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1. Introduction 
 

The task of learning useful models from available data is common in virtually all fields of 
science, engineering, and finance. The goal of the learning task is to estimate unknown 
(input, output) dependency (or model) from training data (consisting of a finite number of 
samples) with good prediction (generalization) capabilities for future (test) data 
(Cherkassky & Mulier, 2007; Hastie et al., 2003). One of the specific learning tasks is 
regression – estimating an unknown real-valued function. The process of regression model 
learning is also called regression modelling or regression model building. 
Many practical regression modelling methods use basis function representation – these are 
also called dictionary methods (Friedman, 1994; Cherkassky & Mulier, 2007; Hastie et al., 
2003), where a particular type of chosen basis functions constitutes a “dictionary”. Further 
distinction is then made between non-adaptive methods and adaptive (also called flexible) 
methods. 
The most widely used form of basis function expansions is polynomial of a fixed degree. If a 
model always includes a fixed (predetermined) set of basis functions (i.e. they are not 
adapted to training data), the modelling method is considered non-adaptive (Cherkassky & 
Mulier, 2007; Hastie et al., 2003). Using adaptive modelling methods however the basis 
functions themselves are adapted to data (by employing some kind of search mechanism). 
This includes methods where the restriction of fixed polynomial degree is removed and the 
model’s degree now becomes another parameter to fit. Adaptive methods use a very wide 
dictionary of candidate basis functions and can, in principle, approximate any continuous 
function with a pre-specified accuracy. This is also known as the universal approximation 
property (Kolmogorov & Fomin, 1975, Cherkassky & Mulier, 2007). 
However, in polynomial regression the increase in the model’s degree leads to exponential 
growth of the number of basis functions in the model (Cherkassky & Mulier, 2007; Hastie et 
al., 2003). With finite training data, the number of basis functions along with the number of 
model’s parameters (coefficients) quickly exceeds the number of data samples, making 
model’s parameter estimation impossible. Additionally the model should not be overly 
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complex even if the number of its basis functions is lower than the number of data samples, 
as too complex models will overfit the data and produce large prediction errors. 
To obtain a polynomial regression model that does not overfit (nor underfit) and describes 
the relations in data sufficiently well, typically the subset selection approach (Hastie et al., 
2003; Reunanen, 2006) is used where the goal is from a fixed full predetermined dictionary 
of basis functions to find a subset which corresponds to a model (a sparse polynomial) with 
the best predictive performance. This is done via combinatorial optimization. However, for 
the subset selection approach still the two issues remain – deficiency of adaptation as well as 
computational inefficiency. 
Searching through all the possible combinations of basis functions takes double-exponential 
runtime as the number of combinations grows exponentially in the number of basis 
functions of the predetermined dictionary while the number of the basis functions in the 
dictionary grows exponentially in the number of input variables and “full” model’s degree 
(Hastie et al., 2003). This makes the exhaustive search through all the combinations 
impractical. The heuristic greedy search algorithms, such as forward selection (Hastie et al., 
2003; Reunanen, 2006), substantially reduce the time and make it practical for not too large 
number of input variables and not too high degree. Nevertheless, the search time actually is 
still exponential, hindering their use in problems of larger dimensionality and hindering the 
removal of the restriction of a fixed degree. 
The approach of subset selection assumes that the chosen fixed finite dictionary of the 
predefined basis functions contains a subset that is sufficient to describe the target relation 
sufficiently well. However, in most practical situations the required dictionary (and “full” 
model’s degree) is not known beforehand and needs to be either guessed or found by an 
additional search loop over the whole model building process, since it will differ from one 
regression task to another. In many cases, especially when the studied data dependencies 
are complex and not well studied, this means either a non-trivial and long trial-and-error 
process or acceptance of a possibly inadequate model. 
This chapter presents a sparse polynomial regression model building approach which 
enables adaptive model building without restrictions on model’s degree and does it in 
polynomial time instead of exponential time (in the number of input variables, required 
degree, and target model’s complexity) as well as without the requirement to repeat the 
model building process. The required basis functions are automatically iteratively 
constructed using heuristic search specifically for the particular data at hand instead of 
choosing a subset from a very restricted finite user-defined dictionary (hence the approach 
is called Adaptive Basis Function Construction, ABFC). The basis function dictionary now 
becomes infinite and polynomials of arbitrary complexity can be generated bringing the 
desired flexibility to the model building process. 
The remainder of this chapter is organized as follows. The next two sections give brief 
overview of polynomial regression and the subset selection approach. In Section 4 the ABFC 
approach is described. Section 5 outlines the related work. The results of the empirical 
evaluations of the proposed methods and their comparison to other well-known regression 
modelling methods are presented in Section 6. Section 7 concludes this chapter. 

 
 
 
 

2. Polynomial regression 
 

In standard regression formulation (Vapnik, 1995; Cherkassky & Mulier, 2007; Hastie et al., 
2003) the goal is to estimate unknown real-valued function in the relationship 
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allows predicting the output values for yet unseen input values as closely as possible. 
Generally, a linear regression model may be defined as a linear expansion of basis functions: 
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included basis functions of the input x. As the model is linear in the parameters, the 
estimation of its parameters is typically done using the Ordinary Least-Squares (OLS) 
method (Hastie et al., 2003) minimizing the squared-error: 
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The basis function representation enables moving beyond pure linearity, by defining 
nonlinear transformations of x while still working with linear models (and employing OLS). 
For example, for d = 1 a polynomial model of fixed degree p can be defined as follows: 
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Generally for a given d and p the total number of basis functions in a “full” polynomial, i.e. 
the total number of basis functions in the dictionary, is 
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complex even if the number of its basis functions is lower than the number of data samples, 
as too complex models will overfit the data and produce large prediction errors. 
To obtain a polynomial regression model that does not overfit (nor underfit) and describes 
the relations in data sufficiently well, typically the subset selection approach (Hastie et al., 
2003; Reunanen, 2006) is used where the goal is from a fixed full predetermined dictionary 
of basis functions to find a subset which corresponds to a model (a sparse polynomial) with 
the best predictive performance. This is done via combinatorial optimization. However, for 
the subset selection approach still the two issues remain – deficiency of adaptation as well as 
computational inefficiency. 
Searching through all the possible combinations of basis functions takes double-exponential 
runtime as the number of combinations grows exponentially in the number of basis 
functions of the predetermined dictionary while the number of the basis functions in the 
dictionary grows exponentially in the number of input variables and “full” model’s degree 
(Hastie et al., 2003). This makes the exhaustive search through all the combinations 
impractical. The heuristic greedy search algorithms, such as forward selection (Hastie et al., 
2003; Reunanen, 2006), substantially reduce the time and make it practical for not too large 
number of input variables and not too high degree. Nevertheless, the search time actually is 
still exponential, hindering their use in problems of larger dimensionality and hindering the 
removal of the restriction of a fixed degree. 
The approach of subset selection assumes that the chosen fixed finite dictionary of the 
predefined basis functions contains a subset that is sufficient to describe the target relation 
sufficiently well. However, in most practical situations the required dictionary (and “full” 
model’s degree) is not known beforehand and needs to be either guessed or found by an 
additional search loop over the whole model building process, since it will differ from one 
regression task to another. In many cases, especially when the studied data dependencies 
are complex and not well studied, this means either a non-trivial and long trial-and-error 
process or acceptance of a possibly inadequate model. 
This chapter presents a sparse polynomial regression model building approach which 
enables adaptive model building without restrictions on model’s degree and does it in 
polynomial time instead of exponential time (in the number of input variables, required 
degree, and target model’s complexity) as well as without the requirement to repeat the 
model building process. The required basis functions are automatically iteratively 
constructed using heuristic search specifically for the particular data at hand instead of 
choosing a subset from a very restricted finite user-defined dictionary (hence the approach 
is called Adaptive Basis Function Construction, ABFC). The basis function dictionary now 
becomes infinite and polynomials of arbitrary complexity can be generated bringing the 
desired flexibility to the model building process. 
The remainder of this chapter is organized as follows. The next two sections give brief 
overview of polynomial regression and the subset selection approach. In Section 4 the ABFC 
approach is described. Section 5 outlines the related work. The results of the empirical 
evaluations of the proposed methods and their comparison to other well-known regression 
modelling methods are presented in Section 6. Section 7 concludes this chapter. 
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3. Subset selection 
 

Models which are too complex (i.e. that fit the training data too well causing overfitting) or 
too simple (i.e. that fit the data poorly causing underfitting) provide poor predictive 
performance for the future data. The most popular approach of controlling model’s 
complexity is subset selection. The goal of subset selection is from a fixed full predetermined 
dictionary of basis functions to find a subset that provides the best predictive performance 
of the model (Hastie et al., 2003; Reunanen, 2006). Now in addition to the estimation of 
model’s parameters, the structure of the model itself needs to be found. 
The total number of possible subsets from a dictionary of size m is m2 . This means that 
searching through all the possible subsets is in most cases impractical. Hence in subset 
selection heuristic search algorithms are used. They efficiently traverse the space of subsets, 
by adding and deleting basis functions of the model, and use model evaluation measure to 
direct the search into areas of increased performance. The typical examples of heuristic 
search algorithms are the greedy hill-climbing algorithms – Forward Selection (also known 
as Sequential Forward Selection, SFS) and Backward Elimination (also known as Sequential 
Backward Selection, SBS) (Hastie et al., 2003; Reunanen, 2006). However, there exist also 
more recently developed search strategies, such as Beam Search, Floating Search, Simulated 
Annealing, Genetic Algorithms etc. (Reunanen, 2006; Pudil et al., 1994; Russel & Norvig, 
2002). 
Summarizing (Russel & Norvig, 2002; Molina et al., 2002; Kohavi & John, 1997), in order to 
characterize a heuristic search problem one must define the following: 1) initial state of the 
search; 2) available state-transition operators; 3) search strategy; 4) evaluation measure; 
5) termination condition. Note that in the context of model building the “initial state” is also 
called “initial model” and the “state-transition operators” are also called “model refinement 
operators”. 
In the subset selection approach for polynomial regression, typically the initial state is the 
model that corresponds to the empty subset, the subset with only the intercept term in it, 
full set of all the defined basis functions, or a randomly chosen subset. The typical basic 
state-transition operators are addition and deletion of a basis function. The typical search 
strategy is the hill-climbing (Russel & Norvig, 2002) which, in combination with the empty 
(or sufficiently small) subset as initial state and the addition operator, becomes SFS, but, in 
combination with the full subset as initial state and the deletion operator, becomes SBS. As 
the evaluation measures classically the statistical significance tests are used (Hastie et al., 2003; 
Dreyfus & Guyon, 2006). However, in model building currently two other strategies 
predominate (Cherkassky & Mulier, 2007; Dreyfus & Guyon, 2006): employment of 
complexity penalization criteria (also known as analytical criteria), e.g., the well-known 
Akaike’s Information Criterion, AIC (Akaike, 1974; Burnham & Anderson, 2002), and the 
resampling techniques, e.g., Hold-Out, Cross-Validation (CV), and Bootstrap (Kohavi, 1995; 
Hastie et al., 2003; Dreyfus & Guyon, 2006). The termination condition typically corresponds 
to finding of a state in that none of the state-transition operators can lead to a better state 
(i.e. a local minimum). 
In polynomial regression, increase in the model’s degree leads to exponential growth of the 
number of basis functions in the dictionary, i.e. )()( pdOmO   (Cherkassky & Mulier, 2007; 
Hastie et al., 2003) and to double-exponential growth of the number of all possible subsets 
(or the number of states in the state space): )2()2(

pdm OO  . When using one or both of the 

two basic state-transition operators, the order of the branching factor of a state in the state 
space in the very first iteration of the search is already equal to the number of basis 
functions in the dictionary, i.e. it also increases exponentially. 
Assuming that the “best” model found in the search process includes a total of k  basis 
functions and that in each iteration the number of basis functions of the current model is 
increased by 1, the total number of evaluated models (subsets) is of order 
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Hence for larger values of d and p (e.g., when m reaches thousands) subset selection is 
rendered impractical. Additionally, because of the branching factor’s direct dependence on 
the number of basis functions in the dictionary, the idea of unrestricted degree (i.e. 
dictionary of infinite size) is hardly applicable. 
The computational problem could be somewhat reduced by choosing a sufficiently small 
but useful value of p before the actual model building is performed. However, generally the 
required maximal degree is not known beforehand and needs to be either guessed or found 
by additional search loop over the whole model building process, since it will differ from 
one regression task to another, which means either a non-trivial and long trial-and-error 
process or acceptance of a possibly inadequate model. 

 
4. Adaptive Basis Function Construction 
 

This section introduces Adaptive Basis Function Construction – a possible alternative to the 
classical subset selection approach. The goal of the ABFC approach is to overcome some of 
the limitations associated with the subset selection, outlined in the previous section. The 
ABFC approach is developed for sparse polynomial regression model building without 
restrictions on model’s degree, enables model building in polynomial time, and does not 
require repetition of the building process (in contrast to the subset selection approach). The 
required basis functions are automatically adaptively constructed specifically for data at 
hand, without using a restricted fixed finite user-defined dictionary. The dictionary in the 
ABFC is infinite and polynomials of arbitrary complexity can be constructed. 

 
4.1 The models and the basis functions 
Generally, a basis function in a polynomial regression model can be defined as a product of 
original input variables each with an individual exponent: 
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where r is a dk   matrix of nonnegative integer exponents such that rij is the exponent of 
the jth variable in the ith basis function. Note that, when for a particular ith basis function 
rij = 0 for all j, the basis function is the intercept term. 
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of the model (Hastie et al., 2003; Reunanen, 2006). Now in addition to the estimation of 
model’s parameters, the structure of the model itself needs to be found. 
The total number of possible subsets from a dictionary of size m is m2 . This means that 
searching through all the possible subsets is in most cases impractical. Hence in subset 
selection heuristic search algorithms are used. They efficiently traverse the space of subsets, 
by adding and deleting basis functions of the model, and use model evaluation measure to 
direct the search into areas of increased performance. The typical examples of heuristic 
search algorithms are the greedy hill-climbing algorithms – Forward Selection (also known 
as Sequential Forward Selection, SFS) and Backward Elimination (also known as Sequential 
Backward Selection, SBS) (Hastie et al., 2003; Reunanen, 2006). However, there exist also 
more recently developed search strategies, such as Beam Search, Floating Search, Simulated 
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called “initial model” and the “state-transition operators” are also called “model refinement 
operators”. 
In the subset selection approach for polynomial regression, typically the initial state is the 
model that corresponds to the empty subset, the subset with only the intercept term in it, 
full set of all the defined basis functions, or a randomly chosen subset. The typical basic 
state-transition operators are addition and deletion of a basis function. The typical search 
strategy is the hill-climbing (Russel & Norvig, 2002) which, in combination with the empty 
(or sufficiently small) subset as initial state and the addition operator, becomes SFS, but, in 
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Hence for larger values of d and p (e.g., when m reaches thousands) subset selection is 
rendered impractical. Additionally, because of the branching factor’s direct dependence on 
the number of basis functions in the dictionary, the idea of unrestricted degree (i.e. 
dictionary of infinite size) is hardly applicable. 
The computational problem could be somewhat reduced by choosing a sufficiently small 
but useful value of p before the actual model building is performed. However, generally the 
required maximal degree is not known beforehand and needs to be either guessed or found 
by additional search loop over the whole model building process, since it will differ from 
one regression task to another, which means either a non-trivial and long trial-and-error 
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Given a number of input variables d, matrix r, with a specified number of rows k and with 
specified values for each of its elements, completely defines the structure of a polynomial 
model with all its basis functions. The set of basis functions, included in a model, is then 
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For example, if d = 3 and k = 4, then the matrix 
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corresponds to the set 
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which in turn corresponds to the model 
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Formally, the problem of finding the best set of basis functions can be defined as finding the 
best matrix r with the best combination of nonnegative integer values of its elements: 
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where J(.) is an evaluation criterion that evaluates the predictive performance of the 
regression model which corresponds to the set of basis functions. 
As neither the upper bounds of r elements’ values nor the upper bound of k are defined, it is 
possible to generate sparse polynomials of arbitrary complexity, i.e. of arbitrary number of 
basis functions each with an arbitrary exponent for each input variable. This also means that 
the searchable state space is infinite. 

