
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

7,000



On The Combination of Feature and Instance Selection 157

On The Combination of Feature and Instance Selection

Jerffeson Teixeira de Souza, Rafael Augusto Ferreira do Carmo and Gustavo Augusto 
Campos de Lima

x 
 

On The Combination of Feature  
and Instance Selection 

 
Jerffeson Teixeira de Souza, Rafael Augusto Ferreira do Carmo 

 and Gustavo Augusto Campos de Lima 
Universidade Estadual do Ceará 

Brazil 

 
1. Introduction 
 

In the last decades, huge amounts of data became omnipresent in diverse areas of 
knowledge, such as business, astronomy, biology, and so on. Machine Learning and 
Knowledge Discovery in Databases (KDD) are fields in Computer Science that focus on the 
task of transforming these data into useful knowledge. In (Fayyad et al., 1996), KDD is 
defined as “the nontrivial process of identifying valid, novel, potentially useful, and ultimately 
understandable patterns in data”. Feature and Instance Selection belong to the practice of data 
preparation (or pre-processing), which is a preliminary process that transforms raw data 
into a format that is convenient to the data mining (or machine learning) algorithm. 
Usually, data is stored in a table-like format: the columns of these tables are the attributes or 
features - they describe the data - and the rows, or lines, are the records or instances - they are 
the examples of the concept stored in the data. Feature and Instance selection processes 
allow applications, such as classification or clusterization, to focus only on the important (or 
relevant) attributes and records to the specific concept that is in study. 
As important machine learning problems, Feature and Instance Selection have been studied 
systematically over the last decades, when several algorithms for solving them individually 
have been proposed. Such selection problems play a fundamental role in the pre-processing 
step of any learning task. By removing noise, irrelevant and redundant features and 
instances, and reducing the overall dimensionality of a dataset, feature and instance 
selection have been demonstrated to improve the performance of most machine learning 
algorithms, speed up the output of models and allow algorithms to deal with datasets 
whose sizes are gigantic. Even though the specialized literature have exhibited remarkable 
results in solving both the feature and instance selection problems individually, little work 
has been done to manage these solutions to work together in order to solve these related 
problems simultaneously or even understand the relationship between features and 
instances. 
This chapter initially discusses the feature and instance selection problems and their 
relevance to machine learning, giving an accurate definition of both problems. Next, it 
surveys different approaches for dealing with feature selection and instance selection 
separately and some works that tried to integrate the solutions for these two problems, 
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demonstrating the unexplored potential of such combination. Following the single and 
multi-objective models to these problems, it is presented and evaluated a metaheuristic-
based framework for integrating the problems. Several experimental results demonstrate the 
interesting performance of the framework when compared to other standalone and 
combinational approaches over several natural datasets collected in the literature. Some 
conclusions and ideas for future works are given in the end of the chapter. 

 
1.1 Problem´s Definition 
In this chapter we are going to use the following formalization when referring to datasets, 
features, and evaluation functions. Based in (John et al., 1994) “each instance X is an element on 
the set F1 x F2 x … Fm, where Fi is the domain of the ith feature”. A dataset D is a set of tuples 
<X, C> where C is the class value of this example. 
Given a classifier C and a dataset D, we define G(C, D) as a function that measures the error 
rate of this classifier on this dataset D.  

 
1.2 The Feature Selection Problem 
The Feature Selection problem involves discovering a subset of features such that a classifier 
built only with this subset would have better predictive accuracy than a classifier built from 
the entire set of features. Other benefits of feature selection include a reduction in the 
amount of training data needed to induce an accurate classifier, that is consequently simpler 
and easier to understand, and a reduced execution time. In practice, feature selection 
algorithms will discover and select features of the data that are relevant to the task to be 
learned. 
In addition to irrelevant features, feature selection researchers have identified other 
examples of problematic features which may have a negative impact on the performance of 
learning systems such as redundant features and randomly class-correlated features. 
Irrelevant features are those that do not contribute to the predictive accuracy of a particular 
target concept. Redundant features refer to those that, even when relevant to a target 
concept, provide mostly information already present in another feature and, in fact, do not 
contribute to getting better predictors. Randomly class-correlated features are correlated to 
the target class most of the time, and random otherwise. Thus, irrelevant, redundant and 
randomly class-correlated features are worthless and removing them can improve the 
learning process. In fact, the feature selection process can be seen alternatively as the process 
of identifying and removing as many irrelevant, redundant and randomly class-correlated 
features as possible. 
Then we can formulate the problem of feature selection as: 
 
                                                                           Max G                                                                      (1) 

    Subject to                                                                                  (1) |�′|  � � 
 
A multiobjective version of it can seen as 
 
                                                                   Max G , Min |F|                                                             (2) 

    Subject to                                                                                  (2) |�′|  � � 

Clearly a classifier built with a set of features F’  F which is more accurate than one built 
with the whole set F is more interesting to use. Additionally the smaller it is the less 
computationally expensive it is. This characteristic is very important due to the datasets 
with high number of features found nowadays. 

