
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

7,000

On The Combination of Feature and Instance Selection 157

On The Combination of Feature and Instance Selection

Jerffeson Teixeira de Souza, Rafael Augusto Ferreira do Carmo and Gustavo Augusto
Campos de Lima

x

On The Combination of Feature
and Instance Selection

Jerffeson Teixeira de Souza, Rafael Augusto Ferreira do Carmo

 and Gustavo Augusto Campos de Lima
Universidade Estadual do Ceará

Brazil

1. Introduction

In the last decades, huge amounts of data became omnipresent in diverse areas of
knowledge, such as business, astronomy, biology, and so on. Machine Learning and
Knowledge Discovery in Databases (KDD) are fields in Computer Science that focus on the
task of transforming these data into useful knowledge. In (Fayyad et al., 1996), KDD is
defined as “the nontrivial process of identifying valid, novel, potentially useful, and ultimately
understandable patterns in data”. Feature and Instance Selection belong to the practice of data
preparation (or pre-processing), which is a preliminary process that transforms raw data
into a format that is convenient to the data mining (or machine learning) algorithm.
Usually, data is stored in a table-like format: the columns of these tables are the attributes or
features - they describe the data - and the rows, or lines, are the records or instances - they are
the examples of the concept stored in the data. Feature and Instance selection processes
allow applications, such as classification or clusterization, to focus only on the important (or
relevant) attributes and records to the specific concept that is in study.
As important machine learning problems, Feature and Instance Selection have been studied
systematically over the last decades, when several algorithms for solving them individually
have been proposed. Such selection problems play a fundamental role in the pre-processing
step of any learning task. By removing noise, irrelevant and redundant features and
instances, and reducing the overall dimensionality of a dataset, feature and instance
selection have been demonstrated to improve the performance of most machine learning
algorithms, speed up the output of models and allow algorithms to deal with datasets
whose sizes are gigantic. Even though the specialized literature have exhibited remarkable
results in solving both the feature and instance selection problems individually, little work
has been done to manage these solutions to work together in order to solve these related
problems simultaneously or even understand the relationship between features and
instances.
This chapter initially discusses the feature and instance selection problems and their
relevance to machine learning, giving an accurate definition of both problems. Next, it
surveys different approaches for dealing with feature selection and instance selection
separately and some works that tried to integrate the solutions for these two problems,

9

www.intechopen.com

Machine Learning158

demonstrating the unexplored potential of such combination. Following the single and
multi-objective models to these problems, it is presented and evaluated a metaheuristic-
based framework for integrating the problems. Several experimental results demonstrate the
interesting performance of the framework when compared to other standalone and
combinational approaches over several natural datasets collected in the literature. Some
conclusions and ideas for future works are given in the end of the chapter.

1.1 Problem´s Definition
In this chapter we are going to use the following formalization when referring to datasets,
features, and evaluation functions. Based in (John et al., 1994) “each instance X is an element on
the set F1 x F2 x … Fm, where Fi is the domain of the ith feature”. A dataset D is a set of tuples
<X, C> where C is the class value of this example.
Given a classifier C and a dataset D, we define G(C, D) as a function that measures the error
rate of this classifier on this dataset D.

1.2 The Feature Selection Problem
The Feature Selection problem involves discovering a subset of features such that a classifier
built only with this subset would have better predictive accuracy than a classifier built from
the entire set of features. Other benefits of feature selection include a reduction in the
amount of training data needed to induce an accurate classifier, that is consequently simpler
and easier to understand, and a reduced execution time. In practice, feature selection
algorithms will discover and select features of the data that are relevant to the task to be
learned.
In addition to irrelevant features, feature selection researchers have identified other
examples of problematic features which may have a negative impact on the performance of
learning systems such as redundant features and randomly class-correlated features.
Irrelevant features are those that do not contribute to the predictive accuracy of a particular
target concept. Redundant features refer to those that, even when relevant to a target
concept, provide mostly information already present in another feature and, in fact, do not
contribute to getting better predictors. Randomly class-correlated features are correlated to
the target class most of the time, and random otherwise. Thus, irrelevant, redundant and
randomly class-correlated features are worthless and removing them can improve the
learning process. In fact, the feature selection process can be seen alternatively as the process
of identifying and removing as many irrelevant, redundant and randomly class-correlated
features as possible.
Then we can formulate the problem of feature selection as:

 Max G (1)

 Subject to (1) |�′| � �

A multiobjective version of it can seen as

 Max G , Min |F| (2)

 Subject to (2) |�′| � �

Clearly a classifier built with a set of features F’ F which is more accurate than one built
with the whole set F is more interesting to use. Additionally the smaller it is the less
computationally expensive it is. This characteristic is very important due to the datasets
with high number of features found nowadays.

1.3 The Instance Selection Problem
The Instance Selection problem is basically the orthogonal version of the Feature Selection
problem, as it involves discovering a subset of instances such that a classifier built only with
this subset would have better predictive accuracy than a classifier built from the entire set of
instances. In (Liu & Motoda, 2002), this problem is defined as “to choose a subset of data to
achieve the original purpose of a data mining application as if the whole data is used”. Clearly,
instance selection cleans the dataset that is in use: it removes irrelevant examples, as well
noisy and redundant ones. Instance Selection plays, consequently, two important roles: to
improve computational efficiency, since the learning algorithm will consider only a subset
of the original data, and to allow the induction of better classifiers (Blum & Langley, 1997).
Let’s define a function Freq(D*, c) that calculates the frequency of the class c in the given
dataset D*. A ∆ is a value in the interval [0..1]. Given these two definitions, the initial dataset
D, a generic subset of it D‘ and I the set of instances in this dataset then we can formulate the
problem of instance selection as

 Max G .
 Subject to (3) �� � �� ������′� �� � Δ � ������� �� � ������′� �� � Δ |�′| � �

A multiobjective version of it can seen as

Max G , Min |I|
 Subject to (4) �� � �� ������′� �� � � � ������� �� � �������� �� � � |��| � �

Like in the feature selection problem, a classifier built with a set of instances I’ I which is
more accurate than one built with the whole set I is more interesting to use. Additionally the
smaller it is the less computationally expensive it is.

2. Related Works

Up to this date, several solutions have been proposed to deal with the feature and instance
selection problems. In this section we briefly describe some important algorithms that work
on each problem separately and show some approaches that handle both problems in a
simultaneous way.

2.1 On Feature Selection
Well known feature selection algorithms perform very differently in identifying and
removing irrelevant, redundant and randomly class-correlated features. Feature weighting

www.intechopen.com

On The Combination of Feature and Instance Selection 159

demonstrating the unexplored potential of such combination. Following the single and
multi-objective models to these problems, it is presented and evaluated a metaheuristic-
based framework for integrating the problems. Several experimental results demonstrate the
interesting performance of the framework when compared to other standalone and
combinational approaches over several natural datasets collected in the literature. Some
conclusions and ideas for future works are given in the end of the chapter.

1.1 Problem´s Definition
In this chapter we are going to use the following formalization when referring to datasets,
features, and evaluation functions. Based in (John et al., 1994) “each instance X is an element on
the set F1 x F2 x … Fm, where Fi is the domain of the ith feature”. A dataset D is a set of tuples
<X, C> where C is the class value of this example.
Given a classifier C and a dataset D, we define G(C, D) as a function that measures the error
rate of this classifier on this dataset D.

1.2 The Feature Selection Problem
The Feature Selection problem involves discovering a subset of features such that a classifier
built only with this subset would have better predictive accuracy than a classifier built from
the entire set of features. Other benefits of feature selection include a reduction in the
amount of training data needed to induce an accurate classifier, that is consequently simpler
and easier to understand, and a reduced execution time. In practice, feature selection
algorithms will discover and select features of the data that are relevant to the task to be
learned.
In addition to irrelevant features, feature selection researchers have identified other
examples of problematic features which may have a negative impact on the performance of
learning systems such as redundant features and randomly class-correlated features.
Irrelevant features are those that do not contribute to the predictive accuracy of a particular
target concept. Redundant features refer to those that, even when relevant to a target
concept, provide mostly information already present in another feature and, in fact, do not
contribute to getting better predictors. Randomly class-correlated features are correlated to
the target class most of the time, and random otherwise. Thus, irrelevant, redundant and
randomly class-correlated features are worthless and removing them can improve the
learning process. In fact, the feature selection process can be seen alternatively as the process
of identifying and removing as many irrelevant, redundant and randomly class-correlated
features as possible.
Then we can formulate the problem of feature selection as:

 Max G (1)

 Subject to (1) |�′| � �

A multiobjective version of it can seen as

 Max G , Min |F| (2)

 Subject to (2) |�′| � �

Clearly a classifier built with a set of features F’ F which is more accurate than one built
with the whole set F is more interesting to use. Additionally the smaller it is the less
computationally expensive it is. This characteristic is very important due to the datasets
with high number of features found nowadays.

