
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

7,000

Computational Spectrum of Agent Model Simulation 185

Computational Spectrum of Agent Model Simulation

Kalyan S. Perumalla

X

Computational Spectrum
of Agent Model Simulation

Kalyan S. Perumalla

Oak Ridge National Laboratory
USA

1. Introduction

1.1 Overview
The study of human social behavioral systems is finding renewed interest in military,
homeland security and other applications. Simulation is the most generally applied
approach to studying complex scenarios in such systems. Here, we outline some of the
important considerations that underlie the computational aspects of simulation-based study
of human social systems. The fundamental imprecision underlying questions and answers
in social science makes it necessary to carefully distinguish among different simulation
problem classes and to identify the most pertinent set of computational dimensions
associated with those classes. We identify a few such classes and present their
computational implications. The focus is then shifted to the most challenging combinations
in the computational spectrum, namely, large-scale entity counts at moderate to high levels
of fidelity. Recent developments in furthering the state-of-the-art in these challenging cases
are outlined. A case study of large-scale agent simulation is provided in simulating large
numbers (millions) of social entities at real-time speeds on inexpensive hardware. Recent
computational results are identified that highlight the potential of modern high-end
computing platforms to push the envelope with respect to speed, scale and fidelity of social
system simulations. Finally, the problem of shielding the modeler or domain expert from
the complex computational aspects is discussed and a few potential solution approaches are
identified.

1.2 New Computational Challenges
Computational social science has been an area of research for several decades now.
Generally speaking, experiments in computational social science so far have been on the
side of small scale (perhaps, at the limit, a few thousands of interacting entities). Lately, a
general surge is apparent in an interest to represent and capture detailed effects at much
larger scale. Scales of interest include population counts of cities, states, nations or even the
world (104-109). Computational aspects that were not prominent at the smaller scale are now
becoming pronounced at larger scale. Important orthogonal dimensions are emerging,
making it necessary to revisit the computational problem with a fresh look. Dimensions

12

www.intechopen.com

Modeling, Simulation and Optimization – Focus on Applications186

such as simulation speed, model scale, simulation system usability, and multi-system
interoperability, which were all once implicitly combined together and insignificant in and
by themselves for small scale models, are now separating themselves out as independent
dimensions at larger scale. This separation is requiring the exploration and investigation of
optimal locations in the dimension space for specific problems (or problem classes) of
interest.
A meta-level question of course remains, namely, whether, and to what degree, simulation-
based study is useful for the purposes of studying large-scale social systems. Perhaps new
modeling and analysis methods are to be invented and applied to better deal with accuracy,
precision, sensitivity and other concerns. In the absence of a generally applicable,
comprehensive alternative modeling paradigm, simulation-based analysis remains the best
promise towards studying these large-scale social systems. Simulation, in combination with
additional theoretical methods such as design of experiments, seems to be the method of
vogue and acceptance in the community. It is in this context that we focus on the new
computational ramifications of large-scale social science simulations.
An important insight we put forward here is that simulation-based studies fall into distinct
classes, each class being characterized by its specific combination of scale and accuracy. The
purpose (also known as “use-case”) behind using a particular class of simulation models
becomes important to articulate and define, since the purpose defines both the way in which
results from the simulation are to be interpreted, as well as the computational effects that
one has to expect from using that class of models. For example, when a simulation is
intended to generate an overall qualitative result (such as stumbling upon or uncovering
surprising behavior), the simulation runs must be fast enough to qualitatively explore a
large search space, yet the exact quantitative outcomes must not be interpreted literally.
Similarly, population models intended to serve as reasonable situational surrogates for the
masses (e.g, in order to test a detailed model of an antagonist group leader) must be capable
of sustaining a large number of individuals, yet be computationally fast to allow for multi-
scenario experimentation; consequently, a high degree of fidelity may not be an appropriate
expectation for the masses in such a usage.
The challenge, then, is to either automatically find the right level of fidelity for a specific
usage, or be able to sustain as high a fidelity level as possible at any scale that may be
presented by the modeler to the simulation system. This is a grand challenge, which
perhaps will remain unsolved in the near future. An intermediate step is to become aware of
the issues and realize the distinctions so that expectations and choices are made
appropriately.
The rest of document is organized as follows. The main computational dimensions underlying
the simulations are presented in Section 2, along with placement of popular modeling systems
in the space of speed, scalability and fidelity dimensions. The notion of simulation usage
scenarios and some of the common usage classes are described in Section 3. A quantitative
estimate of computational time requirements is presented in Section 4, for different ranges of
factors constituting simulation execution. Two case studies are presented on state-of-the-art
large-scale simulation systems to highlight the potential of next generation social behavioral
simulation systems. The first is a graphics processor-based solution called GARFIELD,
presented in Section 5, and the second is a cluster computing-based solution called µsik,
benchmarks of which have been scaled to supercomputing platforms, presented in Section 6.
The observations of the article are summarized in Section 7.