 
1.3 The Instance Selection Problem 
The Instance Selection problem is basically the orthogonal version of the Feature Selection 
problem, as it involves discovering a subset of instances such that a classifier built only with 
this subset would have better predictive accuracy than a classifier built from the entire set of 
instances. In (Liu & Motoda, 2002), this problem is defined as “to choose a subset of data to 
achieve the original purpose of a data mining application as if the whole data is used”. Clearly, 
instance selection cleans the dataset that is in use: it removes irrelevant examples, as well 
noisy and redundant ones. Instance Selection plays, consequently, two important roles: to 
improve computational efficiency, since the learning algorithm will consider only a subset 
of the original data, and to allow the induction of better classifiers (Blum & Langley, 1997).  
Let’s define a function Freq(D*, c) that calculates the frequency of the class c in the given 
dataset D*. A ∆ is a value in the interval [0..1]. Given these two definitions, the initial dataset 
D, a generic subset of it D‘ and I the set of instances in this dataset then we can formulate the 
problem of instance selection as 
 

                                                                      Max G                                                                   . 
                Subject to                                                                                                                 (3) �� �  �� ������′� �� �  Δ �  ������� ��  �  ������′� �� �  Δ  |�′|  � � 

 

A multiobjective version of it can seen as 
 

Max G , Min |I|                                                               
                Subject to                                                                                                                 (4) �� �  �� ������′� �� �  � �  ������� ��  �  �������� �� �  �  |��|  � � 

 
Like in the feature selection problem, a classifier built with a set of instances I’  I which is 
more accurate than one built with the whole set I is more interesting to use. Additionally the 
smaller it is the less computationally expensive it is. 
 
2. Related Works 
 

Up to this date, several solutions have been proposed to deal with the feature and instance 
selection problems. In this section we briefly describe some important algorithms that work 
on each problem separately and show some approaches that handle both problems in a 
simultaneous way. 

 
2.1 On Feature Selection 
Well known feature selection algorithms perform very differently in identifying and 
removing irrelevant, redundant and randomly class-correlated features. Feature weighting 
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demonstrating the unexplored potential of such combination. Following the single and 
multi-objective models to these problems, it is presented and evaluated a metaheuristic-
based framework for integrating the problems. Several experimental results demonstrate the 
interesting performance of the framework when compared to other standalone and 
combinational approaches over several natural datasets collected in the literature. Some 
conclusions and ideas for future works are given in the end of the chapter. 

 
1.1 Problem´s Definition 
In this chapter we are going to use the following formalization when referring to datasets, 
features, and evaluation functions. Based in (John et al., 1994) “each instance X is an element on 
the set F1 x F2 x … Fm, where Fi is the domain of the ith feature”. A dataset D is a set of tuples 
<X, C> where C is the class value of this example. 
Given a classifier C and a dataset D, we define G(C, D) as a function that measures the error 
rate of this classifier on this dataset D.  

 
1.2 The Feature Selection Problem 
The Feature Selection problem involves discovering a subset of features such that a classifier 
built only with this subset would have better predictive accuracy than a classifier built from 
the entire set of features. Other benefits of feature selection include a reduction in the 
amount of training data needed to induce an accurate classifier, that is consequently simpler 
and easier to understand, and a reduced execution time. In practice, feature selection 
algorithms will discover and select features of the data that are relevant to the task to be 
learned. 
In addition to irrelevant features, feature selection researchers have identified other 
examples of problematic features which may have a negative impact on the performance of 
learning systems such as redundant features and randomly class-correlated features. 
Irrelevant features are those that do not contribute to the predictive accuracy of a particular 
target concept. Redundant features refer to those that, even when relevant to a target 
concept, provide mostly information already present in another feature and, in fact, do not 
contribute to getting better predictors. Randomly class-correlated features are correlated to 
the target class most of the time, and random otherwise. Thus, irrelevant, redundant and 
randomly class-correlated features are worthless and removing them can improve the 
learning process. In fact, the feature selection process can be seen alternatively as the process 
of identifying and removing as many irrelevant, redundant and randomly class-correlated 
features as possible. 
Then we can formulate the problem of feature selection as: 
 
                                                                           Max G                                                                      (1) 

    Subject to                                                                                  (1) |�′|  � � 
 
A multiobjective version of it can seen as 
 
                                                                   Max G , Min |F|                                                             (2) 

    Subject to                                                                                  (2) |�′|  � � 

Clearly a classifier built with a set of features F’  F which is more accurate than one built 
with the whole set F is more interesting to use. Additionally the smaller it is the less 
computationally expensive it is. This characteristic is very important due to the datasets 
with high number of features found nowadays. 

