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1. Introduction 

1.1 Overview 
The study of human social behavioral systems is finding renewed interest in military, 
homeland security and other applications. Simulation is the most generally applied 
approach to studying complex scenarios in such systems. Here, we outline some of the 
important considerations that underlie the computational aspects of simulation-based study 
of human social systems. The fundamental imprecision underlying questions and answers 
in social science makes it necessary to carefully distinguish among different simulation 
problem classes and to identify the most pertinent set of computational dimensions 
associated with those classes. We identify a few such classes and present their 
computational implications. The focus is then shifted to the most challenging combinations 
in the computational spectrum, namely, large-scale entity counts at moderate to high levels 
of fidelity. Recent developments in furthering the state-of-the-art in these challenging cases 
are outlined. A case study of large-scale agent simulation is provided in simulating large 
numbers (millions) of social entities at real-time speeds on inexpensive hardware. Recent 
computational results are identified that highlight the potential of modern high-end 
computing platforms to push the envelope with respect to speed, scale and fidelity of social 
system simulations. Finally, the problem of shielding the modeler or domain expert from 
the complex computational aspects is discussed and a few potential solution approaches are 
identified. 

 
1.2 New Computational Challenges 
Computational social science has been an area of research for several decades now. 
Generally speaking, experiments in computational social science so far have been on the 
side of small scale (perhaps, at the limit, a few thousands of interacting entities). Lately, a 
general surge is apparent in an interest to represent and capture detailed effects at much 
larger scale. Scales of interest include population counts of cities, states, nations or even the 
world (104-109). Computational aspects that were not prominent at the smaller scale are now 
becoming pronounced at larger scale. Important orthogonal dimensions are emerging, 
making it necessary to revisit the computational problem with a fresh look. Dimensions 
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such as simulation speed, model scale, simulation system usability, and multi-system 
interoperability, which were all once implicitly combined together and insignificant in and 
by themselves for small scale models, are now separating themselves out as independent 
dimensions at larger scale. This separation is requiring the exploration and investigation of 
optimal locations in the dimension space for specific problems (or problem classes) of 
interest. 
A meta-level question of course remains, namely, whether, and to what degree, simulation-
based study is useful for the purposes of studying large-scale social systems. Perhaps new 
modeling and analysis methods are to be invented and applied to better deal with accuracy, 
precision, sensitivity and other concerns. In the absence of a generally applicable, 
comprehensive alternative modeling paradigm, simulation-based analysis remains the best 
promise towards studying these large-scale social systems. Simulation, in combination with 
additional theoretical methods such as design of experiments, seems to be the method of 
vogue and acceptance in the community. It is in this context that we focus on the new 
computational ramifications of large-scale social science simulations. 
An important insight we put forward here is that simulation-based studies fall into distinct 
classes, each class being characterized by its specific combination of scale and accuracy. The 
purpose (also known as “use-case”) behind using a particular class of simulation models 
becomes important to articulate and define, since the purpose defines both the way in which 
results from the simulation are to be interpreted, as well as the computational effects that 
one has to expect from using that class of models. For example, when a simulation is 
intended to generate an overall qualitative result (such as stumbling upon or uncovering 
surprising behavior), the simulation runs must be fast enough to qualitatively explore a 
large search space, yet the exact quantitative outcomes must not be interpreted literally. 
Similarly, population models intended to serve as reasonable situational surrogates for the 
masses (e.g, in order to test a detailed model of an antagonist group leader) must be capable 
of sustaining a large number of individuals, yet be computationally fast to allow for multi-
scenario experimentation; consequently, a high degree of fidelity may not be an appropriate 
expectation for the masses in such a usage. 
The challenge, then, is to either automatically find the right level of fidelity for a specific 
usage, or be able to sustain as high a fidelity level as possible at any scale that may be 
presented by the modeler to the simulation system. This is a grand challenge, which 
perhaps will remain unsolved in the near future. An intermediate step is to become aware of 
the issues and realize the distinctions so that expectations and choices are made 
appropriately. 
The rest of document is organized as follows. The main computational dimensions underlying 
the simulations are presented in Section 2, along with placement of popular modeling systems 
in the space of speed, scalability and fidelity dimensions. The notion of simulation usage 
scenarios and some of the common usage classes are described in Section 3. A quantitative 
estimate of computational time requirements is presented in Section 4, for different ranges of 
factors constituting simulation execution. Two case studies are presented on state-of-the-art 
large-scale simulation systems to highlight the potential of next generation social behavioral 
simulation systems. The first is a graphics processor-based solution called GARFIELD, 
presented in Section 5, and the second is a cluster computing-based solution called µsik, 
benchmarks of which have been scaled to supercomputing platforms, presented in Section 6. 
The observations of the article are summarized in Section 7. 

2. Orthogonal Computational Dimensions 

As mentioned before, the computational side of social behavioral simulation can be split 
into multiple dimensions in light of the new generation of large-scale simulation scenarios 
that are being contemplated. We identify five important dimensions, which are mutually 
orthogonal. The orthogonality is defined in the sense that any given combination of values 
along the five dimensions can correspond to a desired combination for some social science 
simulation scenario of interest. 

 
2.1 Dimensions 
The five dimensions are: scale, speed, fidelity, usability and interoperability. Each of these 
dimensions is discussed next. 

Scale 
Scale can be defined as the largest number of encapsulated units logically or actually 
instantiated in the model during simulation. The encapsulated units correspond to concepts 
widely referred to as entities, agents, actors, players, components and so on. In agent-based 
simulations, for example, the number of agents is a natural measure of scale; each agent is 
an encapsulated unit in the model and the agents are actually instantiated in the model 
during simulation. In aggregate methods, the determination of scale is less obvious, since 
the units being modeled might be logically represented, rather than actually instantiated. 
Nevertheless, logically aggregate representation can be used to define the scale. For 
example, in epidemic models that are based on differential equations (e.g., the SIR model 
(Daley and Gani 2001; Staniford, Paxson et al. 2002; Zou, Gao et al. 2003)), the number of 
units is represented by a single variable N. Each of the units (from the uninfected, 
susceptible or infected populations) constitutes a logically encapsulated modeling unit, 
although they are lumped together in one model variable. For our purposes, the scale is 
therefore N. 
In general, scale is harder to identify in aggregate models, while it is easier in more detailed 
models that have an approximately one-to-one mapping from system-level units to modeled 
units. However, when logical representation is included in the account, along with 
instantiated representation, this definition of scale makes the computational dimension of 
scale orthogonal to other dimensions, especially to fidelity (discussed later in this section). 