2. Orthogonal Computational Dimensions

As mentioned before, the computational side of social behavioral simulation can be split
into multiple dimensions in light of the new generation of large-scale simulation scenarios
that are being contemplated. We identify five important dimensions, which are mutually
orthogonal. The orthogonality is defined in the sense that any given combination of values
along the five dimensions can correspond to a desired combination for some social science
simulation scenario of interest.

2.1 Dimensions
The five dimensions are: scale, speed, fidelity, usability and interoperability. Each of these
dimensions is discussed next.

Scale
Scale can be defined as the largest number of encapsulated units logically or actually
instantiated in the model during simulation. The encapsulated units correspond to concepts
widely referred to as entities, agents, actors, players, components and so on. In agent-based
simulations, for example, the number of agents is a natural measure of scale; each agent is
an encapsulated unit in the model and the agents are actually instantiated in the model
during simulation. In aggregate methods, the determination of scale is less obvious, since
the units being modeled might be logically represented, rather than actually instantiated.
Nevertheless, logically aggregate representation can be used to define the scale. For
example, in epidemic models that are based on differential equations (e.g., the SIR model
(Daley and Gani 2001; Staniford, Paxson et al. 2002; Zou, Gao et al. 2003)), the number of
units is represented by a single variable N. Each of the units (from the uninfected,
susceptible or infected populations) constitutes a logically encapsulated modeling unit,
although they are lumped together in one model variable. For our purposes, the scale is
therefore N.
In general, scale is harder to identify in aggregate models, while it is easier in more detailed
models that have an approximately one-to-one mapping from system-level units to modeled
units. However, when logical representation is included in the account, along with
instantiated representation, this definition of scale makes the computational dimension of
scale orthogonal to other dimensions, especially to fidelity (discussed later in this section).

Speed
Speed is the inverse of wall clock time elapsed from configuration/initialization to the end
of simulation. This is a dimension that is easily measured for an execution in a given
simulation system. Speed does depend on some of the other dimensions in a fundamental
sense. However, for a given system, different implementation approaches can exist, each
giving a different level of speed. The computing hardware platform can also have a
significant bearing on the speed. There is, however, an upper bound on speed for any given
combination of model and platform. Often, of interest is either the raw speed (e.g., to help
estimate the time for parameter sweeps in a multi-simulation design of experiments), or the
real-time scale factor (a fraction less than unity being slower than real-time, unity being
exactly real-time, larger than unity being that many fold faster than real-time). Clearly,