1.3 The Instance Selection Problem
The Instance Selection problem is basically the orthogonal version of the Feature Selection
problem, as it involves discovering a subset of instances such that a classifier built only with
this subset would have better predictive accuracy than a classifier built from the entire set of
instances. In (Liu & Motoda, 2002), this problem is defined as “to choose a subset of data to
achieve the original purpose of a data mining application as if the whole data is used”. Clearly,
instance selection cleans the dataset that is in use: it removes irrelevant examples, as well
noisy and redundant ones. Instance Selection plays, consequently, two important roles: to
improve computational efficiency, since the learning algorithm will consider only a subset
of the original data, and to allow the induction of better classifiers (Blum & Langley, 1997).
Let’s define a function Freq(D*, c) that calculates the frequency of the class c in the given
dataset D*. A ∆ is a value in the interval [0..1]. Given these two definitions, the initial dataset
D, a generic subset of it D‘ and I the set of instances in this dataset then we can formulate the
problem of instance selection as

 Max G .
 Subject to (3) �� � �� ������′� �� � Δ � ������� �� � ������′� �� � Δ |�′| � �

A multiobjective version of it can seen as

Max G , Min |I|
 Subject to (4) �� � �� ������′� �� � � � ������� �� � �������� �� � � |��| � �

Like in the feature selection problem, a classifier built with a set of instances I’ I which is
more accurate than one built with the whole set I is more interesting to use. Additionally the
smaller it is the less computationally expensive it is.

2. Related Works

Up to this date, several solutions have been proposed to deal with the feature and instance
selection problems. In this section we briefly describe some important algorithms that work
on each problem separately and show some approaches that handle both problems in a
simultaneous way.

2.1 On Feature Selection
Well known feature selection algorithms perform very differently in identifying and
removing irrelevant, redundant and randomly class-correlated features. Feature weighting

www.intechopen.com

Machine Learning160

algorithms such as Relief (Kira & Rendell, 1992), for instance, usually cannot identify
redundant features since they evaluate features individually, not in sets of features like
other feature selection algorithms. However, they are often very efficient in estimating
feature relevance. Relief also suffers with randomly class-correlated features. In (Dash &
Liu, 1997), the authors report that Relief preferred a correlated feature rather than a relevant
one in the CorrAL dataset. The Focus algorithm (Almuallim & Dietterich, 1991), on the other
hand, deals really well with irrelevant, redundant and class-correlated features since it looks
for subsets that generate no inconsistency. Unless the redundant or class-correlated features
perfectly duplicate their pairs (another feature or class label, respectively), they will be
eventually eliminated by Focus. The LVF algorithm (Liu & Setiono, 1996) presents a similar
behavior, since it will search for more consistent subsets. For small datasets or given enough
time, LVF tends to get rid of undesirable features. Other results regarding the ability of
feature selection algorithms in dealing with these problematic features can be found in
(Dash & Liu, 1997). In this paper, the authors report results of several well known selection
algorithms over three datasets (CorrAL, Parity3+3 and Monk3) containing together
irrelevant, redundant and randomly class-correlated features.
As for the use of metaheuristics for the Feature Selection problem, authors have tried
different approaches. A Genetic Algorithm-based feature selector (GA) proposed in (Vafaie
& De Jong, 1992) applies a simple genetic algorithm to search through the subsets of
features. Other examples of applications of genetic algorithms for feature selection can be
found in (Beritelli et al., 2005) and (Sun et al., 2002). In (Tahir et al., 2004), the authors report
the use of Tabu Search to select attributes to improve the classification of prostate needle
biopsies. The paper reports a reduction of 50% in the classification error rate due to the
proposed approach. The Simulated Annealing metaheuristic was used in (Filippone et al.,
2006) to develop the SAIS (Simulated Annealing Input Selection) algorithm. Good
experimental results were reported when using several datasets, including two
bioinformatics datasets.
In (Souza, 2004) the author describes and discusses dozens of feature selection algorithms
and expands a framework proposed earlier by (Dash & Liu, 1997) which classifies several
algorithms according to their generation procedure and evaluation criterion. All these
algorithms can be classified into three broad categories: filters, wrappers and hybrid
approaches. Filters are those algorithms which perform the selection of features using an
evaluation measure that classify the “quality“ of these elements to differentiate classes
without making use of any machine learning algorithm. Wrappers explicitly make use of
machine learning algorithms in order to perform this measurement. Usually, filters are much
less computationally expensive than wrappers but they produce subsets with less quality
than those produced by wrappers. Hybrid approaches combine the best characteristics of both
approaches, trying to produce very good subsets efficiently.

2.2 On Instance Selection
Most of the works on instance selection have been based on Nearest Neighbor classification.
In (Hart, 1968), the author proposed the Condensed Nearest Neighbor Rule (CNN), which
finds a subset such that every member of the original dataset is closer to a member of the
subset of the same class than to a member of the subset of a different class. This approach
was extended in (Ritter et al., 1975) in the Selective Nearest Neighbor Rule (SNN) where
every member of the original dataset must be closer to a member of the dataset of the same

class than to any member of the original dataset of a different class. The Reduced Nearest
Neighbor Rule (RNN) was proposed in (Gates, 1972). It removes each instance if such a
removal does not cause any other instances to be misclassified by the instances remaining.
In (Cano et al., 2003), the authors describe and evaluate four evolutionary approaches,
including genetic algorithms, for the instance selection problem and report better data
reduction percentages and higher classification accuracy in the experimental evaluation
when using these approaches. Another application of genetic algorithms can be found in
(Ramirez-Cruz et al., 2006). A description and comparison of several instance selection
algorithms can be found in (Jankowski & Grochowski, 2004).
Like feature selection algorithms, instance selection algorithms can be classified in those
three broad categories.

2.3 On the Combination of Feature and Instance Selection
The most natural and straight-forward way to combine feature and instance selection is to
perform one process after the other. In practice, that has been the way the two problems
have been integrated. Let's consider as FSIS, the application of a feature selection process
followed by an instance selection process, and ISFS the opposite. Since these approaches are
general, in the sense that they can be applied to any domain, we will use them as
comparison base in our experiments.
Besides this approaches, in (Fragoudis et al., 2002) the authors propose the FIS (Feature and
Instance Selection) algorithm, which targets both problems simultaneously in the context of
text classification. It considers a set of documents, classified in one of two classes C and C',
which contain a group of words each and operates in two steps. In the first step, it searches
for a subset of the original vocabulary that contains the words that are the best predictors of
the given class C. Next, only the documents which contain at least one word from this
subset are kept. The second step searches, similarly, on the resulting dataset for a subset of
words that are the best predictors of class C'. The output of the algorithm FIS contain the
two subsets of features over the resulting documents from the first step. The authors
reported a great decrease in the number of feature and training instances. It terms of
accuracy, the algorithm, using the Naive Bayes classifier, performed in some cases equally
or more accurate them SVM.
Some works also use metaheuristics to solve these two problems. In (Souza et al., 2008) the
authors use two simultaneous Simulated Annealing (Kirkpatrick et al., 1983) runs to solve
each problem separately but use the actual solution of each process to calculate the quality
of both of them. There has been made a lot of work using genetic and evolutionary
algorithms. It is quite natural to design the solution to these two problems as a chromosome
which is the vector of all feature and all instances and then run a genetic algorithm to solve
these problems. In (Ramirez-Cruz et al., 2006) a simple approach that splits the chromosome
in two areas, the one of features which are coded as real values in [0..1] to weight the
features, and the area of instances which are coded as boolean values to select the instances
is presented. In (Kuncheva & Jain, 1999) the authors use boolean value coding to select
feature and instances. The objective function used is the composition of the precision of 1-nn
plus a value that penalizes the cardinality of each set. In (Sierra et al., 2001) the authors
apply an adaptation of genetic algorithms, called Estimation of Distribution Algorithm
(EDA), to select instances and features in the problem of estimating the likelihood of
cirrhotic patients to die in at most 6 months after the interventional treatment called