Speed 
Speed is the inverse of wall clock time elapsed from configuration/initialization to the end 
of simulation. This is a dimension that is easily measured for an execution in a given 
simulation system. Speed does depend on some of the other dimensions in a fundamental 
sense. However, for a given system, different implementation approaches can exist, each 
giving a different level of speed. The computing hardware platform can also have a 
significant bearing on the speed. There is, however, an upper bound on speed for any given 
combination of model and platform. Often, of interest is either the raw speed (e.g., to help 
estimate the time for parameter sweeps in a multi-simulation design of experiments), or the 
real-time scale factor (a fraction less than unity being slower than real-time, unity being 
exactly real-time, larger than unity being that many fold faster than real-time). Clearly, 
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such as simulation speed, model scale, simulation system usability, and multi-system 
interoperability, which were all once implicitly combined together and insignificant in and 
by themselves for small scale models, are now separating themselves out as independent 
dimensions at larger scale. This separation is requiring the exploration and investigation of 
optimal locations in the dimension space for specific problems (or problem classes) of 
interest. 
A meta-level question of course remains, namely, whether, and to what degree, simulation-
based study is useful for the purposes of studying large-scale social systems. Perhaps new 
modeling and analysis methods are to be invented and applied to better deal with accuracy, 
precision, sensitivity and other concerns. In the absence of a generally applicable, 
comprehensive alternative modeling paradigm, simulation-based analysis remains the best 
promise towards studying these large-scale social systems. Simulation, in combination with 
additional theoretical methods such as design of experiments, seems to be the method of 
vogue and acceptance in the community. It is in this context that we focus on the new 
computational ramifications of large-scale social science simulations. 
An important insight we put forward here is that simulation-based studies fall into distinct 
classes, each class being characterized by its specific combination of scale and accuracy. The 
purpose (also known as “use-case”) behind using a particular class of simulation models 
becomes important to articulate and define, since the purpose defines both the way in which 
results from the simulation are to be interpreted, as well as the computational effects that 
one has to expect from using that class of models. For example, when a simulation is 
intended to generate an overall qualitative result (such as stumbling upon or uncovering 
surprising behavior), the simulation runs must be fast enough to qualitatively explore a 
large search space, yet the exact quantitative outcomes must not be interpreted literally. 
Similarly, population models intended to serve as reasonable situational surrogates for the 
masses (e.g, in order to test a detailed model of an antagonist group leader) must be capable 
of sustaining a large number of individuals, yet be computationally fast to allow for multi-
scenario experimentation; consequently, a high degree of fidelity may not be an appropriate 
expectation for the masses in such a usage. 
The challenge, then, is to either automatically find the right level of fidelity for a specific 
usage, or be able to sustain as high a fidelity level as possible at any scale that may be 
presented by the modeler to the simulation system. This is a grand challenge, which 
perhaps will remain unsolved in the near future. An intermediate step is to become aware of 
the issues and realize the distinctions so that expectations and choices are made 
appropriately. 
The rest of document is organized as follows. The main computational dimensions underlying 
the simulations are presented in Section 2, along with placement of popular modeling systems 
in the space of speed, scalability and fidelity dimensions. The notion of simulation usage 
scenarios and some of the common usage classes are described in Section 3. A quantitative 
estimate of computational time requirements is presented in Section 4, for different ranges of 
factors constituting simulation execution. Two case studies are presented on state-of-the-art 
large-scale simulation systems to highlight the potential of next generation social behavioral 
simulation systems. The first is a graphics processor-based solution called GARFIELD, 
presented in Section 5, and the second is a cluster computing-based solution called µsik, 
benchmarks of which have been scaled to supercomputing platforms, presented in Section 6. 
The observations of the article are summarized in Section 7. 

2. Orthogonal Computational Dimensions 

As mentioned before, the computational side of social behavioral simulation can be split 
into multiple dimensions in light of the new generation of large-scale simulation scenarios 
that are being contemplated. We identify five important dimensions, which are mutually 
orthogonal. The orthogonality is defined in the sense that any given combination of values 
along the five dimensions can correspond to a desired combination for some social science 
simulation scenario of interest. 

 
2.1 Dimensions 
The five dimensions are: scale, speed, fidelity, usability and interoperability. Each of these 
dimensions is discussed next. 

Scale 
Scale can be defined as the largest number of encapsulated units logically or actually 
instantiated in the model during simulation. The encapsulated units correspond to concepts 
widely referred to as entities, agents, actors, players, components and so on. In agent-based 
simulations, for example, the number of agents is a natural measure of scale; each agent is 
an encapsulated unit in the model and the agents are actually instantiated in the model 
during simulation. In aggregate methods, the determination of scale is less obvious, since 
the units being modeled might be logically represented, rather than actually instantiated. 
Nevertheless, logically aggregate representation can be used to define the scale. For 
example, in epidemic models that are based on differential equations (e.g., the SIR model 
(Daley and Gani 2001; Staniford, Paxson et al. 2002; Zou, Gao et al. 2003)), the number of 
units is represented by a single variable N. Each of the units (from the uninfected, 
susceptible or infected populations) constitutes a logically encapsulated modeling unit, 
although they are lumped together in one model variable. For our purposes, the scale is 
therefore N. 
In general, scale is harder to identify in aggregate models, while it is easier in more detailed 
models that have an approximately one-to-one mapping from system-level units to modeled 
units. However, when logical representation is included in the account, along with 
instantiated representation, this definition of scale makes the computational dimension of 
scale orthogonal to other dimensions, especially to fidelity (discussed later in this section). 

Speed 
Speed is the inverse of wall clock time elapsed from configuration/initialization to the end 
of simulation. This is a dimension that is easily measured for an execution in a given 
simulation system. Speed does depend on some of the other dimensions in a fundamental 
sense. However, for a given system, different implementation approaches can exist, each 
giving a different level of speed. The computing hardware platform can also have a 
significant bearing on the speed. There is, however, an upper bound on speed for any given 
combination of model and platform. Often, of interest is either the raw speed (e.g., to help 
estimate the time for parameter sweeps in a multi-simulation design of experiments), or the 
real-time scale factor (a fraction less than unity being slower than real-time, unity being 
exactly real-time, larger than unity being that many fold faster than real-time). Clearly, 
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speed is affected by many variables, including the complexity of underlying algorithms, 
synchronization efficiency, hardware/software implementation platform and so on. 

Fidelity 
Fidelity of a model is a concept that is harder to define absolutely yet possible to discuss 
about in a comparative fashion. Fidelity in general is the extent of detail of the system 
captured by the model. Note that this is distinct from scale in the sense that scale measures 
the count of encapsulated units, where as fidelity measures the amount of behavioral detail 
captured per encapsulated unit. In general, the detail could be not only intra-unit, but also 
inter-unit (e.g., additional global phenomena, such as ambient economic conditions, that 
span multiple units). Operationally, fidelity is a qualitative combination of the size of state 
and the number of activity “threads” representing the behavior in each encapsulated entity. 
Fidelity clearly has implications on computational efficiency; this is discussed later in 
Section 0. 
For some objectives, adding more detail to the simulation may not bring a proportional 
amount of precision to the results. Nevertheless, the issue of value of fidelity is a separate 
concern; the dimension of fidelity can be discussed without necessarily linking it to overall 
value. 
Note that coarseness of model is different from level of fidelity. Coarseness of modeling unit 
is typically reflected in the number of entities modeled as one modeling unit. For example, 
either an entire town could be modeled as one unit (giving several thousand modeled units 
per entity), or each individual is explicitly represented as a modeled unit. Fidelity on the 
other hand can be viewed as the amount of detail assigned to the behavior of each modeled 
unit. Of course, in this view, there is an implicit assumption on the separation of constituent 
entities from their behavioral dimensions. 