www.intechopen.com

Computational Spectrum of Agent Model Simulation 187

such as simulation speed, model scale, simulation system usability, and multi-system
interoperability, which were all once implicitly combined together and insignificant in and
by themselves for small scale models, are now separating themselves out as independent
dimensions at larger scale. This separation is requiring the exploration and investigation of
optimal locations in the dimension space for specific problems (or problem classes) of
interest.
A meta-level question of course remains, namely, whether, and to what degree, simulation-
based study is useful for the purposes of studying large-scale social systems. Perhaps new
modeling and analysis methods are to be invented and applied to better deal with accuracy,
precision, sensitivity and other concerns. In the absence of a generally applicable,
comprehensive alternative modeling paradigm, simulation-based analysis remains the best
promise towards studying these large-scale social systems. Simulation, in combination with
additional theoretical methods such as design of experiments, seems to be the method of
vogue and acceptance in the community. It is in this context that we focus on the new
computational ramifications of large-scale social science simulations.
An important insight we put forward here is that simulation-based studies fall into distinct
classes, each class being characterized by its specific combination of scale and accuracy. The
purpose (also known as “use-case”) behind using a particular class of simulation models
becomes important to articulate and define, since the purpose defines both the way in which
results from the simulation are to be interpreted, as well as the computational effects that
one has to expect from using that class of models. For example, when a simulation is
intended to generate an overall qualitative result (such as stumbling upon or uncovering
surprising behavior), the simulation runs must be fast enough to qualitatively explore a
large search space, yet the exact quantitative outcomes must not be interpreted literally.
Similarly, population models intended to serve as reasonable situational surrogates for the
masses (e.g, in order to test a detailed model of an antagonist group leader) must be capable
of sustaining a large number of individuals, yet be computationally fast to allow for multi-
scenario experimentation; consequently, a high degree of fidelity may not be an appropriate
expectation for the masses in such a usage.
The challenge, then, is to either automatically find the right level of fidelity for a specific
usage, or be able to sustain as high a fidelity level as possible at any scale that may be
presented by the modeler to the simulation system. This is a grand challenge, which
perhaps will remain unsolved in the near future. An intermediate step is to become aware of
the issues and realize the distinctions so that expectations and choices are made
appropriately.
The rest of document is organized as follows. The main computational dimensions underlying
the simulations are presented in Section 2, along with placement of popular modeling systems
in the space of speed, scalability and fidelity dimensions. The notion of simulation usage
scenarios and some of the common usage classes are described in Section 3. A quantitative
estimate of computational time requirements is presented in Section 4, for different ranges of
factors constituting simulation execution. Two case studies are presented on state-of-the-art
large-scale simulation systems to highlight the potential of next generation social behavioral
simulation systems. The first is a graphics processor-based solution called GARFIELD,
presented in Section 5, and the second is a cluster computing-based solution called µsik,
benchmarks of which have been scaled to supercomputing platforms, presented in Section 6.
The observations of the article are summarized in Section 7.

2. Orthogonal Computational Dimensions

As mentioned before, the computational side of social behavioral simulation can be split
into multiple dimensions in light of the new generation of large-scale simulation scenarios
that are being contemplated. We identify five important dimensions, which are mutually
orthogonal. The orthogonality is defined in the sense that any given combination of values
along the five dimensions can correspond to a desired combination for some social science
simulation scenario of interest.

2.1 Dimensions
The five dimensions are: scale, speed, fidelity, usability and interoperability. Each of these
dimensions is discussed next.

Scale
Scale can be defined as the largest number of encapsulated units logically or actually
instantiated in the model during simulation. The encapsulated units correspond to concepts
widely referred to as entities, agents, actors, players, components and so on. In agent-based
simulations, for example, the number of agents is a natural measure of scale; each agent is
an encapsulated unit in the model and the agents are actually instantiated in the model
during simulation. In aggregate methods, the determination of scale is less obvious, since
the units being modeled might be logically represented, rather than actually instantiated.
Nevertheless, logically aggregate representation can be used to define the scale. For
example, in epidemic models that are based on differential equations (e.g., the SIR model
(Daley and Gani 2001; Staniford, Paxson et al. 2002; Zou, Gao et al. 2003)), the number of
units is represented by a single variable N. Each of the units (from the uninfected,
susceptible or infected populations) constitutes a logically encapsulated modeling unit,
although they are lumped together in one model variable. For our purposes, the scale is
therefore N.
In general, scale is harder to identify in aggregate models, while it is easier in more detailed
models that have an approximately one-to-one mapping from system-level units to modeled
units. However, when logical representation is included in the account, along with
instantiated representation, this definition of scale makes the computational dimension of
scale orthogonal to other dimensions, especially to fidelity (discussed later in this section).

