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1. Introduction    
 

Route-based knowledge, in which the spatial layout of an environment is recorded from the 
perspective of a ground-level observer, is an important component of human and animal 
navigation systems (Shelton & Gabrieli, 2002). In this representation, navigating from one 
location to another involves comparing current visual inputs with a sequence of views 
captured along the path in a previous instance. Applications that would benefit from such a 
path-following capability include courier and delivery robots (Burgard et al., 1999), robotic 
tour guides (Shen & Hu, 2006), or reconnaissance robots following a scout (Crawford et al., 
2004). Furthermore, a solution to this problem would be useful for the general problem of 
navigating between two arbitrary locations in an environment by following a sequence of 
such paths. 
 
One approach to path following is visual servoing, in which the robot is controlled to align 
the current image with a reference image, both taken by an onboard camera (Hutchinson et 
al., 1996). Such an approach generally employs a Jacobian to relate the coordinates of world 
points to their projected image coordinates (Burschka and  Hager, 2001),  a homography or 
fundamental matrix to relate the coordinates between images (Sagüés & Guerrero, 2005, 
Remazeilles & Chaumette, 2007, Liang & Pears, 2002, Šegvić et al., 2007), or bundle 
adjustment to minimize the reprojection error over multiple image frames (Royer et al., 
2007). As a result, the camera usually must be calibrated (Burschka and G. Hager, 2001, 
Remazeilles & Chaumette, 2007, Royer et al., 2007, Šegvić et al., 2007), and even uncalibrated 
systems require lens distortion to be removed. Alternative vision-based algorithms make 
strong assumptions about the environment or the sensor, such as a flat ground plane 
(Burschka &  Hager, 2001, Liang & Pears, 2002, Guerrero & Sagüés 2001, 2005), a man-made 
environment in which vertical straight lines are present  (Kosaka & Kak, 1992, Sagüés & 
Guerrero, 2001, 2005, Tang & Yuta 2001), or an omnidirectional camera (Gaussier, 1997, 
Ulrich & Nourbakhsh, 2002, Tang & Yuta 2001, Kröse et al., 2001). 
 

                                                                 
1 Based on "Qualitative Vision-Based Path Following", by Z. Chen and S. Birchfield, which 
appeared in IEEE Transactions on Robotics, 25(3):749-754, June 2009. © 2009 IEEE. 
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To overcome these limitations, we consider the problem from a novel viewpoint in which 
there is no equation relating image coordinates to world coordinates. Such a direct approach 
is motivated by the observation that the problem is vastly overdetermined, with tens of 
thousands of image pixels available to determine a single turning command output. We 
present a simple algorithm that uses a single, off-the-shelf camera attached to the front of 
the robot. The technique follows the teach-replay approach (Burschka & Hager, 2001) in 
which the robot is manually led through the path once during a teaching phase and then 
follows the path autonomously during the replay phase. Without any camera calibration 
(even calibration for lens distortion), the robot is able to follow the path by making only 
qualitative comparisons between the feature coordinates in the two phases. All that is 
needed is a single controller gain parameter to convert pixel coordinates to turning angles. 
We demonstrate the technique on several indoor and outdoor experiments, showing its 
robustness with respect to slanted surfaces, changing lighting conditions, and dynamic 
occluding objects. This paper extends the applicability and improves upon the robustness of 
our earlier work (Chen & Birchfield, 2006) by incorporating odometry information and 
correcting for camera roll. We also demonstrate the ability of the technique to work with 
wide-angle and omni-directional cameras, with only slight modification in the latter case to 
ignore the bottom half of the image which views the scene behind the robot.  
 
The proposed approach falls within the category of mapless algorithms (DeSouza & Kak,  
2002). As such, it is closely related to the view-sequenced route representation (VSRR) of 
Matsumoto et al. (Matsumoto et al., 1996, 2000, Jones et al., 1997) in which the turning angle 
is computed by cross-correlating images acquired during the replay phase with those 
captured during training. However, VSRR requires large amounts of memory to store the 
views and is sensitive to occlusions by dynamic objects. Along with a homography-based 
extension using vertical lines (Sagüés & Guerrero, 2005), it has only been demonstrated for 
short sequences on flat terrains. An alternate mapless approach is to learn the mapping from 
images to turning commands based on their classification (Weng & Chen, 1996, Ackerman & 
Itti, 2005). While this method can successfully follow a specific pattern such as a road or 
hallway, it will have difficulty generalizing to environments in which the images cannot be 
categorized into a small number of classes known at training time. Another approach that 
has received considerable attention (Gaussier, 1997, Wolf et al., 2002, Zhou et al., 2003, Sim 
& Dudek, 2001, Košeckā, 2003, Ulrich & Nourbakhsh, 2002, Horswill, 1993) is to store an 
example image with each specific location of interest. At run time, the image database is 
searched to find the image that most closely resembles the current one (or, alternatively, the 
current image is projected onto a manifold learned from the database (Nayar, 1994, Kröse et 
al., 2001) ). Such approaches require extensive training and have difficulty providing 
sufficient spatial resolution to determine actual turning commands in large environments. 
Similarly, sensory-motor learning has been used to map visual inputs to turning commands, 
but the resulting algorithms have been too computationally demanding for real-time 
performance (Giovannangeli et al., 2006). Other researchers have developed mapless 
algorithms for low-level functionality like corridor following or obstacle avoidance (Nelson 
& Aloimonos, 1988,  Santos-Victor et al., 1995, Barrows et al., 2002, LeCun et al., 2005, 
Michels et al., 2005, Murali & Birchfield, 2008), but these techniques are not applicable to 
following a specific arbitrary path. 