www.intechopen.com

On The Combination of Feature and Instance Selection 161

algorithms such as Relief (Kira & Rendell, 1992), for instance, usually cannot identify
redundant features since they evaluate features individually, not in sets of features like
other feature selection algorithms. However, they are often very efficient in estimating
feature relevance. Relief also suffers with randomly class-correlated features. In (Dash &
Liu, 1997), the authors report that Relief preferred a correlated feature rather than a relevant
one in the CorrAL dataset. The Focus algorithm (Almuallim & Dietterich, 1991), on the other
hand, deals really well with irrelevant, redundant and class-correlated features since it looks
for subsets that generate no inconsistency. Unless the redundant or class-correlated features
perfectly duplicate their pairs (another feature or class label, respectively), they will be
eventually eliminated by Focus. The LVF algorithm (Liu & Setiono, 1996) presents a similar
behavior, since it will search for more consistent subsets. For small datasets or given enough
time, LVF tends to get rid of undesirable features. Other results regarding the ability of
feature selection algorithms in dealing with these problematic features can be found in
(Dash & Liu, 1997). In this paper, the authors report results of several well known selection
algorithms over three datasets (CorrAL, Parity3+3 and Monk3) containing together
irrelevant, redundant and randomly class-correlated features.
As for the use of metaheuristics for the Feature Selection problem, authors have tried
different approaches. A Genetic Algorithm-based feature selector (GA) proposed in (Vafaie
& De Jong, 1992) applies a simple genetic algorithm to search through the subsets of
features. Other examples of applications of genetic algorithms for feature selection can be
found in (Beritelli et al., 2005) and (Sun et al., 2002). In (Tahir et al., 2004), the authors report
the use of Tabu Search to select attributes to improve the classification of prostate needle
biopsies. The paper reports a reduction of 50% in the classification error rate due to the
proposed approach. The Simulated Annealing metaheuristic was used in (Filippone et al.,
2006) to develop the SAIS (Simulated Annealing Input Selection) algorithm. Good
experimental results were reported when using several datasets, including two
bioinformatics datasets.
In (Souza, 2004) the author describes and discusses dozens of feature selection algorithms
and expands a framework proposed earlier by (Dash & Liu, 1997) which classifies several
algorithms according to their generation procedure and evaluation criterion. All these
algorithms can be classified into three broad categories: filters, wrappers and hybrid
approaches. Filters are those algorithms which perform the selection of features using an
evaluation measure that classify the “quality“ of these elements to differentiate classes
without making use of any machine learning algorithm. Wrappers explicitly make use of
machine learning algorithms in order to perform this measurement. Usually, filters are much
less computationally expensive than wrappers but they produce subsets with less quality
than those produced by wrappers. Hybrid approaches combine the best characteristics of both
approaches, trying to produce very good subsets efficiently.

2.2 On Instance Selection
Most of the works on instance selection have been based on Nearest Neighbor classification.
In (Hart, 1968), the author proposed the Condensed Nearest Neighbor Rule (CNN), which
finds a subset such that every member of the original dataset is closer to a member of the
subset of the same class than to a member of the subset of a different class. This approach
was extended in (Ritter et al., 1975) in the Selective Nearest Neighbor Rule (SNN) where
every member of the original dataset must be closer to a member of the dataset of the same

class than to any member of the original dataset of a different class. The Reduced Nearest
Neighbor Rule (RNN) was proposed in (Gates, 1972). It removes each instance if such a
removal does not cause any other instances to be misclassified by the instances remaining.
In (Cano et al., 2003), the authors describe and evaluate four evolutionary approaches,
including genetic algorithms, for the instance selection problem and report better data
reduction percentages and higher classification accuracy in the experimental evaluation
when using these approaches. Another application of genetic algorithms can be found in
(Ramirez-Cruz et al., 2006). A description and comparison of several instance selection
algorithms can be found in (Jankowski & Grochowski, 2004).
Like feature selection algorithms, instance selection algorithms can be classified in those
three broad categories.

2.3 On the Combination of Feature and Instance Selection
The most natural and straight-forward way to combine feature and instance selection is to
perform one process after the other. In practice, that has been the way the two problems
have been integrated. Let's consider as FSIS, the application of a feature selection process
followed by an instance selection process, and ISFS the opposite. Since these approaches are
general, in the sense that they can be applied to any domain, we will use them as
comparison base in our experiments.
Besides this approaches, in (Fragoudis et al., 2002) the authors propose the FIS (Feature and
Instance Selection) algorithm, which targets both problems simultaneously in the context of
text classification. It considers a set of documents, classified in one of two classes C and C',
which contain a group of words each and operates in two steps. In the first step, it searches
for a subset of the original vocabulary that contains the words that are the best predictors of
the given class C. Next, only the documents which contain at least one word from this
subset are kept. The second step searches, similarly, on the resulting dataset for a subset of
words that are the best predictors of class C'. The output of the algorithm FIS contain the
two subsets of features over the resulting documents from the first step. The authors
reported a great decrease in the number of feature and training instances. It terms of
accuracy, the algorithm, using the Naive Bayes classifier, performed in some cases equally
or more accurate them SVM.
Some works also use metaheuristics to solve these two problems. In (Souza et al., 2008) the
authors use two simultaneous Simulated Annealing (Kirkpatrick et al., 1983) runs to solve
each problem separately but use the actual solution of each process to calculate the quality
of both of them. There has been made a lot of work using genetic and evolutionary
algorithms. It is quite natural to design the solution to these two problems as a chromosome
which is the vector of all feature and all instances and then run a genetic algorithm to solve
these problems. In (Ramirez-Cruz et al., 2006) a simple approach that splits the chromosome
in two areas, the one of features which are coded as real values in [0..1] to weight the
features, and the area of instances which are coded as boolean values to select the instances
is presented. In (Kuncheva & Jain, 1999) the authors use boolean value coding to select
feature and instances. The objective function used is the composition of the precision of 1-nn
plus a value that penalizes the cardinality of each set. In (Sierra et al., 2001) the authors
apply an adaptation of genetic algorithms, called Estimation of Distribution Algorithm
(EDA), to select instances and features in the problem of estimating the likelihood of
cirrhotic patients to die in at most 6 months after the interventional treatment called

www.intechopen.com

Machine Learning162

Transjugular Intrahepatic Portosystemic Shunt (TIPS). In (Chen et al., 2005) it is made a
study using an explicit multi-objective design to the problems of feature and instance
selection, in which the goal is to maximize the performance of the 1-nn classifier and
minimize both the number of attributes and instances. In (Ros et al., 2007) the authors model
the problem in a multi-objective approach and solve them by a two-phase genetic algorithm.
In (Ishibuchi & Nakashima, 2000) the authors use a genetic algorithm which is biased to
decrease the number of features selected, by giving a bigger probability to the changing that
exclude features from the solutions.

3. A Framework for Simultaneous and Independent Feature and Instance
Selection

A deeper look into the related works on the combination of feature and instance selection
shows some points already addressed by these solutions and new questions. The first point
is that the majority of the approaches which try to solve these problems in a broad generic
formulation solve them by using specialized versions of genetic algorithms, trying to
separate the chromosome into two different areas, one for features and one for instances,
and applying separate operators to each area. These approaches arise from the natural
easiness of modeling the solutions to these problems as chromosomes and the need to cope
with these two different problems separately. The other point addressed is that either these
approaches work on a specific field of supervised learning (e.g. text mining) or depend on a
specific classifier (e.g. kNN). The reader may question “How can we use other
metaheuristics beyond genetic algorithms to solve these two problems?“ or “How could we
build a general framework to with them simultaneously?“. This section tries to give answers
to these questions.
Here we describe an extension of the work presented in (Souza et al., 2008) as a general
metaheuristics-based framework for simultaneous and independent feature and instance
selection. This framework is an effort to build an algorithm that can deal with both problems
simultaneously, since these problems are clearly related to one another and the work made
to select a subset of features can also be reused to select instances (and vice-versa) but they
are also independent, meaning that the algorithms that solve one of these problems do not
have to tackle the other one as well. The key idea here is to provide a joint subset evaluation,
in which the quality of a subset of features depends on the quality of a subset of instances
(and vice-versa). This means that although the search processes are independent, they are
guided by this joint evaluation function, which gives what we call a “power of influence” of
each solution of the separate problems over the other.

