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1. Introduction 
 

In most of the missions a mobile robot has to achieve – intervention in hostile environments, 
preparation of military intervention, mapping, etc – two main tasks have to be completed: 
navigation and 3D environment perception. Therefore, vision based solutions have been 
widely used in autonomous robotics because they provide a large amount of information 
useful for detection, tracking, pattern recognition and scene understanding. Nevertheless, 
the main limitations of this kind of system are the limited field of view and the loss of the 
depth perception.  
A 360-degree field of view offers many advantages for navigation such as easiest motion 
estimation using specific properties on optical flow (Mouaddib, 2005) and more robust 
feature extraction and tracking. The interest for omnidirectional vision has therefore been 
growing up significantly over the past few years and several methods are being explored to 
obtain a panoramic image: rotating cameras (Benosman & Devars, 1998), muti-camera 
systems and catadioptric sensors (Baker & Nayar, 1999). Catadioptric sensors, i.e. the 
combination of a camera and a mirror with revolution shape, are nevertheless the only 
system that can provide a panoramic image instantaneously without moving parts, and are 
thus well-adapted for mobile robot applications. 
The depth perception can be retrieved using a set of images taken from at least two different 
viewpoints either by moving the camera or by using several cameras at different positions.  
The use of the camera motion to recover the geometrical structure of the scene and the 
camera’s positions is known as Structure From Motion (SFM). Excellent results have been 
obtained during the last years with SFM approaches (Pollefeys et al., 2004; Nister, 2001), but 
with off-line algorithms that need to process all the images simultaneous. SFM is 
consequently not well-adapted to the exploration of an unknown environment because the 
robot needs to build the map and to localize itself in this map during its world exploration. 
The in-line approach, known as SLAM (Simultaneous Localization and Mapping), is one of 
the most active research areas in robotics since it can provide a real autonomy to a mobile 
robot. Some interesting results have been obtained in the last few years but principally to 
build 2D maps of indoor environments using laser range-finders. A survey of these 
algorithms can be found in the tutorials of Durrant-Whyte and Bailey (Durrant-Whyte & 
Bailey, 2006; Bailey & Durrant-Whyte, 2006). 
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Vision-based SLAM algorithms are generally dedicated to monocular systems which are 
cheaper, less bulky, and easier to implement than stereoscopic ones. Stereoscopic systems 
have, however, the advantage to work in dynamic environments since they can grab 
simultaneously two images. Calibration of the stereoscopic sensor enables, moreover, to 
recover the Euclidean structure of the scene which is not always possible with only one 
camera. 
In this chapter, we propose the design of an omnidirectional stereoscopic system dedicated 
to mobile robot applications, and a complete scheme for localization and 3D reconstruction. 
This chapter is organized as follows. Section 2 describes our 3D omnidirectional sensor.  
Section 3 is dedicated to the modelling and the calibration of the sensor. Our main 
contribution, a Simultaneous Localization and Mapping algorithm for an omnidirectional 
stereoscopic sensor, is then presented in section 4. The results of the experimental evaluation 
of each step, from calibration to SLAM, are then exposed in section 5. Finally, conclusions 
and future works are presented section 6. 

 
2. System overview 
 

2.1 Sensor description 

Among all possible configurations of central catadioptric sensors described by Nayar and 
Baker (Baker & Nayar, 1999), the combination of a hyperbolic mirror and a camera is 
preferable for the sake of compactness since a parabolic mirror needs a bulky telecentric 
lens.  
Although it is possible to reconstruct the environment with only one camera, a stereoscopic 
sensor can produce a 3D reconstruction instantaneously (without displacement) and will 
give better results in dynamic scenes. For these reasons, we developed a stereoscopic system 
dedicated to mobile robot applications using two catadioptric sensors as shown in Figure 1. 
 

 
Fig. 1. View of our catadioptric stereovision sensor mounted on a Pioneer robot. Baseline is 
around 20cm for indoor environments and can be extended for outdoor environments. The 
overall height of the sensor is 40cm. 

 

2.2 Imposing the Single-Viewpoint (SVP) Constraint 
The formation of images with catadioptric sensors is based on the Single-Viewpoint theory 
(Baker & Nayer, 1999). The respect of the SVP constraint permits the generation of 
geometrically correct perspective images. In the case of a hyperbolic mirror, the optical 
center of the camera has to coincide with the second focus F’ of the hyperbola located at a 
distance of 2e from the mirror focus as illustrated in Figure 2. The eccentricity e is a 
parameter of the mirror given by the manufacturer. 
 

 
Fig. 2. Image formation with a hyperbolic mirror. The camera center has to be located at 2e 
from the mirror focus to respect the SVP constraint. 
 
A key step in designing a catadioptric sensor is to respect this constraint as much as 
possible. To achieve this, we first calibrate our camera with a standard calibration tool to 
determine the central point and the focal length. Knowing the parameters of both the mirror 
and the camera, the image of the mirror on the image plane can be easily predicted if the 
SVP constraint is respected as illustrated in Figure 2. The expected mirror boundaries are 
superposed on the image and the mirror has then to be moved manually to fit this 
estimation as shown in Figure 3. 
 

 
Fig. 3. Adjustment of the mirror position to respect the SVP constraint. The mirror border 
has to fit the estimation (green circle). 

www.intechopen.com



A 3D Omnidirectional Sensor For Mobile Robot Applications 3

 

Vision-based SLAM algorithms are generally dedicated to monocular systems which are 
cheaper, less bulky, and easier to implement than stereoscopic ones. Stereoscopic systems 
have, however, the advantage to work in dynamic environments since they can grab 
simultaneously two images. Calibration of the stereoscopic sensor enables, moreover, to 
recover the Euclidean structure of the scene which is not always possible with only one 
camera. 
In this chapter, we propose the design of an omnidirectional stereoscopic system dedicated 
to mobile robot applications, and a complete scheme for localization and 3D reconstruction. 
This chapter is organized as follows. Section 2 describes our 3D omnidirectional sensor.  
Section 3 is dedicated to the modelling and the calibration of the sensor. Our main 
contribution, a Simultaneous Localization and Mapping algorithm for an omnidirectional 
stereoscopic sensor, is then presented in section 4. The results of the experimental evaluation 
of each step, from calibration to SLAM, are then exposed in section 5. Finally, conclusions 
and future works are presented section 6. 