 
4.2 The search process 
Finding the “best” structure of matrix r requires search. In this section the five components 
(outlined in Section 3) of a heuristic search problem are analyzed in the context of the ABFC 
approach. 
Initial state. In ABFC, the state space is infinite therefore a natural initial state of the search is 
the state that corresponds to the simplest model located in the space. In the current study it 
is assumed that the simplest model is the one with a single basis function corresponding to 

the intercept term. However, also other models could be used as initial states, e.g., an empty 
model (without any basis functions), a first degree “full” polynomial, or a small randomly 
generated model. Note that in the current study the basis function corresponding to the 
intercept term stays in the model at all times and is not allowed to be modified or deleted. 
State-transition operators. Using efficient state-transition operators is vital for the search 
process to be efficient. The employed state-transition operators are the main methodological 
difference between the subset selection approach and the ABFC approach. Generally, there 
are two different basic types of modifications to an existing polynomial model: complication 
and simplification (Jekabsons & Lavendels, 2008a). In the subset selection approach, these 
are the addition and deletion operators. The addition operator makes the model more 
complex (by adding a new basis function) but the deletion operator makes it simpler (by 
deleting an existing basis function). 
In the ABFC, the two standard operators from subset selection are replaced with other 
operators that not only add or delete basis functions but also work on the level of individual 
exponents, modifying the existing basis functions and creating modified copies of them. The 
basic idea is to use an operator that adds only the simplest (i.e. linear) basis functions which 
serve as a basic material for further construction of more complex functions using other 
operators. In this manner there is no need for an operator that explicitly tries to add basis 
functions of each possible combination of exponent values (as the addition operator in the 
subset selection). Hence the branching factor of the state space stays not only finite but also 
relatively small while the state space itself is infinite. 
In this study, a set of the following four state-transition operators for the polynomial 
regression model building are proposed. Operator1: Addition of a new linear basis function 
with one of its exponents set to one and all the others set to zero. Operator2: Addition of an 
exact copy of an already existing (in the current model) basis function with one of its 
exponents increased by 1. Operator3: Decreasing of one of the exponents in one of the 
existing basis functions by 1. Operator4: Deleting of one of the existing basis functions. 
Figure 1 gives examples of the operators operating on a simple matrix. 
 

    
Fig. 1. Example of the four state-transition operators operating on a simple matrix: 
(a) Operator1; (b) Operator2; (c) Operator3; (d) Operator4 
 
The set of the four state-transition operators is sufficient to generate any polynomial model 
definable by the matrix r. Their use can also be viewed as a piece of application-domain 
knowledge. While starting the search from the simplest model, the complication operators 
(the first two) do the main job – they “grow” the model. The simplification operators (the 
last two), on the other hand, work as “purifiers” – they decrease the unnecessarily high 
exponents and delete the unnecessary basis functions. Without the use of simplification 
operators, a regression model may contain unnecessarily high exponents and include too 
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Given a number of input variables d, matrix r, with a specified number of rows k and with 
specified values for each of its elements, completely defines the structure of a polynomial 
model with all its basis functions. The set of basis functions, included in a model, is then 
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For example, if d = 3 and k = 4, then the matrix 
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which in turn corresponds to the model 
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Formally, the problem of finding the best set of basis functions can be defined as finding the 
best matrix r with the best combination of nonnegative integer values of its elements: 
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where J(.) is an evaluation criterion that evaluates the predictive performance of the 
regression model which corresponds to the set of basis functions. 
As neither the upper bounds of r elements’ values nor the upper bound of k are defined, it is 
possible to generate sparse polynomials of arbitrary complexity, i.e. of arbitrary number of 
basis functions each with an arbitrary exponent for each input variable. This also means that 
the searchable state space is infinite. 

 
4.2 The search process 
Finding the “best” structure of matrix r requires search. In this section the five components 
(outlined in Section 3) of a heuristic search problem are analyzed in the context of the ABFC 
approach. 
Initial state. In ABFC, the state space is infinite therefore a natural initial state of the search is 
the state that corresponds to the simplest model located in the space. In the current study it 
is assumed that the simplest model is the one with a single basis function corresponding to 

the intercept term. However, also other models could be used as initial states, e.g., an empty 
model (without any basis functions), a first degree “full” polynomial, or a small randomly 
generated model. Note that in the current study the basis function corresponding to the 
intercept term stays in the model at all times and is not allowed to be modified or deleted. 
State-transition operators. Using efficient state-transition operators is vital for the search 
process to be efficient. The employed state-transition operators are the main methodological 
difference between the subset selection approach and the ABFC approach. Generally, there 
are two different basic types of modifications to an existing polynomial model: complication 
and simplification (Jekabsons & Lavendels, 2008a). In the subset selection approach, these 
are the addition and deletion operators. The addition operator makes the model more 
complex (by adding a new basis function) but the deletion operator makes it simpler (by 
deleting an existing basis function). 
In the ABFC, the two standard operators from subset selection are replaced with other 
operators that not only add or delete basis functions but also work on the level of individual 
exponents, modifying the existing basis functions and creating modified copies of them. The 
basic idea is to use an operator that adds only the simplest (i.e. linear) basis functions which 
serve as a basic material for further construction of more complex functions using other 
operators. In this manner there is no need for an operator that explicitly tries to add basis 
functions of each possible combination of exponent values (as the addition operator in the 
subset selection). Hence the branching factor of the state space stays not only finite but also 
relatively small while the state space itself is infinite. 
In this study, a set of the following four state-transition operators for the polynomial 
regression model building are proposed. Operator1: Addition of a new linear basis function 
with one of its exponents set to one and all the others set to zero. Operator2: Addition of an 
exact copy of an already existing (in the current model) basis function with one of its 
exponents increased by 1. Operator3: Decreasing of one of the exponents in one of the 
existing basis functions by 1. Operator4: Deleting of one of the existing basis functions. 
Figure 1 gives examples of the operators operating on a simple matrix. 
 

    
Fig. 1. Example of the four state-transition operators operating on a simple matrix: 
(a) Operator1; (b) Operator2; (c) Operator3; (d) Operator4 
 
The set of the four state-transition operators is sufficient to generate any polynomial model 
definable by the matrix r. Their use can also be viewed as a piece of application-domain 
knowledge. While starting the search from the simplest model, the complication operators 
(the first two) do the main job – they “grow” the model. The simplification operators (the 
last two), on the other hand, work as “purifiers” – they decrease the unnecessarily high 
exponents and delete the unnecessary basis functions. Without the use of simplification 
operators, a regression model may contain unnecessarily high exponents and include too 
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many unnecessary basis functions, at the same time preventing truly necessary 
modifications (this is also known as the nesting effect (Pudil et al., 1994)) and increasing 
overfitting. Additionally, for all the state-transition operators a special care is taken to 
prevent basis function duplicates in the resulting model as well as to preserve the intercept 
term. 
The initial state and the state-transition operators together form a state space. Figure 2 
shows a small example of a state space in ABFC when the number of input variables is three 
and all the four state-transition operators are used. Each state represents a set of basis 
functions included in the regression model. The ordering of the states in the space is such 
that the simplest models and the simplest basis functions are reached first and, as the search 
goes on, increasingly complex models and basis functions can be reached. 
 

 
Fig. 2. A small example of the first three layers of a state space in ABFC when d = 3 (the 
space is infinite in the direction of more complex models) 
 
In the Section 3, it is stated that in the subset selection approach the branching factor of a 
state in the state space increases exponentially with respect to the number of input variables 
d and pre-specified maximal degree p. In ABFC, the branching factor of the current state in 
the state space depends on d and on the number of basis functions k, already included in the 
current model. The upper bound of the number of possible modifications to a model using 
Operator1 is equal to d; using Operator2 and Operator3 it is equal to dk; and using 
Operator4 it is equal to k. So the upper bound of the branching factor is of order 

)()2( dkOkdkdO   that is linear in respect to both d and k. 
Search strategy. Most of the heuristic search algorithms of the hill-climbing type can be 
divided in two categories: those that assume the model state-transition operators to be of 
either or both the forward and the backward type (e.g., SFS, SBS, and Floating Search 
algorithms) and those that do not distinguish between the two types (e.g., Steepest Descent 
Hill-Climbing and Simulated Annealing). The four operators proposed in this study are 
naturally divided in forward (complication) and backward (simplification) operators; 
therefore in ABFC both categories of the search algorithms can be applied. 
On the other hand, non-hill-climbing search algorithms, e.g., Genetic Algorithms and the 
like, employ completely different kind of operators (i.e. Crossover and Mutation). While 
they could be adapted to work with the infinite dictionary of basis functions, their major 
disadvantage is that, in contrast to the simple hill-climbing algorithms, they are not 
generally biased towards simpler models. In large state spaces they often spend most of the 
time exploring too complex models while the “best” ones are in fact mostly the relatively 
simple ones. 

Evaluation measure. The proposed state-transition operators allow using the same methods 
for model evaluation and comparison as those used in subset selection. However, note that 
the model complexity penalization criteria, in contrast to the resampling techniques, usually 
require substantially lower computational resources as well as are less noisy creating less 
local minima in the state space. 
Termination condition. Many different termination conditions can be used to terminate the 
search process. Some of most widely used ones are the following: a) a user pre-specified 
number of iterations is reached; b) a user pre-specified size of the model is reached; c) using 
the available state-transition operators the model could not be improved any further 
(evaluated by the chosen evaluation measure). The first two termination conditions require 
the user to set a hyperparameter value. This is a non-trivial task as usually the required 
information is not available. Adjusting such a hyperparameter may also require too large 
amounts of computational resources. In this study, the termination condition listed here as 
the last (c) is employed. 

 
4.3 A concrete practical model building method 
This section proposes Floating Adaptive Basis Function Construction (F-ABFC) – a concrete 
practical polynomial regression model building method, which is a special case of the ABFC 
approach. 
The search procedure of the F-ABFC starts with the simplest model (with only the intercept 
term included) and uses the Floating Search strategy (hence the name of the method), in 
particular the Sequential Floating Forward Selection algorithm, SFFS (Pudil et al., 1994), 
together with the set of the four state-transition operators proposed in the previous section. 
In SFFS, the search process consists of two phases – the forward phase and the backward 
phase. In each iteration of the search, the forward phase is done only once but the number of 
times the backward phase is performed is determined dynamically. In the forward phase, all 
the models, which can be generated using the complication operators on the current best 
model, are evaluated and, if there is improvement over the current best model, the best of 
the new models is chosen as the new current best model and the search proceeds to the 
second phase. If there is no improvement, the whole search procedure is stopped. In the 
backward phase, on the other hand, all the models, which can be generated using the 
simplification operators on the current best model, are evaluated. In this phase ever simpler 
models are repeatedly generated and the phase is ended only when, using the available 
simplification operators, it is impossible to generate a model which is better than the current 
best one. After the second phase, the search process always proceeds to the next iteration 
(starting again with the first phase). 
According to the studies of many researchers, the Floating Search algorithms, including 
SFFS, are some of the most efficient heuristic search algorithms for deterministic 
combinatorial optimization in terms of both required computational resources and quality 
of the results (Ferri et al., 1994; Jain & Zongker, 1997; Jain et al., 2000; Zongker & Jain, 1996; 
Pudil et al., 1994; Kudo & Sklansky, 2000; Reunanen, 2006). SFFS also does not have any 
adjustable hyperparameters, has a tendency to generate simpler models than many other 
algorithms, and is very simple to implement. 
As in (Jekabsons & Lavendels, 2008a; Jekabsons, 2008), to evaluate the predictive 
performance of a newly generated model, to perform model comparisons, and to steer the 
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many unnecessary basis functions, at the same time preventing truly necessary 
modifications (this is also known as the nesting effect (Pudil et al., 1994)) and increasing 
overfitting. Additionally, for all the state-transition operators a special care is taken to 
prevent basis function duplicates in the resulting model as well as to preserve the intercept 
term. 
The initial state and the state-transition operators together form a state space. Figure 2 
shows a small example of a state space in ABFC when the number of input variables is three 
and all the four state-transition operators are used. Each state represents a set of basis 
functions included in the regression model. The ordering of the states in the space is such 
that the simplest models and the simplest basis functions are reached first and, as the search 
goes on, increasingly complex models and basis functions can be reached. 
 

 
Fig. 2. A small example of the first three layers of a state space in ABFC when d = 3 (the 
space is infinite in the direction of more complex models) 
 
In the Section 3, it is stated that in the subset selection approach the branching factor of a 
state in the state space increases exponentially with respect to the number of input variables 
d and pre-specified maximal degree p. In ABFC, the branching factor of the current state in 
the state space depends on d and on the number of basis functions k, already included in the 
current model. The upper bound of the number of possible modifications to a model using 
Operator1 is equal to d; using Operator2 and Operator3 it is equal to dk; and using 
Operator4 it is equal to k. So the upper bound of the branching factor is of order 

)()2( dkOkdkdO   that is linear in respect to both d and k. 
Search strategy. Most of the heuristic search algorithms of the hill-climbing type can be 
divided in two categories: those that assume the model state-transition operators to be of 
either or both the forward and the backward type (e.g., SFS, SBS, and Floating Search 
algorithms) and those that do not distinguish between the two types (e.g., Steepest Descent 
Hill-Climbing and Simulated Annealing). The four operators proposed in this study are 
naturally divided in forward (complication) and backward (simplification) operators; 
therefore in ABFC both categories of the search algorithms can be applied. 
On the other hand, non-hill-climbing search algorithms, e.g., Genetic Algorithms and the 
like, employ completely different kind of operators (i.e. Crossover and Mutation). While 
they could be adapted to work with the infinite dictionary of basis functions, their major 
disadvantage is that, in contrast to the simple hill-climbing algorithms, they are not 
generally biased towards simpler models. In large state spaces they often spend most of the 
time exploring too complex models while the “best” ones are in fact mostly the relatively 
simple ones. 

Evaluation measure. The proposed state-transition operators allow using the same methods 
for model evaluation and comparison as those used in subset selection. However, note that 
the model complexity penalization criteria, in contrast to the resampling techniques, usually 
require substantially lower computational resources as well as are less noisy creating less 
local minima in the state space. 
Termination condition. Many different termination conditions can be used to terminate the 
search process. Some of most widely used ones are the following: a) a user pre-specified 
number of iterations is reached; b) a user pre-specified size of the model is reached; c) using 
the available state-transition operators the model could not be improved any further 
(evaluated by the chosen evaluation measure). The first two termination conditions require 
the user to set a hyperparameter value. This is a non-trivial task as usually the required 
information is not available. Adjusting such a hyperparameter may also require too large 
amounts of computational resources. In this study, the termination condition listed here as 
the last (c) is employed. 