3.1 The Framework for Feature and Instance Selection
In order to make definitions clear, we must explain that this framework works with two
different solutions for each problem: the best and the actual solution. The best solution is, as
the name itself explains, the solution which achieved the best evaluation value so far in the
search process. The actual solution is the solution generated at every iteration to be tested to
see whether it is better than the best solution so far. In some metaheuristics, like Simulated
Annealing, the process of search does not depend on the best solution, although this solution
is stored, but in others like VNS (Mladenović & Hansen, 1997) the best solution is the one
which guides the search.

When applied to feature and instance selection, search metaheuristics can be seen as
wrappers, as they generate subsets (solutions), evaluate them using some classifier to test
whether they are good solutions or not and guide the search process by this evaluation
value achieved by each solution. This version of the framework works basically controlling
this evaluation process of each subset generated by the search. The framework can be
described as follows in figure 1

Fig. 1. The Framework

In this framework, the relationship between these entities, features and instances, is treated
as something related to their quality to a supervised learning task. This means that the
quality of features used in the supervised learning task is intrinsically related to the
examples that represent the concept to be learned, and vice-versa. Examples are only
considered “good” ones if they are described by attributes that represent the concept to be
learned clearly, and features are only important if they capture this concept present in these
examples. This is the justification to the presented approach.
A textual description of the framework can be seen as: Initially the complete sets of features
and instances are set as initial solutions. There are two separated processes for selecting
features and instances. The main loop started in the line number 1 controls the search
processes. Starting in line number 3 (4) the new solution is generated using the
metaheuristic for feature (instance) selection. New solutions are generated only when the
Has Iterations test has true value, otherwise the Next Solution function must return the best
solution found in the search process. In line 5 the new solutions are evaluated. This step is
the joint evaluation function that works by getting the actual solutions from the feature
selection and instance selection processes, then creating a subset from the initial dataset by
using these two subsets and then evaluate then using k-fold cross validation, for example.
Finally the search processes are updated. This update is basically the exchange of solutions
if the new one achieved a better evaluation than the old one and any other process needed
by the metaheuristic like for example in Simulated Annealing, when even if the actual
solution is worse than the best one, it can be the next which guides the following steps of the
search. In line 9 the whole procedure is ended, and the subset generated by the two
solutions is returned as a new dataset to the supervised learning task. The figure 2 shows a

Framework for Mono-Objective Simultaneous and Independent Feature and Instance
Selection
Input: Dataset dt, Feature Selection Algorithm fs, Instance Selection Algorithm is, Evaluation
Function ef
Output: Dataset ndt
1. While(Has Iterations(fs) || Has Iterations(is))
2. Do
3. fsss = Next Solution(fs, dt)
4. isss = Next Solution(is, dt)
5. eval = Evaluation(ef, dt, fsss, isss)
6. Update(fs, eval, fsss)
7. Update(is, eval, isss)
8. Done
9. ndt = Create Subset(dt, Best Subset(fs), Best Subset(is))
10. Return ndt

www.intechopen.com

On The Combination of Feature and Instance Selection 163

Transjugular Intrahepatic Portosystemic Shunt (TIPS). In (Chen et al., 2005) it is made a
study using an explicit multi-objective design to the problems of feature and instance
selection, in which the goal is to maximize the performance of the 1-nn classifier and
minimize both the number of attributes and instances. In (Ros et al., 2007) the authors model
the problem in a multi-objective approach and solve them by a two-phase genetic algorithm.
In (Ishibuchi & Nakashima, 2000) the authors use a genetic algorithm which is biased to
decrease the number of features selected, by giving a bigger probability to the changing that
exclude features from the solutions.

3. A Framework for Simultaneous and Independent Feature and Instance
Selection

A deeper look into the related works on the combination of feature and instance selection
shows some points already addressed by these solutions and new questions. The first point
is that the majority of the approaches which try to solve these problems in a broad generic
formulation solve them by using specialized versions of genetic algorithms, trying to
separate the chromosome into two different areas, one for features and one for instances,
and applying separate operators to each area. These approaches arise from the natural
easiness of modeling the solutions to these problems as chromosomes and the need to cope
with these two different problems separately. The other point addressed is that either these
approaches work on a specific field of supervised learning (e.g. text mining) or depend on a
specific classifier (e.g. kNN). The reader may question “How can we use other
metaheuristics beyond genetic algorithms to solve these two problems?“ or “How could we
build a general framework to with them simultaneously?“. This section tries to give answers
to these questions.
Here we describe an extension of the work presented in (Souza et al., 2008) as a general
metaheuristics-based framework for simultaneous and independent feature and instance
selection. This framework is an effort to build an algorithm that can deal with both problems
simultaneously, since these problems are clearly related to one another and the work made
to select a subset of features can also be reused to select instances (and vice-versa) but they
are also independent, meaning that the algorithms that solve one of these problems do not
have to tackle the other one as well. The key idea here is to provide a joint subset evaluation,
in which the quality of a subset of features depends on the quality of a subset of instances
(and vice-versa). This means that although the search processes are independent, they are
guided by this joint evaluation function, which gives what we call a “power of influence” of
each solution of the separate problems over the other.

3.1 The Framework for Feature and Instance Selection
In order to make definitions clear, we must explain that this framework works with two
different solutions for each problem: the best and the actual solution. The best solution is, as
the name itself explains, the solution which achieved the best evaluation value so far in the
search process. The actual solution is the solution generated at every iteration to be tested to
see whether it is better than the best solution so far. In some metaheuristics, like Simulated
Annealing, the process of search does not depend on the best solution, although this solution
is stored, but in others like VNS (Mladenović & Hansen, 1997) the best solution is the one
which guides the search.

When applied to feature and instance selection, search metaheuristics can be seen as
wrappers, as they generate subsets (solutions), evaluate them using some classifier to test
whether they are good solutions or not and guide the search process by this evaluation
value achieved by each solution. This version of the framework works basically controlling
this evaluation process of each subset generated by the search. The framework can be
described as follows in figure 1

Fig. 1. The Framework

In this framework, the relationship between these entities, features and instances, is treated
as something related to their quality to a supervised learning task. This means that the
quality of features used in the supervised learning task is intrinsically related to the
examples that represent the concept to be learned, and vice-versa. Examples are only
considered “good” ones if they are described by attributes that represent the concept to be
learned clearly, and features are only important if they capture this concept present in these
examples. This is the justification to the presented approach.
A textual description of the framework can be seen as: Initially the complete sets of features
and instances are set as initial solutions. There are two separated processes for selecting
features and instances. The main loop started in the line number 1 controls the search
processes. Starting in line number 3 (4) the new solution is generated using the
metaheuristic for feature (instance) selection. New solutions are generated only when the
Has Iterations test has true value, otherwise the Next Solution function must return the best
solution found in the search process. In line 5 the new solutions are evaluated. This step is
the joint evaluation function that works by getting the actual solutions from the feature
selection and instance selection processes, then creating a subset from the initial dataset by
using these two subsets and then evaluate then using k-fold cross validation, for example.
Finally the search processes are updated. This update is basically the exchange of solutions
if the new one achieved a better evaluation than the old one and any other process needed
by the metaheuristic like for example in Simulated Annealing, when even if the actual
solution is worse than the best one, it can be the next which guides the following steps of the
search. In line 9 the whole procedure is ended, and the subset generated by the two
solutions is returned as a new dataset to the supervised learning task. The figure 2 shows a

Framework for Mono-Objective Simultaneous and Independent Feature and Instance
Selection
Input: Dataset dt, Feature Selection Algorithm fs, Instance Selection Algorithm is, Evaluation
Function ef
Output: Dataset ndt
1. While(Has Iterations(fs) || Has Iterations(is))
2. Do
3. fsss = Next Solution(fs, dt)
4. isss = Next Solution(is, dt)
5. eval = Evaluation(ef, dt, fsss, isss)
6. Update(fs, eval, fsss)
7. Update(is, eval, isss)
8. Done
9. ndt = Create Subset(dt, Best Subset(fs), Best Subset(is))
10. Return ndt

www.intechopen.com

Machine Learning164

graphical representation of the framework. The blue boxes are the best solutions in a given
iteration of the processes. The red boxes are the actual solutions in them and as it can be seen,
they are evaluated together using the function G. In some iteration they replace the best
solution but in other ones they do not have better evaluation so the best solutions remain the
same.