 
1.3 The Instance Selection Problem 
The Instance Selection problem is basically the orthogonal version of the Feature Selection 
problem, as it involves discovering a subset of instances such that a classifier built only with 
this subset would have better predictive accuracy than a classifier built from the entire set of 
instances. In (Liu & Motoda, 2002), this problem is defined as “to choose a subset of data to 
achieve the original purpose of a data mining application as if the whole data is used”. Clearly, 
instance selection cleans the dataset that is in use: it removes irrelevant examples, as well 
noisy and redundant ones. Instance Selection plays, consequently, two important roles: to 
improve computational efficiency, since the learning algorithm will consider only a subset 
of the original data, and to allow the induction of better classifiers (Blum & Langley, 1997).  
Let’s define a function Freq(D*, c) that calculates the frequency of the class c in the given 
dataset D*. A ∆ is a value in the interval [0..1]. Given these two definitions, the initial dataset 
D, a generic subset of it D‘ and I the set of instances in this dataset then we can formulate the 
problem of instance selection as 
 

                                                                      Max G                                                                   . 
                Subject to                                                                                                                 (3) �� �  �� ������′� �� �  Δ �  ������� ��  �  ������′� �� �  Δ  |�′|  � � 

 

A multiobjective version of it can seen as 
 

Max G , Min |I|                                                               
                Subject to                                                                                                                 (4) �� �  �� ������′� �� �  � �  ������� ��  �  �������� �� �  �  |��|  � � 

 
Like in the feature selection problem, a classifier built with a set of instances I’  I which is 
more accurate than one built with the whole set I is more interesting to use. Additionally the 
smaller it is the less computationally expensive it is. 
 
2. Related Works 
 

Up to this date, several solutions have been proposed to deal with the feature and instance 
selection problems. In this section we briefly describe some important algorithms that work 
on each problem separately and show some approaches that handle both problems in a 
simultaneous way. 

 
2.1 On Feature Selection 
Well known feature selection algorithms perform very differently in identifying and 
removing irrelevant, redundant and randomly class-correlated features. Feature weighting 
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algorithms such as Relief (Kira & Rendell, 1992), for instance, usually cannot identify 
redundant features since they evaluate features individually, not in sets of features like 
other feature selection algorithms. However, they are often very efficient in estimating 
feature relevance. Relief also suffers with randomly class-correlated features. In (Dash & 
Liu, 1997), the authors report that Relief preferred a correlated feature rather than a relevant 
one in the CorrAL dataset. The Focus algorithm (Almuallim & Dietterich, 1991), on the other 
hand, deals really well with irrelevant, redundant and class-correlated features since it looks 
for subsets that generate no inconsistency. Unless the redundant or class-correlated features 
perfectly duplicate their pairs (another feature or class label, respectively), they will be 
eventually eliminated by Focus. The LVF algorithm (Liu & Setiono, 1996) presents a similar 
behavior, since it will search for more consistent subsets. For small datasets or given enough 
time, LVF tends to get rid of undesirable features. Other results regarding the ability of 
feature selection algorithms in dealing with these problematic features can be found in 
(Dash & Liu, 1997). In this paper, the authors report results of several well known selection 
algorithms over three datasets (CorrAL, Parity3+3 and Monk3) containing together 
irrelevant, redundant and randomly class-correlated features. 
As for the use of metaheuristics for the Feature Selection problem, authors have tried 
different approaches. A Genetic Algorithm-based feature selector (GA) proposed in (Vafaie 
& De Jong, 1992) applies a simple genetic algorithm to search through the subsets of 
features. Other examples of applications of genetic algorithms for feature selection can be 
found in (Beritelli  et al., 2005) and (Sun et al., 2002). In (Tahir et al., 2004), the authors report 
the use of Tabu Search to select attributes to improve the classification of prostate needle 
biopsies. The paper reports a reduction of 50% in the classification error rate due to the 
proposed approach. The Simulated Annealing metaheuristic was used in (Filippone et al., 
2006) to develop the SAIS (Simulated Annealing Input Selection) algorithm. Good 
experimental results were reported when using several datasets, including two 
bioinformatics datasets. 
In (Souza, 2004) the author describes and discusses dozens of feature selection algorithms 
and expands a framework proposed earlier by (Dash & Liu, 1997) which classifies several 
algorithms according to their generation procedure and evaluation criterion. All these 
algorithms can be classified into three broad categories: filters, wrappers and hybrid 
approaches. Filters are those algorithms which perform the selection of features using an 
evaluation measure that classify the “quality“ of these elements to differentiate classes 
without making use of any machine learning algorithm. Wrappers explicitly make use of 
machine learning algorithms in order to perform this measurement. Usually, filters are much 
less computationally expensive than wrappers but they produce subsets with less quality 
than those produced by wrappers. Hybrid approaches combine the best characteristics of both 
approaches, trying to produce very good subsets efficiently. 

 
2.2 On Instance Selection 
Most of the works on instance selection have been based on Nearest Neighbor classification.  
In (Hart, 1968), the author proposed the Condensed Nearest Neighbor Rule (CNN), which 
finds a subset such that every member of the original dataset is closer to a member of the 
subset of the same class than to a member of the subset of a different class. This approach 
was extended in (Ritter et al., 1975) in the Selective Nearest Neighbor Rule (SNN) where 
every member of the original dataset must be closer to a member of the dataset of the same 

class than to any member of the original dataset of a different class. The Reduced Nearest 
Neighbor Rule (RNN) was proposed in (Gates, 1972). It removes each instance if such a 
removal does not cause any other instances to be misclassified by the instances remaining.  
In (Cano et al., 2003), the authors describe and evaluate four evolutionary approaches, 
including genetic algorithms, for the instance selection problem and report better data 
reduction percentages and higher classification accuracy in the experimental evaluation 
when using these approaches. Another application of genetic algorithms can be found in 
(Ramirez-Cruz et al., 2006). A description and comparison of several instance selection 
algorithms can be found in (Jankowski & Grochowski, 2004). 
Like feature selection algorithms, instance selection algorithms can be classified in those 
three broad categories. 