 
4.3 A concrete practical model building method 
This section proposes Floating Adaptive Basis Function Construction (F-ABFC) – a concrete 
practical polynomial regression model building method, which is a special case of the ABFC 
approach. 
The search procedure of the F-ABFC starts with the simplest model (with only the intercept 
term included) and uses the Floating Search strategy (hence the name of the method), in 
particular the Sequential Floating Forward Selection algorithm, SFFS (Pudil et al., 1994), 
together with the set of the four state-transition operators proposed in the previous section. 
In SFFS, the search process consists of two phases – the forward phase and the backward 
phase. In each iteration of the search, the forward phase is done only once but the number of 
times the backward phase is performed is determined dynamically. In the forward phase, all 
the models, which can be generated using the complication operators on the current best 
model, are evaluated and, if there is improvement over the current best model, the best of 
the new models is chosen as the new current best model and the search proceeds to the 
second phase. If there is no improvement, the whole search procedure is stopped. In the 
backward phase, on the other hand, all the models, which can be generated using the 
simplification operators on the current best model, are evaluated. In this phase ever simpler 
models are repeatedly generated and the phase is ended only when, using the available 
simplification operators, it is impossible to generate a model which is better than the current 
best one. After the second phase, the search process always proceeds to the next iteration 
(starting again with the first phase). 
According to the studies of many researchers, the Floating Search algorithms, including 
SFFS, are some of the most efficient heuristic search algorithms for deterministic 
combinatorial optimization in terms of both required computational resources and quality 
of the results (Ferri et al., 1994; Jain & Zongker, 1997; Jain et al., 2000; Zongker & Jain, 1996; 
Pudil et al., 1994; Kudo & Sklansky, 2000; Reunanen, 2006). SFFS also does not have any 
adjustable hyperparameters, has a tendency to generate simpler models than many other 
algorithms, and is very simple to implement. 
As in (Jekabsons & Lavendels, 2008a; Jekabsons, 2008), to evaluate the predictive 
performance of a newly generated model, to perform model comparisons, and to steer the 
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search in direction of the most promising models, in F-ABFC the Corrected Akaike’s 
Information Criterion, AICC (Hurvich & Tsai, 1989) is used. AICC is defined as follows: 
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where MSE is the Mean Squared Error of the model of interest in the training data. AICC 
evaluates model’s predictive performance as a trade-off between its accuracy in the training 
data (the first term of (13)) and its complexity (the last two terms of (13)). Calculation of the 
AICC for a single model requires a single estimation of model’s parameters using OLS and 
calculation of MSE in training data. The “best” model is that whose AICC value is the 
lowest. 
The AICC is an improvement over the classical AIC (Akaike, 1974) with the third term in 
(13) added as a correction term intended for working with small-sized data sets. For 
problems with relatively small n, AICC is suited better than AIC but converges to AIC as n 
becomes large (Hurvich & Tsai, 1989). AIC and AICC theoretical justification is based on the 
relationship between the Kullback-Leibner information and the maximum likelihood 
principle (Burnham & Anderson, 2002). Note that AIC as well as AICC does not assume that 
the “true model” (which was presumably used to generate the data) is one of the candidates 
(Burnham & Anderson, 2002). 
In (Jekabsons & Lavendels, 2008b), an issue of the F-ABFC is stated, that, because the 
branching factor of the ABFC’s state space increases very slowly together with d and k, in 
special cases when the data is of low dimensionality (e.g., 4d ) and/or the existing 
structure in the data is very complex (i.e. a very complex model is required) the search 
algorithm may get stuck in a local minimum too early in the search returning a too simple 
and underfitted model. 
As a remedy for this, here an additional recursion of the state-transition operators is 
proposed introducing one hyperparameter for the F-ABFC. The idea is to recursively create 
additional regression models from models already created from the current best model 
using the same state-transition operators with which they were initially created. This 
essentially means that if, for example, the recursion depth is set to 2, Operator1 will create 
not only linear basis functions but also basis functions of the second degree, Operator2 will 
create not only copies of basis functions with degree increased by 1 but also by 2, and 
Operator3 will not only try to decrease degrees by 1 but also by 2. However, as still none of 
the operators add more than one basis function to the model at a time, for the Operator4 the 
recursion is not used. 
The recursion of the operators reduces the number of local minima in the state space which 
is especially important near the starting-point of the search (the initial model) and enables 
the search algorithm to find a much better model. 
Presence of such a “recursion depth” hyperparameter is a disadvantage as now a user 
intervention might be required. However, for larger dimensionalities of the input space 
(when also the increased computational resources are required) it is reasonable to 
completely disable the recursion (by setting the hyperparameter equal to 1) as with large 
dimensionalities the branching factor increases sufficiently fast and the problem of too early 
local minima diminishes. 

Figure 3 shows pseudo-code of F-ABFC’s search procedure. Note that in practical 
implementations of F-ABFC maintaining the set of the newly generated models 
(“MODELS”) is not required as a single model can be created, evaluated, and, if it turns out 
not to be an improvement, immediately discarded. 
 

BestModel  the simplest model 
BestModel.PerformOLSandCalculateAICC
loop

//forward phase
MODELS  {all models created from BestModel using Operator1 and Operator2, 

with no basis function redundancy} 
if RecursionDepth > 1 then

for i  2 to RecursionDepth do
MODELS  MODELS  {all models created from MODELS using the same 

operator (with which they were initially created}, with no basis function 
redundancy}

foreach Model in MODELS do
Model.PerformOLSandCalculateAICC

TestModel  best of MODELS according to AICC 
if TestModel.AICC < BestModel.AICC then

BestModel  TestModel 
else

break //break the main loop (exit the procedure)
//backward phase
loop

MODELS  {all models created from BestModel using Operator3 and Operator4, 
with no basis function redundancy} 

if RecursionDepth > 1 then
for i  2 to RecursionDepth do

MODELS  MODELS  {all models created from MODELS using Operator3 
(with which they were initially created}, with no basis function redundancy} 

foreach Model in MODELS do
Model.PerformOLSandCalculateAICC

TestModel  best of MODELS according to AICC 
if TestModel.AICC < BestModel.AICC then

BestModel  TestModel 
else

break //break the sub-loop
end loop 

end loop 
return BestModel 

Fig. 3. Pseudo-code of F-ABFC’s search procedure 
 
In (Jekabsons & Lavendels, 2008a), a version of F-ABFC was developed that slightly differs 
from the one proposed here in that the method used one additional state-transition operator 
and the “recursion depth” hyperparameter was not introduced. The paper (Jekabsons & 
Lavendels, 2008a) empirically demonstrated the computational and predictive performance 
advantages of F-ABFC comparing to subset selection and a number of other popular 
regression modelling methods. F-ABFC advantages in real-world practical applications are 
demonstrated in (Kalnins et al., 2008a; Kalnins et al., 2009b) where it is applied for 
modelling bending and buckling behaviour of different composite material structures. 

 
 
 
 

www.intechopen.com



Adaptive Basis Function Construction: An Approach  
for Adaptive Building of Sparse Polynomial Regression Models 137

search in direction of the most promising models, in F-ABFC the Corrected Akaike’s 
Information Criterion, AICC (Hurvich & Tsai, 1989) is used. AICC is defined as follows: 
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where MSE is the Mean Squared Error of the model of interest in the training data. AICC 
evaluates model’s predictive performance as a trade-off between its accuracy in the training 
data (the first term of (13)) and its complexity (the last two terms of (13)). Calculation of the 
AICC for a single model requires a single estimation of model’s parameters using OLS and 
calculation of MSE in training data. The “best” model is that whose AICC value is the 
lowest. 
The AICC is an improvement over the classical AIC (Akaike, 1974) with the third term in 
(13) added as a correction term intended for working with small-sized data sets. For 
problems with relatively small n, AICC is suited better than AIC but converges to AIC as n 
becomes large (Hurvich & Tsai, 1989). AIC and AICC theoretical justification is based on the 
relationship between the Kullback-Leibner information and the maximum likelihood 
principle (Burnham & Anderson, 2002). Note that AIC as well as AICC does not assume that 
the “true model” (which was presumably used to generate the data) is one of the candidates 
(Burnham & Anderson, 2002). 
In (Jekabsons & Lavendels, 2008b), an issue of the F-ABFC is stated, that, because the 
branching factor of the ABFC’s state space increases very slowly together with d and k, in 
special cases when the data is of low dimensionality (e.g., 4d ) and/or the existing 
structure in the data is very complex (i.e. a very complex model is required) the search 
algorithm may get stuck in a local minimum too early in the search returning a too simple 
and underfitted model. 
As a remedy for this, here an additional recursion of the state-transition operators is 
proposed introducing one hyperparameter for the F-ABFC. The idea is to recursively create 
additional regression models from models already created from the current best model 
using the same state-transition operators with which they were initially created. This 
essentially means that if, for example, the recursion depth is set to 2, Operator1 will create 
not only linear basis functions but also basis functions of the second degree, Operator2 will 
create not only copies of basis functions with degree increased by 1 but also by 2, and 
Operator3 will not only try to decrease degrees by 1 but also by 2. However, as still none of 
the operators add more than one basis function to the model at a time, for the Operator4 the 
recursion is not used. 
The recursion of the operators reduces the number of local minima in the state space which 
is especially important near the starting-point of the search (the initial model) and enables 
the search algorithm to find a much better model. 
Presence of such a “recursion depth” hyperparameter is a disadvantage as now a user 
intervention might be required. However, for larger dimensionalities of the input space 
(when also the increased computational resources are required) it is reasonable to 
completely disable the recursion (by setting the hyperparameter equal to 1) as with large 
dimensionalities the branching factor increases sufficiently fast and the problem of too early 
local minima diminishes. 

Figure 3 shows pseudo-code of F-ABFC’s search procedure. Note that in practical 
implementations of F-ABFC maintaining the set of the newly generated models 
(“MODELS”) is not required as a single model can be created, evaluated, and, if it turns out 
not to be an improvement, immediately discarded. 
 

BestModel  the simplest model 
BestModel.PerformOLSandCalculateAICC
loop

//forward phase
MODELS  {all models created from BestModel using Operator1 and Operator2, 

with no basis function redundancy} 
if RecursionDepth > 1 then

for i  2 to RecursionDepth do
MODELS  MODELS  {all models created from MODELS using the same 

operator (with which they were initially created}, with no basis function 
redundancy}

foreach Model in MODELS do
Model.PerformOLSandCalculateAICC

TestModel  best of MODELS according to AICC 
if TestModel.AICC < BestModel.AICC then

BestModel  TestModel 
else

break //break the main loop (exit the procedure)
//backward phase
loop

MODELS  {all models created from BestModel using Operator3 and Operator4, 
with no basis function redundancy} 

if RecursionDepth > 1 then
for i  2 to RecursionDepth do

MODELS  MODELS  {all models created from MODELS using Operator3 
(with which they were initially created}, with no basis function redundancy} 

foreach Model in MODELS do
Model.PerformOLSandCalculateAICC

TestModel  best of MODELS according to AICC 
if TestModel.AICC < BestModel.AICC then

BestModel  TestModel 
else

break //break the sub-loop
end loop 

end loop 
return BestModel 

Fig. 3. Pseudo-code of F-ABFC’s search procedure 
 
In (Jekabsons & Lavendels, 2008a), a version of F-ABFC was developed that slightly differs 
from the one proposed here in that the method used one additional state-transition operator 
and the “recursion depth” hyperparameter was not introduced. The paper (Jekabsons & 
Lavendels, 2008a) empirically demonstrated the computational and predictive performance 
advantages of F-ABFC comparing to subset selection and a number of other popular 
regression modelling methods. F-ABFC advantages in real-world practical applications are 
demonstrated in (Kalnins et al., 2008a; Kalnins et al., 2009b) where it is applied for 
modelling bending and buckling behaviour of different composite material structures. 
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4.4 Computational considerations 
Assuming that the “best” model found by the F-ABFC search procedure includes a total of 
k  basis functions and in each iteration the number of basis functions in the current model is 

increased by 1, the total number of evaluated models is of order 
 

    323

11 2
)1(
















 


























dkOdkdkOkkdkOidkOdiO
k

i

k

i
. (14) 

 
Consequently, relatively to the typical subset selection methods, the efficiency of the 
F-ABFC increases together with the increase in the number of input variables and in the 
required nonlinearity of the model (the value of p) but decreases together with the increase 
in the complexity k  of the “best” found model. Moreover, the relative efficiency of the 
subset selection additionally substantially decreases in the common case when the required 
value of p is unknown and needs to be found by trying different values. 
Using F-ABFC together with OLS, the associated linear least-squares fitting, required for a 
single model to be evaluated, demand computations of order )( 32 knkO  , where 2nk  
operations are required for filling a kk   matrix and 3k  operations are required for solving 
a linear equation system (Hastie et al., 2003). However, none of the proposed state-transition 
operators operate on more than one basis function of a model at a time meaning that, each 
time the parameters of a newly created model are calculated, only one row and one column 
of the kk   matrix will change. Recalculating only the elements of the corresponding row 
and column, reduces the order of the computations to )( 3knkO  . Moreover, as the 
Operator4 does not modify any basis function (only deletes one), the order of the 
computations for this particular operator reduces further to )( 3kO . 
Yet it must be noted that the F-ABFC can still become computationally rather demanding, 
especially when the number of input variables and/or the number of samples in the training 
data gets very large. This is the price to pay for the high flexibility of the method. 

 
4.5 Convergence of the search process 
The F-ABFC’s search algorithm is cycle-free because a new model is allocated to 
“BestModel” (Figure 3) only if it is better than the old one (according to AICC). Moreover, as 
the AICC criterion tries to estimate model’s true predictive performance, the algorithm will 
seek for the best trade-off between too simple and too complex models and will stop 
somewhere in-between them. Additionally there is also a hard bound – the number of basis 
functions in a model will never exceed the number of samples in the training data as 
otherwise the OLS cannot estimate model’s parameters. 
It should also be noted that, although the state space of F-ABFC is infinite, in practice the 
models of the best predictive performance are normally located in the part of the space that 
is relatively near to the initial state where all the models (and their basis functions) are 
relatively simple and do not yet neither overfit the data nor have basis functions more than 
samples in the training data. This also means that really only a small finite fraction of the 
whole infinite state space must be explored. 