Fig. 2. A graphical view of the framework (Blue box – best solution; Red box – actual solution)

3.2 Extension to the Framework
The framework described in the last section is a basic view of it. An interesting extension
can be made for handling populational metaheuristics.
Populational metaheuristics create, at each iteration, a set of new actual solutions. Then the
evaluation of each new solution is calculated and operators of intensification and
diversification are applied. If we remember the fact that in this framework the evaluation of
a solution does not depend on itself solely, this fact adds the question of “Which solution
from the other process should I use in the joint evaluation function?” or “How can I calculate
the best actual solution in this given set of solutions?”.
Our answers to these questions are quite simple. The answer to the first question is “the best
actual solution from the last iteration”. In the first iteration the whole set of features or
instances is used to evaluate the new solutions and the search continues always reusing the
best actual solution of the last iteration. By doing this, the searches are still guided by both
solutions and only good solutions will guide this process. Nevertheless, the operators of
intensification and diversification will work normally, without any loss to the search process.

The answer to the second question is “by using the best actual solution from the last
iteration” as showed in the previous explanation.
Figure 3 gives a graphical explanation to the idea presented here. The reader must pay
attention to the green arrows. They show that the best actual solution (the yellow one) is
being used to evaluate the subsets of features (or instances) of the next generation. Besides,
there are separate evaluation procedures to the searches. These are the biggest differences to
the initial framework. Although there are these two separated procedures, the evaluations of
the actual solutions still depend on the other search process. Once more as in the initial
framework, in some iterations one of the solutions present in the actual population might
replace the best solution found so far but in other ones they do not have better evaluation so
the best solutions remains the same.

Fig. 3. A graphical view of the framework (Blue box – best solution; Red box – actual solution;
Yellow box – best actual solution. Green arrow – The best actual solution is being used to
evaluate the next generation of solutions)

4. Framework Evaluation

In this section we present and discuss the results obtained in several simulations executed in
order to test the effectiveness of the proposed framework. This section tries to make clear
the answer to the question “Is it worth using this framework?”.

www.intechopen.com

On The Combination of Feature and Instance Selection 165

graphical representation of the framework. The blue boxes are the best solutions in a given
iteration of the processes. The red boxes are the actual solutions in them and as it can be seen,
they are evaluated together using the function G. In some iteration they replace the best
solution but in other ones they do not have better evaluation so the best solutions remain the
same.

Fig. 2. A graphical view of the framework (Blue box – best solution; Red box – actual solution)

3.2 Extension to the Framework
The framework described in the last section is a basic view of it. An interesting extension
can be made for handling populational metaheuristics.
Populational metaheuristics create, at each iteration, a set of new actual solutions. Then the
evaluation of each new solution is calculated and operators of intensification and
diversification are applied. If we remember the fact that in this framework the evaluation of
a solution does not depend on itself solely, this fact adds the question of “Which solution
from the other process should I use in the joint evaluation function?” or “How can I calculate
the best actual solution in this given set of solutions?”.
Our answers to these questions are quite simple. The answer to the first question is “the best
actual solution from the last iteration”. In the first iteration the whole set of features or
instances is used to evaluate the new solutions and the search continues always reusing the
best actual solution of the last iteration. By doing this, the searches are still guided by both
solutions and only good solutions will guide this process. Nevertheless, the operators of
intensification and diversification will work normally, without any loss to the search process.

The answer to the second question is “by using the best actual solution from the last
iteration” as showed in the previous explanation.
Figure 3 gives a graphical explanation to the idea presented here. The reader must pay
attention to the green arrows. They show that the best actual solution (the yellow one) is
being used to evaluate the subsets of features (or instances) of the next generation. Besides,
there are separate evaluation procedures to the searches. These are the biggest differences to
the initial framework. Although there are these two separated procedures, the evaluations of
the actual solutions still depend on the other search process. Once more as in the initial
framework, in some iterations one of the solutions present in the actual population might
replace the best solution found so far but in other ones they do not have better evaluation so
the best solutions remains the same.

Fig. 3. A graphical view of the framework (Blue box – best solution; Red box – actual solution;
Yellow box – best actual solution. Green arrow – The best actual solution is being used to
evaluate the next generation of solutions)

4. Framework Evaluation

In this section we present and discuss the results obtained in several simulations executed in
order to test the effectiveness of the proposed framework. This section tries to make clear
the answer to the question “Is it worth using this framework?”.

www.intechopen.com

Machine Learning166

To make these simulations we have chosen some well-known datasets used for machine
learning tasks found at the UCI Machine Learning Repository (Asuncion and Newman,
2007). These datasets are the Audiology (70 attributes, 226 instances), Autos (26, 205), Colic
(23, 368), Credit (16, 690), Ionosphere (35, 351), Labor (17, 57), Lymph (19, 148), Primary-
Tumor (18, 339), Sonar (61, 208), Soybean (36, 683) and Vote (17, 435).
We implemented seven different strategies to tackle with the feature and instance selection
problems. The first one, here called ind, consists in making two separate selection processes
and then joining the subsets generated by these processes in the end. The solution generated
by the feature selection process and the other generated by the instance selection one are
joined to create the subset only when the search processes are ended. The fsis is a sequential
approach in which it is run a feature selection process followed by an instance selection
process. The dataset used in the feature selection is the whole initial dataset, but in the
dataset used by the instance selection process, only the best set of features found is used to
represent the examples. The isfs approach follows the same idea, but now the first process is
an instance selection and the second is a feature selection. Finally comb is the name given to
the approach presented in the framework.
Some pieces of different software were used to make these simulations. From the Weka Data
Mining Software (Witten & Frank, 2005) we used several classes to represent datasets,
attributes and examples and to create and evaluate models. From jMetal Metaheuristics
Framework (Durillo et al., 2006) we used some classes to represent the solutions to these
problems and also some classes of metaheuristics. The Evaluation method chosen to be used
in these simulations was a 10-fold cross-validation. The classifiers used were the C4.5, Naive
Bayes and kNN.

4.1 Simulation Using the Simulated Annealing Metaheuristic
The results presented in this section are the same presented in the former work of (Souza et
al., 2008). The architecture implemented in that work is the same of this general framework
but it was implemented using the Simulated Annealing metaheuristic.
For this simulation we implemented the Simulated Annealing metaheuristic to use it in both
selection problems. Simulated Annealing is a metaheuristic that consists in a randomized
local search, which simulates the process of physical annealing. This physical process
consists in heating a material to a desired temperature, followed by a slow cooling process.
The first step gives energy to the atoms and they move randomly through states of high
energy, changing the material's structure fast. The second step, which is performed slowly,
gives them the chance to arrange themselves into a configuration of lower energy.
In analogy with the physical process, Simulated Annealing changes the actual solution to a
neighbor solution, depending on the quality of this neighbor solution or the value of a
function that is calculated in accordance with the temperature parameter, which decreases
during the process.
The coding of solutions to this problem is basically an array of boolean values which has
length equal to the number of features or instances. Using this coding, we defined that two
solutions are considered neighbors only and if only they have at most 10% of bits set to
different values, i.e., when applied a XOR operator to these to problems, the result contains
only 10% of bits set to true.

 < 0.001 < 0.005 < 0.01
Comb vs IND 8 x 0 1 x 0 1 x 0
Comb vs FSIS 0 x 0 0 x 0 0 x 0
Comb vs ISFS 0 x 0 0 x 0 2 x 0

Table 1. Pairwise comparison between comb and other approaches

We have run all seven approaches described earlier in two different scenarios. In the first
one, each approach was given an unlimited time to run and generate a solution. After two
executions of each approach in every dataset, there were twenty Error Rate values available.