 
2. System overview 
 

2.1 Sensor description 

Among all possible configurations of central catadioptric sensors described by Nayar and 
Baker (Baker & Nayar, 1999), the combination of a hyperbolic mirror and a camera is 
preferable for the sake of compactness since a parabolic mirror needs a bulky telecentric 
lens.  
Although it is possible to reconstruct the environment with only one camera, a stereoscopic 
sensor can produce a 3D reconstruction instantaneously (without displacement) and will 
give better results in dynamic scenes. For these reasons, we developed a stereoscopic system 
dedicated to mobile robot applications using two catadioptric sensors as shown in Figure 1. 
 

 
Fig. 1. View of our catadioptric stereovision sensor mounted on a Pioneer robot. Baseline is 
around 20cm for indoor environments and can be extended for outdoor environments. The 
overall height of the sensor is 40cm. 

 

2.2 Imposing the Single-Viewpoint (SVP) Constraint 
The formation of images with catadioptric sensors is based on the Single-Viewpoint theory 
(Baker & Nayer, 1999). The respect of the SVP constraint permits the generation of 
geometrically correct perspective images. In the case of a hyperbolic mirror, the optical 
center of the camera has to coincide with the second focus F’ of the hyperbola located at a 
distance of 2e from the mirror focus as illustrated in Figure 2. The eccentricity e is a 
parameter of the mirror given by the manufacturer. 
 

 
Fig. 2. Image formation with a hyperbolic mirror. The camera center has to be located at 2e 
from the mirror focus to respect the SVP constraint. 
 
A key step in designing a catadioptric sensor is to respect this constraint as much as 
possible. To achieve this, we first calibrate our camera with a standard calibration tool to 
determine the central point and the focal length. Knowing the parameters of both the mirror 
and the camera, the image of the mirror on the image plane can be easily predicted if the 
SVP constraint is respected as illustrated in Figure 2. The expected mirror boundaries are 
superposed on the image and the mirror has then to be moved manually to fit this 
estimation as shown in Figure 3. 
 

 
Fig. 3. Adjustment of the mirror position to respect the SVP constraint. The mirror border 
has to fit the estimation (green circle). 

www.intechopen.com



Mobile Robots Navigation4

 

3. Modelling of the sensor 

The modelling of the sensor is a necessary step to obtain metric information about the scene 
from the camera. It establishes the relationship between the 3D points of the scene and their 
projections into the image (pixel coordinates). Although there are many calibration methods, 
they can be classified into two main categories: parametric and non-parametric. The first 
family consists in finding an appropriate model for the projection of a 3D point onto the 
image plane. Non-parametric methods associate one projection ray to each pixel 
(Ramalingram et al., 2005) and provide a “black box model” of the sensor. They are well 
adapted for general purposes but they make more difficult the minimization algorithms 
commonly used in computer vision (gradient descent, Gauss-Newton, Levenberg-
Marquardt, etc). 

 
3.1 Projection model 
Using a parametric method requires the choice of a model, which is very important because 
it has an effect on the complexity and the precision of the calibration process. Several models 
are available for catadioptric sensors: complete model, polynomial approximation of the 
projection function and generic model. 
The complete model relies on the mirror equation, the camera parameters and the rigid 
transformation between them to calculate the projection function (Gonzalez-Barbosa & 
Lacroix, 2005). The large number of parameters to be estimated leads to an error function 
which is difficult to minimize because of numerous local minima (Mei & Rives, 2007). The 
polynomial approximation of the projection function was introduced by Scaramuzza 
(Scaramuzza et al., 2006), who proposed a calibration toolbox for his model. The generic 
model, also known as the unified model, was introduced by Geyer (Geyer & Daniilidis, 
2000) and Barreto (Barreto, 2006), who proved its validity for all central catadioptric 
systems. This model was then modified by Mei (Mei & Rives, 2007), who generalized the 
projection matrix and also took into account the distortions. We chose to work with the 
unified model introduced by Mei because any catadioptric system can be used and the 
number of parameters to be estimated is quite reasonable. 
 

 
Fig. 4. Unified projection model. 

 

As shown in Figure 4, the projection  Tvup  of a 3D point X  with coordinates 

 Twww ZYX  in the world frame can be computed using the following steps: 
 The coordinates of the point X  are first expressed in the sensor frame by the rigid 

transformation W  which depends on the seven parameters of the vector 
 Tzyxzyxw tttqqqq1V . The first four parameters are the rotation R  

parameterised by a quaternion and the three others are those of the translation T . 
The coordinates of X  in the mirror frame are thus given by: 
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 The point  TZYXX  in the mirror frame is projected from the center onto the 

unit sphere giving  TSSS ZYXSX . This point is then projected onto the 
normalized plane from a point located at a distance ξ from the center of the sphere. 
These transformations are combined in the function H which depends on only one 
parameter:  2V . The projection onto the normalized plane, written  Tyxm  

is consequently obtained by: 
 

     


































S

S
S

S

Z
Y
Z
X

y
x

, with 


















































222

222

222

ZYX

Z
ZYX

Y
ZYX

X

Z
Y
X

S

S

S
 (2) 

 
 Distortions are then added to the point m  using the distortion function D, which 

depends on 5 coefficients: 3 for radial distortions and 2 for tangential distortions. 
Let  T54321 kkkkk3V  be the parameter vector containing these 

coefficients, 22 yx  , and   Tdd yxdm  the resulting point. Its 
coordinates are obtained by the following equation: 
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 Final projection is a perspective projection involving the projection matrix K . This 

matrix contains 5 parameters: the generalized focal lengths u  and v , the 

www.intechopen.com



A 3D Omnidirectional Sensor For Mobile Robot Applications 5

 

3. Modelling of the sensor 

The modelling of the sensor is a necessary step to obtain metric information about the scene 
from the camera. It establishes the relationship between the 3D points of the scene and their 
projections into the image (pixel coordinates). Although there are many calibration methods, 
they can be classified into two main categories: parametric and non-parametric. The first 
family consists in finding an appropriate model for the projection of a 3D point onto the 
image plane. Non-parametric methods associate one projection ray to each pixel 
(Ramalingram et al., 2005) and provide a “black box model” of the sensor. They are well 
adapted for general purposes but they make more difficult the minimization algorithms 
commonly used in computer vision (gradient descent, Gauss-Newton, Levenberg-
Marquardt, etc). 

