �√3 is a normalizing coefficient which justifies the quality of an equilateral triangle to 
one. 
 

  
(a) (b) (c) (d) 

Fig. 12. Views of GSOSM object surface reconstructions: a) the Happy Buddha; b) the Bust; 
c) the Gips Hand; d) the Raptor; 
 

  
(a) (b) 

Fig. 13. Visual inspection of the equilaterality quality of the triangles: a) a sphere; b) a non 2-
manifold surface. 

 

Notice that the column “min” indicates the existence of some skinny triangles, this is 
because of the coefficient � which forces the permanence of long connections if and when 
they are fitted to the objective surface fold. However, the following three columns show that 
high quality triangles are the great majority and that the skinny triangles are exceptions. 
 

Object 

Triangles 
Valence % invalid 

Delaunay 
Edges 

Equilaterality (q) 

avg. std. dev. min. max. avg. std. dev. 

Bunny 5.990 0.724 1.53 0.216 1.000 0.936 0.058 
Asian Dragon 5.999 0.718 1.51 0.210 1.000 0.933 0.067 
Dragon 5.999 0.766 2.50 0.181 1.000 0.931 0.073 
Happy Buddha 5.999 0.759 2.30 0.208 1.000 0.933 0.071 
Armadillo 5.999 0.772 2.66 0.232 1.000 0.930 0.074 
Lucy 5.999 0.667 1.21 0.178 1.000 0.945 0.061 
Thai Statue 5.998 0.712 1.62 0.160 1.000 0.940 0.065 
Filigree 6.002 0.688 1.80 0.187 1.000 0.938 0.064 
Bust 5.999 0.788 2.73 0.236 1.000 0.927 0.078 
Hand 5.996 0.805 2,59 0.204 1.000 0.928 0.078 
Gips Hand 5.995 0.770 2.34 0.219 1.000 0.933 0.070 

Table 3. Statistics on triangles from GSOSM reconstructions. 
 
The results reported in Table 4, were computed using the Metro tool (Cignoni et al., 1998) 
and are indicative of the fidelity of GSOSM reconstructions to the original object surfaces. In 
this table, �� refers to the reconstructed mesh while �� is the original mesh. The labels are: 
“max” for the maximum calculated value of the distance between the surfaces �� and ��; 
“avg” for the mean distance; and “rms” for the root mean square. The column “H” is the 
Hausdorff distance, which is equal to the greatest maximum value. 
 

Model 
Metro results (x 10-3) �� → �� �� → �� H max avg Rms max avg rms 

Bunny 1.419 0.040 0.064 1.490 0.043 0.078 1.490 

Dragon 1.348 0.018 0.031 1.807 0.023 0.119 1.807 

Happy Buddha 1.389 0.024 0.042 1.255 0.034 0.146 1.389 

Armadillo 0.870 0.025 0.037 0.925 0.026 0.040 0.870 

Filigree 1.180 0.019 0.043 1.827 0.021 0.050 1.827 

Bust 0.788 0.019 0.031 1.135 0.020 0.034 1.135 

Gips Hand 0.646 0.022 0.033 1.392 0.025 0.038 1.392 

Hand 0.909 0.011 0.017 1.588 0.011 0.021 1.588 
Table 4.  Metro measures of the reconstructions of models using GSOSM. 
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Fig. 13. Visual inspection of the equilaterality quality of the triangles: a) a sphere; b) a non 2-
manifold surface. 

 

Notice that the column “min” indicates the existence of some skinny triangles, this is 
because of the coefficient � which forces the permanence of long connections if and when 
they are fitted to the objective surface fold. However, the following three columns show that 
high quality triangles are the great majority and that the skinny triangles are exceptions. 
 

Object 

Triangles 
Valence % invalid 

Delaunay 
Edges 

Equilaterality (q) 

avg. std. dev. min. max. avg. std. dev. 

Bunny 5.990 0.724 1.53 0.216 1.000 0.936 0.058 
Asian Dragon 5.999 0.718 1.51 0.210 1.000 0.933 0.067 
Dragon 5.999 0.766 2.50 0.181 1.000 0.931 0.073 
Happy Buddha 5.999 0.759 2.30 0.208 1.000 0.933 0.071 
Armadillo 5.999 0.772 2.66 0.232 1.000 0.930 0.074 
Lucy 5.999 0.667 1.21 0.178 1.000 0.945 0.061 
Thai Statue 5.998 0.712 1.62 0.160 1.000 0.940 0.065 
Filigree 6.002 0.688 1.80 0.187 1.000 0.938 0.064 
Bust 5.999 0.788 2.73 0.236 1.000 0.927 0.078 
Hand 5.996 0.805 2,59 0.204 1.000 0.928 0.078 
Gips Hand 5.995 0.770 2.34 0.219 1.000 0.933 0.070 

Table 3. Statistics on triangles from GSOSM reconstructions. 
 