 

4.6 Selection bias, selection instability, and model averaging 
There are two issues that to some extent plague all the methods of model building 
(including subset selection and ABFC), especially when working with relatively little data – 
selection bias and selection instability (also called selection variance). While the issues are 
attributable to virtually any model building method, they are commonly ignored frequently 
resulting in models of lower predictive performance. 
Selection bias occurs when in the search procedure one uses the same data to compute 
model’s parameters, to perform model building (i.e. evaluation of candidate models, 
selection of the best one, and steering the search in direction of the most promising models), 
and to select the final “best” model which will be returned as the result of the model 
building process (Reunanen, 2003; Reunanen, 2006, Loughrey & Cunningham, 2004; 
Jekabsons, 2008). The problem is that the more candidates are visited during the search, the 
greater the likelihood of finding a model that has high accuracy in the training set while 
having a very low predictive performance (accuracy in the test set) (Reunanen, 2003; 
Reunanen, 2006; Kohavi & John, 1997; Loughrey & Cunningham, 2004). The random 
fluctuations in the data will improve the evaluations of some models more than others. 
The problem is relevant regardless of the model evaluation measure used – statistical 
significance tests, complexity penalization criteria, or resampling techniques. In addition, 
the selection bias occurs even when performing model evaluation using completely 
independent validation data set (Kohavi & John, 1997; Reunanen, 2006). In any case, the 
more intensive (relative to the number of samples) is the search process, the larger is the 
selection bias, and, the larger is the noise in the data, the potentially larger is the harm (in 
terms of overfitting) done by the selection bias. 
While the deterministic search algorithms of the hill-climbing type (including the SFFS 
algorithm of the F-ABFC) are usually less intensive and consequently more robust against 
overfitting than, for example, Simulated Annealing or Genetic Algorithms (Loughrey & 
Cunningham, 2004; Guyon & Elisseeff, 2003), the problem of selection bias remains relevant. 
The second issue, selection instability, is related to the fact that small perturbations of the 
data (deleting or adding samples, adding noise, rescaling the values) can lead the model 
building process to vastly different models. This is because the large variability of estimates 
of the evaluation methods can lead to different local minima (Breiman, 1996; Kotsiantis & 
Pintelas, 2004; Guyon & Elisseeff, 2003; Cherkassky & Mulier, 2007). This variance is 
undesirable because variance is often the symptom of a “bad” model that does not 
generalize well and because the model may be failing to capture the “whole picture” 
(Guyon & Elisseeff, 2003). 
One of the ways to reduce both the selection bias and the selection instability, is to employ 
model combining (also called model ensembling or averaging) techniques (Breiman, 1996; 
Opitz & Maclin, 1999; Cherkassky & Mulier, 2007; Jekabsons, 2008). While a typical model 
building process usually consists in choosing only one best description for the data 
discarding the remainder, combining a number of models in some reasonable manner 
appears more reliably accurate as this can have the effect of smoothing out erratic models 
that overfit the data and gain more stability in the modelling process. 
A typical model combination procedure consists of a two-stage process (Cherkassky & 
Mulier, 2007). In the first stage, a number of different models are constructed. The 
parameters of these models are then held fixed. In the second stage, these individual models 
are linearly combined to produce the final model. 
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4.4 Computational considerations 
Assuming that the “best” model found by the F-ABFC search procedure includes a total of 
k  basis functions and in each iteration the number of basis functions in the current model is 

increased by 1, the total number of evaluated models is of order 
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Consequently, relatively to the typical subset selection methods, the efficiency of the 
F-ABFC increases together with the increase in the number of input variables and in the 
required nonlinearity of the model (the value of p) but decreases together with the increase 
in the complexity k  of the “best” found model. Moreover, the relative efficiency of the 
subset selection additionally substantially decreases in the common case when the required 
value of p is unknown and needs to be found by trying different values. 
Using F-ABFC together with OLS, the associated linear least-squares fitting, required for a 
single model to be evaluated, demand computations of order )( 32 knkO  , where 2nk  
operations are required for filling a kk   matrix and 3k  operations are required for solving 
a linear equation system (Hastie et al., 2003). However, none of the proposed state-transition 
operators operate on more than one basis function of a model at a time meaning that, each 
time the parameters of a newly created model are calculated, only one row and one column 
of the kk   matrix will change. Recalculating only the elements of the corresponding row 
and column, reduces the order of the computations to )( 3knkO  . Moreover, as the 
Operator4 does not modify any basis function (only deletes one), the order of the 
computations for this particular operator reduces further to )( 3kO . 
Yet it must be noted that the F-ABFC can still become computationally rather demanding, 
especially when the number of input variables and/or the number of samples in the training 
data gets very large. This is the price to pay for the high flexibility of the method. 

 
4.5 Convergence of the search process 
The F-ABFC’s search algorithm is cycle-free because a new model is allocated to 
“BestModel” (Figure 3) only if it is better than the old one (according to AICC). Moreover, as 
the AICC criterion tries to estimate model’s true predictive performance, the algorithm will 
seek for the best trade-off between too simple and too complex models and will stop 
somewhere in-between them. Additionally there is also a hard bound – the number of basis 
functions in a model will never exceed the number of samples in the training data as 
otherwise the OLS cannot estimate model’s parameters. 
It should also be noted that, although the state space of F-ABFC is infinite, in practice the 
models of the best predictive performance are normally located in the part of the space that 
is relatively near to the initial state where all the models (and their basis functions) are 
relatively simple and do not yet neither overfit the data nor have basis functions more than 
samples in the training data. This also means that really only a small finite fraction of the 
whole infinite state space must be explored. 

 

4.6 Selection bias, selection instability, and model averaging 
There are two issues that to some extent plague all the methods of model building 
(including subset selection and ABFC), especially when working with relatively little data – 
selection bias and selection instability (also called selection variance). While the issues are 
attributable to virtually any model building method, they are commonly ignored frequently 
resulting in models of lower predictive performance. 
Selection bias occurs when in the search procedure one uses the same data to compute 
model’s parameters, to perform model building (i.e. evaluation of candidate models, 
selection of the best one, and steering the search in direction of the most promising models), 
and to select the final “best” model which will be returned as the result of the model 
building process (Reunanen, 2003; Reunanen, 2006, Loughrey & Cunningham, 2004; 
Jekabsons, 2008). The problem is that the more candidates are visited during the search, the 
greater the likelihood of finding a model that has high accuracy in the training set while 
having a very low predictive performance (accuracy in the test set) (Reunanen, 2003; 
Reunanen, 2006; Kohavi & John, 1997; Loughrey & Cunningham, 2004). The random 
fluctuations in the data will improve the evaluations of some models more than others. 
The problem is relevant regardless of the model evaluation measure used – statistical 
significance tests, complexity penalization criteria, or resampling techniques. In addition, 
the selection bias occurs even when performing model evaluation using completely 
independent validation data set (Kohavi & John, 1997; Reunanen, 2006). In any case, the 
more intensive (relative to the number of samples) is the search process, the larger is the 
selection bias, and, the larger is the noise in the data, the potentially larger is the harm (in 
terms of overfitting) done by the selection bias. 
While the deterministic search algorithms of the hill-climbing type (including the SFFS 
algorithm of the F-ABFC) are usually less intensive and consequently more robust against 
overfitting than, for example, Simulated Annealing or Genetic Algorithms (Loughrey & 
Cunningham, 2004; Guyon & Elisseeff, 2003), the problem of selection bias remains relevant. 
The second issue, selection instability, is related to the fact that small perturbations of the 
data (deleting or adding samples, adding noise, rescaling the values) can lead the model 
building process to vastly different models. This is because the large variability of estimates 
of the evaluation methods can lead to different local minima (Breiman, 1996; Kotsiantis & 
Pintelas, 2004; Guyon & Elisseeff, 2003; Cherkassky & Mulier, 2007). This variance is 
undesirable because variance is often the symptom of a “bad” model that does not 
generalize well and because the model may be failing to capture the “whole picture” 
(Guyon & Elisseeff, 2003). 
One of the ways to reduce both the selection bias and the selection instability, is to employ 
model combining (also called model ensembling or averaging) techniques (Breiman, 1996; 
Opitz & Maclin, 1999; Cherkassky & Mulier, 2007; Jekabsons, 2008). While a typical model 
building process usually consists in choosing only one best description for the data 
discarding the remainder, combining a number of models in some reasonable manner 
appears more reliably accurate as this can have the effect of smoothing out erratic models 
that overfit the data and gain more stability in the modelling process. 
A typical model combination procedure consists of a two-stage process (Cherkassky & 
Mulier, 2007). In the first stage, a number of different models are constructed. The 
parameters of these models are then held fixed. In the second stage, these individual models 
are linearly combined to produce the final model. 
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Both stages can be done in different ways. In this study, to increase the predictive 
performance of models built by the F-ABFC, a CV-type resampling of the training data 
together with unweighted model averaging (Opitz & Maclin, 1999; Duin, 2002) is employed. 
As this resampling and model averaging works on top of the F-ABFC, the method is called 
Ensemble of Floating Adaptive Basis Function Construction (EF-ABFC). During resampling, 
the whole training data is randomly divided into v disjoint subsets (v typically being equal 
to 10). Then v overlapping training data sets are constructed by dropping out a different one 
of these v subsets. Such procedure is also employed to construct training sets for v-fold CV, 
so model ensembles constructed in this way are also called cross-validated committees 
(Parmanto et al., 1996). 
Combining models via simple unweighted averaging requires them to be not too 
underfitted as well as not too overfitted (Duin, 2002). To lower the overfitting, in each CV 
iteration the unused 10th data subset is used as a validation data set for “re-evaluation” 
(using MSE) of the best models of each F-ABFC iteration and for selection of the one “final 
best” model from any iteration. Note that this validation set is never used for model 
evaluation during the search. Instead it is used strictly only for the “re-evaluation” and 
“re-selection” after the F-ABFC search process has already ended. Also note that as an 
evaluation measure in the search algorithm still the AICC is applied. This “re-evaluation” 
using the validation data set can detect whether the search process at some iteration may 
have started to generate overfitted models and select a model of some earlier iteration that is 
(hopefully) not (or at least less) overfitted (see Figure 4). 
 

 
Fig. 4. An example of how a less overfitted model is selected using “re-evaluation” in 
validation set. Note that here starting from the 35th iteration the AICC values also start to 
increase (in contrast to the training error which always decreases) however this might be too 
late due to selection bias 
 
The so far described process produces v models built by v independent F-ABFC runs each 
using a different combination of CV-partitioned data subsets. Next, the v models from the v 
CV iterations are combined using the unweighted model averaging. Note that prior to 
combining, all the models are re-fitted to the whole training data set (without the CV 
partitioning). This is done to compensate for the smaller training sets used during the 
individual model building. 
Model combining by unweighted model averaging consists in taking an unweighted 
average of predictions of all the models: 
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where Fi is ith individual model fro the ith CV iteration and Fcomb is the combined model. For 
polynomial regression this simply means summation of all the polynomials and then a 
division of all the parameters of Fcomb (that is also a polynomial) by v. Note that the 
parameter values of Fcomb will not necessarily be optimal in the sense of the least-squares loss 
(in fact they will be optimal only in special cases, e.g., when all Fi’s are identical). 
The employed model combining method is similar to Bagging (bootstrap aggregating 
(Breiman, 1996)) where the training set is bootstrapped (usually to build varied decision 
trees), and the unweighted average of the resulting models is taken. 
Figure 5 gives an outline of the EF-ABFC model building process when the number of CV 
folds v is three. Note however that for all the practical applications of this study v = 10 is 
used. This is because too small number of models in ensemble will yield too little diversity 
hindering the models to correct each others errors, but, on the other hand, using too many 
models will yield no further improvement (Breiman, 1996; Opitz & Maclin, 1999; Kotsiantis 
& Pintelas, 2004; Parmanto et al., 1996). Moreover, too large number of CV folds can yield 
unreliable validation MSE estimates for the selection of the individual final best models, as 
then the individual validation sets may be too small. 
 

 
Fig. 5. An outline of the EF-ABFC modelling process when v = 3: (a) search for the best 
model according to AICC using F-ABFC; (b) select the one final best model according to 
MSE in validation data set; (c) ret-fit the model (recalculate its parameters) using the whole 
training data; (d) combine the models 
 
In recent literature, there is ever growing confidence that model ensembles often perform 
better than individual models and consistently reduce prediction error (Breiman, 1996; 
Opitz & Maclin, 1999; Kotsiantis & Pintelas, 2004; Jekabsons, 2008). However, model 
ensembles are not always the best solutions (Kotsiantis & Pintelas, 2004): if there is too little 
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Both stages can be done in different ways. In this study, to increase the predictive 
performance of models built by the F-ABFC, a CV-type resampling of the training data 
together with unweighted model averaging (Opitz & Maclin, 1999; Duin, 2002) is employed. 
As this resampling and model averaging works on top of the F-ABFC, the method is called 
Ensemble of Floating Adaptive Basis Function Construction (EF-ABFC). During resampling, 
the whole training data is randomly divided into v disjoint subsets (v typically being equal 
to 10). Then v overlapping training data sets are constructed by dropping out a different one 
of these v subsets. Such procedure is also employed to construct training sets for v-fold CV, 
so model ensembles constructed in this way are also called cross-validated committees 
(Parmanto et al., 1996). 
Combining models via simple unweighted averaging requires them to be not too 
underfitted as well as not too overfitted (Duin, 2002). To lower the overfitting, in each CV 
iteration the unused 10th data subset is used as a validation data set for “re-evaluation” 
(using MSE) of the best models of each F-ABFC iteration and for selection of the one “final 
best” model from any iteration. Note that this validation set is never used for model 
evaluation during the search. Instead it is used strictly only for the “re-evaluation” and 
“re-selection” after the F-ABFC search process has already ended. Also note that as an 
evaluation measure in the search algorithm still the AICC is applied. This “re-evaluation” 
using the validation data set can detect whether the search process at some iteration may 
have started to generate overfitted models and select a model of some earlier iteration that is 
(hopefully) not (or at least less) overfitted (see Figure 4). 
 

 
Fig. 4. An example of how a less overfitted model is selected using “re-evaluation” in 
validation set. Note that here starting from the 35th iteration the AICC values also start to 
increase (in contrast to the training error which always decreases) however this might be too 
late due to selection bias 
 
The so far described process produces v models built by v independent F-ABFC runs each 
using a different combination of CV-partitioned data subsets. Next, the v models from the v 
CV iterations are combined using the unweighted model averaging. Note that prior to 
combining, all the models are re-fitted to the whole training data set (without the CV 
partitioning). This is done to compensate for the smaller training sets used during the 
individual model building. 
Model combining by unweighted model averaging consists in taking an unweighted 
average of predictions of all the models: 
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where Fi is ith individual model fro the ith CV iteration and Fcomb is the combined model. For 
polynomial regression this simply means summation of all the polynomials and then a 
division of all the parameters of Fcomb (that is also a polynomial) by v. Note that the 
parameter values of Fcomb will not necessarily be optimal in the sense of the least-squares loss 
(in fact they will be optimal only in special cases, e.g., when all Fi’s are identical). 
The employed model combining method is similar to Bagging (bootstrap aggregating 
(Breiman, 1996)) where the training set is bootstrapped (usually to build varied decision 
trees), and the unweighted average of the resulting models is taken. 
Figure 5 gives an outline of the EF-ABFC model building process when the number of CV 
folds v is three. Note however that for all the practical applications of this study v = 10 is 
used. This is because too small number of models in ensemble will yield too little diversity 
hindering the models to correct each others errors, but, on the other hand, using too many 
models will yield no further improvement (Breiman, 1996; Opitz & Maclin, 1999; Kotsiantis 
& Pintelas, 2004; Parmanto et al., 1996). Moreover, too large number of CV folds can yield 
unreliable validation MSE estimates for the selection of the individual final best models, as 
then the individual validation sets may be too small. 
 