Usability 
An important concern that has practically dominated computational social science so far is 
that of usability. Usability is simply the inverse of the total amount of effort expended by the 
modeler to define, develop, debug, test, execute, animate, visualize, interpret and analyze 
simulations. Since social system modelers are not necessarily computational experts, there is 
emphasis on reducing the amount of effort needed to pose questions, explore, and get 
answers (often visually), in a point-and-click fashion. 
Many of the popular social simulation systems today are driven primarily by this 
dimension. Once this usability is achieved to some good degree, other dimensions are 
explored as additional “wishes”, such as scale and speed, in a secondary fashion. Usability 
simply reigns as supreme among the dimensions in social science simulation systems today. 
In light of next generation modeling and simulation of social systems, unfortunately, the 
usability concern is no longer an easy one to address without having to consider its 
interaction with the other dimensions. While it is relatively straightforward to attain high 
levels of usability (ease of overall use) at low levels of scale, speed and/or fidelity, it is an 
entirely different matter to do so at large scale, high fidelity and/or high speed. 
With current usability techniques, unfortunately, scale and/or fidelity cannot be increased 
without significantly affecting speed. Performance penalties, hidden heretofore under small 
scale/fidelity, rise to significant levels, with slowdowns exceeding 1000×. The sources of the 
penalties are varied, from the slow speed nature of interpreted languages, to overheads of 

heavy graphics, to instrumentation overhead for runtime flexibility of configuration and 
monitoring. 

Interoperability 
Interoperability is the ability to interface and integrate disparate, complementary 
subsystems into an integrated system. In social science simulations, interoperability can be 
used to reuse previously developed models in a new scenario or to interoperate models at 
different resolutions. For example, a model of a popular leader may be interfaced with a 
model of the general masses, in order to exercise the leader model dynamically or to 
uncover overall system behaviors under various scenarios. 
Interoperability is a hard problem. In general, it remains hard even in the simplest setting, 
namely, of two models developed in the same programming language, same modeling 
framework and simulation system. There is quite a bit of literature on interoperable systems, 
many of the systems falling under the category of syntactic interoperability. Semantic 
interoperability, on the other hand, is the more difficult component. 
Interoperability is a dimension orthogonal to the rest in the sense that one could achieve any 
combination of the rest four dimensions without making any headway in the 
interoperability aspect. Alternatively, one could strive for interoperability but that needs to 
be done with awareness of the regimes of the other dimensions at which the system being 
interoperated spans. For example, interoperability of graphics processor-based automata 
models with supercomputing-based agent models can only be undertaken at the levels of 
fidelity and scale that the automata and agent models on those platforms afford. 

 
2.2 Modeling Approaches Spanning Scalability and Fidelity 
There are several modeling frameworks that are available to use in modeling social systems. 
Each framework is implemented in some software system; a (non-exhaustive) list of 
implemented systems includes JSAF(Davis, Lucas et al. 2005), SEAS(Chaturvedi, Foong et 
al. 2005), PMFServ(Silverman 2008), CultureSim(Silverman 2008), NetLogo(Wilensky 1999), 
Mason(Luke, Cioffi-Revilla et al. 2004), Repast J/.Net(North, Collier et al. 2006), Symphony, 
Swarm(Walter, Sannier et al. 2005), TeD(Perumalla, Fujimoto et al. 1998), Maisie(Bagrodia 
and Liao 1994), SSF(Cowie, Liu et al. 1999), Arena and NetLogic, to pick a few 
representative ones from each type of framework. 
Each modeling framework possesses its ranges of scalability, fidelity and speed. The typical 
ranges of some of the prominent frameworks are shown in Fig. 1. The region below the real-
time diagonal indicates the combination of fidelity and scalability levels that can be 
executed fast enough to meet or beat real-time. The region above the diagonal line indicates 
the specific combinations of fidelity and scalability that take more than one second of wall 
clock time for each second simulated in the model. 
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speed is affected by many variables, including the complexity of underlying algorithms, 
synchronization efficiency, hardware/software implementation platform and so on. 

Fidelity 
Fidelity of a model is a concept that is harder to define absolutely yet possible to discuss 
about in a comparative fashion. Fidelity in general is the extent of detail of the system 
captured by the model. Note that this is distinct from scale in the sense that scale measures 
the count of encapsulated units, where as fidelity measures the amount of behavioral detail 
captured per encapsulated unit. In general, the detail could be not only intra-unit, but also 
inter-unit (e.g., additional global phenomena, such as ambient economic conditions, that 
span multiple units). Operationally, fidelity is a qualitative combination of the size of state 
and the number of activity “threads” representing the behavior in each encapsulated entity. 
Fidelity clearly has implications on computational efficiency; this is discussed later in 
Section 0. 
For some objectives, adding more detail to the simulation may not bring a proportional 
amount of precision to the results. Nevertheless, the issue of value of fidelity is a separate 
concern; the dimension of fidelity can be discussed without necessarily linking it to overall 
value. 
Note that coarseness of model is different from level of fidelity. Coarseness of modeling unit 
is typically reflected in the number of entities modeled as one modeling unit. For example, 
either an entire town could be modeled as one unit (giving several thousand modeled units 
per entity), or each individual is explicitly represented as a modeled unit. Fidelity on the 
other hand can be viewed as the amount of detail assigned to the behavior of each modeled 
unit. Of course, in this view, there is an implicit assumption on the separation of constituent 
entities from their behavioral dimensions. 

Usability 
An important concern that has practically dominated computational social science so far is 
that of usability. Usability is simply the inverse of the total amount of effort expended by the 
modeler to define, develop, debug, test, execute, animate, visualize, interpret and analyze 
simulations. Since social system modelers are not necessarily computational experts, there is 
emphasis on reducing the amount of effort needed to pose questions, explore, and get 
answers (often visually), in a point-and-click fashion. 
Many of the popular social simulation systems today are driven primarily by this 
dimension. Once this usability is achieved to some good degree, other dimensions are 
explored as additional “wishes”, such as scale and speed, in a secondary fashion. Usability 
simply reigns as supreme among the dimensions in social science simulation systems today. 
In light of next generation modeling and simulation of social systems, unfortunately, the 
usability concern is no longer an easy one to address without having to consider its 
interaction with the other dimensions. While it is relatively straightforward to attain high 
levels of usability (ease of overall use) at low levels of scale, speed and/or fidelity, it is an 
entirely different matter to do so at large scale, high fidelity and/or high speed. 
With current usability techniques, unfortunately, scale and/or fidelity cannot be increased 
without significantly affecting speed. Performance penalties, hidden heretofore under small 
scale/fidelity, rise to significant levels, with slowdowns exceeding 1000×. The sources of the 
penalties are varied, from the slow speed nature of interpreted languages, to overheads of 

heavy graphics, to instrumentation overhead for runtime flexibility of configuration and 
monitoring. 