The results reported in Table 4, were computed using the Metro tool (Cignoni et al., 1998) 
and are indicative of the fidelity of GSOSM reconstructions to the original object surfaces. In 
this table, �� refers to the reconstructed mesh while �� is the original mesh. The labels are: 
“max” for the maximum calculated value of the distance between the surfaces �� and ��; 
“avg” for the mean distance; and “rms” for the root mean square. The column “H” is the 
Hausdorff distance, which is equal to the greatest maximum value. 
 

Model 
Metro results (x 10-3) �� → �� �� → �� H max avg Rms max avg rms 

Bunny 1.419 0.040 0.064 1.490 0.043 0.078 1.490 

Dragon 1.348 0.018 0.031 1.807 0.023 0.119 1.807 

Happy Buddha 1.389 0.024 0.042 1.255 0.034 0.146 1.389 

Armadillo 0.870 0.025 0.037 0.925 0.026 0.040 0.870 

Filigree 1.180 0.019 0.043 1.827 0.021 0.050 1.827 

Bust 0.788 0.019 0.031 1.135 0.020 0.034 1.135 

Gips Hand 0.646 0.022 0.033 1.392 0.025 0.038 1.392 

Hand 0.909 0.011 0.017 1.588 0.011 0.021 1.588 
Table 4.  Metro measures of the reconstructions of models using GSOSM. 
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6. Conclusions and Remarks 
 

This chapter presented the self-organizing approach to solve the surface reconstruction 
problem. The features of the Self-Organizing Map and of some of its well known variants, 
such as the Topology Representing Networks, the Growing Cell Structures and the Growing 
Neural Gas, were presented. Also, two novel SOM based models were presented – GSRM 
and GSOSM - which have been proposed by the authors and overcome several drawbacks 
of their predecessors. 
GSRM is a self-organizing based surface reconstruction method that profits from the 
topology learning ability and incremental growth of Growing Neural Gas, while, at the 
same time, it also modifies some of the standard GNG operations to meet some 
requirements of the surface reconstruction method, for example: to produce 2-manifold 
meshes of triangles and to have faces that are approximately equilateral. The main 
advantages of GSRM are: it can learn the topology of a given object from the input point 
cloud; it produces meshes with different resolutions during the learning process, avoiding 
the need for a mesh simplification step. The main limitations of GSRM are: a dense, random 
sample set of points is required for the reconstruction. 
The GSOSM explores the concept of Voronoi region to define a new learning rule (CCHL) 
that is employed as the basis for establishing connections between nodes. The CCHL enables 
GSOSM to produce a complete local triangulation, thus overcoming the limitation of its 
predecessor (CHL). The two step adaptation operator of GSOSM qualifies it to handle any 
input sequence producing a mesh that is faithful to the objective surface. Moreover, the 
GSOSM algorithm overcomes the homeomorphism limitations and is able to produce 
representations of folded surfaces that may or may not be 2-manifold. However, the GSOSM 
is not able to produce a quality mesh if the input has areas with low sampling density. 
Moreover, there was discussion of pre and post-processing steps and some of the other 
procedures that need to be observed when using the models cited as a tool for solving the 
surface reconstruction problem. 
The methods presented here as solutions for the surface reconstruction problem present 
promising results. However, they still have some limitations such as to deal with sparse or 
not randomly sampled point clouds. Therefore this is an open area for future developments. 
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the need for a mesh simplification step. The main limitations of GSRM are: a dense, random 
sample set of points is required for the reconstruction. 
The GSOSM explores the concept of Voronoi region to define a new learning rule (CCHL) 
that is employed as the basis for establishing connections between nodes. The CCHL enables 
GSOSM to produce a complete local triangulation, thus overcoming the limitation of its 
predecessor (CHL). The two step adaptation operator of GSOSM qualifies it to handle any 
input sequence producing a mesh that is faithful to the objective surface. Moreover, the 
GSOSM algorithm overcomes the homeomorphism limitations and is able to produce 
representations of folded surfaces that may or may not be 2-manifold. However, the GSOSM 
is not able to produce a quality mesh if the input has areas with low sampling density. 
Moreover, there was discussion of pre and post-processing steps and some of the other 
procedures that need to be observed when using the models cited as a tool for solving the 
surface reconstruction problem. 
The methods presented here as solutions for the surface reconstruction problem present 
promising results. However, they still have some limitations such as to deal with sparse or 
not randomly sampled point clouds. Therefore this is an open area for future developments. 