 
2.3 On the Combination of Feature and Instance Selection 
The most natural and straight-forward way to combine feature and instance selection is to 
perform one process after the other. In practice, that has been the way the two problems 
have been integrated. Let's consider as FSIS, the application of a feature selection process 
followed by an instance selection process, and ISFS the opposite. Since these approaches are 
general, in the sense that they can be applied to any domain, we will use them as 
comparison base in our experiments. 
Besides this approaches, in (Fragoudis et al., 2002) the authors propose the FIS (Feature and 
Instance Selection) algorithm, which targets both problems simultaneously in the context of 
text classification. It considers a set of documents, classified in one of two classes C and C', 
which contain a group of words each and operates in two steps. In the first step, it searches 
for a subset of the original vocabulary that contains the words that are the best predictors of 
the given class C. Next, only the documents which contain at least one word from this 
subset are kept. The second step searches, similarly, on the resulting dataset for a subset of 
words that are the best predictors of class C'. The output of the algorithm FIS contain the 
two subsets of features over the resulting documents from the first step. The authors 
reported a great decrease in the number of feature and training instances. It terms of 
accuracy, the algorithm, using the Naive Bayes classifier, performed in some cases equally 
or more accurate them SVM. 
Some works also use metaheuristics to solve these two problems. In (Souza et al., 2008) the 
authors use two simultaneous Simulated Annealing (Kirkpatrick et al., 1983) runs to solve 
each problem separately but use the actual solution of each process to calculate the quality 
of both of them. There has been made a lot of work using genetic and evolutionary 
algorithms. It is quite natural to design the solution to these two problems as a chromosome 
which is the vector of all feature and all instances and then run a genetic algorithm to solve 
these problems. In (Ramirez-Cruz et al., 2006) a simple approach that splits the chromosome 
in two areas, the one of features which are coded as real values in [0..1] to weight the 
features, and the area of instances which are coded as boolean values to select the instances 
is presented. In (Kuncheva & Jain, 1999) the authors use boolean value coding to select 
feature and instances. The objective function used is the composition of the precision of 1-nn 
plus a value that penalizes the cardinality of each set.  In (Sierra et al., 2001) the authors 
apply an adaptation of genetic algorithms, called Estimation of Distribution Algorithm 
(EDA),  to select instances and features in the problem of estimating the likelihood of 
cirrhotic patients to die in at most 6 months after the interventional treatment called 
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algorithms such as Relief (Kira & Rendell, 1992), for instance, usually cannot identify 
redundant features since they evaluate features individually, not in sets of features like 
other feature selection algorithms. However, they are often very efficient in estimating 
feature relevance. Relief also suffers with randomly class-correlated features. In (Dash & 
Liu, 1997), the authors report that Relief preferred a correlated feature rather than a relevant 
one in the CorrAL dataset. The Focus algorithm (Almuallim & Dietterich, 1991), on the other 
hand, deals really well with irrelevant, redundant and class-correlated features since it looks 
for subsets that generate no inconsistency. Unless the redundant or class-correlated features 
perfectly duplicate their pairs (another feature or class label, respectively), they will be 
eventually eliminated by Focus. The LVF algorithm (Liu & Setiono, 1996) presents a similar 
behavior, since it will search for more consistent subsets. For small datasets or given enough 
time, LVF tends to get rid of undesirable features. Other results regarding the ability of 
feature selection algorithms in dealing with these problematic features can be found in 
(Dash & Liu, 1997). In this paper, the authors report results of several well known selection 
algorithms over three datasets (CorrAL, Parity3+3 and Monk3) containing together 
irrelevant, redundant and randomly class-correlated features. 
As for the use of metaheuristics for the Feature Selection problem, authors have tried 
different approaches. A Genetic Algorithm-based feature selector (GA) proposed in (Vafaie 
& De Jong, 1992) applies a simple genetic algorithm to search through the subsets of 
features. Other examples of applications of genetic algorithms for feature selection can be 
found in (Beritelli  et al., 2005) and (Sun et al., 2002). In (Tahir et al., 2004), the authors report 
the use of Tabu Search to select attributes to improve the classification of prostate needle 
biopsies. The paper reports a reduction of 50% in the classification error rate due to the 
proposed approach. The Simulated Annealing metaheuristic was used in (Filippone et al., 
2006) to develop the SAIS (Simulated Annealing Input Selection) algorithm. Good 
experimental results were reported when using several datasets, including two 
bioinformatics datasets. 
In (Souza, 2004) the author describes and discusses dozens of feature selection algorithms 
and expands a framework proposed earlier by (Dash & Liu, 1997) which classifies several 
algorithms according to their generation procedure and evaluation criterion. All these 
algorithms can be classified into three broad categories: filters, wrappers and hybrid 
approaches. Filters are those algorithms which perform the selection of features using an 
evaluation measure that classify the “quality“ of these elements to differentiate classes 
without making use of any machine learning algorithm. Wrappers explicitly make use of 
machine learning algorithms in order to perform this measurement. Usually, filters are much 
less computationally expensive than wrappers but they produce subsets with less quality 
than those produced by wrappers. Hybrid approaches combine the best characteristics of both 
approaches, trying to produce very good subsets efficiently. 