 

 

 

2. Qualitative mapping from feature coordinates to turning direction 

Consider a mobile robot equipped with a camera whose optical axis is parallel to the 
heading direction of the robot. Suppose we wish to move the robot from location 

 ( , , )C C CC yx  to a previously encountered location  ( , , )D D DD x y , where ( , )i ix y  and i  
are the position and orientation, respectively, in the xy plane,  { , }i C D . The robot has 
access to a current image CI , taken at C, and a destination image DI , taken previously at the 
destination D. 
 

 
Fig. 1. The robot is at C moving toward the destination D with the same heading direction. 
The open circle coincides with both the camera focal point and the robot position, the arrow 
indicates the heading direction,  is the image plane, and  is the angle between the 
optical axis and the projection ray from the landmark. 
 
We start with a simple observation. Suppose the robot views a fixed landmark in both 
images yielding image feature coordinates of Cu  and Du , as shown in Fig. 1. The features 
are computed with respect to a coordinate system centered at the principal point (the 
intersection of the optical axis and the image plane), so that positive coordinates are on the 
right side of the image while negative coordinates are on the left side. If the robot moves 
toward the destination in a straight line with the same heading direction as that of the 
destination (i.e.,  C D ), then the point Cu will move away from the principal point toward 

Du , reaching Du  when the robot reaches D. This observation is made more precise in the 
following theorem.  
 
Theorem 1: Let a mobile robot move in a straight line toward location D on a flat surface. Let 

ju  be the horizontal image coordinate, relative to the principal point, of a monotonic 
projection at location j of a fixed landmark. For any location C along the line such 
that C D , C Du u  and    sign signC Du u .  

 

www.intechopen.com



Vision-Based Path Following Without Calibration 429 

 

To overcome these limitations, we consider the problem from a novel viewpoint in which 
there is no equation relating image coordinates to world coordinates. Such a direct approach 
is motivated by the observation that the problem is vastly overdetermined, with tens of 
thousands of image pixels available to determine a single turning command output. We 
present a simple algorithm that uses a single, off-the-shelf camera attached to the front of 
the robot. The technique follows the teach-replay approach (Burschka & Hager, 2001) in 
which the robot is manually led through the path once during a teaching phase and then 
follows the path autonomously during the replay phase. Without any camera calibration 
(even calibration for lens distortion), the robot is able to follow the path by making only 
qualitative comparisons between the feature coordinates in the two phases. All that is 
needed is a single controller gain parameter to convert pixel coordinates to turning angles. 
We demonstrate the technique on several indoor and outdoor experiments, showing its 
robustness with respect to slanted surfaces, changing lighting conditions, and dynamic 
occluding objects. This paper extends the applicability and improves upon the robustness of 
our earlier work (Chen & Birchfield, 2006) by incorporating odometry information and 
correcting for camera roll. We also demonstrate the ability of the technique to work with 
wide-angle and omni-directional cameras, with only slight modification in the latter case to 
ignore the bottom half of the image which views the scene behind the robot.  
 