 
3.1 Projection model 
Using a parametric method requires the choice of a model, which is very important because 
it has an effect on the complexity and the precision of the calibration process. Several models 
are available for catadioptric sensors: complete model, polynomial approximation of the 
projection function and generic model. 
The complete model relies on the mirror equation, the camera parameters and the rigid 
transformation between them to calculate the projection function (Gonzalez-Barbosa & 
Lacroix, 2005). The large number of parameters to be estimated leads to an error function 
which is difficult to minimize because of numerous local minima (Mei & Rives, 2007). The 
polynomial approximation of the projection function was introduced by Scaramuzza 
(Scaramuzza et al., 2006), who proposed a calibration toolbox for his model. The generic 
model, also known as the unified model, was introduced by Geyer (Geyer & Daniilidis, 
2000) and Barreto (Barreto, 2006), who proved its validity for all central catadioptric 
systems. This model was then modified by Mei (Mei & Rives, 2007), who generalized the 
projection matrix and also took into account the distortions. We chose to work with the 
unified model introduced by Mei because any catadioptric system can be used and the 
number of parameters to be estimated is quite reasonable. 
 

 
Fig. 4. Unified projection model. 

 

As shown in Figure 4, the projection  Tvup  of a 3D point X  with coordinates 

 Twww ZYX  in the world frame can be computed using the following steps: 
 The coordinates of the point X  are first expressed in the sensor frame by the rigid 

transformation W  which depends on the seven parameters of the vector 
 Tzyxzyxw tttqqqq1V . The first four parameters are the rotation R  

parameterised by a quaternion and the three others are those of the translation T . 
The coordinates of X  in the mirror frame are thus given by: 
 

             

TR 

































w

w

w

Z
Y
X

Z
Y
X

 

(1) 

 
 The point  TZYXX  in the mirror frame is projected from the center onto the 

unit sphere giving  TSSS ZYXSX . This point is then projected onto the 
normalized plane from a point located at a distance ξ from the center of the sphere. 
These transformations are combined in the function H which depends on only one 
parameter:  2V . The projection onto the normalized plane, written  Tyxm  

is consequently obtained by: 
 

     


































S

S
S

S

Z
Y
Z
X

y
x

, with 


















































222

222

222

ZYX

Z
ZYX

Y
ZYX

X

Z
Y
X

S

S

S
 (2) 

 
 Distortions are then added to the point m  using the distortion function D, which 

depends on 5 coefficients: 3 for radial distortions and 2 for tangential distortions. 
Let  T54321 kkkkk3V  be the parameter vector containing these 

coefficients, 22 yx  , and   Tdd yxdm  the resulting point. Its 
coordinates are obtained by the following equation: 
 
















)2(2)1(
)2(2)1(

22
34

6
5

4
2

2
1

22
43

6
5

4
2

2
1

ykxykkkky
xkxykkkkx




dm  (3) 

 
 Final projection is a perspective projection involving the projection matrix K . This 

matrix contains 5 parameters: the generalized focal lengths u  and v , the 

www.intechopen.com



Mobile Robots Navigation6

 

coordinates of the principal point 0u  and 0v , and the skew  . Let K be this 

projection function, and  T00 vuvu 4V be the parameter vector. The 

projection  Tvup  of the 3D point X is given by equation (4). 
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Let V be the global parameter vector, i.e.  TTTTT
4321 VVVVV  . The global 

projection function of a 3D point X , written ),( XVP , is obtained by chain composition of 
the different functions presented before: 
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These steps allow the computation of the projection onto the image plane of a 3D point 
knowing its coordinates in the 3D space. In a 3D reconstruction framework, it is necessary to 
do the inverse operation, i.e. to compute the direction of the luminous ray corresponding to 
a pixel. This step consists in computing the coordinates of the point SX  belonging to the 

sphere given the coordinates  Tyx  of a 2D point on the normalized plane. This step of 
retro projection, also known as lifting, is achieved using formula (6). 
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3.2 Calibration 
Calibration consists in the estimation of the parameters of the model which will be used for 
3D reconstruction algorithms. Calibration is commonly achieved by observing a planar 
pattern at different positions. With the tool we have designed, the pattern can be freely 
moved (the motion does not need to be known) and the user only needs to select the four 
corners of the pattern. Our calibration process is similar to that of Mei (Mei & Rives, 2007). It 
consists of a minimization over all the model parameters of an error function between the 
estimated projection of the pattern corners and the measured projection using the 
Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963).  

 

If n  is the number of 3D points iX , ix   their projections in the images, we are looking for 
the parameter vector V  which minimizes the cost function )(VE : 
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Our calibration tool was developed in C++ using the computer vision library OpenCV and 
can be freely downloaded from our website (Boutteau, 2009). It does not require any 
commercial software and a particular attention has been given to the optimization of the 
computation time since a calibration with 10 images does not exceed 2 minutes. 