 
2.2 On Instance Selection 
Most of the works on instance selection have been based on Nearest Neighbor classification.  
In (Hart, 1968), the author proposed the Condensed Nearest Neighbor Rule (CNN), which 
finds a subset such that every member of the original dataset is closer to a member of the 
subset of the same class than to a member of the subset of a different class. This approach 
was extended in (Ritter et al., 1975) in the Selective Nearest Neighbor Rule (SNN) where 
every member of the original dataset must be closer to a member of the dataset of the same 

class than to any member of the original dataset of a different class. The Reduced Nearest 
Neighbor Rule (RNN) was proposed in (Gates, 1972). It removes each instance if such a 
removal does not cause any other instances to be misclassified by the instances remaining.  
In (Cano et al., 2003), the authors describe and evaluate four evolutionary approaches, 
including genetic algorithms, for the instance selection problem and report better data 
reduction percentages and higher classification accuracy in the experimental evaluation 
when using these approaches. Another application of genetic algorithms can be found in 
(Ramirez-Cruz et al., 2006). A description and comparison of several instance selection 
algorithms can be found in (Jankowski & Grochowski, 2004). 
Like feature selection algorithms, instance selection algorithms can be classified in those 
three broad categories. 

 
2.3 On the Combination of Feature and Instance Selection 
The most natural and straight-forward way to combine feature and instance selection is to 
perform one process after the other. In practice, that has been the way the two problems 
have been integrated. Let's consider as FSIS, the application of a feature selection process 
followed by an instance selection process, and ISFS the opposite. Since these approaches are 
general, in the sense that they can be applied to any domain, we will use them as 
comparison base in our experiments. 
Besides this approaches, in (Fragoudis et al., 2002) the authors propose the FIS (Feature and 
Instance Selection) algorithm, which targets both problems simultaneously in the context of 
text classification. It considers a set of documents, classified in one of two classes C and C', 
which contain a group of words each and operates in two steps. In the first step, it searches 
for a subset of the original vocabulary that contains the words that are the best predictors of 
the given class C. Next, only the documents which contain at least one word from this 
subset are kept. The second step searches, similarly, on the resulting dataset for a subset of 
words that are the best predictors of class C'. The output of the algorithm FIS contain the 
two subsets of features over the resulting documents from the first step. The authors 
reported a great decrease in the number of feature and training instances. It terms of 
accuracy, the algorithm, using the Naive Bayes classifier, performed in some cases equally 
or more accurate them SVM. 
Some works also use metaheuristics to solve these two problems. In (Souza et al., 2008) the 
authors use two simultaneous Simulated Annealing (Kirkpatrick et al., 1983) runs to solve 
each problem separately but use the actual solution of each process to calculate the quality 
of both of them. There has been made a lot of work using genetic and evolutionary 
algorithms. It is quite natural to design the solution to these two problems as a chromosome 
which is the vector of all feature and all instances and then run a genetic algorithm to solve 
these problems. In (Ramirez-Cruz et al., 2006) a simple approach that splits the chromosome 
in two areas, the one of features which are coded as real values in [0..1] to weight the 
features, and the area of instances which are coded as boolean values to select the instances 
is presented. In (Kuncheva & Jain, 1999) the authors use boolean value coding to select 
feature and instances. The objective function used is the composition of the precision of 1-nn 
plus a value that penalizes the cardinality of each set.  In (Sierra et al., 2001) the authors 
apply an adaptation of genetic algorithms, called Estimation of Distribution Algorithm 
(EDA),  to select instances and features in the problem of estimating the likelihood of 
cirrhotic patients to die in at most 6 months after the interventional treatment called 
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Transjugular Intrahepatic Portosystemic Shunt (TIPS). In (Chen et al., 2005) it is made a 
study using an explicit multi-objective design to the problems of feature and instance 
selection, in which the goal is to maximize the performance of the 1-nn classifier and 
minimize both the number of attributes and instances. In (Ros et al., 2007) the authors model 
the problem in a multi-objective approach and solve them by a two-phase genetic algorithm. 
In (Ishibuchi & Nakashima, 2000) the authors use a genetic algorithm which is biased to 
decrease the number of features selected, by giving a bigger probability to the changing that 
exclude features from the solutions. 