Interoperability 
Interoperability is the ability to interface and integrate disparate, complementary 
subsystems into an integrated system. In social science simulations, interoperability can be 
used to reuse previously developed models in a new scenario or to interoperate models at 
different resolutions. For example, a model of a popular leader may be interfaced with a 
model of the general masses, in order to exercise the leader model dynamically or to 
uncover overall system behaviors under various scenarios. 
Interoperability is a hard problem. In general, it remains hard even in the simplest setting, 
namely, of two models developed in the same programming language, same modeling 
framework and simulation system. There is quite a bit of literature on interoperable systems, 
many of the systems falling under the category of syntactic interoperability. Semantic 
interoperability, on the other hand, is the more difficult component. 
Interoperability is a dimension orthogonal to the rest in the sense that one could achieve any 
combination of the rest four dimensions without making any headway in the 
interoperability aspect. Alternatively, one could strive for interoperability but that needs to 
be done with awareness of the regimes of the other dimensions at which the system being 
interoperated spans. For example, interoperability of graphics processor-based automata 
models with supercomputing-based agent models can only be undertaken at the levels of 
fidelity and scale that the automata and agent models on those platforms afford. 

 
2.2 Modeling Approaches Spanning Scalability and Fidelity 
There are several modeling frameworks that are available to use in modeling social systems. 
Each framework is implemented in some software system; a (non-exhaustive) list of 
implemented systems includes JSAF(Davis, Lucas et al. 2005), SEAS(Chaturvedi, Foong et 
al. 2005), PMFServ(Silverman 2008), CultureSim(Silverman 2008), NetLogo(Wilensky 1999), 
Mason(Luke, Cioffi-Revilla et al. 2004), Repast J/.Net(North, Collier et al. 2006), Symphony, 
Swarm(Walter, Sannier et al. 2005), TeD(Perumalla, Fujimoto et al. 1998), Maisie(Bagrodia 
and Liao 1994), SSF(Cowie, Liu et al. 1999), Arena and NetLogic, to pick a few 
representative ones from each type of framework. 
Each modeling framework possesses its ranges of scalability, fidelity and speed. The typical 
ranges of some of the prominent frameworks are shown in Fig. 1. The region below the real-
time diagonal indicates the combination of fidelity and scalability levels that can be 
executed fast enough to meet or beat real-time. The region above the diagonal line indicates 
the specific combinations of fidelity and scalability that take more than one second of wall 
clock time for each second simulated in the model. 
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Fig. 1. Spectrum of behavioral modeling alternatives, and the scalability and fidelity ranges 
they afford. 
 
Experiments involving real humans affords the maximum fidelity, but can only be 
practically performed with at most 102-103 individuals. Human-in-the-loop systems, such as 
semi-automated forces, can conceivably be performed with 102-103 human participants 
coupled to the system containing other artificially generated behaviors. The fidelity afforded 
is high on the human participation side of the system, but is reduced due to bi-directional 
interaction with artificial behaviors. Agent-based Modeling and Simulation(North and 
Macal 2007) affords the maximum range of scalability at moderate levels of fidelity. It is 
shown with extended (darkened) range to the right, denoting the recent increase in the 
number of agents that could be simulated using novel computing solutions such as data-
parallel execution on graphical processors(D'Souza, Lysenko et al. 2007; Perumalla and 
Aaby 2008) and reverse computation-based control-parallel execution on supercomputers. 
Automata-based models are computationally simple enough to be executed in large entity 
counts, but at the cost of strictly lower fidelity. Mixed abstraction systems are those that 
combine more than one modeling paradigm, for ease of modeling or increase in speed. A 
classic example is the use of a small number of agent models placed in the context of a large 
population of automata models, delivering the higher fidelity of the agent models for 
important components while delivering the high speed of automata models for the less 
detailed population behaviors. System Dynamics and aggregate models are based on coupled 
differential equations. They afford the maximum level of scalability, since increasing the 
unit count could be as simple as increasing the value of a variable in the equations. 
However, they are also the lowest in fidelity. 
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2.3 Computational Aspects of Fidelity 
A note can be made about the interaction of fidelity with computational burden. The issue at 
heart of tradeoffs between scale, speed and fidelity is the nature of computational artifacts 
that underlie the modeling primitives. An activity, such as random walk on a plane, can be 
realized as a computational thread instantiated in the context of an entity. Each activity thus 
consumes computational resources (computer memory and wall clock time), and also 
typically comes with additional state size represented in the entity (e.g., current location, 
movement pattern specification, etc.). Each entity can in general have several such activities 
coordinating with each other to realize the overall entity behavior. The number of activities 
translates to a corresponding number of computational threads that are instantiated during 
simulation execution. At runtime, these activities need to be allocated, scheduled, de-
scheduled, synchronized and so on, all of which consume wall clock time as well as 
computer memory. Fidelity of the model translates to greater number of activities, more 
complex computation within each activity, and/or greater frequency of invocations to 
activity functionality. An automata-based model is a special case in which each entity 
contains a singleton activity which manipulates a (simple) state according to a state 
transition table. Thus, automata models typically are computationally lighter in weight, 
enabling larger scale at the same simulation speed level as agent-based models. 