Fig. 4. The sum of execution times – Unlimited Time Scenario

Table 1 summarizes the results of a pairwise comparison between comb and the other
approaches that solve both problems. The results represent the number of times each
strategy outperformed the other, in terms of the accuracy of the final classifier, using the
student’s t-test with the corresponding confidence levels (0.001, 0.005 and 0.01).
Clearly the performance of comb is much better than the ind and slightly better than the
other two approaches. So when talking about performance it is not clear why to use this
approach. But looking at figure 3 we see that the comb approach usually requires less time
to reach the best error rate in the datasets. This figure shows the sum of time of all tests
executed by each approach.
In the second scenario we defined a limit to the execution time of every run. Figure 4 shows
that when this constraint is added to the problem and this time is not enough to complete
the search, the comb approach converges to low values of error rate faster than the other
two approaches.

www.intechopen.com

On The Combination of Feature and Instance Selection 167

To make these simulations we have chosen some well-known datasets used for machine
learning tasks found at the UCI Machine Learning Repository (Asuncion and Newman,
2007). These datasets are the Audiology (70 attributes, 226 instances), Autos (26, 205), Colic
(23, 368), Credit (16, 690), Ionosphere (35, 351), Labor (17, 57), Lymph (19, 148), Primary-
Tumor (18, 339), Sonar (61, 208), Soybean (36, 683) and Vote (17, 435).
We implemented seven different strategies to tackle with the feature and instance selection
problems. The first one, here called ind, consists in making two separate selection processes
and then joining the subsets generated by these processes in the end. The solution generated
by the feature selection process and the other generated by the instance selection one are
joined to create the subset only when the search processes are ended. The fsis is a sequential
approach in which it is run a feature selection process followed by an instance selection
process. The dataset used in the feature selection is the whole initial dataset, but in the
dataset used by the instance selection process, only the best set of features found is used to
represent the examples. The isfs approach follows the same idea, but now the first process is
an instance selection and the second is a feature selection. Finally comb is the name given to
the approach presented in the framework.
Some pieces of different software were used to make these simulations. From the Weka Data
Mining Software (Witten & Frank, 2005) we used several classes to represent datasets,
attributes and examples and to create and evaluate models. From jMetal Metaheuristics
Framework (Durillo et al., 2006) we used some classes to represent the solutions to these
problems and also some classes of metaheuristics. The Evaluation method chosen to be used
in these simulations was a 10-fold cross-validation. The classifiers used were the C4.5, Naive
Bayes and kNN.

4.1 Simulation Using the Simulated Annealing Metaheuristic
The results presented in this section are the same presented in the former work of (Souza et
al., 2008). The architecture implemented in that work is the same of this general framework
but it was implemented using the Simulated Annealing metaheuristic.
For this simulation we implemented the Simulated Annealing metaheuristic to use it in both
selection problems. Simulated Annealing is a metaheuristic that consists in a randomized
local search, which simulates the process of physical annealing. This physical process
consists in heating a material to a desired temperature, followed by a slow cooling process.
The first step gives energy to the atoms and they move randomly through states of high
energy, changing the material's structure fast. The second step, which is performed slowly,
gives them the chance to arrange themselves into a configuration of lower energy.
In analogy with the physical process, Simulated Annealing changes the actual solution to a
neighbor solution, depending on the quality of this neighbor solution or the value of a
function that is calculated in accordance with the temperature parameter, which decreases
during the process.
The coding of solutions to this problem is basically an array of boolean values which has
length equal to the number of features or instances. Using this coding, we defined that two
solutions are considered neighbors only and if only they have at most 10% of bits set to
different values, i.e., when applied a XOR operator to these to problems, the result contains
only 10% of bits set to true.

 < 0.001 < 0.005 < 0.01
Comb vs IND 8 x 0 1 x 0 1 x 0
Comb vs FSIS 0 x 0 0 x 0 0 x 0
Comb vs ISFS 0 x 0 0 x 0 2 x 0

Table 1. Pairwise comparison between comb and other approaches

We have run all seven approaches described earlier in two different scenarios. In the first
one, each approach was given an unlimited time to run and generate a solution. After two
executions of each approach in every dataset, there were twenty Error Rate values available.

Fig. 4. The sum of execution times – Unlimited Time Scenario

Table 1 summarizes the results of a pairwise comparison between comb and the other
approaches that solve both problems. The results represent the number of times each
strategy outperformed the other, in terms of the accuracy of the final classifier, using the
student’s t-test with the corresponding confidence levels (0.001, 0.005 and 0.01).
Clearly the performance of comb is much better than the ind and slightly better than the
other two approaches. So when talking about performance it is not clear why to use this
approach. But looking at figure 3 we see that the comb approach usually requires less time
to reach the best error rate in the datasets. This figure shows the sum of time of all tests
executed by each approach.
In the second scenario we defined a limit to the execution time of every run. Figure 4 shows
that when this constraint is added to the problem and this time is not enough to complete
the search, the comb approach converges to low values of error rate faster than the other
two approaches.

www.intechopen.com

Machine Learning168

Fig. 5. The sum of error rates – Limited Time Scenario

5. Conclusion

In this chapter we discussed two important problems in the pre-processing step of many
supervised learning tasks. A list of well-known algorithms were presented and discussed. A
new framework was proposed, extending the concept proposed by the authors in a previous
work. This framework was validated by some simulations using the metaheuristic
Simulated Annealing and NSGA-II. These simulations show that although the quality of
solutions generated by this framework is quite similar to those obtained by sequential
executions, this approach reaches the better solutions faster than the other approaches.
The frameworks is based on what we called “power of influence”, i.e. the quality of features in
a given supervised learning task is intrinsically related to the quality of instances used in
this task, and vice-versa. Based on this we created the framework that work with two
separated wrappers for these two problems, jointing them in a single evaluation procedure.

5.1 Future Work - The Framework for Multi-Objective Feature and Instance Selection
An important characteristic we want to add to this framework in the future is the possibility
to handle the multi-objective versions of the two selection problems. The usage of multi
objectives brings new power but also new problems to the search processes. In these
formulations, the characteristic of total ordering is replaced by partial ordering, using the
concept of Pareto optimality. The ideas of better and worse are replaced by dominance, non-
dominance. Given two solutions a, b and a set of functions F to be minimized (or maximized,
but in this explanation we suppose they are to be minimized), we say that a weakly
dominates b if and only if

� ௜݂ � �� ௜݂�ܽ� � ௜݂�ܾ� and ׌ ௜݂ � �� ௜݂�ܽ� ൏ ௜݂�ܾ� (5)

The concept of strong dominance requires that
 � ௜݂ � �� ௜݂�ܽ� ൏ ௜݂�ܾ�. (6)

When there is a set of solutions in which none of them dominate or are dominated by the
others, we say these solutions are in the Pareto front, i.e., they are solutions equally good, in a
way that one cannot say à priori which one of them is the best one without making any other
assumption.
This usage adds the same questions generated by populational metaheuristics, such as
“Which solution from the other process should I use in the joint evaluation function?” or
“How can I calculate the best actual solution in this given set of solutions if there will be
some ‘equally good’ ones?”.
The answers related to the multi-objective approaches seem to be similar to the ones given
to populational metaheuristics but they weren’t tested yet. Given that it is needed to
evaluate all the subsets of features (and vice-versa), the algorithm can use any of the subsets
of instances from the last iteration which are in the Pareto front since all of them are equally
good. A reasonable solution would be to pick a random solution from the Pareto front of the
instance selection process every time the algorithm has to evaluate a subset of features. This
approach increases diversification because several different solutions are used to guide the
search and there is no loss in intensification as only good solutions are used in this process.
In the end of the search processes there will be two Pareto fronts: one of features and one of
instances. At this moment the user have several alternatives like choosing one solution of
each search or generating all combinations of solutions and picking the one which is the
best. How to deal with these two Pareto fronts is an open question so far.

6. References

Almuallim, H. & Dietterich, T. (1991). Learning with many irrelevant features. Proceedings of
the Ninth National Conference on Artificial Intelligence (AAAI'91), pp. 547-552, AAAI
Press, Anaheim

Asuncion, A. & Newman, D. J. (2007). UCI Machine Learning Repository
[http://www.ics.uci.edu/~mlearn/MLRepository.html], University of California,
School of Information and Computer Science, Irvine, CA

Beritelli, F.; Casale, S.; Russo, A. & Serrano, S. (2005). A genetic algorithm feature selection
approach to robust classification between "positive" and "negative" emotional
states in speakers. Thirty-Ninth Asilomar Conference on Signals, Systems and
Computers, pp. 550-553

Blum, A. & Langley, P. (1997). Selection of Relevant Features and Examples in Machine
Learning. Artificial Intelligence, 97, 1-2, December 1997, 245-271, 0004-3702

Cano, J.; Herrera, F. & Lozano, M. (2003). Using evolutionary algorithms as instance
selection for data reduction in kdd: an experimental study. IEEE Transactions on
Evolutionary Computation, 7, 6, December 2003, 561-575, 1089-778X

www.intechopen.com

On The Combination of Feature and Instance Selection 169

Fig. 5. The sum of error rates – Limited Time Scenario

5. Conclusion

In this chapter we discussed two important problems in the pre-processing step of many
supervised learning tasks. A list of well-known algorithms were presented and discussed. A
new framework was proposed, extending the concept proposed by the authors in a previous
work. This framework was validated by some simulations using the metaheuristic
Simulated Annealing and NSGA-II. These simulations show that although the quality of
solutions generated by this framework is quite similar to those obtained by sequential
executions, this approach reaches the better solutions faster than the other approaches.
The frameworks is based on what we called “power of influence”, i.e. the quality of features in
a given supervised learning task is intrinsically related to the quality of instances used in
this task, and vice-versa. Based on this we created the framework that work with two
separated wrappers for these two problems, jointing them in a single evaluation procedure.