 
3.3 Relative pose estimation 
The estimation of the intrinsic parameters presented in the previous section allows to 
establish the relationship between 3D points and theirs projections for each sensor of the 
stereoscopic system. To obtain metric information from the scene, for example by 
triangulation, the relative pose of the two sensors has to be known. 
This step is generally performed by a pixel matching between both images followed by the 
estimation of the essential matrix. This matrix, originally introduced by Longuet-Higgins 
(Longuet-Higgins, 1981), has the property to contain information on the epipolar geometry 
of the sensor. It is then possible to decompose this matrix into a rotation matrix and a 
translation vector, but the last one can only be determined up to a scale factor (Bunschoten 
& Kröse, 2003). The geometrical structure of the scene can consequently be recovered only 
up to this scale factor. 
Although in some applications, especially for 3D visualization, the scale factor is not needed, 
it is required for preparation of intervention or for navigation. To accomplish these tasks, 
the size of the objects and their distance from the robot must be determined. The 3D 
reconstruction has therefore to be Euclidean.  
Thus, we suggest in this section a method to estimate the relative pose of the two sensors, 
with a particular attention to the estimation of the scale factor. The estimation of the relative 
pose of two vision sensors requires a partial knowledge of the environment to determine the 
scale factor. For this reason, we propose a method based on the use of a calibration pattern 
whose dimensions are known and which must be visible simultaneously by both sensors. 
Let ),,,( 1111 zyxC  and ),,,( 2222 zyxC  be the frames associated with the two sensors of 
the stereoscopic system, and M  be a 3D point, as shown in Figure 5. 
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3D reconstruction algorithms. Calibration is commonly achieved by observing a planar 
pattern at different positions. With the tool we have designed, the pattern can be freely 
moved (the motion does not need to be known) and the user only needs to select the four 
corners of the pattern. Our calibration process is similar to that of Mei (Mei & Rives, 2007). It 
consists of a minimization over all the model parameters of an error function between the 
estimated projection of the pattern corners and the measured projection using the 
Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963).  
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Our calibration tool was developed in C++ using the computer vision library OpenCV and 
can be freely downloaded from our website (Boutteau, 2009). It does not require any 
commercial software and a particular attention has been given to the optimization of the 
computation time since a calibration with 10 images does not exceed 2 minutes. 

 
3.3 Relative pose estimation 
The estimation of the intrinsic parameters presented in the previous section allows to 
establish the relationship between 3D points and theirs projections for each sensor of the 
stereoscopic system. To obtain metric information from the scene, for example by 
triangulation, the relative pose of the two sensors has to be known. 
This step is generally performed by a pixel matching between both images followed by the 
estimation of the essential matrix. This matrix, originally introduced by Longuet-Higgins 
(Longuet-Higgins, 1981), has the property to contain information on the epipolar geometry 
of the sensor. It is then possible to decompose this matrix into a rotation matrix and a 
translation vector, but the last one can only be determined up to a scale factor (Bunschoten 
& Kröse, 2003). The geometrical structure of the scene can consequently be recovered only 
up to this scale factor. 
Although in some applications, especially for 3D visualization, the scale factor is not needed, 
it is required for preparation of intervention or for navigation. To accomplish these tasks, 
the size of the objects and their distance from the robot must be determined. The 3D 
reconstruction has therefore to be Euclidean.  
Thus, we suggest in this section a method to estimate the relative pose of the two sensors, 
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whose dimensions are known and which must be visible simultaneously by both sensors. 
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Fig. 5. Relative pose estimation principle. 
 

The point M  with coordinates  T222 1zyx  in the frame associated with the second 
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sensor with respect to the first one. With n  control points, equation (8) yields to the 
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The principle of the relative pose estimation consists therefore in computing the rigid 
transformation between the two sensors, knowing the coordinates of a set of points in the 
two frames. The coordinates of the points are however not known directly since the location 
of the pattern is not known. The pose of the pattern has to be determined in the two frames 
using the Levenberg-Marquardt algorithm to minimize the error between estimated 
projection and projections extracted from the images. The resolution of equation (9) then 
gives the relative pose  tR,  of the two sensors including the scale factor.  

 
4. Simultaneous Localization and Mapping 

3D reconstruction of a scene using the motion of a sensor addresses two problems: 
localization and mapping. Localization consists in estimating the trajectory of a robot in a 
known map (Thrun et al., 2001). The aim of mapping is the creation of a map of the 
environment using measurements from the sensors embedded on a robot knowing its 
trajectory (Thrun, 2003). When neither the trajectory of the robot, nor the map of the 
environment are known, localization and mapping problems have to be considered 
simultaneously: it is the issue of SLAM (Simultaneous Localization And Mapping). 
The first approach to solve the SLAM problem is to assume the motion known (by odometry 
or by the command law) even if this one is corrupted by noise. The position of visual 
landmarks can consequently be predicted. Sensors embedded on the mobile robot, for 
example laser range-finders, provide measurements of its environment. These observations 
are then used to update the model containing the coordinates of the visual landmarks and 
the positions of the robot. These steps (prediction/observation/update) are implemented 
using the Kalman filter or one of its derivatives. 
The second approach is to optimize the geometrical structure of the scene and the positions 
of the sensor using the bundle adjustment method. A synthesis on bundle adjustment 
algorithms was published by Triggs (Triggs et al., 1999). Bundle adjustment provides more 
accurate results than Kalman filters (Mouragnon et al., 2009) but needs more computing 
time. In most of the applications, this algorithm is used off-line to obtain a very accurate 
model, but it is also possible to apply it iteratively. Although bundle adjustment is 
commonly used with conventional cameras, there are very few works on its adaptation to 
omnidirectional sensors. The main works in this field are those of Lhuillier (Lhuillier, 2005) 
and Mouragnon (Mouragnon et al., 2009) who suggest to find the structure of the scene and 
the motion of a catadioptric sensor by a local bundle adjustment followed by a global one to 
obtain more accurate results. Their works highlight the difficulty of estimating the scale 
factor, although it is theoretically possible with a non-central sensor. 
The contribution of this section deals with the application of a bundle adjustment algorithm 
to an omnidirectional stereoscopic sensor previously calibrated to solve the ambiguity on 
the scale factor. Bundle adjustment relies on the non-linear minimization of a criterion, so a 
first estimation of the parameters as to be found to ensure the convergence. Before the 
presentation of the bundle adjustment algorithm, we thus expose our initialization step.  