3. Simulation Usage Scenarios 

In order to understand the computational challenges underlying computational social 
sciences, it is important to distinguish among various typical usage scenarios of social 
behavioral simulations. The usage scenarios are sufficiently disparate from each other, both 
qualitatively and quantitatively, whose distinction becomes prominent only at higher levels 
of scale and fidelity. At low scale (101-103 entities), the implications of the type of usage are 
not as pronounced as when the scale is increased beyond (104-109 entities). At low scale, one 
can resort to the modeling system that affords the highest fidelity, and be able to simulate 
without runtime effects becoming noticeable or problematic. At a larger scale, however, it 
becomes important to select the simulation system with the right tradeoff between scale and 
fidelity to stay within the simulation speed requirements. Using a low-fidelity simulation 
framework (e.g., automata-based system) can help scale to millions of entities, but the same 
system might be inappropriate when greater behavioral detail is attempted to be 
incorporated into the entities. Similarly, a high level of detail for entities in an application 
might not scale if most of the entities are merely used as background activity in a 
simulation. 
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Fig. 1. Spectrum of behavioral modeling alternatives, and the scalability and fidelity ranges 
they afford. 
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parallel execution on graphical processors(D'Souza, Lysenko et al. 2007; Perumalla and 
Aaby 2008) and reverse computation-based control-parallel execution on supercomputers. 
Automata-based models are computationally simple enough to be executed in large entity 
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population of automata models, delivering the higher fidelity of the agent models for 
important components while delivering the high speed of automata models for the less 
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differential equations. They afford the maximum level of scalability, since increasing the 
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2.3 Computational Aspects of Fidelity 
A note can be made about the interaction of fidelity with computational burden. The issue at 
heart of tradeoffs between scale, speed and fidelity is the nature of computational artifacts 
that underlie the modeling primitives. An activity, such as random walk on a plane, can be 
realized as a computational thread instantiated in the context of an entity. Each activity thus 
consumes computational resources (computer memory and wall clock time), and also 
typically comes with additional state size represented in the entity (e.g., current location, 
movement pattern specification, etc.). Each entity can in general have several such activities 
coordinating with each other to realize the overall entity behavior. The number of activities 
translates to a corresponding number of computational threads that are instantiated during 
simulation execution. At runtime, these activities need to be allocated, scheduled, de-
scheduled, synchronized and so on, all of which consume wall clock time as well as 
computer memory. Fidelity of the model translates to greater number of activities, more 
complex computation within each activity, and/or greater frequency of invocations to 
activity functionality. An automata-based model is a special case in which each entity 
contains a singleton activity which manipulates a (simple) state according to a state 
transition table. Thus, automata models typically are computationally lighter in weight, 
enabling larger scale at the same simulation speed level as agent-based models. 

3. Simulation Usage Scenarios 

In order to understand the computational challenges underlying computational social 
sciences, it is important to distinguish among various typical usage scenarios of social 
behavioral simulations. The usage scenarios are sufficiently disparate from each other, both 
qualitatively and quantitatively, whose distinction becomes prominent only at higher levels 
of scale and fidelity. At low scale (101-103 entities), the implications of the type of usage are 
not as pronounced as when the scale is increased beyond (104-109 entities). At low scale, one 
can resort to the modeling system that affords the highest fidelity, and be able to simulate 
without runtime effects becoming noticeable or problematic. At a larger scale, however, it 
becomes important to select the simulation system with the right tradeoff between scale and 
fidelity to stay within the simulation speed requirements. Using a low-fidelity simulation 
framework (e.g., automata-based system) can help scale to millions of entities, but the same 
system might be inappropriate when greater behavioral detail is attempted to be 
incorporated into the entities. Similarly, a high level of detail for entities in an application 
might not scale if most of the entities are merely used as background activity in a 
simulation. 
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Fig. 2. Relation among Modeled System, Modeling Purpose, and Modeling Alternatives 
 
To make an analogy, in financial market applications, simulation is used in different ways 
with different end goals and computational demands. Off-line simulations such as financial 
analytics and portfolio risk analysis are performed at relatively higher computational cost 
but with emphasis on longer-term prediction. Online simulations such as real-time trading 
solutions are a relatively recent trend in which the focus is on short-term prediction; but 
with as a high a fidelity as can be accommodated under real-time constraints. The important 
distinction is that the expectations of result quality and execution speed are set based on the 
intended usage of the particular type of simulation. 
Here, we identify a few important classes of simulation usage in social behavioral 
simulations. 

Situational Background Phenomena 
In this class of simulations, the objective is to achieve reasonably rich, heterogeneous 
behavior among a large population of entities, but the emphasis is relatively less on 
sophistication in any one entity. Examples of this type of simulation usage are: 

1. Evaluation of key social players; their behavior and influence are evaluated in the 
context of large low-fidelity populace (e.g., LeaderSim(Silverman 2008)) 

2. Animation of background crowds; need low fidelity but good heterogeneity of 
background entities; the main (foreground) entities, such as police force, are of 
much higher-fidelity (e.g., crowd simulation(Reynolds 2006)) 

3. In an unrelated field (Internet simulations), evaluation of distributed 
computing/communication applications; the network application can be evaluated 
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under the effects of background traffic and general network operation (e.g., fluid 
and packet-level simulation (Nicol, Liljenstam et al. 2003)) 

Short-Term Prediction 
Prediction of immediate trajectory constitutes another class of simulations, in which heavy 
initialization is performed based on data and calibration, followed by short extrapolation via 
simulation. The assumption is that prediction will be more accurate due to closeness of 
initial state to reality and shortness of future period, together minimizing chance of 
deviation. Typically, this type of simulation is performed in a series of what-if case analysis 
to choose the best recourse from among a set of possible actions. Simulation needs are 
characterized by the need for extensive assimilation of configuration data and for high 
simulation speed for each scenario. Accuracy expectations tend to be relatively high. 

Emergent Phenomena 
This class of efforts is characterized by its emphasis on exploration of interesting aggregate 
behaviors evolved from disaggregated behaviors of an ensemble of entities. The emphasis 
on exploration brings the needs of long simulation times and large number of simulation 
runs. However, generally speaking, the level of fidelity is relatively low, since the focus is on 
observing the nature of overall patterns from relatively simple individual behaviors. 
Examples of this type of simulations include Ising Spin (Tomov, McGuigan et al. 2005), 
Segregation (Schelling 1978), and SugarScape models. 

Training and Entertainment – Surrogate or Immersive 
A class of behavioral simulations deals with training and/or entertainment objectives. For 
example, to train government agencies in emergency management, population reactions 
and responses are modeled and simulated in a synthetic environment; the environment 
serves as surrogate of the real world for training purposes (Chaturvedi, Foong et al. 2005). 
Similarly, for law enforcement and military purposes, immersive environments are used 
that include intelligent agents serving the role of antagonists (and sometimes allies as well) 
(Mastaglio and Callahan 1995; Devine and Gross 1998; Verdesca, Munro et al. 2005). The 
level of fidelity expected is extremely high for high quality training. Semi-automated forces 
fall in this category(Davis, Lucas et al. 2005). In civilian use, corporations can use such 
surrogate or immersive environments for management training in negotiation, team 
building, and so on. Again, the fidelity level expected of the automated behavior is very 
high, with consequent indulgence in higher-end computing platforms. Analogous needs are 
arising in entertainment industry, in which intelligent actors in a highly realistic synthetic 
environment are employed (e.g., SimCity). However, there is typically a tradeoff between 
fidelity and speed for real-time performance on commodity (low-end) computing platforms. 

4. Computational Time Requirements 

A truly enabling generation of simulation tools for computational social science would, 
ideally, bring progress along all five dimensions simultaneously. While progress along any 
single dimension is not difficult, achieving any two together is difficult, achieving three is 
daunting, four is heroic and all five is a grand challenge. 
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observing the nature of overall patterns from relatively simple individual behaviors. 
Examples of this type of simulations include Ising Spin (Tomov, McGuigan et al. 2005), 
Segregation (Schelling 1978), and SugarScape models. 