Speed
Speed is the inverse of wall clock time elapsed from configuration/initialization to the end
of simulation. This is a dimension that is easily measured for an execution in a given
simulation system. Speed does depend on some of the other dimensions in a fundamental
sense. However, for a given system, different implementation approaches can exist, each
giving a different level of speed. The computing hardware platform can also have a
significant bearing on the speed. There is, however, an upper bound on speed for any given
combination of model and platform. Often, of interest is either the raw speed (e.g., to help
estimate the time for parameter sweeps in a multi-simulation design of experiments), or the
real-time scale factor (a fraction less than unity being slower than real-time, unity being
exactly real-time, larger than unity being that many fold faster than real-time). Clearly,

www.intechopen.com

Modeling, Simulation and Optimization – Focus on Applications188

speed is affected by many variables, including the complexity of underlying algorithms,
synchronization efficiency, hardware/software implementation platform and so on.

Fidelity
Fidelity of a model is a concept that is harder to define absolutely yet possible to discuss
about in a comparative fashion. Fidelity in general is the extent of detail of the system
captured by the model. Note that this is distinct from scale in the sense that scale measures
the count of encapsulated units, where as fidelity measures the amount of behavioral detail
captured per encapsulated unit. In general, the detail could be not only intra-unit, but also
inter-unit (e.g., additional global phenomena, such as ambient economic conditions, that
span multiple units). Operationally, fidelity is a qualitative combination of the size of state
and the number of activity “threads” representing the behavior in each encapsulated entity.
Fidelity clearly has implications on computational efficiency; this is discussed later in
Section 0.
For some objectives, adding more detail to the simulation may not bring a proportional
amount of precision to the results. Nevertheless, the issue of value of fidelity is a separate
concern; the dimension of fidelity can be discussed without necessarily linking it to overall
value.
Note that coarseness of model is different from level of fidelity. Coarseness of modeling unit
is typically reflected in the number of entities modeled as one modeling unit. For example,
either an entire town could be modeled as one unit (giving several thousand modeled units
per entity), or each individual is explicitly represented as a modeled unit. Fidelity on the
other hand can be viewed as the amount of detail assigned to the behavior of each modeled
unit. Of course, in this view, there is an implicit assumption on the separation of constituent
entities from their behavioral dimensions.

Usability
An important concern that has practically dominated computational social science so far is
that of usability. Usability is simply the inverse of the total amount of effort expended by the
modeler to define, develop, debug, test, execute, animate, visualize, interpret and analyze
simulations. Since social system modelers are not necessarily computational experts, there is
emphasis on reducing the amount of effort needed to pose questions, explore, and get
answers (often visually), in a point-and-click fashion.
Many of the popular social simulation systems today are driven primarily by this
dimension. Once this usability is achieved to some good degree, other dimensions are
explored as additional “wishes”, such as scale and speed, in a secondary fashion. Usability
simply reigns as supreme among the dimensions in social science simulation systems today.
In light of next generation modeling and simulation of social systems, unfortunately, the
usability concern is no longer an easy one to address without having to consider its
interaction with the other dimensions. While it is relatively straightforward to attain high
levels of usability (ease of overall use) at low levels of scale, speed and/or fidelity, it is an
entirely different matter to do so at large scale, high fidelity and/or high speed.
With current usability techniques, unfortunately, scale and/or fidelity cannot be increased
without significantly affecting speed. Performance penalties, hidden heretofore under small
scale/fidelity, rise to significant levels, with slowdowns exceeding 1000×. The sources of the
penalties are varied, from the slow speed nature of interpreted languages, to overheads of

heavy graphics, to instrumentation overhead for runtime flexibility of configuration and
monitoring.

Interoperability
Interoperability is the ability to interface and integrate disparate, complementary
subsystems into an integrated system. In social science simulations, interoperability can be
used to reuse previously developed models in a new scenario or to interoperate models at
different resolutions. For example, a model of a popular leader may be interfaced with a
model of the general masses, in order to exercise the leader model dynamically or to
uncover overall system behaviors under various scenarios.
Interoperability is a hard problem. In general, it remains hard even in the simplest setting,
namely, of two models developed in the same programming language, same modeling
framework and simulation system. There is quite a bit of literature on interoperable systems,
many of the systems falling under the category of syntactic interoperability. Semantic
interoperability, on the other hand, is the more difficult component.
Interoperability is a dimension orthogonal to the rest in the sense that one could achieve any
combination of the rest four dimensions without making any headway in the
interoperability aspect. Alternatively, one could strive for interoperability but that needs to
be done with awareness of the regimes of the other dimensions at which the system being
interoperated spans. For example, interoperability of graphics processor-based automata
models with supercomputing-based agent models can only be undertaken at the levels of
fidelity and scale that the automata and agent models on those platforms afford.