 
7. References. 
 

Amenta, N., Choi, S. & Kolluri, R. K. (2001) The power crust, In Proceedings of the sixth ACM 
symposium on Solid modeling and applications, pp. 249-266. 

Aurenhammer, F. & Klein, R. (2000) Voronoi diagrams, In J.-R. Sack, J. Urrutia (Eds.), 
Handbook of Computational Geometry, Elsevier Science/North-Holland, 
Amsterdam, pp. 201-290. 

Barhak, J. (2002) Freeform objects with arbitrary topology from multirange images, PhD thesis, 
Technion - Israel Institute of Technology, Haifa, Israel. 

de Berg, M., Cheong, O., van Kreveld, M. & Overmars, M. (2008) Computational Geometry: 
Algorithms and Application, 3rd Edition, Springer-Verlag. 

Bernardini, F., Bajaj, C. L., Chen, J. & Schikore, D. (1999) Automatic  Reconstruction of 3D 
CAD Models from Digital Scans, International Journal of Computational Geometry and 
Applications, Vol 9, No 4, pp. 327-369. 

 

Bernardini, F., Martin, I., Mittleman, J., Rushmeier, H. & Taubin, G. (2002) Building a digital 
model of Michelangelo’s Florentine Pieta, IEEE Computer Graphics and Applications, 
Vol 22, No 1, pp. 59–67. 

Bobenko, A. I. & Springborn, B. (2007) A discrete Laplace-Beltrami operator for simplicial 
surfaces, Discrete and Computational Geometry, Vol 38, No 4, pp. 740-756. 

Brito, A. D., Doria, A. D., de Melo, J. D. & Goncalves, L. M. G. (2008) An adaptive learning 
approach for 3D surface reconstruction from point clouds, IEEE Transactions on 
Neural Networks, Vol 19, No 6, pp. 1130-1140. 

Cignoni, P., Rochini, P. & Scopigno, R. (1998) Metro: Measuring Error on Simplified 
Surfaces, Computer Graphics Forum, Blackwell Publishers, Vol 17, No 2, pp. 167-174. 

DalleMole, V.L. & Araujo, A. F. R. (2008a) The growing self-organizing surface map. In 
International Joint Conference on Neural Networks, pp. 2061-2068. 

DalleMole, V. L. & Araújo, A. F. R. (2008b) The Growing Self-Organizing Surface Map: 
Improvments, In 10th Brazilian Symposium on Artificial Neural Networks (SBRN´08), 
Salvador. 

DalleMole, V. L. & Araujo, A. F. R. (2009) Growing Self-Organizing Surface Map: learning a 
surface topology from a point cloud. To appear on Neural Computation. 

Do Rêgo, R. L. M. E., Araujo, A.F.R. & de Lima Neto, F.B. (2007) Growing self-organizing 
 maps for surface reconstruction from unstructured point clouds, In International 
 Joint Conference on Neural Networks, pp. 1900–1905. 

Do Rêgo, R. L. M. E., Bassani, H.F. & Filgueiras, D. (2009) Surface Reconstruction System 
Based on a Growing Self-organizing Map. To appear in International Conference on 
Artificial Neural Networks. 

Edelsbrunner, H., Kirkpatrick, D.G. & Seidel, R. (1983) On the shape of a set of points in the 
plane, IEEE Transactions on Information Theory, Vol 29, pp. 551-559. 

Fisher, M., Springborn, B., Bobenko, A. I. & Schroder, P. (2006) An algorithm for the 
construction of intrinsic Delaunay triangulations with applications to digital 
geometry processing. In SIGGRAPH '06: ACM SIGGRAPH 2006 Courses, pp. 69-74, 
New York, NY, USA, ACM. 

Fritzke, B. (1996) Unsupervised ontogenetic networks. Handbook of Neural Computation. 
Fritzke, B. (1995) A Growing Neural Gas Network Learns Topologies, in Advances in Neural 

Information Processing Systems 7, G.Tesauro, D.S. Touretsky and T. K. Leen, MIT 
Press, Cambridge MA. 

Fritzke, B. (1994) Growing cell structures - A self-organizing network for unsupervised and 
supervised learning, Neural Networks, Vol 7, pp. 1441-1460. 