 
Fig. 5. An outline of the EF-ABFC modelling process when v = 3: (a) search for the best 
model according to AICC using F-ABFC; (b) select the one final best model according to 
MSE in validation data set; (c) ret-fit the model (recalculate its parameters) using the whole 
training data; (d) combine the models 
 
In recent literature, there is ever growing confidence that model ensembles often perform 
better than individual models and consistently reduce prediction error (Breiman, 1996; 
Opitz & Maclin, 1999; Kotsiantis & Pintelas, 2004; Jekabsons, 2008). However, model 
ensembles are not always the best solutions (Kotsiantis & Pintelas, 2004): if there is too little 
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data, the gains achieved via an ensemble may not compensate for the decrease in accuracy 
of individual models, each of which now sees an even smaller training set. On the other end, 
if the data set is sufficiently large, even a single flexible model can be quite adequate. Using 
large data sets also substantially decreases potential selection bias, so superiority of 
EF-ABFC over F-ABFC in such situations is expected to diminish. 
The most significant disadvantage of the EF-ABFC compared to F-ABFC is that it requires 
larger computational resources. However, the fact, that before the model combining the v 
models are built completely separately, allows for an easy parallelization of the process 
dividing the execution time by v. In this study however the parallelization is not done. 
The paper (Jekabsons, 2008) empirically demonstrated the computational and predictive 
performance advantages of EF-ABFC comparing to subset selection and a number of other 
popular regression modelling methods. EF-ABFC advantages in real-world practical 
applications are demonstrated in (Kalnins et al., 2008b; Kalnins et al., 2009a) where it is 
applied for modelling bending and buckling behaviour of different composite material 
structures. 

 
4.7 Remarks 
This section covers various aspects (extensions, limitations, etc.) of the ABFC not discussed 
in the previous sections. 

 
4.7.1 Incorporating domain knowledge 
The ABFC methods attempt to model arbitrary dependencies in data with little or no 
knowledge of the system under study. In problems of moderate and large dimensionality 
the user usually is not required to tune any hyperparameters. However, if there is sufficient 
additional domain knowledge outside the specific data at hand, it may be appropriate to 
place some constraints on the final model. If the knowledge is fairly accurate, such 
constraints can improve the accuracy while saving computational resources. 
For example, the constraints might be one or more of the following: 1) limiting the maximal 

degree of all the basis functions (similarly as in the subset selection), i.e. pr
d

j ij  1
0  for 

all i; 2) limiting the maximal value of exponents for each particular input variable in all the 
basis functions, i.e. jij pr 0 for all i, where pj is maximal exponent of the jth variable; 
3) restricting contributions of specific input variables that are not likely to interact with 
others so that those variables can enter the model in basis functions only solely – with 
exponents of all other variables fixed to zero. These constraints, as well as far more 
sophisticated ones, can be easily incorporated in the ABFC. However, note that in all the 
experiments described in this chapter no constraints are used. 

 
4.7.2 Robustness 
The ABFC methods described in this study estimate model parameters via minimization of 
the squared-error loss, i.e. using OLS. However, while the squared-error loss is the most 
commonly used, it is known that it looses its robustness against grossly outlying samples as 
well as in very sparse high-dimensional data sets (Cherkassky & Ma, 2002). 
One solution of this problem is to use a more robust loss function. The squared-error loss in 
ABFC is not fundamental. Any other loss function can be used to estimate the parameters 

and to evaluate the models by simply replacing the routine “PerformOLSandCalculate 
AICC” of the search procedure (Figure 3) with a more robust one. Note that while this 
would make the methods more robust, the computational advantage of OLS would be lost. 
In any case, gross outliers (in output variable as well as input variables) that can be detected 
through a preliminary data analysis should be considered for removal before applying 
ABFC. 

 
4.7.3 Other types of basis functions 
The ABFC methods described in this study can generate regression models with basis 
functions of only nonnegative integer exponents. However, in principle the exponents can 
also be allowed to take negative or even fractional values. Appropriate adaptation of the 
state-transition operators can enable generating such models. Keeping the same initial 
model as before, the search now could go in direction of both positive and negative 
exponents. 

 
4.7.4 Integrating ABFC into other modelling methods 
The result of running an ABFC procedure is a simple polynomial regression model. Such 
models are also utilized as “sub-models” in a number of other regression modelling 
methods. For example, the ABFC methods can be used in Polynomial Neural Networks 
(usually induced by Group Method of Data Handling) (Nikolaev & Iba, 2006) for adaptation 
of each individual neuron’s functional form and degree. The methods also can serve for 
generation of local regression models in Locally-Weighted Regression (also called Moving 
Least Squares) (Cleveland & Devlin, 1988; Kalnins et al., 2008b; Kalnins et al., 2005) 
adaptively generating a model each time a query is received. ABFC can also induce 
piecewise polynomial models for appropriately partitioned data sets. 
The polynomial basis functions can also be viewed as nonlinear transformations (or 
features) of the original input variables. In this manner the ABFC methods can also be 
viewed as methods for automatic adaptive feature construction. For example, the 
constructed features can further serve as inputs for Support Vector Machines (Vapnik, 1995; 
Smola & Scholkopf, 2004) similarly to the features constructed using genetic algorithm in 
(Ritthoff et al., 2002). 
All these applications of ABFC can make the original methods more flexible and therefore, if 
treated appropriately, produce models of higher predictive performance. 

 
4.7.5 Using ABFC for solving classification problems 
The ABFC methods can also be used for solving binary classification problems where the 
output variable y can take value of only either 0 or 1. This can be done, for example, by 
constructing basis functions for logistic regression (also called maximum entropy classifier) 
models. Logistic regression (Hastie et al., 2003; Witten & Frank, 2005) represents log odds of 
y being equal to 1 as a linear model: 
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data, the gains achieved via an ensemble may not compensate for the decrease in accuracy 
of individual models, each of which now sees an even smaller training set. On the other end, 
if the data set is sufficiently large, even a single flexible model can be quite adequate. Using 
large data sets also substantially decreases potential selection bias, so superiority of 
EF-ABFC over F-ABFC in such situations is expected to diminish. 
The most significant disadvantage of the EF-ABFC compared to F-ABFC is that it requires 
larger computational resources. However, the fact, that before the model combining the v 
models are built completely separately, allows for an easy parallelization of the process 
dividing the execution time by v. In this study however the parallelization is not done. 
The paper (Jekabsons, 2008) empirically demonstrated the computational and predictive 
performance advantages of EF-ABFC comparing to subset selection and a number of other 
popular regression modelling methods. EF-ABFC advantages in real-world practical 
applications are demonstrated in (Kalnins et al., 2008b; Kalnins et al., 2009a) where it is 
applied for modelling bending and buckling behaviour of different composite material 
structures. 

 
4.7 Remarks 
This section covers various aspects (extensions, limitations, etc.) of the ABFC not discussed 
in the previous sections. 

 
4.7.1 Incorporating domain knowledge 
The ABFC methods attempt to model arbitrary dependencies in data with little or no 
knowledge of the system under study. In problems of moderate and large dimensionality 
the user usually is not required to tune any hyperparameters. However, if there is sufficient 
additional domain knowledge outside the specific data at hand, it may be appropriate to 
place some constraints on the final model. If the knowledge is fairly accurate, such 
constraints can improve the accuracy while saving computational resources. 
For example, the constraints might be one or more of the following: 1) limiting the maximal 

degree of all the basis functions (similarly as in the subset selection), i.e. pr
d

j ij  1
0  for 

all i; 2) limiting the maximal value of exponents for each particular input variable in all the 
basis functions, i.e. jij pr 0 for all i, where pj is maximal exponent of the jth variable; 
3) restricting contributions of specific input variables that are not likely to interact with 
others so that those variables can enter the model in basis functions only solely – with 
exponents of all other variables fixed to zero. These constraints, as well as far more 
sophisticated ones, can be easily incorporated in the ABFC. However, note that in all the 
experiments described in this chapter no constraints are used. 

 
4.7.2 Robustness 
The ABFC methods described in this study estimate model parameters via minimization of 
the squared-error loss, i.e. using OLS. However, while the squared-error loss is the most 
commonly used, it is known that it looses its robustness against grossly outlying samples as 
well as in very sparse high-dimensional data sets (Cherkassky & Ma, 2002). 
One solution of this problem is to use a more robust loss function. The squared-error loss in 
ABFC is not fundamental. Any other loss function can be used to estimate the parameters 

and to evaluate the models by simply replacing the routine “PerformOLSandCalculate 
AICC” of the search procedure (Figure 3) with a more robust one. Note that while this 
would make the methods more robust, the computational advantage of OLS would be lost. 
In any case, gross outliers (in output variable as well as input variables) that can be detected 
through a preliminary data analysis should be considered for removal before applying 
ABFC. 

 
4.7.3 Other types of basis functions 
The ABFC methods described in this study can generate regression models with basis 
functions of only nonnegative integer exponents. However, in principle the exponents can 
also be allowed to take negative or even fractional values. Appropriate adaptation of the 
state-transition operators can enable generating such models. Keeping the same initial 
model as before, the search now could go in direction of both positive and negative 
exponents. 

 
4.7.4 Integrating ABFC into other modelling methods 
The result of running an ABFC procedure is a simple polynomial regression model. Such 
models are also utilized as “sub-models” in a number of other regression modelling 
methods. For example, the ABFC methods can be used in Polynomial Neural Networks 
(usually induced by Group Method of Data Handling) (Nikolaev & Iba, 2006) for adaptation 
of each individual neuron’s functional form and degree. The methods also can serve for 
generation of local regression models in Locally-Weighted Regression (also called Moving 
Least Squares) (Cleveland & Devlin, 1988; Kalnins et al., 2008b; Kalnins et al., 2005) 
adaptively generating a model each time a query is received. ABFC can also induce 
piecewise polynomial models for appropriately partitioned data sets. 
The polynomial basis functions can also be viewed as nonlinear transformations (or 
features) of the original input variables. In this manner the ABFC methods can also be 
viewed as methods for automatic adaptive feature construction. For example, the 
constructed features can further serve as inputs for Support Vector Machines (Vapnik, 1995; 
Smola & Scholkopf, 2004) similarly to the features constructed using genetic algorithm in 
(Ritthoff et al., 2002). 
All these applications of ABFC can make the original methods more flexible and therefore, if 
treated appropriately, produce models of higher predictive performance. 

 
4.7.5 Using ABFC for solving classification problems 
The ABFC methods can also be used for solving binary classification problems where the 
output variable y can take value of only either 0 or 1. This can be done, for example, by 
constructing basis functions for logistic regression (also called maximum entropy classifier) 
models. Logistic regression (Hastie et al., 2003; Witten & Frank, 2005) represents log odds of 
y being equal to 1 as a linear model: 
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where P is the predicted probability of y being equal to 1. It is equivalent to the following 
representation of P: 
 
  ))(exp(11 xFP  . (17) 
 
The parameters a of the model are usually estimated by minimizing the deviance: 
 

   min))(1ln()1()(ln2
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jjjj FyFy xx . (18) 

 
Since there is no closed form solution to this minimization, the standard approach to solving 
it is to use iterative algorithms such as Iteratively Re-weighted Least-Squares (Hastie et al., 
2003; Witten & Frank, 2005). Note that, in order to evaluate a model using AICC, the first 
term of (13) is replaced by the deviance. 
F-ABFC and EF-ABFC for classification problems are implemented in the VariClass software 
tool freely available for non-commercial research and educational purposes at 
http://www.cs.rtu.lv/jekabsons/. 

 
5. Related work 
 

There exist also other polynomial regression modelling methods which use wide, potentially 
infinite, dictionaries of basis functions. In (Sutton & Matheus, 1991) an algorithm is 
proposed which starts model building with a first-degree model, with all the input variables 
already included in the model, and iteratively creates a user-predefined number of products 
of the already included basis functions thereby creating new basis functions. In (Orosz & 
Anderson, 1994) a modification of the algorithm is proposed where the initial model has 
none of the input variables included, however there was no empirical success and it was 
concluded that in practical applications the algorithms have three major disadvantages: 
inability to construct all the necessary basis functions, inability to discard unnecessary basis 
functions, and high sensitivity to noise and to number of samples in data. 
More recently a different method was developed which can be seen also as a special case of 
the ABFC approach – Constrained Induction of Polynomial Equations for Regression, CIPER 
(Todorovski et al., 2004). CIPER was initially developed in the context of differential 
equation discovery, inductive databases, and constraint-based data mining. CIPER uses two 
state-transition operators and a Beam Search strategy. The first state-transition operator 
adds a new linear basis function while the second increases a single exponent of a single 
basis function. In (Jekabsons & Lavendels, 2008a), CIPER was empirically compared to 
F-ABFC and it was concluded that CIPER suffers form the nesting effect (Pudil et al., 1994) 
and has a tendency of getting stuck in local minima too early in the search. This is because 
CIPER is not able to preserve the structure of any of included basis functions (its second 
operator increases an exponent in an existing basis function but does not take into 
consideration the possibility that both versions of the basis function may be required) as 
well as because it is not able to simplify a model – decrease unnecessarily high exponents or 
discard unnecessary basis functions. In F-ABFC these issues are solved using Operator2 and 
the simplification operators. 

Some similar ideas of constructing new features as combinations of original input variables 
are applied also in different other approaches. For example, in (Ritthoff et al., 2002) a feature 
construction method is proposed in which a genetic algorithm constructs linear and 
nonlinear combinations of original input variables further used as inputs for Support Vector 
Machines. In (Bloedorn & Michalski, 1998), on the other hand, the feature construction idea 
is used for data-driven expansion of the input space for induction of decision rules and 
decision trees. 

 
6. Experiments 
 

This section presents the results of comparisons of the proposed ABFC methods to the 
methods of subset selection and to a number of other well known state-of-the-art regression 
modelling methods using a series of synthetic and real-world regression data sets. The goal 
is to gain some understanding of the properties of F-ABFC and EF-ABFC and to evaluate 
their performance in both accuracy and speed. All the experiments were performed on a 
Pentium IV 2.4GHz machine with 1.5GB RAM. 
In all the experiments, predictive performance of a model is measured either using a 
completely independent test data set or using Cross-Validation. In any case the performance 
of a model is measured in terms of Relative Root Mean Squared Error: 
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where nt is the number of samples in the test data set, F(xj) is the predicted value 
corresponding to the value of yj, and y  is the mean of all the y values in the test set. While 
RMSE (Root Mean Square Error) represents model’s deviation from the data, the SD 
(Standard Deviation) captures how irregular the problem is. The lower the value of RRMSE, 
the more accurate is the model. The final RRMSE values stated are the values averaged over 
all evaluations. 
All the employed regression modelling methods, except Regression Trees, Model Trees, 
Support Vector Machines, and Multi-Layer Perceptrons, are implemented in VariReg 
software tool version 0.9.21 freely available for non-commercial research and educational 
purposes at http://www.cs.rtu.lv/jekabsons/. 

 
6.1 Synthetic data sets 
To compare the performance of the proposed ABFC methods against subset selection (as 
well as against “full” polynomials with no subset selection) in different conditions of 
signal-to-noise ratio (SNR) and training data size, here two test functions are used – Synth1 
(4 input variables) and Synth2 (10 input variables): 
 

 )sin())sin(2exp( 32411 xxxxySynth   , (20) 
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For Synth1 the values of x are uniformly distributed in the interval [-0.25, 0.25]. For Synth2 
they are uniformly distributed in the interval [0, 1]. For each test function three training set 
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where P is the predicted probability of y being equal to 1. It is equivalent to the following 
representation of P: 
 
  ))(exp(11 xFP  . (17) 
 
The parameters a of the model are usually estimated by minimizing the deviance: 
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Since there is no closed form solution to this minimization, the standard approach to solving 
it is to use iterative algorithms such as Iteratively Re-weighted Least-Squares (Hastie et al., 
2003; Witten & Frank, 2005). Note that, in order to evaluate a model using AICC, the first 
term of (13) is replaced by the deviance. 
F-ABFC and EF-ABFC for classification problems are implemented in the VariClass software 
tool freely available for non-commercial research and educational purposes at 
http://www.cs.rtu.lv/jekabsons/. 