2.2 Modeling Approaches Spanning Scalability and Fidelity
There are several modeling frameworks that are available to use in modeling social systems.
Each framework is implemented in some software system; a (non-exhaustive) list of
implemented systems includes JSAF(Davis, Lucas et al. 2005), SEAS(Chaturvedi, Foong et
al. 2005), PMFServ(Silverman 2008), CultureSim(Silverman 2008), NetLogo(Wilensky 1999),
Mason(Luke, Cioffi-Revilla et al. 2004), Repast J/.Net(North, Collier et al. 2006), Symphony,
Swarm(Walter, Sannier et al. 2005), TeD(Perumalla, Fujimoto et al. 1998), Maisie(Bagrodia
and Liao 1994), SSF(Cowie, Liu et al. 1999), Arena and NetLogic, to pick a few
representative ones from each type of framework.
Each modeling framework possesses its ranges of scalability, fidelity and speed. The typical
ranges of some of the prominent frameworks are shown in Fig. 1. The region below the real-
time diagonal indicates the combination of fidelity and scalability levels that can be
executed fast enough to meet or beat real-time. The region above the diagonal line indicates
the specific combinations of fidelity and scalability that take more than one second of wall
clock time for each second simulated in the model.

www.intechopen.com

Computational Spectrum of Agent Model Simulation 189

speed is affected by many variables, including the complexity of underlying algorithms,
synchronization efficiency, hardware/software implementation platform and so on.

Fidelity
Fidelity of a model is a concept that is harder to define absolutely yet possible to discuss
about in a comparative fashion. Fidelity in general is the extent of detail of the system
captured by the model. Note that this is distinct from scale in the sense that scale measures
the count of encapsulated units, where as fidelity measures the amount of behavioral detail
captured per encapsulated unit. In general, the detail could be not only intra-unit, but also
inter-unit (e.g., additional global phenomena, such as ambient economic conditions, that
span multiple units). Operationally, fidelity is a qualitative combination of the size of state
and the number of activity “threads” representing the behavior in each encapsulated entity.
Fidelity clearly has implications on computational efficiency; this is discussed later in
Section 0.
For some objectives, adding more detail to the simulation may not bring a proportional
amount of precision to the results. Nevertheless, the issue of value of fidelity is a separate
concern; the dimension of fidelity can be discussed without necessarily linking it to overall
value.
Note that coarseness of model is different from level of fidelity. Coarseness of modeling unit
is typically reflected in the number of entities modeled as one modeling unit. For example,
either an entire town could be modeled as one unit (giving several thousand modeled units
per entity), or each individual is explicitly represented as a modeled unit. Fidelity on the
other hand can be viewed as the amount of detail assigned to the behavior of each modeled
unit. Of course, in this view, there is an implicit assumption on the separation of constituent
entities from their behavioral dimensions.

Usability
An important concern that has practically dominated computational social science so far is
that of usability. Usability is simply the inverse of the total amount of effort expended by the
modeler to define, develop, debug, test, execute, animate, visualize, interpret and analyze
simulations. Since social system modelers are not necessarily computational experts, there is
emphasis on reducing the amount of effort needed to pose questions, explore, and get
answers (often visually), in a point-and-click fashion.
Many of the popular social simulation systems today are driven primarily by this
dimension. Once this usability is achieved to some good degree, other dimensions are
explored as additional “wishes”, such as scale and speed, in a secondary fashion. Usability
simply reigns as supreme among the dimensions in social science simulation systems today.
In light of next generation modeling and simulation of social systems, unfortunately, the
usability concern is no longer an easy one to address without having to consider its
interaction with the other dimensions. While it is relatively straightforward to attain high
levels of usability (ease of overall use) at low levels of scale, speed and/or fidelity, it is an
entirely different matter to do so at large scale, high fidelity and/or high speed.
With current usability techniques, unfortunately, scale and/or fidelity cannot be increased
without significantly affecting speed. Performance penalties, hidden heretofore under small
scale/fidelity, rise to significant levels, with slowdowns exceeding 1000×. The sources of the
penalties are varied, from the slow speed nature of interpreted languages, to overheads of

heavy graphics, to instrumentation overhead for runtime flexibility of configuration and
monitoring.