5.1 Future Work - The Framework for Multi-Objective Feature and Instance Selection
An important characteristic we want to add to this framework in the future is the possibility
to handle the multi-objective versions of the two selection problems. The usage of multi
objectives brings new power but also new problems to the search processes. In these
formulations, the characteristic of total ordering is replaced by partial ordering, using the
concept of Pareto optimality. The ideas of better and worse are replaced by dominance, non-
dominance. Given two solutions a, b and a set of functions F to be minimized (or maximized,
but in this explanation we suppose they are to be minimized), we say that a weakly
dominates b if and only if

� ௜݂ � �� ௜݂�ܽ� � ௜݂�ܾ� and ׌ ௜݂ � �� ௜݂�ܽ� ൏ ௜݂�ܾ� (5)

The concept of strong dominance requires that
 � ௜݂ � �� ௜݂�ܽ� ൏ ௜݂�ܾ�. (6)

When there is a set of solutions in which none of them dominate or are dominated by the
others, we say these solutions are in the Pareto front, i.e., they are solutions equally good, in a
way that one cannot say à priori which one of them is the best one without making any other
assumption.
This usage adds the same questions generated by populational metaheuristics, such as
“Which solution from the other process should I use in the joint evaluation function?” or
“How can I calculate the best actual solution in this given set of solutions if there will be
some ‘equally good’ ones?”.
The answers related to the multi-objective approaches seem to be similar to the ones given
to populational metaheuristics but they weren’t tested yet. Given that it is needed to
evaluate all the subsets of features (and vice-versa), the algorithm can use any of the subsets
of instances from the last iteration which are in the Pareto front since all of them are equally
good. A reasonable solution would be to pick a random solution from the Pareto front of the
instance selection process every time the algorithm has to evaluate a subset of features. This
approach increases diversification because several different solutions are used to guide the
search and there is no loss in intensification as only good solutions are used in this process.
In the end of the search processes there will be two Pareto fronts: one of features and one of
instances. At this moment the user have several alternatives like choosing one solution of
each search or generating all combinations of solutions and picking the one which is the
best. How to deal with these two Pareto fronts is an open question so far.

6. References

Almuallim, H. & Dietterich, T. (1991). Learning with many irrelevant features. Proceedings of
the Ninth National Conference on Artificial Intelligence (AAAI'91), pp. 547-552, AAAI
Press, Anaheim

Asuncion, A. & Newman, D. J. (2007). UCI Machine Learning Repository
[http://www.ics.uci.edu/~mlearn/MLRepository.html], University of California,
School of Information and Computer Science, Irvine, CA

Beritelli, F.; Casale, S.; Russo, A. & Serrano, S. (2005). A genetic algorithm feature selection
approach to robust classification between "positive" and "negative" emotional
states in speakers. Thirty-Ninth Asilomar Conference on Signals, Systems and
Computers, pp. 550-553

Blum, A. & Langley, P. (1997). Selection of Relevant Features and Examples in Machine
Learning. Artificial Intelligence, 97, 1-2, December 1997, 245-271, 0004-3702

Cano, J.; Herrera, F. & Lozano, M. (2003). Using evolutionary algorithms as instance
selection for data reduction in kdd: an experimental study. IEEE Transactions on
Evolutionary Computation, 7, 6, December 2003, 561-575, 1089-778X

www.intechopen.com

Machine Learning170

Chen, J-H.; Chen, H-M. & Ho S-Y. (2005). Design of nearest neighbor classifiers: multi-
objective approach, International Journal of Approximate Reasoning, 40, 1, July 2005, 3-
22, 0888-613X

Dash, M. & Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis – An
International Journal, 1, 131-156

Durillo, J. J.; Nebro, A. J.; Luna, F.; Dorronsoro, B. & Alba, E. (2006). TechRep jMetal: a Java
Framework for Developing Multi-Objective Optimization Metaheuristics., Departamento
de Lenguajes y Ciencias de la Computación, University of Málaga, 2006

Fayyad, U.; Piatetsky-Shapiro, G. & Smyth, P. (1996). From data mining to knowledge
discovery in databases. Ai Magazine, 17, 3, 37-54, 0738-4602

Filippone, M.; Masulli, F.; Rovetta, S. & Constantinescu, S. P. (2006). Input selection with
mixed data sets: A simulated annealing wrapper approach. Conferenza Italiana
Sistemi Intelligenti (CISI 06), Ancona

Fragoudis, D.; Meretakis, D. & Likothanassis, S. (2002). Integrating feature and instance
selection for text classification. Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 501-506, 1-58113-567-X,
ACM, New York

Gates, G. (1972). The reduced nearest neighbor rule (corresp.). IEEE Transactions on
Information Theory, 18, 3, May 1972, 431-433, 0018-9448

Hart, P. (1968). The condensed nearest neighbor rule, IEEE Transactions on Information
Theory, 14, 3, May 1968, 515-516, 0018-9448

Ishibuchi, H. & Nakashima, T. (2000). Multi-objective pattern and feature selection by a
genetic algorithm, Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 1069-1076, Morgan Kaufmann

Jankowski, N. & Grochowski, M. (2004). Comparison of instances selection algorithms I.
Algorithms Survey, In: Artificial Intelligence and Soft Computing - ICAISC 2004,
Springer, 978-3-540-22123-4

John, G.; Kohavi, R. & Peger, K. (1994). Irrelevant features and the subset selection
problem. Proceedings of the Eleventh International Conference on Machine Learning
(ICML’94), 121–129

Kira, K. & Rendell, L. (1992). The feature selection problem: Traditional methods and new
algorithm, Proceedings of the Tenth National Conference on Artificial lntelligence, pp.
129-134, MIT Press

Kirkpatrick, S.; Gelatt, C. D. & Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220, 4598, May 1983, 671-680, 00368075

Kuncheva, L. I. & Jain, L. C. (1999). Nearest neighbor classifier: simultaneous editing and
feature selection, Pattern Recognition Letters, 20, 11, November 1999, 1149-1156,
0167-8655

Liu, H. & & Motoda, H. (2002). On issues of instance selection. Data Mining and Knowledge
Discovery, 6, 2, 115-130, 1384-5810

Liu, H. & Setiono, R. (1996). A probabilistic approach to feature selection – A filter solution.
Proceedings of the Thirteenth International Conference on Machine Learning (ICML'96),
pp. 319-327, MIT Press

Mladenović, N. & Hansen, P. (1997). Variable neighborhood search. Computers and
Operations Research, 24, 11, November 1997, 1097-1100, 0305-0548

Ramirez-Cruz, J. F. ; Fuentes, O.; Alarcon-Aquino, V. & Garcia-Banuelos, L. (2006). Instance
selection and feature weighting using evolutionary algorithms. 15th International
Conference on Computing (CIC '06), 73-79, 0-7695-2708-6

Ritter, G. ; Woodruff, H.; Lowry, S. & Isenhour, T. (1975). An algorithm for a selective
nearest neighbor decision rule (corresp.). IEEE Transactions on Information Theory, ,
21, 6, November 1975, 665-669, 0018-9448

Ros, F. ; Guillaume, S. ; Pintore, M. & Chrétien, J. R. (2007). Hybrid genetic algorithm for
dual selection, Pattern Analysis & Applications, 11, 2, June 2008, 179-198, 1433-755X

Sierra, B. ; Lazkano, E. ; Inza, I. ; Merino, M. ; Larrañaga, P. & Quiroga, J. (2001), Lecture
Notes in Computer Science, 2101/2001, 20-29, 978-3-540-42294-5

Souza, J. T. (2004). Feature selection with a general hybrid algorithm. Doctoral dissertation,
University of Ottawa, School of Information Technology and Engineering (SITE), Ottawa