 
4.1 Initialization 
Estimating the camera motion, also called ego-motion, requires to relate the images of the 
sequence grabbed during the motion. Relating images consists in localizing in the images 
the projections of a same 3D point of the scene. This step is decisive because the precision of 
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Fig. 5. Relative pose estimation principle. 
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landmarks can consequently be predicted. Sensors embedded on the mobile robot, for 
example laser range-finders, provide measurements of its environment. These observations 
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the positions of the robot. These steps (prediction/observation/update) are implemented 
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The second approach is to optimize the geometrical structure of the scene and the positions 
of the sensor using the bundle adjustment method. A synthesis on bundle adjustment 
algorithms was published by Triggs (Triggs et al., 1999). Bundle adjustment provides more 
accurate results than Kalman filters (Mouragnon et al., 2009) but needs more computing 
time. In most of the applications, this algorithm is used off-line to obtain a very accurate 
model, but it is also possible to apply it iteratively. Although bundle adjustment is 
commonly used with conventional cameras, there are very few works on its adaptation to 
omnidirectional sensors. The main works in this field are those of Lhuillier (Lhuillier, 2005) 
and Mouragnon (Mouragnon et al., 2009) who suggest to find the structure of the scene and 
the motion of a catadioptric sensor by a local bundle adjustment followed by a global one to 
obtain more accurate results. Their works highlight the difficulty of estimating the scale 
factor, although it is theoretically possible with a non-central sensor. 
The contribution of this section deals with the application of a bundle adjustment algorithm 
to an omnidirectional stereoscopic sensor previously calibrated to solve the ambiguity on 
the scale factor. Bundle adjustment relies on the non-linear minimization of a criterion, so a 
first estimation of the parameters as to be found to ensure the convergence. Before the 
presentation of the bundle adjustment algorithm, we thus expose our initialization step.  

 
4.1 Initialization 
Estimating the camera motion, also called ego-motion, requires to relate the images of the 
sequence grabbed during the motion. Relating images consists in localizing in the images 
the projections of a same 3D point of the scene. This step is decisive because the precision of 
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the motion relies on the quality of this matching. The visual landmarks are detected in a 
majority of works by the Harris corner detector since it has good performances on 
luminosity change. This detector is however very sensitive to scale change and it can thus 
fail with large motion. To avoid this, Lowe (Lowe, 2004) has presented a very interesting 
approach for the detection and the matching of regions of interest: the Scale Invariant 
Feature Transform (SIFT). The SIFT principle is to detect features from images which are 
invariant to scale change, rotation, and small point of view change. A descriptor, which 
corresponds to the orientation histogram, is then associated to the features and the matching 
can be achieved by comparison of their Euclidean distances. 
Once the images are related, the epipolar geometry can be estimated between the two times 

1k  and k . The epipolar geometry is interesting since it gives information on the relative 
pose of two vision sensors. Several works are dedicated to the estimation of the epipolar 
geometry for catadioptric sensors. Some of them (Pajdla et al., 2001; Gonzalez-Barbosa & 
Lacroix, 2005; Mariottini & Prattichizzo, 2005) give analytical solution to the estimation of 
the epipolar curves. Their methods need nevertheless to introduce the mirror equations and 
the proposed solutions are thus specific to the kind of sensor used.  
Other works (Bunschoten & Kröse, 2003; Negishi, 2004) rely on the use of panoramic 
images, i.e. unwrapped images, and consider the epipolar curves as the intersection of the 
epipolar plane with a cylinder representing the image plane. This approach is interesting 
because the idea is to generalize the notion of epipolar geometry to panoramic sensors. 
We suggest to generalize the epipolar geometry for all central sensors using the model of the 
equivalence sphere. With this model, the coplanarity constraint initially defined for 
perspective cameras (Longuet-Higgins, 1981) can be transposed to all central sensors. As 
shown in Figure 6, if the points S1X  and S2X  correspond to the projection of the same 3D 
point X  onto the two spheres, then 1C , 2C , S1X , S2X  and X  lie in the same plane. 
 

 
Fig. 6. Epipolar geometry for central sensors. 

 

Let t  be the translation vector of the sensor and R  be the rotation matrix, the coplanarity 
constraint can be expressed in the coordinate system ),,,( 2222 zyxC  as: 
 

0)(T  S1S2 XtRX  (10) 
 

The coplanarity constraint (10) can be rewritten in the matrix form as: 
 

0T S1S2EXX  (11) 
 

where RSE   is the essential matrix first introduced by Longuet-Higgins (Longuet-
Higgins, 1981) and S  is an antisymmetric matrix characterizing the translation: 
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The essential matrix E  can be estimated from a set of matched points using the eight-point 
algorithm (Longuet-Higgins, 1981). Given two lifted points  T111 zyxS1X  and 

 T222 zyxS2X  corresponding to the same 3D point X , (11) becomes for each pair of 
matched points: 
 

03312311212121112  ezzezxeyxexx   (13) 
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Introducing the vector  T333231232221131211 eeeeeeeeee   and using n  pairs 
of matched points, the set of equations (13) can be expressed in the matrix form as:  
 

0Ae  (14) 
 
With more than eight points, a least squares solution can be found by singular value 
decomposition (SVD) of A . Because of the least squares estimation, the estimated matrix 
may not respect the two constraints of an essential matrix: two of its singular values have to 
be equal, and the third has to be zero (Hartley & Zisserman, 2004). A constraint enforcement 
step is therefore necessary and is achieved by the method described by Hartley (Hartley & 
Zisserman, 2004). Given a 3x3 matrix TUDVE  , where  ),,( cbadiagD  with cba  . 
The closest essential matrix to E  in Frobenius norm is given by: 
 