Interoperability
Interoperability is the ability to interface and integrate disparate, complementary
subsystems into an integrated system. In social science simulations, interoperability can be
used to reuse previously developed models in a new scenario or to interoperate models at
different resolutions. For example, a model of a popular leader may be interfaced with a
model of the general masses, in order to exercise the leader model dynamically or to
uncover overall system behaviors under various scenarios.
Interoperability is a hard problem. In general, it remains hard even in the simplest setting,
namely, of two models developed in the same programming language, same modeling
framework and simulation system. There is quite a bit of literature on interoperable systems,
many of the systems falling under the category of syntactic interoperability. Semantic
interoperability, on the other hand, is the more difficult component.
Interoperability is a dimension orthogonal to the rest in the sense that one could achieve any
combination of the rest four dimensions without making any headway in the
interoperability aspect. Alternatively, one could strive for interoperability but that needs to
be done with awareness of the regimes of the other dimensions at which the system being
interoperated spans. For example, interoperability of graphics processor-based automata
models with supercomputing-based agent models can only be undertaken at the levels of
fidelity and scale that the automata and agent models on those platforms afford.

2.2 Modeling Approaches Spanning Scalability and Fidelity
There are several modeling frameworks that are available to use in modeling social systems.
Each framework is implemented in some software system; a (non-exhaustive) list of
implemented systems includes JSAF(Davis, Lucas et al. 2005), SEAS(Chaturvedi, Foong et
al. 2005), PMFServ(Silverman 2008), CultureSim(Silverman 2008), NetLogo(Wilensky 1999),
Mason(Luke, Cioffi-Revilla et al. 2004), Repast J/.Net(North, Collier et al. 2006), Symphony,
Swarm(Walter, Sannier et al. 2005), TeD(Perumalla, Fujimoto et al. 1998), Maisie(Bagrodia
and Liao 1994), SSF(Cowie, Liu et al. 1999), Arena and NetLogic, to pick a few
representative ones from each type of framework.
Each modeling framework possesses its ranges of scalability, fidelity and speed. The typical
ranges of some of the prominent frameworks are shown in Fig. 1. The region below the real-
time diagonal indicates the combination of fidelity and scalability levels that can be
executed fast enough to meet or beat real-time. The region above the diagonal line indicates
the specific combinations of fidelity and scalability that take more than one second of wall
clock time for each second simulated in the model.

www.intechopen.com

Modeling, Simulation and Optimization – Focus on Applications190

Fig. 1. Spectrum of behavioral modeling alternatives, and the scalability and fidelity ranges
they afford.

Experiments involving real humans affords the maximum fidelity, but can only be
practically performed with at most 102-103 individuals. Human-in-the-loop systems, such as
semi-automated forces, can conceivably be performed with 102-103 human participants
coupled to the system containing other artificially generated behaviors. The fidelity afforded
is high on the human participation side of the system, but is reduced due to bi-directional
interaction with artificial behaviors. Agent-based Modeling and Simulation(North and
Macal 2007) affords the maximum range of scalability at moderate levels of fidelity. It is
shown with extended (darkened) range to the right, denoting the recent increase in the
number of agents that could be simulated using novel computing solutions such as data-
parallel execution on graphical processors(D'Souza, Lysenko et al. 2007; Perumalla and
Aaby 2008) and reverse computation-based control-parallel execution on supercomputers.
Automata-based models are computationally simple enough to be executed in large entity
counts, but at the cost of strictly lower fidelity. Mixed abstraction systems are those that
combine more than one modeling paradigm, for ease of modeling or increase in speed. A
classic example is the use of a small number of agent models placed in the context of a large
population of automata models, delivering the higher fidelity of the agent models for
important components while delivering the high speed of automata models for the less
detailed population behaviors. System Dynamics and aggregate models are based on coupled
differential equations. They afford the maximum level of scalability, since increasing the
unit count could be as simple as increasing the value of a variable in the equations.
However, they are also the lowest in fidelity.