The proposed approach falls within the category of mapless algorithms (DeSouza & Kak,  
2002). As such, it is closely related to the view-sequenced route representation (VSRR) of 
Matsumoto et al. (Matsumoto et al., 1996, 2000, Jones et al., 1997) in which the turning angle 
is computed by cross-correlating images acquired during the replay phase with those 
captured during training. However, VSRR requires large amounts of memory to store the 
views and is sensitive to occlusions by dynamic objects. Along with a homography-based 
extension using vertical lines (Sagüés & Guerrero, 2005), it has only been demonstrated for 
short sequences on flat terrains. An alternate mapless approach is to learn the mapping from 
images to turning commands based on their classification (Weng & Chen, 1996, Ackerman & 
Itti, 2005). While this method can successfully follow a specific pattern such as a road or 
hallway, it will have difficulty generalizing to environments in which the images cannot be 
categorized into a small number of classes known at training time. Another approach that 
has received considerable attention (Gaussier, 1997, Wolf et al., 2002, Zhou et al., 2003, Sim 
& Dudek, 2001, Košeckā, 2003, Ulrich & Nourbakhsh, 2002, Horswill, 1993) is to store an 
example image with each specific location of interest. At run time, the image database is 
searched to find the image that most closely resembles the current one (or, alternatively, the 
current image is projected onto a manifold learned from the database (Nayar, 1994, Kröse et 
al., 2001) ). Such approaches require extensive training and have difficulty providing 
sufficient spatial resolution to determine actual turning commands in large environments. 
Similarly, sensory-motor learning has been used to map visual inputs to turning commands, 
but the resulting algorithms have been too computationally demanding for real-time 
performance (Giovannangeli et al., 2006). Other researchers have developed mapless 
algorithms for low-level functionality like corridor following or obstacle avoidance (Nelson 
& Aloimonos, 1988,  Santos-Victor et al., 1995, Barrows et al., 2002, LeCun et al., 2005, 
Michels et al., 2005, Murali & Birchfield, 2008), but these techniques are not applicable to 
following a specific arbitrary path. 

 

 

 

2. Qualitative mapping from feature coordinates to turning direction 

Consider a mobile robot equipped with a camera whose optical axis is parallel to the 
heading direction of the robot. Suppose we wish to move the robot from location 

 ( , , )C C CC yx  to a previously encountered location  ( , , )D D DD x y , where ( , )i ix y  and i  
are the position and orientation, respectively, in the xy plane,  { , }i C D . The robot has 
access to a current image CI , taken at C, and a destination image DI , taken previously at the 
destination D. 
 

 
Fig. 1. The robot is at C moving toward the destination D with the same heading direction. 
The open circle coincides with both the camera focal point and the robot position, the arrow 
indicates the heading direction,  is the image plane, and  is the angle between the 
optical axis and the projection ray from the landmark. 
 
We start with a simple observation. Suppose the robot views a fixed landmark in both 
images yielding image feature coordinates of Cu  and Du , as shown in Fig. 1. The features 
are computed with respect to a coordinate system centered at the principal point (the 
intersection of the optical axis and the image plane), so that positive coordinates are on the 
right side of the image while negative coordinates are on the left side. If the robot moves 
toward the destination in a straight line with the same heading direction as that of the 
destination (i.e.,  C D ), then the point Cu will move away from the principal point toward 

Du , reaching Du  when the robot reaches D. This observation is made more precise in the 
following theorem.  
 
Theorem 1: Let a mobile robot move in a straight line toward location D on a flat surface. Let 

ju  be the horizontal image coordinate, relative to the principal point, of a monotonic 
projection at location j of a fixed landmark. For any location C along the line such 
that C D , C Du u  and    sign signC Du u .  

 

www.intechopen.com



Mobile Robots Navigation430  

 

The theorem can be easily proved by geometry. Note that the image projection function is 
only required to be monotonic (i.e., perspective projection is not necessary), so the result 
applies equally to a camera with radial lens distortion. The primary assumption is that the 
optical axis of the camera passes through the axis of rotation of the robot. Other 
assumptions include the alignment of the optical axis with the robot heading direction, zero 
roll and tilt angles of the camera with respect to the robot, and a flat ground plane. In 
practice, misalignment is not an issue because the camera alignment can be learned 
automatically by estimating the focus of expansion as the robot drives forward. Similarly, 
rough terrain is easily handled by measuring image rotation to compensate for a non-zero 
roll angle of the robot and by recognizing that a non-zero tilt angle has a negligible effect on 
the horizontal feature coordinates. 

 
2.1 The funnel lane 

      

         
Fig. 2. TOP: The funnel lane created by the two constraints, shown when the robot is facing 
the correct direction (left) and when it has turned by an angle   (right). BOTTOM: The 
combined funnel lane created by multiple feature points, shown when the robot is facing the 
correct direction (left) and when it has turned by an angle  (right). 

 

 

According to the preceding theorem, if the robot is on the path toward the destination with 
the same heading direction, then two constraints are satisfied. Conversely, as shown in 
Fig. 2, if the constraints are satisfied then the robot lies within a trapezoidal region 
(assuming perspective projection) for any given relative robot angle   C D . For  0 , 
the sides of the trapezoid are defined by two lines passing through the landmark, one 
through D and another that is parallel to the destination direction. These lines are rotated 
about the landmark by α if the relative angle is nonzero. We call the trapezoidal region the 
funnel lane associated with the landmark, destination, and relative angle. The terminology 
arises from the analogy of pouring liquid into a funnel: The liquid moves in a straight line 
until it hits the sides of the funnel, which cause it to bounce back and forth until it 
eventually reaches the spout. In a similar manner, the sides of the trapezoid act as bumpers, 
guiding the robot toward the goal. The notion of the funnel and the funnel lane are captured 
in the following definitions. 
 