 
5. Related work 
 

There exist also other polynomial regression modelling methods which use wide, potentially 
infinite, dictionaries of basis functions. In (Sutton & Matheus, 1991) an algorithm is 
proposed which starts model building with a first-degree model, with all the input variables 
already included in the model, and iteratively creates a user-predefined number of products 
of the already included basis functions thereby creating new basis functions. In (Orosz & 
Anderson, 1994) a modification of the algorithm is proposed where the initial model has 
none of the input variables included, however there was no empirical success and it was 
concluded that in practical applications the algorithms have three major disadvantages: 
inability to construct all the necessary basis functions, inability to discard unnecessary basis 
functions, and high sensitivity to noise and to number of samples in data. 
More recently a different method was developed which can be seen also as a special case of 
the ABFC approach – Constrained Induction of Polynomial Equations for Regression, CIPER 
(Todorovski et al., 2004). CIPER was initially developed in the context of differential 
equation discovery, inductive databases, and constraint-based data mining. CIPER uses two 
state-transition operators and a Beam Search strategy. The first state-transition operator 
adds a new linear basis function while the second increases a single exponent of a single 
basis function. In (Jekabsons & Lavendels, 2008a), CIPER was empirically compared to 
F-ABFC and it was concluded that CIPER suffers form the nesting effect (Pudil et al., 1994) 
and has a tendency of getting stuck in local minima too early in the search. This is because 
CIPER is not able to preserve the structure of any of included basis functions (its second 
operator increases an exponent in an existing basis function but does not take into 
consideration the possibility that both versions of the basis function may be required) as 
well as because it is not able to simplify a model – decrease unnecessarily high exponents or 
discard unnecessary basis functions. In F-ABFC these issues are solved using Operator2 and 
the simplification operators. 

Some similar ideas of constructing new features as combinations of original input variables 
are applied also in different other approaches. For example, in (Ritthoff et al., 2002) a feature 
construction method is proposed in which a genetic algorithm constructs linear and 
nonlinear combinations of original input variables further used as inputs for Support Vector 
Machines. In (Bloedorn & Michalski, 1998), on the other hand, the feature construction idea 
is used for data-driven expansion of the input space for induction of decision rules and 
decision trees. 

 
6. Experiments 
 

This section presents the results of comparisons of the proposed ABFC methods to the 
methods of subset selection and to a number of other well known state-of-the-art regression 
modelling methods using a series of synthetic and real-world regression data sets. The goal 
is to gain some understanding of the properties of F-ABFC and EF-ABFC and to evaluate 
their performance in both accuracy and speed. All the experiments were performed on a 
Pentium IV 2.4GHz machine with 1.5GB RAM. 
In all the experiments, predictive performance of a model is measured either using a 
completely independent test data set or using Cross-Validation. In any case the performance 
of a model is measured in terms of Relative Root Mean Squared Error: 
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where nt is the number of samples in the test data set, F(xj) is the predicted value 
corresponding to the value of yj, and y  is the mean of all the y values in the test set. While 
RMSE (Root Mean Square Error) represents model’s deviation from the data, the SD 
(Standard Deviation) captures how irregular the problem is. The lower the value of RRMSE, 
the more accurate is the model. The final RRMSE values stated are the values averaged over 
all evaluations. 
All the employed regression modelling methods, except Regression Trees, Model Trees, 
Support Vector Machines, and Multi-Layer Perceptrons, are implemented in VariReg 
software tool version 0.9.21 freely available for non-commercial research and educational 
purposes at http://www.cs.rtu.lv/jekabsons/. 

 
6.1 Synthetic data sets 
To compare the performance of the proposed ABFC methods against subset selection (as 
well as against “full” polynomials with no subset selection) in different conditions of 
signal-to-noise ratio (SNR) and training data size, here two test functions are used – Synth1 
(4 input variables) and Synth2 (10 input variables): 
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For Synth1 the values of x are uniformly distributed in the interval [-0.25, 0.25]. For Synth2 
they are uniformly distributed in the interval [0, 1]. For each test function three training set 
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sizes (25 samples, 50 samples, and 100 samples) and three signal-to-noise ratios (no noise, 
SNR = 4, and SNR = 2) are used – a total of nine cases for each function. For each case a series 
of 20 training data sets are generated (randomly sampled in the domain of x) so that in each 
case for each regression modelling method the model building task is performed 20 times. 
For each test functions a single test data set is generated containing 5000 samples randomly 
sampled in the domain of x. The test data sets do not contain noise. 
The heuristic search algorithms used for the subset selection are the SFS and the SFFS (the 
same algorithm adaptation of which is used in the ABFC methods). The algorithms are used 
together with the AICC criterion (also the same which is used in the ABFC methods). Note 
that the “recursion depth” hyperparameter of F-ABFC is set equal to 2 for Synth1 and equal 
to 1 (no recursion) for Synth2. 
As for the full polynomials (FP) and the subset selection methods the desirable degree p is 
not known beforehand, the modelling results of these methods are stated in two forms: 
1) average performance of models of a fixed p; 2) average performance when a range of 
values for p are tried and the model of the lowest RRMSE value is picked. However, note 
that this second type of procedure for FP/SFS/SFFS is rather optimistic (in the sense of both 
predictive performance and speed) as for correct and fair evaluations there would be an 
additional validation data set or a Cross-Validation loop required. 
 

No noise n = 25 n = 50 n = 100 
Method RRMSE Time (s) RRMSE Time (s) RRMSE Time (s) 

FP, p  [1, 4] 9.29 (1.88) - 6.74 (0.55) - 0.78 (0.21) - 
SFS, p = 2 7.17 (1.03) < 0.1 6.38 (0.58) < 0.1 5.63 (0.28) < 0.1 
SFS, p = 6 0.77 (2.24) 0.3 0.06 (0.02) 1.4 0.04 (1e-2) 8.0 
SFS, p = 10 3.19 (7.41) 1.8 0.03 (0.04) 16.1 2e-3 (7e-3) 104.3 
SFS, p  [1, 10] 0.77 (2.24) 4.4 0.03 (0.03) 34.1 2e-3 (7e-3) 226.1 
SFFS, p  [1, 10] 0.77 (2.24) 4.5 0.03 (0.03) 30.4 2e-4 (1e-4) 236.9 
F-ABFC 0.11 (0.15) 0.1 0.01 (0.02) 2.0 3e-7 (5e-7) 43.8 
EF-ABFC 0.27 (0.31) 0.8 0.02 (0.02) 11.5 1e-4 (4e-4) 250.6 

SNR = 4  
FP, p  [1, 4] 42.71 (16.31) - 18.36 (2.53) - 12.12 (1.59) - 
SFS, p = 2 24.24 (10.87) < 0.1 15.62 (2.99) < 0.1 10.64 (2.38) < 0.1 
SFS, p = 6 59.37 (28.09) 0.1 41.37 (11.76) 0.3 25.60 (9.49) 0.8 
SFS, p = 10 112.02 (149.28) 0.7 74.10 (40.38) 3.4 39.23 (10.92) 7.9 
SFS, p  [1, 10] 24.24 (10.87) 1.7 15.62 (2.99) 8.7 10.64 (2.38) 19.5 
SFFS, p  [1, 10] 24.24 (10.87) 1.8 15.62 (2.99) 7.6 10.64 (2.38) 21.0 
F-ABFC 39.05 (17.97) < 0.1 33.13 (15.64) 0.1 22.64 (10.73) 0.3 
EF-ABFC 20.24 (6.76) 0.3 13.65 (3.82) 0.8 9.08 (3.16) 2.1 

SNR = 2  
FP, p  [1, 4] 79.40 (37.25) - 35.97 (8.35) - 21.79 (4.29) - 
SFS, p = 2 36.35 (12.40) < 0.1 26.51 (9.87) < 0.1 18.55 (4.35) < 0.1 
SFS, p = 6 88.32 (32.57) 0.1 70.34 (24.81) 0.3 47.11 (16.95) 1.0 
SFS, p = 10 209.98 (213.00) 0.8 99.26 (40.07) 2.8 78.04 (31.78) 8.1 
SFS, p  [1, 10] 36.35 (12.40) 1.7 26.51 (9.87) 5.9 18.55 (4.35) 18.7 
SFFS, p  [1, 10] 36.35 (12.40) 1.7 26.64 (10.08) 6.3 18.55 (4.35) 19.5 
F-ABFC 58.43 (19.72) < 0.1 72.44 (62.43) < 0.1 39.93 (19.91) 0.2 
EF-ABFC 35.23 (11.04) 0.3 24.94 (6.18) 0.7 17.67 (4.45) 1.8 

Table 1. The results of the performed experiments for function Synth1 

The results of the performed experiments are summarized in Table 1 and Table 2 in terms of 
mean RRMSE value, with its standard deviation reported in parenthesis, and elapsed time. 
Note that, due to the space constraints, for fixed degrees only the results of p  {2, 6, 10} (for 
Synth1), p  {2, 5} (for Synth2) are given. Detailed results are available at 
http://www.cs.rtu.lv/jekabsons/. 
Figure 6 and Figure 7 visualizes the performance changes of the methods for different 
training set sizes and SNRs. 
 

 
Fig. 6. Performance of the methods for function Synth1 for the different training set sizes 
and SNRs: (a) no noise; (b) SNR = 4 (solid lines) and SNR = 2 (dashed lines) 
 

No noise n = 25 n = 50 n = 100 
Method RRMSE Time (s) RRMSE Time (s) RRMSE Time (s) 

FP, p  [1, 2] 45.40 (4.86) - 38.73 (2.06) - 13.07 (1.37) - 
SFS, p = 2 38.17 (13.99) < 0.1 19.13 (3.20) 0.2 11.27 (1.35) 1.0 
SFS, p = 5 80.25 (23.80) 12.8 29.13 (12.73) 53.6 4.66 (2.79) 542.9 
SFS, p  [1, 5] 38.17 (13.99) 14.7 19.13 (3.20) 57.1 4.64 (0.88) 658.7 
SFFS, p  [1, 5] 37.40 (12.36) 15.9 20.20 (4.03) 82.5 4.01 (2.87) 680.4 
F-ABFC 52.86 (11.46) < 0.1 13.14 (6.96) 0.7 1.59 (1.58) 16.5 
EF-ABFC 56.39 (16.40) 0.3 12.92 (3.08) 4.2 0.95 (0.46) 98.7 

SNR = 4  
FP, p  [1, 2] 51.78 (8.53) - 41.31 (3.25) - 37.38 (1.51) - 
SFS, p = 2 58.85 (15.18) < 0.1 35.44 (7.05) 0.1 23.63 (4.02) 0.3 
SFS, p = 5 180.68 (68.02) 10.7 82.78 (23.99) 66.0 62.00 (10.43) 258.7 
SFS, p  [1, 5] 58.85 (15.18) 13.1 35.44 (7.05) 77.8 23.63 (4.02) 298.8 
SFFS, p  [1, 5] 61.01 (17.19) 14.2 35.88 (8.69) 78.2 24.21 (3.57) 373.5 
F-ABFC 79.07 (35.39) < 0.1 45.59 (9.28) 0.1 28.89 (7.25) 0.5 
EF-ABFC 62.79 (11.47) 0.3 35.57 (7.35) 1.3 20.37 (3.51) 6.3 

SNR = 2  
FP, p  [1, 2] 61.23 (9.17) - 46.61 (4.73) - 40.81 (3.12) - 
SFS, p = 2 73.81 (17.63) < 0.1 51.69 (8.15) 0.1 37.20 (6.57) 0.2 
SFS, p = 5 180.68 (68.02) 11.0 135.99 (37.13) 47.6 115.01 (31.12) 208.9 
SFS, p  [1, 5] 73.81 (17.63) 13.3 47.92 (6.96) 57.4 37.20 (6.57) 253.0 
SFFS, p  [1, 5] 76.43 (11.56) 14.3 50.41 (9.44) 64.3 35.15 (5.16) 369.3 
F-ABFC 82.42 (18.79) < 0.1 68.08 (15.40) 0.1 49.61 (13.73) 0.3 
EF-ABFC 70.84 (9.52) 0.2 51.11 (8.79) 0.8 34.54 (5.93) 3.9 

Table 2. The results of the performed experiments for function Synth2 
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sizes (25 samples, 50 samples, and 100 samples) and three signal-to-noise ratios (no noise, 
SNR = 4, and SNR = 2) are used – a total of nine cases for each function. For each case a series 
of 20 training data sets are generated (randomly sampled in the domain of x) so that in each 
case for each regression modelling method the model building task is performed 20 times. 
For each test functions a single test data set is generated containing 5000 samples randomly 
sampled in the domain of x. The test data sets do not contain noise. 
The heuristic search algorithms used for the subset selection are the SFS and the SFFS (the 
same algorithm adaptation of which is used in the ABFC methods). The algorithms are used 
together with the AICC criterion (also the same which is used in the ABFC methods). Note 
that the “recursion depth” hyperparameter of F-ABFC is set equal to 2 for Synth1 and equal 
to 1 (no recursion) for Synth2. 
As for the full polynomials (FP) and the subset selection methods the desirable degree p is 
not known beforehand, the modelling results of these methods are stated in two forms: 
1) average performance of models of a fixed p; 2) average performance when a range of 
values for p are tried and the model of the lowest RRMSE value is picked. However, note 
that this second type of procedure for FP/SFS/SFFS is rather optimistic (in the sense of both 
predictive performance and speed) as for correct and fair evaluations there would be an 
additional validation data set or a Cross-Validation loop required. 
 