Real-Time
or Faster

Scale

Fi
de

lit
y

Human
Experiments

Human
In The Loop

Agent-based

Modeling & Simulation

Automata Models

Mixed Abstraction
Systems

Artificial Intelligence-

based Multi-Agent
System

102 103 104 105 106 107 108

Slower-than
Real-Time

System
Dynamics &
Aggregate

109

2.3 Computational Aspects of Fidelity
A note can be made about the interaction of fidelity with computational burden. The issue at
heart of tradeoffs between scale, speed and fidelity is the nature of computational artifacts
that underlie the modeling primitives. An activity, such as random walk on a plane, can be
realized as a computational thread instantiated in the context of an entity. Each activity thus
consumes computational resources (computer memory and wall clock time), and also
typically comes with additional state size represented in the entity (e.g., current location,
movement pattern specification, etc.). Each entity can in general have several such activities
coordinating with each other to realize the overall entity behavior. The number of activities
translates to a corresponding number of computational threads that are instantiated during
simulation execution. At runtime, these activities need to be allocated, scheduled, de-
scheduled, synchronized and so on, all of which consume wall clock time as well as
computer memory. Fidelity of the model translates to greater number of activities, more
complex computation within each activity, and/or greater frequency of invocations to
activity functionality. An automata-based model is a special case in which each entity
contains a singleton activity which manipulates a (simple) state according to a state
transition table. Thus, automata models typically are computationally lighter in weight,
enabling larger scale at the same simulation speed level as agent-based models.

3. Simulation Usage Scenarios

In order to understand the computational challenges underlying computational social
sciences, it is important to distinguish among various typical usage scenarios of social
behavioral simulations. The usage scenarios are sufficiently disparate from each other, both
qualitatively and quantitatively, whose distinction becomes prominent only at higher levels
of scale and fidelity. At low scale (101-103 entities), the implications of the type of usage are
not as pronounced as when the scale is increased beyond (104-109 entities). At low scale, one
can resort to the modeling system that affords the highest fidelity, and be able to simulate
without runtime effects becoming noticeable or problematic. At a larger scale, however, it
becomes important to select the simulation system with the right tradeoff between scale and
fidelity to stay within the simulation speed requirements. Using a low-fidelity simulation
framework (e.g., automata-based system) can help scale to millions of entities, but the same
system might be inappropriate when greater behavioral detail is attempted to be
incorporated into the entities. Similarly, a high level of detail for entities in an application
might not scale if most of the entities are merely used as background activity in a
simulation.

www.intechopen.com

Computational Spectrum of Agent Model Simulation 191

Fig. 1. Spectrum of behavioral modeling alternatives, and the scalability and fidelity ranges
they afford.

Experiments involving real humans affords the maximum fidelity, but can only be
practically performed with at most 102-103 individuals. Human-in-the-loop systems, such as
semi-automated forces, can conceivably be performed with 102-103 human participants
coupled to the system containing other artificially generated behaviors. The fidelity afforded
is high on the human participation side of the system, but is reduced due to bi-directional
interaction with artificial behaviors. Agent-based Modeling and Simulation(North and
Macal 2007) affords the maximum range of scalability at moderate levels of fidelity. It is
shown with extended (darkened) range to the right, denoting the recent increase in the
number of agents that could be simulated using novel computing solutions such as data-
parallel execution on graphical processors(D'Souza, Lysenko et al. 2007; Perumalla and
Aaby 2008) and reverse computation-based control-parallel execution on supercomputers.
Automata-based models are computationally simple enough to be executed in large entity
counts, but at the cost of strictly lower fidelity. Mixed abstraction systems are those that
combine more than one modeling paradigm, for ease of modeling or increase in speed. A
classic example is the use of a small number of agent models placed in the context of a large
population of automata models, delivering the higher fidelity of the agent models for
important components while delivering the high speed of automata models for the less
detailed population behaviors. System Dynamics and aggregate models are based on coupled
differential equations. They afford the maximum level of scalability, since increasing the
unit count could be as simple as increasing the value of a variable in the equations.
However, they are also the lowest in fidelity.