Tˆˆ VDUE   (15) 
 

where )0,2/)(,2/)((ˆ babadiag D . 
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The estimation of the essential matrix may fail when there is one outlier among the set of 
points used in equation (14). The solution is therefore found by using the RANSAC 
algorithm. The main difference between perspective cameras and omnidirectional sensors 
comes from the computation of the error to determine if a point belongs to the consensus 
set. In the perspective case, the error is defined as the distance d  between the point 2X  and 
the epipolar line l  corresponding to the point 1X  as shown in Figure 7. In the 
omnidirectional case, the computation of the error is more difficult since the epipolar line 
becomes an epipolar curve (see Figure 8). We therefore suggest to work on the equivalence 
sphere using the coplanarity constraint defined by equation (11) to compute this error. 
Given a point S1X  on the first sphere, the normal of the epipolar plane in the second sensor 
frame is given by S12 EXN  . The vectors S2X  and 2N  are orthogonal when the coplanarity 
constraint is respected. The error e  can consequently be computed as the angular error 
given by: 
 

2S2NXTe  (16) 
 

 
Fig. 7. Computation of the error in the perspective case. 
 

 
Fig. 8. Computation of the error in the omnidirectional case. 
 
The essential matrix does not give directly the displacement of the sensor since it is a 
combination of the rotation matrix R  and the antisymmetric matrix S  (see equation 12). 
The essential matrix has therefore to be decomposed to retrieve the rotation R  and the 
translation t . After the constraint enforcement step, the essential matrix can be written as 
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possible solutions for the rotation R  and two solutions for the translation vector t  (Wang & 
Tsui, 2000): 

 

























32

31

3124

3123

3122

3121

vt
vt

VuuuR
VuuuR
VuuuR
VuuuR

T

T

T

T

),,(
),,(
),,(
),,(

 (17) 

 
Two solutions for the rotation matrix can be easily eliminated because they do not respect 
the property of a rotation matrix 1)(det R . It remains consequently four possible 
combinations of rotation and translation. In the perspective case, the right solution is trivial 
since it can be obtained after the triangulation of a point by checking the reconstructed point 
is in front of both cameras. This notion of “in front of the cameras” does not exist anymore 
in the omnidirectional case since points from the entire 3D space can have a projection onto 
the image plane. The right solution could be recovered using other sensors, for example 
odometers, but it is preferable to use only visual data to be totally independent from the 
mobile robot. For each possible combination, the right solution is found by triangulating the 
points, and then reprojecting them onto the image plane. The computation of the 
reprojection error allows the determination of the correct solution since the others give 
totally aberrant projections. The right solution is the one which gives the minimal 
reprojection error since the others are totally aberrant as shown in Figure 9. 
 

 
Fig. 9. Test of the four possible solutions. Green points are the reprojected points and red 
points are the real 2D projections. 
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Fig. 7. Computation of the error in the perspective case. 
 

 
Fig. 8. Computation of the error in the omnidirectional case. 
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The estimation of the essential matrix, followed by its decomposition, enables to retrieve the 
motion of the system, but only up to a scale factor. In a large majority of works, this 
ambiguity is removed by the use of odometry data (Bunschoten & Kröse, 2003). This 
approach is interesting since it gives directly the result, but it is preferable to use only visual 
data to avoid any communication with the mobile robot. The stereoscopic structure of our 
system can be used to retrieve the scale factor since the baseline is known. The 3D 
coordinates 1kX   and kX  of a set of points can actually be computed at times 1k  and 
k and the scale factor can be retrieved by the computation of the norm of t , given by: 
 

1kk RXXt   (18) 

 
4.2 Bundle Adjustment 
The algorithms presented in the previous section provide initial values for the motion of the 
sensor and for the 3D coordinates of points. These values are however not sufficiently 
accurate to be used directly. An excessive error will provide, because of its accumulation, a 
wrong 3D model. An extra optimisation step, the bundle adjustment, is therefore necessary. 
This method is well known for perspective cameras (Triggs et al., 2000) but only few works 
are dedicated to omnidirectional sensors. In this section, we propose a bundle adjustment 
algorithm which takes into account the specificity of our sensor: its omnidirectional field of 
view and its stereoscopic structure. 
Bundle adjustment consists in minimizing the cost function corresponding to the error 
between estimated projections of 3D points and their measured projections. Let m  be the 
number of positions of the stereoscopic system and n be the number of 3D points, the cost 
function can be written as: 
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where jV is the parameter vector of the thj camera, iX is the coordinates of the thi  3D point 

in the world frame, ijx  is the projection of the thi  3D point in the image of the thj  camera 
and ),( ijP XV  is the predicted projection of point i  in image j . 
Using a stereoscopic sensor allows to recover the scale factor, which is impossible with a 
monocular sensor. The projection function defined by equation (5) has therefore to be 
modified to take into account the stereoscopic structure of the sensor. Thus, the projection 
function provides now four elements: the coordinates lowu  and lowv  of the projection of X  
onto the image plane of the first sensor, and the coordinates highu  and highv  of its projection 
onto the image plane of the second sensor. The system is no longer considered as two 
separate sensors but as a global device. The relative pose of the two sensors ),( tR  is 
consequently added to the model parameters as shown in Figure 10. 
 

 

 
Fig. 10. Rigid transformation between the two sensors of the stereoscopic system. 
 
Let  T12121212121212 zyxzyxw tttqqqq5V  be the new parameter vector, the rotation 
being parameterised by a quaternion. An extra rigid transformation, written )( 5VC , is added 
to the initial projection function to express coordinates either in the low sensor frame or in 
the high sensor frame: 
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The minimization of the reprojection error defined by equation (19) is carried out by the 
Levenberg-Marquardt algorithm. The key step of this algorithm lies in the resolution of the 
augmented normal equation: 
 

  eJΔIJJ TT    (21) 
 
where  is a real number varying from iteration to iteration and I is the identity matrix. 
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The minimization of the reprojection error defined by equation (19) is carried out by the 
Levenberg-Marquardt algorithm. The key step of this algorithm lies in the resolution of the 
augmented normal equation: 
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where  is a real number varying from iteration to iteration and I is the identity matrix. 
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The resolution of equation (21) requires the computation of the Jacobian J of the projection 
function. The sensor is calibrated so the parameters that have to be estimated are the poses 
j
1V of the cameras and the coordinates iX of the 3D points. Thus, the partial derivatives 

which have to be estimated are the derivative of the projection function whith respect to the 
pose of the system: 
 

j
1V
P



  (22) 

 
as well as the derivative of the projection function with respect to the coordinates of the 
points: 
 

iX
P


  (23) 

 
The form of the Jacobian matrix used in equation (21) is illustrated in Figure 11 for three 
poses of the sensors and four points.  
 