Hoffmann, M. & Varady, L. (1998) Free-form modelling surfaces for scattered data by neural 
networks, Journal for Geometry and Graphics, Vol 2, No 1, pp. 16. 

Hoppe, H., Derose, T., Duchamp, T., Mcdonald, J. & Stuetzle W. (1992) Surface 
reconstruction from unorganized points, In Proceedings of Siggraph Conference. 

Ivrissimtzis, I., Jeong, W. K., Lee, S., Lee, Y. & Seidel, H. P. (2004) Neural Meshes: Surface 
reconstruction with a learning algorithm. Eurographics Symposium on Point-Based 
Graphics, pp. 1-10. 

Ivrissimtzis, I., Jeong, W. K., Lee, S., Lee, Y. & Seidel, H. P. (2004) Surface Reconstruction 
Based on Neural Meshes, Matematical methods for CAGD, Nashoboro Press, 
Brentwood. 

www.intechopen.com



Self-Organizing Maps188

 

Jockusch, J. & Ritter, H (1993) An instantaneous topological mapping model for correlated 
stimuli. In International Joint Conference on Neural Networks, Vol 1, pp. 529-534. 

Kohonen, T. (1998) The self-organizing map, Neurocomputing, Vol 21, pp. 1-6. 
Mäntylä, M. (1988) An Introduction to Solid Modeling. Computer Science Press, Rockville. 
Martinez, T., Schulten, K. (1994) Topology Representing Network, Neural Networks, Vol 7, 

No 3, pp. 507-522. 
Martinez, T. (1993) Competitive Hebbian learning rule forms perfectly topology preserving 

maps. International Conference Artificial Neural Networks, pp. 427-434. 
Martinez, T., Schulten, K. (1991) A “Neural-Gas” Network Learns Topologies, in Artificial 

Neural Networks, T. Kohonen, K. Makisara, O. Simula and J. Kangas, Elselvier 
Science Publishers. North-Holland. 

Miller, J.V., Breen, D.E., Lorensent, W.E., O'Bara, R.M. & Wozny, M.J. (1991) Geometrically 
deformed models: A method for extracting closed geometric models from volume 
data. In Proceedings of the International Conference on Computer Graphics and Interactive 
Techniques, Vol 25, pp. 217-226. 

Qin, H., Mandal, C. & Vemuri, B.C. (1998) Dynamic Catmull-Clark subdivision surfaces, 
IEEE Transactions on Visualization and Computer Graphics, Vol 4, No 3, pp. 215-229. 

Saleem, W. (2003) A Flexible framework for learning-based surface reconstruction, Master's thesis, 
Computer Science Department, University of Saarland, Saabrucken, Germany. 

Satava, R. M. & Jones, S. B. (1998) Current and future applications of virtual reality for 
medicine”. Proceedings of the IEEE, Vol 86, No 3, pp. 484-489. 

Yu, Y. (1999) Surface reconstruction from unorganized points using self-organizing neural 
networks, In Proceedings of IEEE Visualization Conference, pp. 61-64. 

www.intechopen.com



Self-Organizing Maps

Edited by George K Matsopoulos

ISBN 978-953-307-074-2

Hard cover, 430 pages

Publisher InTech

Published online 01, April, 2010

Published in print edition April, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The Self-Organizing Map (SOM) is a neural network algorithm, which uses a competitive learning technique to

train itself in an unsupervised manner. SOMs are different from other artificial neural networks in the sense

that they use a neighborhood function to preserve the topological properties of the input space and they have

been used to create an ordered representation of multi-dimensional data which simplifies complexity and

reveals meaningful relationships. Prof. T. Kohonen in the early 1980s first established the relevant theory and

explored possible applications of SOMs. Since then, a number of theoretical and practical applications of

SOMs have been reported including clustering, prediction, data representation, classification, visualization, etc.

This book was prompted by the desire to bring together some of the more recent theoretical and practical

developments on SOMs and to provide the background for future developments in promising directions. The

book comprises of 25 Chapters which can be categorized into three broad areas: methodology, visualization

and practical applications.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Vilson L. DalleMole, Renata L. M. E. do Rego and Aluizio F. R. Araujo (2010). The Self-Organizing Approach

for Surface Reconstruction from Unstructured Point Clouds, Self-Organizing Maps, George K Matsopoulos

(Ed.), ISBN: 978-953-307-074-2, InTech, Available from: http://www.intechopen.com/books/self-organizing-

maps/the-self-organzing-approach-for-surface-reconstruction-from-unstructured-point-clouds



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