Souza, J. T. ; Carmo, R. A. F. & Campos, G. A. L. (2008). A novel approach for integrating
feature and instance selection. Proceedings of the International Conference on
Machine Learning and Cybernetics, pp. 374-379, 978-1-4244-2095-7, July 2008

Sun, Z.; Bebis, G.; Yuan, X. & Louis, S. J. (2002). Genetic feature subset selection for gender
classification: A comparison study. Proceedings of the Sixth IEEE Workshop on
Applications of Computer Vision (WACV'02), IEEE Computer Society, Washington

Tahir, M.; Bouridane, A.; Kurugollu, F. & Amira, A. (2004). Feature selection using tabu
search for improving the classification rate prostate needle biopsies. Pattern
recognition, 2, 335-338, 0031-3203

Vafaie, H. & De Jong, K. (1992). Genetic algorithms as a tool for feature selection in machine
learning. Proceedings of the Fourth International Conference on Tools with Artificial
Intelligence, pp. 200-204, Arlington

Witten, I. H. & Frank, E. (2005). Data Mining: Practical machine learning tools and techniques,
Morgan Kaufmann, San Francisco, 2005

www.intechopen.com

On The Combination of Feature and Instance Selection 171

Chen, J-H.; Chen, H-M. & Ho S-Y. (2005). Design of nearest neighbor classifiers: multi-
objective approach, International Journal of Approximate Reasoning, 40, 1, July 2005, 3-
22, 0888-613X

Dash, M. & Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis – An
International Journal, 1, 131-156

Durillo, J. J.; Nebro, A. J.; Luna, F.; Dorronsoro, B. & Alba, E. (2006). TechRep jMetal: a Java
Framework for Developing Multi-Objective Optimization Metaheuristics., Departamento
de Lenguajes y Ciencias de la Computación, University of Málaga, 2006

Fayyad, U.; Piatetsky-Shapiro, G. & Smyth, P. (1996). From data mining to knowledge
discovery in databases. Ai Magazine, 17, 3, 37-54, 0738-4602

Filippone, M.; Masulli, F.; Rovetta, S. & Constantinescu, S. P. (2006). Input selection with
mixed data sets: A simulated annealing wrapper approach. Conferenza Italiana
Sistemi Intelligenti (CISI 06), Ancona

Fragoudis, D.; Meretakis, D. & Likothanassis, S. (2002). Integrating feature and instance
selection for text classification. Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 501-506, 1-58113-567-X,
ACM, New York

Gates, G. (1972). The reduced nearest neighbor rule (corresp.). IEEE Transactions on
Information Theory, 18, 3, May 1972, 431-433, 0018-9448

Hart, P. (1968). The condensed nearest neighbor rule, IEEE Transactions on Information
Theory, 14, 3, May 1968, 515-516, 0018-9448

Ishibuchi, H. & Nakashima, T. (2000). Multi-objective pattern and feature selection by a
genetic algorithm, Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 1069-1076, Morgan Kaufmann

Jankowski, N. & Grochowski, M. (2004). Comparison of instances selection algorithms I.
Algorithms Survey, In: Artificial Intelligence and Soft Computing - ICAISC 2004,
Springer, 978-3-540-22123-4

John, G.; Kohavi, R. & Peger, K. (1994). Irrelevant features and the subset selection
problem. Proceedings of the Eleventh International Conference on Machine Learning
(ICML’94), 121–129

Kira, K. & Rendell, L. (1992). The feature selection problem: Traditional methods and new
algorithm, Proceedings of the Tenth National Conference on Artificial lntelligence, pp.
129-134, MIT Press

Kirkpatrick, S.; Gelatt, C. D. & Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220, 4598, May 1983, 671-680, 00368075

Kuncheva, L. I. & Jain, L. C. (1999). Nearest neighbor classifier: simultaneous editing and
feature selection, Pattern Recognition Letters, 20, 11, November 1999, 1149-1156,
0167-8655

Liu, H. & & Motoda, H. (2002). On issues of instance selection. Data Mining and Knowledge
Discovery, 6, 2, 115-130, 1384-5810

Liu, H. & Setiono, R. (1996). A probabilistic approach to feature selection – A filter solution.
Proceedings of the Thirteenth International Conference on Machine Learning (ICML'96),
pp. 319-327, MIT Press

Mladenović, N. & Hansen, P. (1997). Variable neighborhood search. Computers and
Operations Research, 24, 11, November 1997, 1097-1100, 0305-0548

Ramirez-Cruz, J. F. ; Fuentes, O.; Alarcon-Aquino, V. & Garcia-Banuelos, L. (2006). Instance
selection and feature weighting using evolutionary algorithms. 15th International
Conference on Computing (CIC '06), 73-79, 0-7695-2708-6

Ritter, G. ; Woodruff, H.; Lowry, S. & Isenhour, T. (1975). An algorithm for a selective
nearest neighbor decision rule (corresp.). IEEE Transactions on Information Theory, ,
21, 6, November 1975, 665-669, 0018-9448

Ros, F. ; Guillaume, S. ; Pintore, M. & Chrétien, J. R. (2007). Hybrid genetic algorithm for
dual selection, Pattern Analysis & Applications, 11, 2, June 2008, 179-198, 1433-755X

Sierra, B. ; Lazkano, E. ; Inza, I. ; Merino, M. ; Larrañaga, P. & Quiroga, J. (2001), Lecture
Notes in Computer Science, 2101/2001, 20-29, 978-3-540-42294-5

Souza, J. T. (2004). Feature selection with a general hybrid algorithm. Doctoral dissertation,
University of Ottawa, School of Information Technology and Engineering (SITE), Ottawa

Souza, J. T. ; Carmo, R. A. F. & Campos, G. A. L. (2008). A novel approach for integrating
feature and instance selection. Proceedings of the International Conference on
Machine Learning and Cybernetics, pp. 374-379, 978-1-4244-2095-7, July 2008

Sun, Z.; Bebis, G.; Yuan, X. & Louis, S. J. (2002). Genetic feature subset selection for gender
classification: A comparison study. Proceedings of the Sixth IEEE Workshop on
Applications of Computer Vision (WACV'02), IEEE Computer Society, Washington

Tahir, M.; Bouridane, A.; Kurugollu, F. & Amira, A. (2004). Feature selection using tabu
search for improving the classification rate prostate needle biopsies. Pattern
recognition, 2, 335-338, 0031-3203

Vafaie, H. & De Jong, K. (1992). Genetic algorithms as a tool for feature selection in machine
learning. Proceedings of the Fourth International Conference on Tools with Artificial
Intelligence, pp. 200-204, Arlington

Witten, I. H. & Frank, E. (2005). Data Mining: Practical machine learning tools and techniques,
Morgan Kaufmann, San Francisco, 2005

www.intechopen.com

Machine Learning172

www.intechopen.com

Machine Learning

Edited by Yagang Zhang

ISBN 978-953-307-033-9

Hard cover, 438 pages

Publisher InTech

Published online 01, February, 2010

Published in print edition February, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Machine learning techniques have the potential of alleviating the complexity of knowledge acquisition. This

book presents today’s state and development tendencies of machine learning. It is a multi-author book. Taking

into account the large amount of knowledge about machine learning and practice presented in the book, it is

divided into three major parts: Introduction, Machine Learning Theory and Applications. Part I focuses on the

introduction to machine learning. The author also attempts to promote a new design of thinking machines and

development philosophy. Considering the growing complexity and serious difficulties of information processing

in machine learning, in Part II of the book, the theoretical foundations of machine learning are considered, and

they mainly include self-organizing maps (SOMs), clustering, artificial neural networks, nonlinear control, fuzzy

system and knowledge-based system (KBS). Part III contains selected applications of various machine

learning approaches, from flight delays, network intrusion, immune system, ship design to CT and RNA target

prediction. The book will be of interest to industrial engineers and scientists as well as academics who wish to

pursue machine learning. The book is intended for both graduate and postgraduate students in fields such as

computer science, cybernetics, system sciences, engineering, statistics, and social sciences, and as a

reference for software professionals and practitioners.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jerffeson Teixeira de Souza, Rafael Augusto Ferreira do Carmo and Gustavo Augusto Campos de Lima

(2010). On The Combination of Feature and Instance Selection, Machine Learning, Yagang Zhang (Ed.),

ISBN: 978-953-307-033-9, InTech, Available from: http://www.intechopen.com/books/machine-learning/on-the-

combination-of-feature-and-instance-selection

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