Definition 1: The funnel of a fixed landmark λ and a robot location D is the set of locations 

,D  such that, for each ,DC  , the two funnel constraints are satisfied: 

C Du u                                  (Constraint 1) 

   sign signC Du u               (Constraint 2) 

where Cu  and Du  are the coordinates of the image projection of λ at the locations C and D, 
respectively. 
 
Definition 2: The funnel lane of a fixed landmark λ, a robot location D, and a relative angle α 
is the set of locations    , , ,D D  such that    C D  for each   , ,DC .  
 
Multiple features yield multiple funnel lanes, the intersection of which is the set of locations 
for which both constraints are satisfied for all the features. This intersection, which we call 
the combined funnel lane, is depicted in Fig. 2. Notice the importance of having features on 
both sides of the image in order to narrowly constrain the path of the robot, thus achieving 
more robust and accurate results. Features can be at any depth, and there need not be any 
relationship between the depths of the various features as long as they remain visible. 

 
2.2 Qualitative control algorithm 
The funnel constraints lead to a simple control algorithm, illustrated in Fig. 3. The robot 
continually moves forward, turning to the right whenever Constraint 1 is violated and to the 
left whenever Constraint 2 is violated, given a feature on the right side of the image 
(  0Du ). If the feature is on the left side (  0Du ), then the directions are reversed. 
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For each feature i, a desired heading is obtained by 
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

 

  
  




( )

min , ,         if 0  and  

max , ,          if 0  and  

0                                   otherwise

C C D C C D

i C C D C C D
d

u f u u u u u

u f u u u u u  

where     
1,
2

C D C Df u u u u  is the signed distance to the line C Du u . Here we 

approximate the conversion of pixels to radians with a constant gain γ. 
 
At any given time, the desired heading of the robot is given by 
 

                                                           


   ( )
0

1

1 1
N

i
d d

iN
                                                      (1) 

 
where N is the total number of feature points, θo is the desired heading obtained by 
sampling a third-order polynomial that is fit to the initial and destination odometry 
measurements of the segment in the teaching phase, and the factor  0 1 determines the 
relative importance of visual measurements versus odometry measurements. We set η = 0.5 
in our system. 
 

     
Fig. 3. Qualitative control decision space. The horizontal coordinates of the feature point in 
the current and destination images ( Cu  and Du , respectively) are compared to determine 
whether to turn the robot to the right, to the left, or not at all. LEFT:  Top-down view of 
decision space. RIGHT: 3D view of decision space, showing the desired angle  ( )i

d  versus 
Cu  and Du . 

 

 

 

 

2.3 Analysis of qualitative control algorithm 
Fig. 4 illustrates the qualitative control algorithm with an example. In its initial position the 
robot is outside the funnel lane, violating Constraint 1 (Fig. 4a). The robot turns to the right, 
causing the funnel lane to rotate as well, and the robot moves forward a small amount until 
the constraint is violated again (Fig. 4b). The robot turns a second time to the right, finds 
itself with a much clearer opening, and moves forward until the constraint is violated (Fig. 
4c). Finally, the robot turns again and moves forward until it reaches a point close to the 
goal (Fig. 4d).  
 

 

 

(a) (b) (c) (d) 

Fig. 4. Four snapshots of a robot making progress toward a destination D using the
qualitative control algorithm. The two solid lines indicate the funnel lane, while the dashed
line indicates the path of the robot. 

 

Fig. 5. The reachable set of positions (gray region) from three different initial positions
(left, middle, and right) and two different values of  (top: 10 degrees, bottom: 30
degrees). The landmark is at (0, 0), the initial position of the robot is at the bottom tip of
the gray region, and the projection ray from the landmark to the destination is the angled
line. Two possible robot locations along edges of the reachable set are shown, along with
a possible location for the destination. 
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To better understand the behavior and accuracy of the algorithm, simulations were ran in 
Matlab, the results of which are shown in Fig. 5. A single landmark was placed at the origin, 
and the robot was placed at various initial positions for different values of  (the angle of the 
landmark with respect to the optical axis). From any initial position the robot may turn and 
drive straight toward the landmark, in which case it will barely satisfy Constraint 2. 
Alternatively it may turn away from the landmark and drive along a curve so that 
Constraint 1 is always barely satisfied. In both cases the other constraint is automatically 
satisfied. This line and curve define a region of positions, shown as gray in the figure, that 
are reachable from the initial position by a non-holonomic vehicle without violating either 
constraint. Notice that the actual location of the destination along the projection ray is 
irrelevant for the plots, which depend only upon the starting location, the landmark 
location, and the angle  that the light ray makes with respect to the destination optical axis. 
The reachable set is wider for increasing values of .  