Training and Entertainment – Surrogate or Immersive 
A class of behavioral simulations deals with training and/or entertainment objectives. For 
example, to train government agencies in emergency management, population reactions 
and responses are modeled and simulated in a synthetic environment; the environment 
serves as surrogate of the real world for training purposes (Chaturvedi, Foong et al. 2005). 
Similarly, for law enforcement and military purposes, immersive environments are used 
that include intelligent agents serving the role of antagonists (and sometimes allies as well) 
(Mastaglio and Callahan 1995; Devine and Gross 1998; Verdesca, Munro et al. 2005). The 
level of fidelity expected is extremely high for high quality training. Semi-automated forces 
fall in this category(Davis, Lucas et al. 2005). In civilian use, corporations can use such 
surrogate or immersive environments for management training in negotiation, team 
building, and so on. Again, the fidelity level expected of the automated behavior is very 
high, with consequent indulgence in higher-end computing platforms. Analogous needs are 
arising in entertainment industry, in which intelligent actors in a highly realistic synthetic 
environment are employed (e.g., SimCity). However, there is typically a tradeoff between 
fidelity and speed for real-time performance on commodity (low-end) computing platforms. 

4. Computational Time Requirements 

A truly enabling generation of simulation tools for computational social science would, 
ideally, bring progress along all five dimensions simultaneously. While progress along any 
single dimension is not difficult, achieving any two together is difficult, achieving three is 
daunting, four is heroic and all five is a grand challenge. 
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Among the five, of immediate interest for moving to next generation is simultaneous 
progress along scale and speed. In this combination, the components at play can be itemized 
in order to get an estimate of the computational requirements at hand. For an estimate, we 
will focus on agent-based view of the model, although equivalent measures can also be 
defined for other modeling frameworks. 
The overall organization of agent-based simulation is that a series of experiments is run 
(e.g., with different leadership theories in an anti-establishment simulation), each 
experiment being executed using multiple scenarios (e.g., with different levels of 
displeasure among populations). Each scenario is executed multiple times, to arrive at good 
confidence intervals (e.g., with different random number seeds). Each simulation is typically 
organized as a series of time steps, each time step advancing the state of the entire model to 
that time step. At each time step, the rule sets of each agent are executed. A table itemizing 
these components of computational runtime that affect the speed of simulation is shown in 
Table 1. 
 

Factor Notes Factor-Specific Cumulative  
Low High Low High 

Agent Rule 
Execution Time 

From µs (for simple 
algebra) to ms (for 
complex 
optimization) 

10-6 
seconds 

10-3 
seconds 

10-6 
seconds 

10-3 
seconds 

Number of 
Agents 

From handful of team 
agents up to global 
world populations 

101 
agents 

109 
agents 

10-5 
seconds 

106 
seconds 

Number of 
Time Steps 

Simple evolution to 
complex dynamics 

101 109 10-4 
seconds 

107 
seconds 

Number of 
Simulation 
Runs 

Single sample run to 
multiple trials 

100 102 10-4 
seconds 

109 
seconds 

Number of 
Scenarios 

From a few to full 
parameter sweeps or 
with Monte Carlo 

101 106 10-3 
seconds 

1015 
seconds 

Number of 
Experiments 

From focused 
contexts to cross-
domain/cross-
context 

100 102 10-3 
seconds 

1017 
seconds 

Table 1. Range of Computational Time (on One Processor) Depending on Different Factors 

 
4.1 Symbolic Simplicity vs. Computational Complexity 
When dealing with computational complexity, it is worth noting that apparent simplicity or 
complexity of symbolic representation of rule sets does not necessarily have a direct 
correlation with computation time. A common misconception is that “simple” rules 
translate to “simple” computation. In particular, there is a prevalent notion that simulations 
aimed at discovering emergent behavior are characterized by simple computation. The 
fallacy in logic is the translation from simplicity of symbolic expression of rules to simplicity 
of computation. Here, we present two counterexamples to illustrate. 

Richness of Temporal Behavior despite Symbolic Simplicity 
An example of a “simple” rule set that requires long simulation times is the Manneville-
Pomeau Map: 

 1 ( 1)nn
z

n xx dx mo   

This map is useful to model turbulent, sporadic or intermittent behavior: The state variable 
xn corresponding to time step n could represent a behavioral component, such as the mood 
of a person, or level of resentment towards oppression. Although this rule is relatively 
“simple” with respect to its symbolic expression, it is well-known that this map exhibits 
interesting behavior only when evaluated along the span of prolonged iteration. For z≥3 and 
x0=10-3, the onset of interesting behavior does not arrive until about 109 iterations. This type 
of model is an example of scenarios in which, although the dynamics are relatively “simple” 
to express symbolically, very long simulation times are needed to adequately exercise and 
capture the relevant dynamics. 

Algorithmic Complexity despite Small Formulation Size 
Yet another instance of simplicity of symbolic expression not equating to simplicity of 
computation is optimization-based rule sets. For example, Mixed Integer Programming-
based model formulations are widely used in social behavioral models to capture individual 
optimization capabilities of interacting entities. For example, a behavioral model of people 
acting for/against an order from a leader is formulated as an integer programming problem 
in Ref(Whitmeyer 2007). These types of formulations are prone to heavy computational 
demands, despite simplicity of formulation. Consider the following “simple” model based 
on a Mixed Integer Programming formulation: 
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Solving this problem via branch-and-bound involves solving 29 instances of its linear-
programming relaxations, each relaxation being solved by Simplex method. The cost thus 
adds up even for a simple problem, at the level of each agent. Note that the cost of this 
integer solving operation is incurred at every time step of every agent. At large scale, the 
computational cost can become prohibitive for reasonable use in a design of experiments. 

 
4.2 Continuous vs. Discrete Event Execution – Semantics and Implementation 
Another important class of computational considerations involves resolving notions of 
continuous and discrete time advancement mechanisms among model entities. 
Most social science simulations are commonly defined in terms of time-stepped execution, 
in which time is advanced globally in fixed increments, and all agents are updated at each 
time step. However, some models are either inherently asynchronous in their formulation, 
or amenable to an alternative, asynchronous execution style for faster evolution. In such 
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experiment being executed using multiple scenarios (e.g., with different levels of 
displeasure among populations). Each scenario is executed multiple times, to arrive at good 
confidence intervals (e.g., with different random number seeds). Each simulation is typically 
organized as a series of time steps, each time step advancing the state of the entire model to 
that time step. At each time step, the rule sets of each agent are executed. A table itemizing 
these components of computational runtime that affect the speed of simulation is shown in 
Table 1. 
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Solving this problem via branch-and-bound involves solving 29 instances of its linear-
programming relaxations, each relaxation being solved by Simplex method. The cost thus 
adds up even for a simple problem, at the level of each agent. Note that the cost of this 
integer solving operation is incurred at every time step of every agent. At large scale, the 
computational cost can become prohibitive for reasonable use in a design of experiments. 