 
3. A Framework for Simultaneous and Independent Feature and Instance 
Selection 
 

A deeper look into the related works on the combination of feature and instance selection 
shows some points already addressed by these solutions and new questions. The first point 
is that the majority of the approaches which try to solve these problems in a broad generic 
formulation solve them by using specialized versions of genetic algorithms, trying to 
separate the chromosome into two different areas, one for features and one for instances, 
and applying separate operators to each area. These approaches arise from the natural 
easiness of modeling the solutions to these problems as chromosomes and the need to cope 
with these two different problems separately. The other point addressed is that either these 
approaches work on a specific field of supervised learning (e.g. text mining) or depend on a 
specific classifier (e.g. kNN). The reader may question “How can we use other 
metaheuristics beyond genetic algorithms to solve these two problems?“ or “How could we 
build a general framework to with them simultaneously?“. This section tries to give answers 
to these questions. 
Here we describe an extension of the work presented in (Souza et al., 2008) as a general 
metaheuristics-based framework for simultaneous and independent feature and instance 
selection. This framework is an effort to build an algorithm that can deal with both problems 
simultaneously, since these problems are clearly related to one another and the work made 
to select a subset of features can also be reused to select instances (and vice-versa) but they 
are also independent, meaning that the algorithms that solve one of these problems do not 
have to tackle the other one as well. The key idea here is to provide a joint subset evaluation, 
in which the quality of a subset of features depends on the quality of a subset of instances 
(and vice-versa). This means that although the search processes are independent, they are 
guided by this joint evaluation function, which gives what we call a “power of influence” of 
each solution of the separate problems over the other. 

 
3.1 The Framework for Feature and Instance Selection 
In order to make definitions clear, we must explain that this framework works with two 
different solutions for each problem: the best and the actual solution. The best solution is, as 
the name itself explains, the solution which achieved the best evaluation value so far in the 
search process. The actual solution is the solution generated at every iteration to be tested to 
see whether it is better than the best solution so far. In some metaheuristics, like Simulated 
Annealing, the process of search does not depend on the best solution, although this solution 
is stored, but in others like VNS (Mladenović & Hansen, 1997) the best solution is the one 
which guides the search. 

When applied to feature and instance selection, search metaheuristics can be seen as 
wrappers, as they generate subsets (solutions), evaluate them using some classifier to test 
whether they are good solutions or not and guide the search process by this evaluation 
value achieved by each solution. This version of the framework works basically controlling 
this evaluation process of each subset generated by the search. The framework can be 
described as follows in figure 1 
 

 
Fig. 1. The Framework
 
In this framework, the relationship between these entities, features and instances, is treated 
as something related to their quality to a supervised learning task. This means that the 
quality of features used in the supervised learning task is intrinsically related to the 
examples that represent the concept to be learned, and vice-versa. Examples are only 
considered “good” ones if they are described by attributes that represent the concept to be 
learned clearly, and features are only important if they capture this concept present in these 
examples. This is the justification to the presented approach. 
A textual description of the framework can be seen as: Initially the complete sets of features 
and instances are set as initial solutions. There are two separated processes for selecting 
features and instances. The main loop started in the line number 1 controls the search 
processes. Starting in line number 3 (4) the new solution is generated using the 
metaheuristic for feature (instance) selection. New solutions are generated only when the 
Has Iterations test has true value, otherwise the Next Solution function must return the best 
solution found in the search process. In line 5 the new solutions are evaluated. This step is 
the joint evaluation function that works by getting the actual solutions from the feature 
selection and instance selection processes, then creating a subset from the initial dataset by 
using these two subsets and then evaluate then using k-fold cross validation, for example. 
Finally the search processes are updated. This update is basically the exchange of solutions 
if the new one achieved a better evaluation than the old one and any other process needed 
by the metaheuristic like for example in Simulated Annealing, when even if the actual 
solution is worse than the best one, it can be the next which guides the following steps of the 
search. In line 9 the whole procedure is ended, and the subset generated by the two 
solutions is returned as a new dataset to the supervised learning task. The figure 2 shows a 

Framework for Mono-Objective Simultaneous and Independent Feature and Instance 
Selection 
Input: Dataset dt, Feature Selection Algorithm fs, Instance Selection Algorithm is, Evaluation
Function ef 
Output: Dataset ndt 
1. While(Has Iterations(fs) || Has Iterations(is)) 
2. Do
3. fsss = Next Solution(fs, dt) 
4. isss = Next Solution(is, dt) 
5. eval = Evaluation(ef, dt, fsss, isss)
6. Update(fs, eval, fsss)
7. Update(is, eval, isss)
8. Done
9. ndt = Create Subset(dt, Best Subset(fs), Best Subset(is)) 
10. Return ndt 
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Transjugular Intrahepatic Portosystemic Shunt (TIPS). In (Chen et al., 2005) it is made a 
study using an explicit multi-objective design to the problems of feature and instance 
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Finally the search processes are updated. This update is basically the exchange of solutions 
if the new one achieved a better evaluation than the old one and any other process needed 
by the metaheuristic like for example in Simulated Annealing, when even if the actual 
solution is worse than the best one, it can be the next which guides the following steps of the 
search. In line 9 the whole procedure is ended, and the subset generated by the two 
solutions is returned as a new dataset to the supervised learning task. The figure 2 shows a 

Framework for Mono-Objective Simultaneous and Independent Feature and Instance 
Selection 
Input: Dataset dt, Feature Selection Algorithm fs, Instance Selection Algorithm is, Evaluation
Function ef 
Output: Dataset ndt 
1. While(Has Iterations(fs) || Has Iterations(is)) 
2. Do
3. fsss = Next Solution(fs, dt) 
4. isss = Next Solution(is, dt) 
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graphical representation of the framework. The blue boxes are the best solutions in a given 
iteration of the processes. The red boxes are the actual solutions in them and as it can be seen, 
they are evaluated together using the function G. In some iteration they replace the best 
solution but in other ones they do not have better evaluation so the best solutions remain the 
same. 
 