 
Fig. 6 displays the data in a different format, showing the minimum and maximum error in 
reaching the goal from various initial positions. With the landmark still at the origin, we 
placed the destination at the intersection of the line y = −1 m with the projection ray from 
the landmark at a given . The set of possible initial locations was densely sampled in order 
to generate contour plots of the error, as shown. The error was computed as the distance 
from the robot to the destination when the robot crossed the line y = −1 m. As can be seen, 
the probability of reaching the destination with zero error increases with larger values of , 
but the probability of large errors increases as well. As long as the robot starts from a 
position nearly behind the destination at a reasonable distance, the minimum error is zero 
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Fig. 6. Contour plots of the minimum (top) and maximum (bottom) error in reaching a
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equations are the standard Lucas-Kanade equations (Baker & Matthews, 2004, Shi & Tomasi, 
1994, Tomasi & Kanade, 1991) with geometric symmetry between the two images and an 
affine model of brightness to model the dynamic lighting conditions encountered by the 
mobile robot, particularly when moving outdoors (Chen & Birchfield, 2006, Negahdaripour 
& Yu, 1993). A coarse-to-fine pyramidal strategy is used to allow large image motions. As in 
(Shi & Tomasi, 1994, Tomasi & Kanade, 1991), features are automatically selected as those 
points in the image for which both eigenvalues of Z are greater than a specified minimum 
threshold. This feature selection mechanism is a slight variation of the Harris corner detector 
which has been shown to be effective for both its repeatability rate, information content, and 
theoretical properties (Harris & Stephens, 1988). 

 
5. Teach-and-replay navigation 
 

The navigation system involves two phases. In the teaching phase, an operator manually 
moves the robot along a desired path to gather training data. The path is divided into a 
number of non-overlapping segments. Within each segment, feature points are 
automatically detected in the first image and tracked in subsequent images. When the 
percentage of features that have been successfully tracked falls below 50% of the original 
features in the segment, a new segment is declared. For each feature that is successfully 
tracked throughout a segment, its gray-level intensity pattern and x-coordinate in the first 
and last images of the segment are stored in a database for use in the replay phase. We also 
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but the probability of large errors increases as well. As long as the robot starts from a 
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store the length of each segment and the change of heading direction of the robot in each 
segment by odometry, which are used in determining the desired heading and the segment 
transitions.  
 
In the replay phase, the robot automatically proceeds sequentially through the segments 
starting from approximately the same initial location as that of the teaching phase. At the 
beginning of each segment, correspondence is established between feature points in the 
current image and those of the first teaching image of the segment. Then, as the feature 
points are tracked in the incoming images, their coordinates are compared with those of the 
milestone image (i.e., the last teaching image of the segment) in order to determine the 
turning direction for the robot. Prior to comparison, feature coordinates are warped to 
compensate for a non-zero roll angle about the optical axis by applying the RANSAC 
algorithm (Fischler & Bolles, 1981) to pairs of random features. This compensation removes 
the undesirable in-plane image rotation that occurs due to unpaved, rough terrain. Note that 
this is the only place in the algorithm where the y-coordinates of the features are used.  
 
A crucial component of the technique is determining when to transition to a new segment. 
To solve this problem, we continually monitor the probability that the robot at time t is at 
the end of the current segment: 
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assuming that the feature, distance, and heading measurements are independent. In this 
equation  ( )f t is the mean squared error of the feature coordinates between the current and 

milestone images;  ( )d t  is the difference between the distance traveled in the current 
segment and the corresponding segment in the teaching phase, calculated by odometry; and 
 ( )h t  is the difference between the current heading and the heading at the end of the 
teaching segment. These errors are normalized by values computed automatically by the 
system:  f  is the mean squared error of the feature points at the beginning of the segment; 

 d is the length of the segment calculated by odometry in the teaching phase; and  h is the 
maximum variation in heading encountered during the teaching segment. 
 
Two values are actually computed:  ( )t  using the current milestone image and  ( )t  using 
the previous milestone image. If     ( 1) ( )t t  and      ( 1) ( )t t , where τ = 0.05, 
then the system advances to using the next milestone image. The rationale is that both  ( )t  
and  ( )t  increase as the robot approaches the end of the segment then decrease afterward. 
Therefore, when both values have decreased by a significant amount, the end has been 
reached. We have found that using both values yields improved results compared with 
using a single value. To reduce the effects of noise, both signals are first smoothed by a low-
pass nonlinear filter. 

 

 

6. Experimental results 
 

The qualitative algorithm was implemented in Visual C++ on a Dell Inspiron 700m laptop 
(1.6 GHz) controlling an ActivMedia Pioneer P3-AT mobile robot with an inexpensive 
Logitech QuickCam Pro 4000 webcam mounted on the front. The 320×240 images were 
acquired at 30 Hz and processed by the KLT algorithm with the default 7 × 7 feature 
window size (Birchfield, 1997). In all experiments a maximum of 60 features were detected 
and tracked throughout each segment. On average 85% of the features survive the initial 
correspondence in the first image of the segment during replay.  
 