No noise n = 25 n = 50 n = 100 
Method RRMSE Time (s) RRMSE Time (s) RRMSE Time (s) 

FP, p  [1, 4] 9.29 (1.88) - 6.74 (0.55) - 0.78 (0.21) - 
SFS, p = 2 7.17 (1.03) < 0.1 6.38 (0.58) < 0.1 5.63 (0.28) < 0.1 
SFS, p = 6 0.77 (2.24) 0.3 0.06 (0.02) 1.4 0.04 (1e-2) 8.0 
SFS, p = 10 3.19 (7.41) 1.8 0.03 (0.04) 16.1 2e-3 (7e-3) 104.3 
SFS, p  [1, 10] 0.77 (2.24) 4.4 0.03 (0.03) 34.1 2e-3 (7e-3) 226.1 
SFFS, p  [1, 10] 0.77 (2.24) 4.5 0.03 (0.03) 30.4 2e-4 (1e-4) 236.9 
F-ABFC 0.11 (0.15) 0.1 0.01 (0.02) 2.0 3e-7 (5e-7) 43.8 
EF-ABFC 0.27 (0.31) 0.8 0.02 (0.02) 11.5 1e-4 (4e-4) 250.6 

SNR = 4  
FP, p  [1, 4] 42.71 (16.31) - 18.36 (2.53) - 12.12 (1.59) - 
SFS, p = 2 24.24 (10.87) < 0.1 15.62 (2.99) < 0.1 10.64 (2.38) < 0.1 
SFS, p = 6 59.37 (28.09) 0.1 41.37 (11.76) 0.3 25.60 (9.49) 0.8 
SFS, p = 10 112.02 (149.28) 0.7 74.10 (40.38) 3.4 39.23 (10.92) 7.9 
SFS, p  [1, 10] 24.24 (10.87) 1.7 15.62 (2.99) 8.7 10.64 (2.38) 19.5 
SFFS, p  [1, 10] 24.24 (10.87) 1.8 15.62 (2.99) 7.6 10.64 (2.38) 21.0 
F-ABFC 39.05 (17.97) < 0.1 33.13 (15.64) 0.1 22.64 (10.73) 0.3 
EF-ABFC 20.24 (6.76) 0.3 13.65 (3.82) 0.8 9.08 (3.16) 2.1 

SNR = 2  
FP, p  [1, 4] 79.40 (37.25) - 35.97 (8.35) - 21.79 (4.29) - 
SFS, p = 2 36.35 (12.40) < 0.1 26.51 (9.87) < 0.1 18.55 (4.35) < 0.1 
SFS, p = 6 88.32 (32.57) 0.1 70.34 (24.81) 0.3 47.11 (16.95) 1.0 
SFS, p = 10 209.98 (213.00) 0.8 99.26 (40.07) 2.8 78.04 (31.78) 8.1 
SFS, p  [1, 10] 36.35 (12.40) 1.7 26.51 (9.87) 5.9 18.55 (4.35) 18.7 
SFFS, p  [1, 10] 36.35 (12.40) 1.7 26.64 (10.08) 6.3 18.55 (4.35) 19.5 
F-ABFC 58.43 (19.72) < 0.1 72.44 (62.43) < 0.1 39.93 (19.91) 0.2 
EF-ABFC 35.23 (11.04) 0.3 24.94 (6.18) 0.7 17.67 (4.45) 1.8 

Table 1. The results of the performed experiments for function Synth1 

The results of the performed experiments are summarized in Table 1 and Table 2 in terms of 
mean RRMSE value, with its standard deviation reported in parenthesis, and elapsed time. 
Note that, due to the space constraints, for fixed degrees only the results of p  {2, 6, 10} (for 
Synth1), p  {2, 5} (for Synth2) are given. Detailed results are available at 
http://www.cs.rtu.lv/jekabsons/. 
Figure 6 and Figure 7 visualizes the performance changes of the methods for different 
training set sizes and SNRs. 
 

 
Fig. 6. Performance of the methods for function Synth1 for the different training set sizes 
and SNRs: (a) no noise; (b) SNR = 4 (solid lines) and SNR = 2 (dashed lines) 
 

No noise n = 25 n = 50 n = 100 
Method RRMSE Time (s) RRMSE Time (s) RRMSE Time (s) 

FP, p  [1, 2] 45.40 (4.86) - 38.73 (2.06) - 13.07 (1.37) - 
SFS, p = 2 38.17 (13.99) < 0.1 19.13 (3.20) 0.2 11.27 (1.35) 1.0 
SFS, p = 5 80.25 (23.80) 12.8 29.13 (12.73) 53.6 4.66 (2.79) 542.9 
SFS, p  [1, 5] 38.17 (13.99) 14.7 19.13 (3.20) 57.1 4.64 (0.88) 658.7 
SFFS, p  [1, 5] 37.40 (12.36) 15.9 20.20 (4.03) 82.5 4.01 (2.87) 680.4 
F-ABFC 52.86 (11.46) < 0.1 13.14 (6.96) 0.7 1.59 (1.58) 16.5 
EF-ABFC 56.39 (16.40) 0.3 12.92 (3.08) 4.2 0.95 (0.46) 98.7 

SNR = 4  
FP, p  [1, 2] 51.78 (8.53) - 41.31 (3.25) - 37.38 (1.51) - 
SFS, p = 2 58.85 (15.18) < 0.1 35.44 (7.05) 0.1 23.63 (4.02) 0.3 
SFS, p = 5 180.68 (68.02) 10.7 82.78 (23.99) 66.0 62.00 (10.43) 258.7 
SFS, p  [1, 5] 58.85 (15.18) 13.1 35.44 (7.05) 77.8 23.63 (4.02) 298.8 
SFFS, p  [1, 5] 61.01 (17.19) 14.2 35.88 (8.69) 78.2 24.21 (3.57) 373.5 
F-ABFC 79.07 (35.39) < 0.1 45.59 (9.28) 0.1 28.89 (7.25) 0.5 
EF-ABFC 62.79 (11.47) 0.3 35.57 (7.35) 1.3 20.37 (3.51) 6.3 

SNR = 2  
FP, p  [1, 2] 61.23 (9.17) - 46.61 (4.73) - 40.81 (3.12) - 
SFS, p = 2 73.81 (17.63) < 0.1 51.69 (8.15) 0.1 37.20 (6.57) 0.2 
SFS, p = 5 180.68 (68.02) 11.0 135.99 (37.13) 47.6 115.01 (31.12) 208.9 
SFS, p  [1, 5] 73.81 (17.63) 13.3 47.92 (6.96) 57.4 37.20 (6.57) 253.0 
SFFS, p  [1, 5] 76.43 (11.56) 14.3 50.41 (9.44) 64.3 35.15 (5.16) 369.3 
F-ABFC 82.42 (18.79) < 0.1 68.08 (15.40) 0.1 49.61 (13.73) 0.3 
EF-ABFC 70.84 (9.52) 0.2 51.11 (8.79) 0.8 34.54 (5.93) 3.9 

Table 2. The results of the performed experiments for function Synth2 
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The results in Table 1 indicate that for noise-free data the F-ABFC outperforms its much 
slower ensembled extension EF-ABFC while for noisy data it is vice versa. When the data 
contains noise, the F-ABFC here can be outperformed even by full polynomials which 
mostly give some of the worst performances. This suggests that for noisy data it is important 
to curb the flexibility of F-ABFC – to use the EF-ABFC even when the data is sparse. 
 

 
Fig. 7. Performance of the methods for function Synth2 for the different training set sizes 
and SNRs: (a) no noise; (b) SNR = 4 (solid lines) and SNR = 2 (dashed lines) 
 
The results in Table 2 partially confirm those in Table 1 except that this time the EF-ABFC is 
always more accurate than F-ABFC which may be caused by the three irrelevant input 
variables (pure noise) in the data on which the Synth2 does not depend. Additionally, as 
now in the case of n = 25 the data are very sparse, for this case the ABFC methods are just 
too flexible – they largely overfit the data even when there is no additional noise. 
Overall, the results for both Synth1 and Synth2 indicate the computational advantage of the 
ABFC methods in situations when the required regression model is more complex (of higher 
degree). And this advantage grows with the dimensionality of the problem. 
For noisy data the best choice of p for SFS/SFFS almost always was 2. Then the speed of a 
single SFS/SFFS search can be outperformed only by F-ABFC. However, as the best p value 
is actually unknown and a number of values must be tried, F-ABFC as well as EF-ABFC is 
still faster than the subset selection. 
Finally, it must also be noted that the overall results show evidence that for subset selection 
the choice of the search algorithm (either SFS or SFFS) was of no great importance. Therefore 
further in this study only the SFS algorithm for subset selection is considered. 

 
6.2 Real-world machine learning data sets 
The real-world machine learning regression data sets used are: autoMPG (7 input variables, 
392 samples), AutoPrice (15 input variables, 159 samples), Bodyfat (14 input variables, 252 
samples), Fishcatch (7 input variables, 158 samples), Housing (13 input variables, 506 
samples), HousingNOX (13 input variables, 506 samples), MachineCPU (6 input variables, 
209 samples), Pyrimidines (27 input variables, 73 samples), Servo (4 input variables, 167 
samples), and Stock (9 input variables, 950 samples). The data sets are from UCI Machine 
Learning Repository (http://www.ics.uci.edu/~mlearn/MLRepository.html), Luis Torgo’s 
data sets repository (http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html), and 

Weka collection of data sets (http://www.cs.waikato.ac.nz/ml/weka/). They are chosen 
because of the relatively low number of samples, which is common in real-world practical 
applications, as well as because of mostly continuous input variables and no missing values. 
Here the performances of the different regression modelling methods are evaluated using 
10-fold Cross-Validation. Note that prior to dividing the data into Cross-Validation folds, 
the order of the samples was randomized. 
The goal of the performed experiments is to compare the proposed ABFC methods to the 
methods of subset selection and to other well known state-of-the-art regression modelling 
methods using a set of real-world regression data sets. The compared methods are the 
following: FP, SFS, F-ABFC, EF-ABFC, Multivariate Adaptive Regression Splines (MARS) 
(Friedman, 1993), M5' Regression Trees (RT) (Witten & Frank, 2005), M5' Model Trees (MT) 
(Witten & Frank, 2005), Support Vector Machines (SVM) (Vapnik, 1995; Smola & Scholkopf, 
2004), and Multi-Layer Perceptrons (Witten & Frank, 2005). Note that for none of the 
methods any of the hyperparameters were manually tuned. MARS was that of 
piecewise-cubic type essentially without special limitation of the number of basis functions 
(i.e. the limit was 500) and with the smoothing parameter (the number of degrees of freedom 
associated with one basis function) either fixed to the default value of 3 or found using an 
additional 10-fold Cross-Validation from the range [1, 5] with step size 0.5. SVM used Radial 
Basis Function kernel and improved Sequential Minimal Optimization algorithm (Shevade 
et al., 1999) for which the complexity parameter and the gamma parameter were found 
using grid search and Cross-Validation from the range {10-1, 100, 101, 102} for the complexity 
parameter and {10-2, 10-1, 100, 101} for the gamma parameter. MLP had one hidden layer 
with the “best” number of neurons determined by 10-fold Cross-Validation from the range 
{10, 20, 30, 40} and the weights were optimized using backpropagation. As implementations 
of RT, MT, SVM, and MLP the Weka software (Witten & Frank, 2005) was employed with its 
default parameters. Also note that for the ABFC methods the recursion of the state-transition 
operators was never used. 
The results of the performed experiments are summarized in Table 3 in terms of mean 
RRMSE value, with the standard deviation reported in parenthesis, and elapsed time. Here 
the modelling results of SFS are stated in the same two forms as in Section 6.1 except that for 
the different data sets (different in size, in number of input variables, and in required model 
complexity) the values of p are tried in different intervals (named “p = automatic”) – the 
search for the best p is started with the first degree and p is increased as long as the RRMSE 
value improves. The results of FP are not stated, as due to matrix singularity in OLS for 
Pyrimidines data set the parameter values of FP models could not be calculated. Also note 
that, due to the space constraints, only the results averaged over all the data sets are given. 
Detailed results are available at http://www.cs.rtu.lv/jekabsons/. 
From the results of the experiments it is concluded that in terms of predictive performance, 
the EF-ABFC outperformed all the other regression modelling methods involving 
polynomials as well as showed high competitiveness against the other “non-polynomial” 
methods. In terms of computational cost, both ABFC methods outperformed subset selection 
but were inferior to some of the “non-polynomial” methods, especially RT, MT, and MARS 
without CV. 
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The results in Table 1 indicate that for noise-free data the F-ABFC outperforms its much 
slower ensembled extension EF-ABFC while for noisy data it is vice versa. When the data 
contains noise, the F-ABFC here can be outperformed even by full polynomials which 
mostly give some of the worst performances. This suggests that for noisy data it is important 
to curb the flexibility of F-ABFC – to use the EF-ABFC even when the data is sparse. 
 

 
Fig. 7. Performance of the methods for function Synth2 for the different training set sizes 
and SNRs: (a) no noise; (b) SNR = 4 (solid lines) and SNR = 2 (dashed lines) 
 
The results in Table 2 partially confirm those in Table 1 except that this time the EF-ABFC is 
always more accurate than F-ABFC which may be caused by the three irrelevant input 
variables (pure noise) in the data on which the Synth2 does not depend. Additionally, as 
now in the case of n = 25 the data are very sparse, for this case the ABFC methods are just 
too flexible – they largely overfit the data even when there is no additional noise. 
Overall, the results for both Synth1 and Synth2 indicate the computational advantage of the 
ABFC methods in situations when the required regression model is more complex (of higher 
degree). And this advantage grows with the dimensionality of the problem. 
For noisy data the best choice of p for SFS/SFFS almost always was 2. Then the speed of a 
single SFS/SFFS search can be outperformed only by F-ABFC. However, as the best p value 
is actually unknown and a number of values must be tried, F-ABFC as well as EF-ABFC is 
still faster than the subset selection. 
Finally, it must also be noted that the overall results show evidence that for subset selection 
the choice of the search algorithm (either SFS or SFFS) was of no great importance. Therefore 
further in this study only the SFS algorithm for subset selection is considered. 

 
6.2 Real-world machine learning data sets 
The real-world machine learning regression data sets used are: autoMPG (7 input variables, 
392 samples), AutoPrice (15 input variables, 159 samples), Bodyfat (14 input variables, 252 
samples), Fishcatch (7 input variables, 158 samples), Housing (13 input variables, 506 
samples), HousingNOX (13 input variables, 506 samples), MachineCPU (6 input variables, 
209 samples), Pyrimidines (27 input variables, 73 samples), Servo (4 input variables, 167 
samples), and Stock (9 input variables, 950 samples). The data sets are from UCI Machine 
Learning Repository (http://www.ics.uci.edu/~mlearn/MLRepository.html), Luis Torgo’s 
data sets repository (http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html), and 