 
Fig. 2. A graphical view of the framework (Blue box – best solution; Red box – actual solution) 

 
3.2 Extension to the Framework 
The framework described in the last section is a basic view of it. An interesting extension 
can be made for handling populational metaheuristics. 
Populational metaheuristics create, at each iteration, a set of new actual solutions. Then the 
evaluation of each new solution is calculated and operators of intensification and 
diversification are applied. If we remember the fact that in this framework the evaluation of 
a solution does not depend on itself solely, this fact adds the question of “Which solution 
from the other process should I use in the joint evaluation function?” or “How can I calculate 
the best actual solution in this given set of solutions?”. 
Our answers to these questions are quite simple. The answer to the first question is “the best 
actual solution from the last iteration”. In the first iteration the whole set of features or 
instances is used to evaluate the new solutions and the search continues always reusing the 
best actual solution of the last iteration. By doing this, the searches are still guided by both 
solutions and only good solutions will guide this process. Nevertheless, the operators of 
intensification and diversification will work normally, without any loss to the search process. 

The answer to the second question is “by using the best actual solution from the last 
iteration” as showed in the previous explanation. 
Figure 3 gives a graphical explanation to the idea presented here. The reader must pay 
attention to the green arrows. They show that the best actual solution (the yellow one) is 
being used to evaluate the subsets of features (or instances) of the next generation. Besides, 
there are separate evaluation procedures to the searches. These are the biggest differences to 
the initial framework. Although there are these two separated procedures, the evaluations of 
the actual solutions still depend on the other search process. Once more as in the initial 
framework, in some iterations one of the solutions present in the actual population might 
replace the best solution found so far but in other ones they do not have better evaluation so 
the best solutions remains the same. 
 

 
Fig. 3. A graphical view of the framework (Blue box – best solution; Red box – actual solution; 
Yellow box – best actual solution. Green arrow – The best actual solution is being used to 
evaluate the next generation of solutions) 

 
4. Framework Evaluation 
 

In this section we present and discuss the results obtained in several simulations executed in 
order to test the effectiveness of the proposed framework. This section tries to make clear 
the answer to the question “Is it worth using this framework?”. 
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To make these simulations we have chosen some well-known datasets used for machine 
learning tasks found at the UCI Machine Learning Repository (Asuncion and Newman, 
2007). These datasets are the Audiology (70 attributes, 226 instances), Autos (26, 205), Colic 
(23, 368), Credit (16, 690), Ionosphere (35, 351), Labor (17, 57), Lymph (19, 148), Primary-
Tumor (18, 339), Sonar (61, 208), Soybean (36, 683) and Vote (17, 435). 
We implemented seven different strategies to tackle with the feature and instance selection 
problems. The first one, here called ind, consists in making two separate selection processes 
and then joining the subsets generated by these processes in the end. The solution generated 
by the feature selection process and the other generated by the instance selection one are 
joined to create the subset only when the search processes are ended. The fsis is a sequential 
approach in which it is run a feature selection process followed by an instance selection 
process. The dataset used in the feature selection is the whole initial dataset, but in the 
dataset used by the instance selection process, only the best set of features found is used to 
represent the examples. The isfs approach follows the same idea, but now the first process is 
an instance selection and the second is a feature selection. Finally comb is the name given to 
the approach presented in the framework. 
Some pieces of different software were used to make these simulations. From the Weka Data 
Mining Software (Witten & Frank, 2005) we used several classes to represent datasets, 
attributes and examples and to create and evaluate models. From jMetal Metaheuristics 
Framework (Durillo et al., 2006) we used some classes to represent the solutions to these 
problems and also some classes of metaheuristics. The Evaluation method chosen to be used 
in these simulations was a 10-fold cross-validation. The classifiers used were the C4.5, Naive 
Bayes and kNN. 

 
4.1 Simulation Using the Simulated Annealing Metaheuristic 
The results presented in this section are the same presented in the former work of (Souza et 
al., 2008). The architecture implemented in that work is the same of this general framework 
but it was implemented using the Simulated Annealing metaheuristic. 
For this simulation we implemented the Simulated Annealing metaheuristic to use it in both 
selection problems. Simulated Annealing is a metaheuristic that consists in a randomized 
local search, which simulates the process of physical annealing. This physical process 
consists in heating a material to a desired temperature, followed by a slow cooling process. 
The first step gives energy to the atoms and they move randomly through states of high 
energy, changing the material's structure fast. The second step, which is performed slowly, 
gives them the chance to arrange themselves into a configuration of lower energy. 
In analogy with the physical process, Simulated Annealing changes the actual solution to a 
neighbor solution, depending on the quality of this neighbor solution or the value of a 
function that is calculated in accordance with the temperature parameter, which decreases 
during the process. 
The coding of solutions to this problem is basically an array of boolean values which has 
length equal to the number of features or instances. Using this coding, we defined that two 
solutions are considered neighbors only and if only they have at most 10% of bits set to 
different values, i.e., when applied a XOR operator to these to problems, the result contains 
only 10% of bits set to true. 
 