The algorithm was tested in a number of indoor and outdoor environments. (Videos of the 
results can be found at http://www.ces.clemson.edu/~stb/research/mobile_robot .)  Figs. 
7 and  8 show two typical runs in which the robot successfully navigated between chairs and 
desks along a 10 m path in our laboratory, as well as along a 380 m loop trajectory in a 
parking lot of our university campus. The driving speed of the robot was 100 mm/s and the 
turning speed was 4 degrees per second during both the teaching and replay phases of the 
indoor experiments. Outdoors, the additional maneuvering room enabled the driving and 
turning speeds to be increased to 750 mm/s (the maximum driving speed of the robot) and 
6 degrees per second, respectively. The error was less than 1 m for two-thirds of the 
sequence and remained below 3.5 m for the entire sequence.  

 
 

 
 

Fig. 8. LEFT: The teaching and replay paths of the robot in an outdoor environment
(parking lot). RIGHT: Error versus time.  

Fig. 7. LEFT: The teaching and replay paths of the robot in an indoor environment. The
locations a, b, and c are used in Fig. 9. RIGHT: Error versus time. 
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The decision process during three segments of the experiment is shown in Fig. 9. In the first 
segment all the features lay in the OK region, so the robot drove forward. In the remaining 
two segments a majority of the features told the robot to turn right and left, respectively, 
which caused the features to move toward the OK region. Notice the near unanimity in 
voting: Except for a lone feature in the second segment that votes incorrectly to turn left, all 
the features were in agreement in all segments. In this figure the display is simplified by 
assuming τ = 0 and by normalizing the feature coordinates: 
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so that the interval 0 1 ξ  indicates “do not turn”, larger values ( 1ξ ) indicate “turn 
right”, and smaller values ( 0ξ ) indicate “turn left”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. LEFT: The normalized feature coordinates of all the features plotted versus the image 
frame number for three segments of the indoor experiment. Features below 0 vote for “turn 
left”, while those above 1 vote for “turn right”. RIGHT: A snapshot of the features from 
frame 2 of each segment plotted on the qualitative control decision space to show the 
instantaneous decision. The three segments correspond to the points a, b, and c from Fig. 7, 
in which the robot respectively did not turn, turned right, and turned left. 

 

 

Fig. 10 shows sample images from two experiments demonstrating the robustness of the 
algorithm. In the first, the robot navigated a slanted ramp in a 40 m run, thus verifying that 
the algorithm does not require a flat ground plane. In the second, the robot navigated a 
narrow road for 80 m while a pedestrian walked by the robot and later a van drove by it. 
Because the milestone images change frequently, the algorithm quickly recovered from the 
loss of features due to the occlusion caused by the dynamic objects. 
 

 
 
Similarly, Fig. 11 shows the results of the approach using cameras with severe lens 
distortion. In one experiment we used a wide-angle camera with a 3.5 mm focal length and 

Fig. 10. Sample image frames from two different sequences, one in which the robot
traveled down and up a ramp (top 2 rows), and the other containing dynamic objects
(bottom 2 rows). The circles indicate the features. 

frame 1 frame 34 frame 59 frame 101 

frame 236 frame 295 frame 322 frame 361 

frame 226 frame 255 frame 265 frame 282 

frame 684 frame 663 frame 490 frame 476 
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110-degree field of view. The other experiment utilized an omnidirectional camera with a 
360-degree field of view. For both experiments we used the same parameters as the previous 
experiments. The only change made to the code was to discard the bottom half of the 
omnidirectional donut image. This step was necessary because features behind the robot 
(whether viewed by an omnidirectional or standard camera) move in a way that violates the 
fundamental assumptions of our approach. In contrast, features in front of the camera obey 
the funnel constraints sufficiently to be of use in keeping the robot on the path, despite their 
moving in curved image paths due to the severe lens and catadioptric distortion. The 
average error of the two experiments was 0.04 m and 0.04 m, respectively, while the 
maximum error was 0.13 m and 0.09 m.  
 

 
 
To further illustrate the lack of calibration, we conducted an outdoor experiment in which 
the robot navigated the same 50 m path twice. In the first run the robot used the Logitech 
Quickcam Pro 4000 camera, while in the second run it used an Imaging Source DFK21F04 
Firewire camera with an 8.0 mm F1.2 lens. The same camera was used for both teaching and 
replay. As shown in Fig. 12, the algorithm was able to successfully follow the path using 
either camera, without changing any parameters between runs.  
 