 
4.2 Continuous vs. Discrete Event Execution – Semantics and Implementation 
Another important class of computational considerations involves resolving notions of 
continuous and discrete time advancement mechanisms among model entities. 
Most social science simulations are commonly defined in terms of time-stepped execution, 
in which time is advanced globally in fixed increments, and all agents are updated at each 
time step. However, some models are either inherently asynchronous in their formulation, 
or amenable to an alternative, asynchronous execution style for faster evolution. In such 
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asynchronous execution models, updates to agents are processed via staggered timestamps 
across agents. An example of such asynchrony of agent activity in the model definition itself 
is a civil violence model(Epstein 2002). In general, asynchronous (discrete event) execution 
can deliver much faster advances in simulation time than naïve time-stepped approaches. 
Computational consideration arises in this regard for speeding up simulations via 
asynchronous model execution(Perumalla 2007), both in sequential and parallel execution 
contexts. 
In the sequential execution context (executing on one processor), a computational 
consideration is in automatically converting a time-stepped execution to an asynchronous 
(discrete event) execution, with consequential improvement in speed of simulation. 
Techniques for executing continuous models in a discrete event fashion are known(Nutaro 
2003) and additional ones are being developed(Perumalla 2007), which could be applied to 
social system execution. 
In the parallel execution context, additional complexity arises. While it is relatively 
straightforward to map synchronous (time-stepped) execution to parallel computing 
platforms, the mapping of asynchronous execution is not so obvious. Efficient execution of 
asynchronous activity requires much more complex handling. The fundamental issue at 
hand is the preservation of correct causal dependencies among agents across time 
instants(Fujimoto 2000). Correctness requires that agents be updated in time-stamp order. 
A naïve method would be to compute the minimum time of update required among all 
model units (e.g., agents), and perform a parallel update of all units’ states up to only that 
minimum update time. Clearly, only one unit (or only a very few number of units, if more 
than one unit has the same minimum time of update) can be processed at each iteration. The 
cost of computing the global minimum time can constitute a large overhead; additionally, 
parallel execution of all units when only one (or very few) units are eligible for update can 
add significant overhead. Specialized time synchronization algorithms are needed to resolve 
these challenges (e.g., see (Perumalla and Fujimoto 2001)). 

5. Case Study: GARFIELD 

Lately, the state-of-the-art is advancing the computational capabilities of social behavioral 
simulations. The focus has increased on improving scale, speed or both. One of the recent 
directions is exploiting graphics processors’ data parallel execution capabilities for fast 
agent-based simulations. Here we present some performance results from a system called 
GARFIELD (Graphical Agents Reacting in a Field) for simulating agent-based models on 
graphics processors. Additional implementation details can be found in Ref. (Perumalla and 
Aaby 2008). 
 
One of the strengths of systems like GARFIELD is the combination of large scale and high 
speed achievable on some low- to medium fidelity models. Fig. 3 shows graphical snapshots 
of a few example simulations executed under GARFIELD. Fig. 4 shows the speed 
differential that can be obtained by optimizing fine-grained models to GPUs, as compared 
to the speed of interpreter-based frameworks such as Repast and NetLogo. 
 

   
(a) Mood Diffusion (b) Game of Life (c) Schelling Segregation 

Fig. 3. Graphical Snapshots from Large-scale Execution of Different Behavioral Simulation 
Models using GARFIELD 
 
Benefits of large-scale simulation: The Game of Life invented by John H. Conway, 
published in (Gardner 1970), is a simulation when executed on large grid sizes exhibits 
some interesting benefits of large-scale execution. In Game of Life, it is well-known that 
several interesting patterns emerge both spatially and temporally. With a small-scale 
execution (e.g., with 100×100 grids), several experiments have to be initiated in order to 
explore and cover many possible patterns and to exercise their dynamic behaviors. 
However, in an execution with a 2048×2048 grid randomly initialized with live and dead 
cells, a large number of patterns emerge naturally, reducing the need for instantiating a 
simulation run for exercising/exploring each pattern separately. It is edifying to see the 
patterns emerge out of evolution from a randomized initial condition. The laborious and 
painstaking process of cogitating about potentially interesting behaviors can be substituted 
by exploration via the brute force of scale. 
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Fig. 4. Speedup of GARFIELD compared to Repast for the Game of Life Model. GARFIELD 
simulations are over 4000-fold faster than with traditional tool kits, and also scale to over 
100-fold larger scenarios. However, usability is not as high as with other traditional toolkits. 
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asynchronous execution models, updates to agents are processed via staggered timestamps 
across agents. An example of such asynchrony of agent activity in the model definition itself 
is a civil violence model(Epstein 2002). In general, asynchronous (discrete event) execution 
can deliver much faster advances in simulation time than naïve time-stepped approaches. 
Computational consideration arises in this regard for speeding up simulations via 
asynchronous model execution(Perumalla 2007), both in sequential and parallel execution 
contexts. 
In the sequential execution context (executing on one processor), a computational 
consideration is in automatically converting a time-stepped execution to an asynchronous 
(discrete event) execution, with consequential improvement in speed of simulation. 
Techniques for executing continuous models in a discrete event fashion are known(Nutaro 
2003) and additional ones are being developed(Perumalla 2007), which could be applied to 
social system execution. 
In the parallel execution context, additional complexity arises. While it is relatively 
straightforward to map synchronous (time-stepped) execution to parallel computing 
platforms, the mapping of asynchronous execution is not so obvious. Efficient execution of 
asynchronous activity requires much more complex handling. The fundamental issue at 
hand is the preservation of correct causal dependencies among agents across time 
instants(Fujimoto 2000). Correctness requires that agents be updated in time-stamp order. 
A naïve method would be to compute the minimum time of update required among all 
model units (e.g., agents), and perform a parallel update of all units’ states up to only that 
minimum update time. Clearly, only one unit (or only a very few number of units, if more 
than one unit has the same minimum time of update) can be processed at each iteration. The 
cost of computing the global minimum time can constitute a large overhead; additionally, 
parallel execution of all units when only one (or very few) units are eligible for update can 
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One of the strengths of systems like GARFIELD is the combination of large scale and high 
speed achievable on some low- to medium fidelity models. Fig. 3 shows graphical snapshots 
of a few example simulations executed under GARFIELD. Fig. 4 shows the speed 
differential that can be obtained by optimizing fine-grained models to GPUs, as compared 
to the speed of interpreter-based frameworks such as Repast and NetLogo. 
 