 

 < 0.001 < 0.005 < 0.01 
Comb vs IND 8 x 0 1 x 0 1 x 0 
Comb vs FSIS 0 x 0 0 x 0 0 x 0 
Comb vs ISFS 0 x 0 0 x 0 2 x 0 

Table 1. Pairwise comparison between comb and other approaches 
 
We have run all seven approaches described earlier in two different scenarios. In the first 
one, each approach was given an unlimited time to run and generate a solution. After two 
executions of each approach in every dataset, there were twenty Error Rate values available.  
 

 
Fig. 4. The sum of execution times – Unlimited Time Scenario 
 
Table 1 summarizes the results of a pairwise comparison between comb and the other 
approaches that solve both problems. The results represent the number of times each 
strategy outperformed the other, in terms of the accuracy of the final classifier, using the 
student’s t-test with the corresponding confidence levels (0.001, 0.005 and 0.01). 
Clearly the performance of comb is much better than the ind and slightly better than the 
other two approaches. So when talking about performance it is not clear why to use this 
approach. But looking at figure 3 we see that the comb approach usually requires less time 
to reach the best error rate in the datasets. This figure shows the sum of time of all tests 
executed by each approach. 
In the second scenario we defined a limit to the execution time of every run. Figure 4 shows 
that when this constraint is added to the problem and this time is not enough to complete 
the search, the comb approach converges to low values of error rate faster than the other 
two approaches. 
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Fig. 5. The sum of error rates – Limited Time Scenario 

 
5. Conclusion 
 

In this chapter we discussed two important problems in the pre-processing step of many 
supervised learning tasks. A list of well-known algorithms were presented and discussed. A 
new framework was proposed, extending the concept proposed by the authors in a previous 
work. This framework was validated by some simulations using the metaheuristic 
Simulated Annealing and NSGA-II. These simulations show that although the quality of 
solutions generated by this framework is quite similar to those obtained by sequential 
executions, this approach reaches the better solutions faster than the other approaches. 
The frameworks is based on what we called “power of influence”, i.e. the quality of features in 
a given supervised learning task is intrinsically related to the quality of instances used in 
this task, and vice-versa. Based on this we created the framework that work with two 
separated wrappers for these two problems, jointing them in a single evaluation procedure. 

 
5.1 Future Work - The Framework for Multi-Objective Feature and Instance Selection  
An important characteristic we want to add to this framework in the future is the possibility 
to handle the multi-objective versions of the two selection problems. The usage of multi 
objectives brings new power but also new problems to the search processes. In these 
formulations, the characteristic of total ordering is replaced by partial ordering, using the 
concept of Pareto optimality. The ideas of better and worse are replaced by dominance, non-
dominance. Given two solutions a, b and a set of functions F to be minimized (or maximized, 
but in this explanation we suppose they are to be minimized), we say that a weakly 
dominates b if and only if  

� ௜݂  � �� ௜݂�ܽ�  �  ௜݂�ܾ� and ׌ ௜݂  � �� ௜݂�ܽ� ൏  ௜݂�ܾ�                                   (5) 
 
The concept of strong dominance requires that 
 � ௜݂  � �� ௜݂�ܽ�  ൏  ௜݂�ܾ�.                                                       (6) 
 
When there is a set of solutions in which none of them dominate or are dominated by the 
others, we say these solutions are in the Pareto front, i.e., they are solutions equally good, in a 
way that one cannot say à priori which one of them is the best one without making any other 
assumption.  
This usage adds the same questions generated by populational metaheuristics, such as 
“Which solution from the other process should I use in the joint evaluation function?” or 
“How can I calculate the best actual solution in this given set of solutions if there will be 
some ‘equally good’ ones?”. 
The answers related to the multi-objective approaches seem to be similar to the ones given 
to populational metaheuristics but they weren’t tested yet. Given that it is needed to 
evaluate all the subsets of features (and vice-versa), the algorithm can use any of the subsets 
of instances from the last iteration which are in the Pareto front since all of them are equally 
good. A reasonable solution would be to pick a random solution from the Pareto front of the 
instance selection process every time the algorithm has to evaluate a subset of features. This 
approach increases diversification because several different solutions are used to guide the 
search and there is no loss in intensification as only good solutions are used in this process. 
In the end of the search processes there will be two Pareto fronts: one of features and one of 
instances. At this moment the user have several alternatives like choosing one solution of 
each search or generating all combinations of solutions and picking the one which is the 
best. How to deal with these two Pareto fronts is an open question so far. 
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approach increases diversification because several different solutions are used to guide the 
search and there is no loss in intensification as only good solutions are used in this process. 
In the end of the search processes there will be two Pareto fronts: one of features and one of 
instances. At this moment the user have several alternatives like choosing one solution of 
each search or generating all combinations of solutions and picking the one which is the 
best. How to deal with these two Pareto fronts is an open question so far. 
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