 
 
Three additional experiments are shown in Fig. 13. In the first, a scout robot was sent along 
an outdoor path. Another robot, which received the transmitted path information, was then 
able to follow the same path as the scout. This demonstrates the natural application of 

Fig. 11. The approach successfully following a path using a wide-angle camera (left) and an 
omnidirectional camera (right). 

Fig. 12. Teaching and replay paths for the robot using two different uncalibrated cameras,
with the same system parameters. LEFT: Logitech QuickCam Pro 4000 USB webcam,
RIGHT: Imaging Source DFK 21F04 Firewire camera. 

 

 

swarm robotics, where calibrating dozens or hundreds of cameras would be prohibitive, 
especially if recalibration is needed whenever the lenses are refocused or the cameras 
adjusted. The second experiment shows the robot following a path along rough terrain, in 
which roll and tilt angles up to 5 degrees were encountered. The roll angle compensation 
described earlier was sufficient to enable the robot to remain on the path. In the third, a path 
with several sharp turns is demonstrated. This ability is achieved by setting the replay 
driving speed to be that of the teaching driving speed, which is decreased during a turn.  
 

 
 

Additionally, the algorithm was tested in various scenarios to quantitatively measure its 
accuracy and repeatability. Table I displays the results of the algorithm compared with 
those of the earlier version (Chen & Birchfield, 2006) which did not use odometry, relied 
upon a bang-bang control scheme, and did not compensate for the camera roll angle. The 
algorithms were tested in three environments: a 15 m path in an indoor laboratory 
environment with rich texture for feature tracking, a 60 m trajectory in an outdoor paved 
parking lot, and a 40 m path along unpaved terrain. In each case, we conducted ten trials 
and recorded the final 2D location of the robot for each trial:   1
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the ground is paved and the scenery is rich in texture, the improved algorithm is more 
robust, achieving maximum errors of only 0.23 m, 1.20 m, and 1.76 m, respectively, 
compared with 0.45 m, 1.20 m, and 5.68 m for the earlier algorithm. 
 

 
 

Algorithm 

 
indoor 

acc. / rep. 
(m) / (m) 

outdoor 
paved ground 

acc. / rep. 
(m) / (m) 

outdoor 
rough terrain 

acc. / rep. 
(m) / (m) 

Vision only (Chen & Birchfield, 2006) 0.30/0.18 0.77 / 0.74 3.87 / 1.85 
Combination (this work) 0.14 / 0.08 0.60 / 0.55 1.47 / .0.66 

Table 1. Comparison of the accuracy and repeatability of the algorithm with an earlier 
version, in three different scenarios. The lowest number in each case is in bold. 

Fig. 13. LEFT: The robot followed a path taken earlier by a scout robot. MIDDLE:  A path on
rough terrain. RIGHT:  A path with sharp turns.  
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Fig. 11. The approach successfully following a path using a wide-angle camera (left) and an 
omnidirectional camera (right). 

Fig. 12. Teaching and replay paths for the robot using two different uncalibrated cameras,
with the same system parameters. LEFT: Logitech QuickCam Pro 4000 USB webcam,
RIGHT: Imaging Source DFK 21F04 Firewire camera. 
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with several sharp turns is demonstrated. This ability is achieved by setting the replay 
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the ground is paved and the scenery is rich in texture, the improved algorithm is more 
robust, achieving maximum errors of only 0.23 m, 1.20 m, and 1.76 m, respectively, 
compared with 0.45 m, 1.20 m, and 5.68 m for the earlier algorithm. 
 

 
 

Algorithm 

 
indoor 

acc. / rep. 
(m) / (m) 

outdoor 
paved ground 

acc. / rep. 
(m) / (m) 

outdoor 
rough terrain 

acc. / rep. 
(m) / (m) 

Vision only (Chen & Birchfield, 2006) 0.30/0.18 0.77 / 0.74 3.87 / 1.85 
Combination (this work) 0.14 / 0.08 0.60 / 0.55 1.47 / .0.66 

Table 1. Comparison of the accuracy and repeatability of the algorithm with an earlier 
version, in three different scenarios. The lowest number in each case is in bold. 

Fig. 13. LEFT: The robot followed a path taken earlier by a scout robot. MIDDLE:  A path on
rough terrain. RIGHT:  A path with sharp turns.  
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The algorithm assumes that the robot is placed in the same initial location in both the 
teaching and replay phases. To test the sensitivity to this assumption, we conducted an 
experiment with a fairly straight teaching path outdoors, with the background 
approximately 50 m from the initial location. The robot was then placed at different initial 
locations for the replay phase, deviating laterally from the initial teaching location by 0 m, 
0.5 m, 1.0 m, 1.5 m, and 2.0 m. To ensure overlap between the teaching and replay features, 
the initial robot orientation was adjusted accordingly. The results, shown in Fig. 14a, show 
that the robot converged to the teaching path in all cases, reducing the error in half after 
approximately 20 m. With closer backgrounds, the convergence was faster. In a similar 
experiment, the robot was placed 0 m, 0.5 m, 1.0 m, 1.5 m, and 2.0 m ahead and behind the 
initial teaching location. Fig. 14b plots the deviation in the estimate of the position of the 
robot along the path versus the driving distance along the teaching path. Although these 
results exhibit more noise, the errors reduce over time, requiring about 6 m for convergence 
for locations in front, and approximately 20 m for locations behind. 
 