 
Fig. 11. Form of the Jacobian matrix for 3 poses and 4 points. 

 
The iterative resolution of the augmented normal equation as described in (Levenberg, 1944; 
Marquardt, 1963) minimizes the reprojection error and provides a good estimate of the 
poses of the system and of the coordinates of the 3D points.   

 

5. Experimental results 

The stereoscopic omnidirectional sensor was mounted on a Pioneer robot with a Sick LD-
PDS laser range-finder used to provide the ground truth. Each step, from calibration to 3D 
reconstruction and motion estimation, was evaluated on real images and without prior 
knowledge to evaluate the system in real conditions. Some results obtained with synthetic 
images are also presented to validate results that need a perfect knowledge of the 3D points 
coordinates in the sensor frame. 

 
5.1 Calibration of the sensor 
The calibration step was evaluated by computing the Root of Mean Squares (RMS) distances 
between estimated and theoretical projections of a set of 3D points. As it is very difficult to 
know precisely the coordinates of a 3D point in the sensor frame, we used synthetic images. 
The sensor was simulated in POV-Ray, a ray-tracing software, to generate omnidirectional 
images containing a calibration pattern as shown in Figure 12 and these images were used to 
calibrate the sensor. 
 

 
Fig. 12. Synthetic omnidirectional images used for the calibration 

 
As the projection model and the 3D coordinates of reference points are perfectly known in 
this case, their theoretical projection can easily be computed and compared to the projection 
obtained by the estimated model. Table 1 shows the mean error and the standard deviation 
obtained on a set of 150 points. 
  

Mean error (pixels) 0.24 
Standard deviation (pixels) 0.11 

Table 1. Calibration results on synthetic images 
 
The calibration was then evaluated on real images. Two sets of omnidirectional images 
containing a calibration pattern were taken. We used the first set to calibrate the sensor as 
described in section. The second set was used to compute the error between estimated 
projections of the grids points computed using estimated model and their measured 
projections extracted from the images. Table 2 summarizes the results obtained on this set of 
real images. 
 

Mean error (pixels) 0.44 
Standard deviation (pixels) 0.26 

Table 2. Calibration results on real images 
 
The error on real images is greater than the error on synthetic images, but both are very low 
since they are less than half a pixel. These results highlight the good estimation of the model 
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parameters even with noisy data since we used a real system which is not perfect. This can 
be explained by the introduction of the distortions into the model which allows some 
misalignments between the mirror and the camera.   

 
5.2 Relative pose estimation 
The estimation of the relative pose was evaluated on synthetic images for a vertical setup of 
the two sensors, i.e. the same setup as the real system. Several pairs of images containing a 
calibration were taken as shown in Figure 13 and the relative pose was evaluated with the 
method presented in section 3.3. The distance between the two sensors was defined with 
10cm and they are supposed perfectly aligned. The result of the relative pose estimation is 
presented in Table 3. 
 

 
Fig. 13. Pairs of images used for the estimation of the relative pose 
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Table 3. Results of the estimation of the relative pose on synthetic images 
 
The rotation matrix is almost an identity matrix since the sensors are perfectly aligned. The 
norm of the translation vector is 99.95mm instead of 100mm, so an error of 0.05%. These 
results are particularly good especially since they involve the calibration results needed for 
the estimation of the pose of the calibration pattern. 
 
The estimation of the relative pose was then evaluated on real images. The sensor was 
mounted on a graduated rail and was moved by steps of 10cm. At each position, an 
omnidirectional image was grabbed with the aim of computing the displacement of the 
sensor according to the first position using five calibration patterns placed in the room as 
shown in Figure 14. Table 4 summarizes the results. 
 
Displacement 
(mm) 

100 200 300 400 500 600 

Estimation (mm) 100.13 200.77 296.48 393.66 494.70 594.60 
Table 4. Calibration results on real images 

 

The average error is greater than the one obtained with synthetic images but it is less than 
0.9%. This increase can be explained by the noise in real images but also by the 
accumulation of the errors because the estimation of the relative pose involves the 
calibration values. 
Once the relative pose is estimated, the essential matrix can be computed and used to check 
the epipolar geometry properties. In Figure 14, for each pixel on the left image (red crosses), 
the corresponding epipolar curve (green curves) is drawn on the right image and vice versa. 
 

 
Fig. 14.Epipolar curves (green) corresponding to selected pixels (red crosses) 

 
5.3 Triangulation 
The combination of the calibration of the two sensors and of their relative pose estimation 
was evaluated by triangulation. The coordinates of the 3D points of five grids disposed on 
three walls of a room were estimated. Images used for this step are presented in Figure 15. 
 

 
Fig. 15. Stereo pair used for the 3D reconstruction experimentation. 
 
For each grid, the four corners were selected manually on the two images and an automatic 
corners detector was applied to extract all grid points. The 3D position of these points was 
evaluated by triangulation and is displayed in Figure 16. The position of the points is 
compared to the ground truth obtained by the laser range-finder. A linear regression was 
performed on raw laser data (in blue) to obtain the position of the walls (red lines). 
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For each grid, the four corners were selected manually on the two images and an automatic 
corners detector was applied to extract all grid points. The 3D position of these points was 
evaluated by triangulation and is displayed in Figure 16. The position of the points is 
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Fig. 16. Position of the five grids (crosses) compared to ground truth (blue and red lines). 
 
For each grid, the mean error and the standard deviation of the position of its points were 
computed and summarized in Table 5. 
 