   
(a) Mood Diffusion (b) Game of Life (c) Schelling Segregation 

Fig. 3. Graphical Snapshots from Large-scale Execution of Different Behavioral Simulation 
Models using GARFIELD 
 
Benefits of large-scale simulation: The Game of Life invented by John H. Conway, 
published in (Gardner 1970), is a simulation when executed on large grid sizes exhibits 
some interesting benefits of large-scale execution. In Game of Life, it is well-known that 
several interesting patterns emerge both spatially and temporally. With a small-scale 
execution (e.g., with 100×100 grids), several experiments have to be initiated in order to 
explore and cover many possible patterns and to exercise their dynamic behaviors. 
However, in an execution with a 2048×2048 grid randomly initialized with live and dead 
cells, a large number of patterns emerge naturally, reducing the need for instantiating a 
simulation run for exercising/exploring each pattern separately. It is edifying to see the 
patterns emerge out of evolution from a randomized initial condition. The laborious and 
painstaking process of cogitating about potentially interesting behaviors can be substituted 
by exploration via the brute force of scale. 
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models on GPU 
 
With regard to real-time aspect of speed, Fig. 5 shows the frame rate achieved for increasing 
number of agents in three applications. Real time execution is seen to be achievable in 
GARFIELD, with over 100 frames (time steps) per second clocked even in the largest grid 
sizes, of over 16 million agents. In smaller configurations, the frame rate is orders of 
magnitude higher. 

 
5.1 Emergent Behavior with a Loyalty Model 
In a more sophisticated application, it is possible to simulate populations of over several 
million agents with fine-grained model computation. For example, a scenario of a 
“leadership model” with 16 million individuals can be simulated, each individual obeying a 
loyalty-based leadership model that maximizes an individual’s “utility” at each time step. 
The example model is reproduced from (Brecke and Whitmeyer 2007; Whitmeyer 2007) as 
follows: 
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Given an order O, of interest is the variation of behavior B that is chosen by each individual 
to maximize the individual’s utility U. Lambda’s time dependence induces variation of B 
over time. 
When Ml is defined as the mean loyalty of neighbors, the variation of B is less interesting, as 
lambda follows some sort of a diffusion process which can be expected to converge to an 
overall average across all individuals. To accommodate some dynamics, we make one 
change, namely, Ml is defined as the maximum loyalty, instead of mean loyalty, among 
neighbors. The rationale behind this variation is that the neighbor with the largest loyalty, 
even if there is only one, potentially has an overbearing influence on all its neighbors. 
Fig. 6(a)-(f) shows snapshots of simulation for a population of over 2 million individuals, 
each executing the preceding loyalty model, with O=1, R=0.25, Wl=0.33, Wc=0.33, Wi=0.34, 
and δ=0.01. P is uniformly randomized across the population. 
 

(a) Initial behavior map divided along a 
country border; loyal behaviors are below 

the diagonal (blue), and opposite are above 

(b) Behavior smoothens after a few time 
steps, but neutral behaviors emerge along 

diagonal [geographical map is omitted] 
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(c) Fluctuations and growth of neutral 
behavior from the diagonal is observed 

(d) Growth smears over time into the 
interiors, away from the diagonal 

(e) Spread of neutral behavior is sustained 
even after thousands of time steps 

(f) Neutrality waves are regenerated 
despite intermediate ebbs in prior time 

steps 
Fig. 6. Interesting spatial and temporal variation in the behavior of population under a 
“loyalty-based” model (Brecke and Whitmeyer 2007; Whitmeyer 2007). Blue denotes 
behavior loyal to leadership, green denotes neutrality and red represents anti-order stance. 
Sustained waves of switching from/to neutral position indicates prolonged “unrest” due to 
divisions in initial conditions 
 
The high simulation speed of GARFIELD was helpful in uncovering this emergent 
phenomenon, which was discovered when key parameters were varied in a large number of 
combinations. 

6. Case Study: µsik 

While systems like GARFIELD are designed with scale and speed in mind for low- to 
medium fidelity applications, new scalable systems are needed for the general class of social 
behavioral simulations that can include high fidelity models, possibly enhanced by usability 
features. For such applications, a system that scales from traditional multi-core desktop 
machines to supercomputing platforms is very useful. 

The parallel discrete event simulation engines, such as µsik (Perumalla 2004; Perumalla 
2005; Perumalla 2007), and ROSS (Holder and Carothers 2008), execute time-stepped and 
discrete event simulations at very high speed on a single desktop machine for users with 
limited compute power. The same engines are also capable of scaling to much larger 
problem sizes on cluster machines, multi-core workstations, or even supercomputers. In 
particular, the performance of the engine on supercomputing platforms is of particular 
relevance, as it shows the potential of realizing extremely large-scale social behavioral 
model simulations at very high speeds by leveraging tens of thousands of processor cores. 
Recent demonstration of the possible performance shows the capability to simulate up to 
half a billion events per wall clock second on 16,384 processors of a Blue Gene 
supercomputer. 

 
6.1 Agent Interaction Model 
The performance benchmark used to demonstrate this capability is the PHOLD application, 
which was designed as a generalized core of most simulations that include multiple 
interacting entities that interact via time stamped events/messages. The PHOLD benchmark 
(Perumalla 2007) is an abstraction of the interaction among multiple encapsulated units, to 
capture the simulation dynamics of computational performance. Most interacting-entity 
simulations map well to this model. In a way, good performance of this model is a necessary 
condition for good performance of other detailed behavioral models. 
In this benchmark, each unit selects a target unit at random for interaction in the future. The 
selection of the destination unit is made at random, with some bias towards those units that 
are instantiated on the same processor (more than one unit/agent is mapped to the same 
processor). The interaction is scheduled with a period drawn from an exponential 
distribution with mean 1.0, plus a minimum increment of 1.0 (i.e., a “lookahead” of 1.0). 

 
Fig. 7. Runtime Performance of µsik on the PHOLD Benchmark on up to 16,000 Cores of a 
Blue Gene Supercomputer. 
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The performance results are shown in Fig. 7, for the PHOLD scenario containing 1 million 
interacting entities. These results are reproduced from Ref. (Perumalla 2007). The most 
important metric to note is the number of events simulated per second, which translates to a 
per-event overhead that is on the order of 20 to 30 microseconds per event. Such a low event 
overhead makes it possible to contemplate executing even the finest grained agent 
simulations at high efficiency. In other words, the engine is capable of sustaining 
synchronized agent state evolution across processors with excellent parallel speedup. 

7. Summary 

The time seems to be ripe with respect to motivation as well as promise for next generation 
modeling and simulation tools in support of computational social science. Dimensions such 
as scale, speed, fidelity, usability and interoperability, which were once implicitly merged 
together at small-scale, are now getting separated as a result of focus on next levels along 
combinations of those dimensions. It is now possible to consider organizing the various 
modeling frameworks along their respective features, and select the best combination based 
on their fit with the specific purpose behind the simulation. The purposes behind 
simulations are equally important to distinguish among themselves, in order to be able to 
place the right levels of expectations on scale, fidelity and speed. Interoperability remains a 
difficult challenge, as is the problem of shielding the modeler from complexities of 
computational aspects driving the next generation systems. Automated compiler-based 
parallel execution on shared memory, LAN, GPU and/or supercomputers is potentially 
achievable, as is the possibility of integrating models at varying resolutions. The future 
looks bright for lifting computational social science to a new “enabling” plane. 
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