 
 
 
 
 
 
 
 
 
Fig. 14. Sensitivity to the initial location. (a) The replay path of the robot versus time, 
starting from different locations deviating laterally from the initial teaching location. (b) The 
deviation of the robot along the replay path versus time, starting from different deviations 
along the path from the initial teaching location. 
 
Another way for the robot to deviate from the desired path is the presence of an obstacle. 
While avoiding an obstacle, the robot will rotate in such a way that there may be no overlap 
between the current image and the milestone image. To solve this problem, we use 
odometry to return the robot to the original path, after the obstacle has been avoided. 
(Obstacle detection is accomplished using a ring of sonars.)  By comparing the current 
features with the milestone features, the robot is then able to locate the segment which has 
the minimum mean squared error between the current features and the milestone features. 
Once this segment has been determined, the path-following algorithm resumes. An 
experiment of this capability is shown in Fig. 15.  

 

 

 
 
6. Discussion 
 

Because our system does not explicitly model the geometric world, its geometric accuracy is 
limited. Therefore, when compared with map-based approaches using calibrated cameras 
(Royer et al., 2007), the errors exhibited by the simple control scheme of our algorithm are 
rather large. Nevertheless, the remarkable flexibility and versatility of the system offer some 
important advantages over more precise techniques. With our approach, one can literally 
take an off-the-shelf camera, attach it to the robot, align it approximately in the forward 
direction, and start the system. The algorithm is not perfect, and there are scenarios in which 
it will fail. For example, occasionally the algorithm does not properly transition to the next 
milestone image, in which case the overlap between the current and milestone image can 
decrease to the point that an insufficient number of features are matched. Also, untextured 
scenes containing distant trees, bushes, or undecorated indoor hallways sometimes prevent 
the KLT algorithm from successfully tracking enough features to accurately compute the 
heading direction. While only a handful of features are necessary for the algorithm to 
succeed, it is important that features exist on both sides of the image, and that some number 
of features remain visible throughout the milestone. Another source of error is due to 
distant features. Although features near the center of the image produce a narrow funnel 
lane even when they are far from the camera, distant features near the side of the image 
produce much larger funnel lanes which are less useful for navigation. Moreover, image 
parallax is inversely proportional to the distance to a feature. As a result, distant features are 
primarily useful for correcting the rotation of the robot and are quite incapable of informing 
the robot about minor translation errors. This problem is compounded by the inherent 
ambiguity between rotation and translation in the funnel lane itself. Even though this 
ambiguity has little effect when the robot is near the path, it hinders the ability of the visual 
information to correctly determine the correct amount of rotation when the robot has 
deviated significantly. Odometry helps to overcome this limitation, and we have conducted 
experiments in which the robot consistently returns to the path after deviating by several 
meters. However, much larger deviations either initially or during replay cannot be handled 
by our present system. At any rate, it should be noted that odometry drift is not an issue 
because we only store odometry values local to the segment, not in a global coordinate 
frame. 

Fig. 15. LEFT: The teaching and replay paths of the robot in an outdoor environment
(parking lot), with an obstacle blocking the path. RIGHT: Close-up of the section of the path
containing the obstacle. 
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7. Conclusion 
 

In this chapter we have presented a novel approach to the problem of vision-based mobile 
robot path following using a single off-the-shelf camera. The robot navigates by performing 
a qualitative comparison of feature coordinates across the teaching and replay phases, 
utilizing the novel concept of a funnel lane. Vision information is combined with odometry 
for increased robustness. The algorithm does not make use of the traditional concepts of 
Jacobians, homographies, fundamental matrices, or the focus of expansion, and it does not 
require any camera calibration, including lens calibration. It only requires implicit 
calibration in the form of a controller gain. Experimental results on both indoor and outdoor 
scenes demonstrate the effectiveness of the approach on trajectories of hundreds of meters, 
along with its robustness to effects such as dynamic objects, slanted surfaces, and rough 
terrain. The versatility of the algorithm in working with wide-angle and omnidirectional 
cameras with only minor modification has also been shown. Future work should be aimed 
at incorporating higher-level scene knowledge to enable obstacle avoidance and terrain 
characterization, as well as connecting multiple teaching paths in a graph-based framework 
to enable autonomous navigation between arbitrary points. 
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