Grid number 1 2 3 4 5 
Mean error (mm) 5.843 15.529 13.182 3.794 12.872 
Standard deviation (mm) 2.616 4.500 2.420 2.504 7.485 

Table 5. Triangulation results. 
 
The 3D error is very low, around 1% at 1 meter. The good results obtained in triangulation 
imply a reliable estimation of the sensor parameters and of the relative pose. Due to the 
resolution of catadioptric sensors, this error will nevertheless increase with the distance and 
will be around 10% at 10 meters. 

 
5.4 Simultaneous Localization And Mapping 
Our SLAM algorithm was evaluated on a real video sequence. The mobile robot was moved 
along the front of a building on a distance of 30 meters. The environment used is 
particularly rich since there are both manmade and natural items as shown in Figure 17. 
At each position of the robot, a pair of omnidirectional images was grabbed and a map of 
the environment was acquired by the laser range-finder. These maps are then used to 
compute the real trajectory (ground truth) of the robot since this kind of sensor is very 
accurate. 
 

 
Fig. 17. Some of the pictures of the video sequence used for the Simultaneous Localization 
and Mapping. 
 

 

The knowledge of the poses of the robot allows merging the local maps to obtain the global 
map of the environment, as shown in Figure 18. Thus, a comparison between the 
estimations provided by the laser range-finder, by the SLAM algorithm and by odometry 
can be achieved by observation of the global map, as shown in Figure 18. 
  

 
(a) (b) (c) 

Fig. 18. Global map of the environment using: (a) laser data, (b) SLAM algorithm, (c) 
odometry data 
 
As shown in Figure 18, the global map of the environment obtained by the laser range-
finder is the best result since local maps are perfectly coincident. Our SLAM algorithm 
provides a slight deviation but the global map is far better than the map that can be obtained 
by odometry. The mean error on this sequence is around 12%. 

 
6. Conclusion and future work 

This paper has been devoted to the design of an innovative vision sensor dedicated to 
mobile robot application. Combining omnidirectional and stereoscopic vision offers many 
advantages for 3D reconstruction and navigation that are the two main tasks a robot has to 
achieve. In this article we have highlighted that the best stereoscopic configuration is the 
vertical one as it simplifies the pixel matching between images. 
A special care has been put on the sensor calibration to make it flexible since it only requires 
the use of a planar calibration pattern. Experimental results highlight a high accuracy, which 
foreshadows good results for the following algorithms. 
The fundamental issue of Simultaneous Localization And Mapping (SLAM) was then 
addressed. Our solution to this problem relies on a bundle adjustment between two 
displacements of the robot. The initialization of the motion and the coordinates of 3D points 
is a prerequisite since bundle adjustment is based on a non-linear minimization. This step is 
a tricky problem to which we answered by the generalization of the epipolar geometry for 
central sensors using the unified model. Our experimental results on SLAM are promising 
but the error is higher than the one expected further to the calibration results.  
Our future work will focus on the improvement of our SLAM method by adding a global 
bundle adjustment to avoid error accumulation. A lot of challenges in SLAM are moreover 
always open, for instance SLAM based only on vision systems, SLAM taking into account 
six degrees of freedom, or SLAM for large-scale mapping.  
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resolution of catadioptric sensors, this error will nevertheless increase with the distance and 
will be around 10% at 10 meters. 

 
5.4 Simultaneous Localization And Mapping 
Our SLAM algorithm was evaluated on a real video sequence. The mobile robot was moved 
along the front of a building on a distance of 30 meters. The environment used is 
particularly rich since there are both manmade and natural items as shown in Figure 17. 
At each position of the robot, a pair of omnidirectional images was grabbed and a map of 
the environment was acquired by the laser range-finder. These maps are then used to 
compute the real trajectory (ground truth) of the robot since this kind of sensor is very 
accurate. 
 

 
Fig. 17. Some of the pictures of the video sequence used for the Simultaneous Localization 
and Mapping. 
 

 

The knowledge of the poses of the robot allows merging the local maps to obtain the global 
map of the environment, as shown in Figure 18. Thus, a comparison between the 
estimations provided by the laser range-finder, by the SLAM algorithm and by odometry 
can be achieved by observation of the global map, as shown in Figure 18. 
  

 
(a) (b) (c) 

Fig. 18. Global map of the environment using: (a) laser data, (b) SLAM algorithm, (c) 
odometry data 
 
As shown in Figure 18, the global map of the environment obtained by the laser range-
finder is the best result since local maps are perfectly coincident. Our SLAM algorithm 
provides a slight deviation but the global map is far better than the map that can be obtained 
by odometry. The mean error on this sequence is around 12%. 

 
6. Conclusion and future work 

This paper has been devoted to the design of an innovative vision sensor dedicated to 
mobile robot application. Combining omnidirectional and stereoscopic vision offers many 
advantages for 3D reconstruction and navigation that are the two main tasks a robot has to 
achieve. In this article we have highlighted that the best stereoscopic configuration is the 
vertical one as it simplifies the pixel matching between images. 
A special care has been put on the sensor calibration to make it flexible since it only requires 
the use of a planar calibration pattern. Experimental results highlight a high accuracy, which 
foreshadows good results for the following algorithms. 
The fundamental issue of Simultaneous Localization And Mapping (SLAM) was then 
addressed. Our solution to this problem relies on a bundle adjustment between two 
displacements of the robot. The initialization of the motion and the coordinates of 3D points 
is a prerequisite since bundle adjustment is based on a non-linear minimization. This step is 
a tricky problem to which we answered by the generalization of the epipolar geometry for 
central sensors using the unified model. Our experimental results on SLAM are promising 
but the error is higher than the one expected further to the calibration results.  
Our future work will focus on the improvement of our SLAM method by adding a global 
bundle adjustment to avoid error accumulation. A lot of challenges in SLAM are moreover 
always open, for instance SLAM based only on vision systems, SLAM taking into account 
six degrees of freedom, or SLAM for large-scale mapping.  
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