Weka collection of data sets (http://www.cs.waikato.ac.nz/ml/weka/). They are chosen 
because of the relatively low number of samples, which is common in real-world practical 
applications, as well as because of mostly continuous input variables and no missing values. 
Here the performances of the different regression modelling methods are evaluated using 
10-fold Cross-Validation. Note that prior to dividing the data into Cross-Validation folds, 
the order of the samples was randomized. 
The goal of the performed experiments is to compare the proposed ABFC methods to the 
methods of subset selection and to other well known state-of-the-art regression modelling 
methods using a set of real-world regression data sets. The compared methods are the 
following: FP, SFS, F-ABFC, EF-ABFC, Multivariate Adaptive Regression Splines (MARS) 
(Friedman, 1993), M5' Regression Trees (RT) (Witten & Frank, 2005), M5' Model Trees (MT) 
(Witten & Frank, 2005), Support Vector Machines (SVM) (Vapnik, 1995; Smola & Scholkopf, 
2004), and Multi-Layer Perceptrons (Witten & Frank, 2005). Note that for none of the 
methods any of the hyperparameters were manually tuned. MARS was that of 
piecewise-cubic type essentially without special limitation of the number of basis functions 
(i.e. the limit was 500) and with the smoothing parameter (the number of degrees of freedom 
associated with one basis function) either fixed to the default value of 3 or found using an 
additional 10-fold Cross-Validation from the range [1, 5] with step size 0.5. SVM used Radial 
Basis Function kernel and improved Sequential Minimal Optimization algorithm (Shevade 
et al., 1999) for which the complexity parameter and the gamma parameter were found 
using grid search and Cross-Validation from the range {10-1, 100, 101, 102} for the complexity 
parameter and {10-2, 10-1, 100, 101} for the gamma parameter. MLP had one hidden layer 
with the “best” number of neurons determined by 10-fold Cross-Validation from the range 
{10, 20, 30, 40} and the weights were optimized using backpropagation. As implementations 
of RT, MT, SVM, and MLP the Weka software (Witten & Frank, 2005) was employed with its 
default parameters. Also note that for the ABFC methods the recursion of the state-transition 
operators was never used. 
The results of the performed experiments are summarized in Table 3 in terms of mean 
RRMSE value, with the standard deviation reported in parenthesis, and elapsed time. Here 
the modelling results of SFS are stated in the same two forms as in Section 6.1 except that for 
the different data sets (different in size, in number of input variables, and in required model 
complexity) the values of p are tried in different intervals (named “p = automatic”) – the 
search for the best p is started with the first degree and p is increased as long as the RRMSE 
value improves. The results of FP are not stated, as due to matrix singularity in OLS for 
Pyrimidines data set the parameter values of FP models could not be calculated. Also note 
that, due to the space constraints, only the results averaged over all the data sets are given. 
Detailed results are available at http://www.cs.rtu.lv/jekabsons/. 
From the results of the experiments it is concluded that in terms of predictive performance, 
the EF-ABFC outperformed all the other regression modelling methods involving 
polynomials as well as showed high competitiveness against the other “non-polynomial” 
methods. In terms of computational cost, both ABFC methods outperformed subset selection 
but were inferior to some of the “non-polynomial” methods, especially RT, MT, and MARS 
without CV. 
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Method RRMSE Time (s) 
SFS, p = 1 49.64 (12.05) < 0.1
SFS, p = 2 40.89 (15.11) 4.8
SFS, p = 3 37.83 (15.70) 227.4
SFS, p = 4 47.10 (29.17) 2486.8
SFS, p = automatic 34.83 (10.20) 2207.5
F-ABFC 39.61 (16.93) 108.7
EF-ABFC 31.24 (10.86) 607.8
RT 50.76 (9.85) 0.3
MT 34.79 (12.35) 0.4
MARS 40.81 (17.29) 3.2
MARS + CV 39.87 (15.57) 265.8
SVM 31.87 (10.73) 360.5
MLP 41.50 (18.04) 345.2

Table 3. The average results of the performed experiments for the ten machine learning data 
sets 
 

 
Fig. 8. RRMSE values of the six best methods for the ten data sets 
 
For the different data sets, the best found degree p for SFS with “p = automatic” varied in 
range [1, 6] (with the average value of 3.0), meaning that the maximal checked value of p 
was 7 (though for only one of the data sets). However, the average degree of models 
constructed by F-ABFC and EF-ABFC was 6.4 and 7.2 correspondingly. If on average for SFS 
such large values of p would be tried (instead of only 3.0), the SFS would take considerably 
more time (orders of magnitude) to complete. 

 
6.3 Real-world metamodelling data sets 
In many different industrial applications, to cut down the computational cost of complex, 
high fidelity scientific and engineering simulations, regression models (in the context also 
referred to as metamodels or surrogate models) are constructed that mimic the behaviour of 
the simulation models as closely as possible while being computationally much cheaper to 
employ (Myers & Montgomery, 2002; Chen et al., 2006; Martin & Simpson, 2005; Kalnins et 
al., 2008b; Kalnins et al., 2008a, Kalnins et al., 2009a; Kalnins et al., 2009b). The process of 
design optimization involving metamodelling usually comprises three major steps which 
may be interleaved iteratively: 1) selection of samples (known as design of experiments); 
2) construction of metamodel and estimation of its predictive performance; 3) employment 
of the metamodel in design optimization (i.e., finding the best values for input variables 

with which the studied system achieves the optimum response), design space exploration, 
what-if analysis, sensitivity analysis, and other routine tasks. 
The metamodelling problem addressed here is modelling of the behaviour of “I-core” 
all-metal laser-welded sandwich panels under bending load for further design optimization 
and analysis in application as deck panels in a modularised watercraft concept (Kalnins et 
al., 2008a). The problem has six input variables and four output variables. The data are 
generated using finite element simulations and contains 500 samples distributed in the input 
space using sequential experimental design (Auzins, 2004). 
Originally, metamodelling was associated with low-degree (usually quadratic) polynomial 
models. They have been well accepted in engineering practice, as they require only little 
data and are computationally very efficient. However, it is understood that they are loosing 
efficiency when highly nonlinear behaviour should be approximated. 
In this section the compared regression modelling methods are the same as in the Section 6.2 
with an addition of three methods which are rather popular in metamodelling literature: 
Locally-Weighted Polynomials (LWP) (Cleveland & Devlin, 1988; Kalnins et al., 2008b; 
Kalnins et al., 2005), Radial Basis Functions (RBF) (Gutmann, 2001), and Kriging (Martin & 
Simpson, 2005, Lophaven et al., 2002). Note again that for none of the methods any of the 
hyperparameters were manually tuned. LWP used the Gaussian weight function with the 
value of the bandwidth parameter found by Leave-One-Out Cross-Validation. Note that the 
LWP has a similar issue of degree p selection as FP and SFS, so here a number of different 
degrees are tried in the interval [1, 4]. RBF used the multi-quadric basis functions with the 
shape parameter fixed to 1. Kriging used first-degree polynomial as a trend function and 
employed the Gaussian correlation function. Note that the used source code for the Kriging 
technique was developed by (Lophaven et al., 2002). Also note that for the ABFC methods in 
the performed experiments the recursion of the state-transition operators was never used. 
The results of the performed experiments are summarized in Table 4 in terms of mean 
RRMSE value, with its standard deviation reported in parenthesis, and elapsed time. Here 
the performances of the different regression modelling methods are evaluated using 5-fold 
Cross-Validation. The modelling results of FP and SFS are stated in the same two forms as in 
Section 6.1. Note that, due to the space constraints, only the results averaged over all the 
data sets are given. Detailed results (as well as the utilized data sets) are available at 
http://www.cs.rtu.lv/jekabsons/. 
The results in Table 4 indicate that with the four metamodelling data sets (all of which are 
essentially noise-free) the ensembling of F-ABFC models was not necessary – the accuracy 
advantage of EF-ABFC is negligible while it is computationally about ten times slower than 
simple F-ABFC. However, both F-ABFC and EF-ABFC outperformed subset selection in 
terms of predictive performance as well as in terms of speed. In respect to the other methods 
the ABFC approach once again is highly competitive, especially the faster F-ABFC method. 
With the metamodelling data sets, on average the best degree p for SFS was 6.3 while the 
average degree of models constructed by F-ABFC and EF-ABFC was 9.2 and 7.9 
correspondingly. Similarly to the conclusions of the previous section, trying these larger 
values of p for SFS would take orders of magnitude more time to complete. 
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Method RRMSE Time (s) 
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SFS, p = 2 40.89 (15.11) 4.8
SFS, p = 3 37.83 (15.70) 227.4
SFS, p = 4 47.10 (29.17) 2486.8
SFS, p = automatic 34.83 (10.20) 2207.5
F-ABFC 39.61 (16.93) 108.7
EF-ABFC 31.24 (10.86) 607.8
RT 50.76 (9.85) 0.3
MT 34.79 (12.35) 0.4
MARS 40.81 (17.29) 3.2
MARS + CV 39.87 (15.57) 265.8
SVM 31.87 (10.73) 360.5
MLP 41.50 (18.04) 345.2

Table 3. The average results of the performed experiments for the ten machine learning data 
sets 
 

 
Fig. 8. RRMSE values of the six best methods for the ten data sets 
 
For the different data sets, the best found degree p for SFS with “p = automatic” varied in 
range [1, 6] (with the average value of 3.0), meaning that the maximal checked value of p 
was 7 (though for only one of the data sets). However, the average degree of models 
constructed by F-ABFC and EF-ABFC was 6.4 and 7.2 correspondingly. If on average for SFS 
such large values of p would be tried (instead of only 3.0), the SFS would take considerably 
more time (orders of magnitude) to complete. 

 
6.3 Real-world metamodelling data sets 
In many different industrial applications, to cut down the computational cost of complex, 
high fidelity scientific and engineering simulations, regression models (in the context also 
referred to as metamodels or surrogate models) are constructed that mimic the behaviour of 
the simulation models as closely as possible while being computationally much cheaper to 
employ (Myers & Montgomery, 2002; Chen et al., 2006; Martin & Simpson, 2005; Kalnins et 
al., 2008b; Kalnins et al., 2008a, Kalnins et al., 2009a; Kalnins et al., 2009b). The process of 
design optimization involving metamodelling usually comprises three major steps which 
may be interleaved iteratively: 1) selection of samples (known as design of experiments); 
2) construction of metamodel and estimation of its predictive performance; 3) employment 
of the metamodel in design optimization (i.e., finding the best values for input variables 

with which the studied system achieves the optimum response), design space exploration, 
what-if analysis, sensitivity analysis, and other routine tasks. 
The metamodelling problem addressed here is modelling of the behaviour of “I-core” 
all-metal laser-welded sandwich panels under bending load for further design optimization 
and analysis in application as deck panels in a modularised watercraft concept (Kalnins et 
al., 2008a). The problem has six input variables and four output variables. The data are 
generated using finite element simulations and contains 500 samples distributed in the input 
space using sequential experimental design (Auzins, 2004). 
Originally, metamodelling was associated with low-degree (usually quadratic) polynomial 
models. They have been well accepted in engineering practice, as they require only little 
data and are computationally very efficient. However, it is understood that they are loosing 
efficiency when highly nonlinear behaviour should be approximated. 
In this section the compared regression modelling methods are the same as in the Section 6.2 
with an addition of three methods which are rather popular in metamodelling literature: 
Locally-Weighted Polynomials (LWP) (Cleveland & Devlin, 1988; Kalnins et al., 2008b; 
Kalnins et al., 2005), Radial Basis Functions (RBF) (Gutmann, 2001), and Kriging (Martin & 
Simpson, 2005, Lophaven et al., 2002). Note again that for none of the methods any of the 
hyperparameters were manually tuned. LWP used the Gaussian weight function with the 
value of the bandwidth parameter found by Leave-One-Out Cross-Validation. Note that the 
LWP has a similar issue of degree p selection as FP and SFS, so here a number of different 
degrees are tried in the interval [1, 4]. RBF used the multi-quadric basis functions with the 
shape parameter fixed to 1. Kriging used first-degree polynomial as a trend function and 
employed the Gaussian correlation function. Note that the used source code for the Kriging 
technique was developed by (Lophaven et al., 2002). Also note that for the ABFC methods in 
the performed experiments the recursion of the state-transition operators was never used. 
The results of the performed experiments are summarized in Table 4 in terms of mean 
RRMSE value, with its standard deviation reported in parenthesis, and elapsed time. Here 
the performances of the different regression modelling methods are evaluated using 5-fold 
Cross-Validation. The modelling results of FP and SFS are stated in the same two forms as in 
Section 6.1. Note that, due to the space constraints, only the results averaged over all the 
data sets are given. Detailed results (as well as the utilized data sets) are available at 
http://www.cs.rtu.lv/jekabsons/. 
The results in Table 4 indicate that with the four metamodelling data sets (all of which are 
essentially noise-free) the ensembling of F-ABFC models was not necessary – the accuracy 
advantage of EF-ABFC is negligible while it is computationally about ten times slower than 
simple F-ABFC. However, both F-ABFC and EF-ABFC outperformed subset selection in 
terms of predictive performance as well as in terms of speed. In respect to the other methods 
the ABFC approach once again is highly competitive, especially the faster F-ABFC method. 
With the metamodelling data sets, on average the best degree p for SFS was 6.3 while the 
average degree of models constructed by F-ABFC and EF-ABFC was 9.2 and 7.9 
correspondingly. Similarly to the conclusions of the previous section, trying these larger 
values of p for SFS would take orders of magnitude more time to complete. 
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Method RRMSE Time (s) 
FP, p = 1 49.85 (4.82) -
FP, p = 2 23.81 (3.10) -
FP, p = 3 12.81 (1.77) -
FP, p = 4 9.88 (1.46) -
FP, p  [1, 4] 9.17 (1.28) -
SFS, p = 1 49.75 (4.68) < 0.1
SFS, p = 2 23.42 (3.15) 0.2
SFS, p = 3 11.74 (1.84) 4.2
SFS, p = 4 7.31 (1.35) 41.1
SFS, p = 5 5.62 (1.14) 220.3
SFS, p = 6 5.03 (0.78) 959.1
SFS, p = 7 5.05 (1.12) 1828.4
SFS, p  [1, 7] 4.92 (0.75) 3053.4
F-ABFC 4.28 (0.55) 71.9
EF-ABFC 4.19 (0.55) 715.4
RT 60.18 (7.87) 1.0
MT 22.27 (4.97) 4.7
MARS 5.87 (0.96) 0.9
MARS + CV 5.31 (0.84) 77.5
SVM 13.14 (2.57) 414.7
MLP 8.47 (1.03) 331.3
LWP, p = 1 40.22 (4.12) 2.8
LWP, p = 2 20.23 (2.79) 26.2
LWP, p = 3 11.66 (1.68) 210.6
LWP, p = 4 9.76 (1.42) 1576.7
RBF 14.48 (3.42) 1.9
Kriging 7.40 (1.21) 16.3

Table 4. The average results of the performed experiments for the four metamodelling data 
sets 
 
Note that in practice it turns out that the user all too often does model building in a 
“one-shot” manner, without consideration of different settings for a modelling method. 
With FP and SFS (as well as LWP) it could mean that almost any of the results stated in 
Table 4 (as well as in the other tables from previous sections) may be accepted as the final. 
Iterative and adaptive methods like those of ABFC, on the other hand, have the potential of 
relatively rapidly producing accurate models without the configuration burden. 

 
7. Conclusion 
 

This chapter introduced Adaptive Basis Function Construction – an adaptive sparse 
polynomial regression model building approach which can also be viewed as an alternative 
to the classical subset selection approach. In contrast to subset selection, the ABFC approach 
does not require putting restrictions on model’s degree, enables model building in 
polynomial time, and does not require repetition of the model building process. The basis 
functions required for the model are automatically adaptively constructed using heuristic 
search specifically for data at hand without using a restricted fixed finite user-predefined 
dictionary. The dictionary in the ABFC is infinite and polynomials of arbitrary complexity 
can be constructed. 
In most of the performed empirical experiments, the ABFC methods outperformed subset 
selection in terms of predictive performance as well as in terms of the amount of required 

computational resources. Moreover, in respect to the other well-known state-of-the-art 
regression methods, the ABFC approach is also highly competitive. Additionally, the ABFC 
methods have advantages also in their simple application – the underlying algorithms have 
very small number of hyperparameters for the user to tune and result in simple explicit 
equations employable without specialized software. 
Comparing the two specific methods F-ABFC and EF-ABFC, it is concluded that EF-ABFC 
has predictive performance advantage over F-ABFC when the data contains noise, be it in 
terms of signal-to-noise ratio or in terms of irrelevant input variables. On the other hand, 
F-ABFC is much faster than EF-ABFC and can produce more accurate models when the data 
is noise-free. Nevertheless, both methods may require the “recursion depth” 
hyperparameter to be set to a value higher than 1 when the data is of low dimensionality 
(e.g., 4d ) and/or the existing structure in the data requires a very complex model. 
As future work, some of the ideas described in Section 4.7 could be pursued. 
Software (including open source) implementing the ABFC methods, as well as most of the 
other regression methods employed in this chapter, can be downloaded at the author’s 
webpage: http://www.cs.rtu.lv/jekabsons/. 
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