Real-Time
or Faster

Scale

Fi
de

lit
y

Human
Experiments

Human
In The Loop

Agent-based

Modeling & Simulation

Automata Models

Mixed Abstraction
Systems

Artificial Intelligence-

based Multi-Agent
System

102 103 104 105 106 107 108

Slower-than
Real-Time

System
Dynamics &
Aggregate

109

2.3 Computational Aspects of Fidelity
A note can be made about the interaction of fidelity with computational burden. The issue at
heart of tradeoffs between scale, speed and fidelity is the nature of computational artifacts
that underlie the modeling primitives. An activity, such as random walk on a plane, can be
realized as a computational thread instantiated in the context of an entity. Each activity thus
consumes computational resources (computer memory and wall clock time), and also
typically comes with additional state size represented in the entity (e.g., current location,
movement pattern specification, etc.). Each entity can in general have several such activities
coordinating with each other to realize the overall entity behavior. The number of activities
translates to a corresponding number of computational threads that are instantiated during
simulation execution. At runtime, these activities need to be allocated, scheduled, de-
scheduled, synchronized and so on, all of which consume wall clock time as well as
computer memory. Fidelity of the model translates to greater number of activities, more
complex computation within each activity, and/or greater frequency of invocations to
activity functionality. An automata-based model is a special case in which each entity
contains a singleton activity which manipulates a (simple) state according to a state
transition table. Thus, automata models typically are computationally lighter in weight,
enabling larger scale at the same simulation speed level as agent-based models.

3. Simulation Usage Scenarios

In order to understand the computational challenges underlying computational social
sciences, it is important to distinguish among various typical usage scenarios of social
behavioral simulations. The usage scenarios are sufficiently disparate from each other, both
qualitatively and quantitatively, whose distinction becomes prominent only at higher levels
of scale and fidelity. At low scale (101-103 entities), the implications of the type of usage are
not as pronounced as when the scale is increased beyond (104-109 entities). At low scale, one
can resort to the modeling system that affords the highest fidelity, and be able to simulate
without runtime effects becoming noticeable or problematic. At a larger scale, however, it
becomes important to select the simulation system with the right tradeoff between scale and
fidelity to stay within the simulation speed requirements. Using a low-fidelity simulation
framework (e.g., automata-based system) can help scale to millions of entities, but the same
system might be inappropriate when greater behavioral detail is attempted to be
incorporated into the entities. Similarly, a high level of detail for entities in an application
might not scale if most of the entities are merely used as background activity in a
simulation.

www.intechopen.com

Modeling, Simulation and Optimization – Focus on Applications192

Fig. 2. Relation among Modeled System, Modeling Purpose, and Modeling Alternatives

To make an analogy, in financial market applications, simulation is used in different ways
with different end goals and computational demands. Off-line simulations such as financial
analytics and portfolio risk analysis are performed at relatively higher computational cost
but with emphasis on longer-term prediction. Online simulations such as real-time trading
solutions are a relatively recent trend in which the focus is on short-term prediction; but
with as a high a fidelity as can be accommodated under real-time constraints. The important
distinction is that the expectations of result quality and execution speed are set based on the
intended usage of the particular type of simulation.
Here, we identify a few important classes of simulation usage in social behavioral
simulations.

Situational Background Phenomena
In this class of simulations, the objective is to achieve reasonably rich, heterogeneous
behavior among a large population of entities, but the emphasis is relatively less on
sophistication in any one entity. Examples of this type of simulation usage are:

1. Evaluation of key social players; their behavior and influence are evaluated in the
context of large low-fidelity populace (e.g., LeaderSim(Silverman 2008))

2. Animation of background crowds; need low fidelity but good heterogeneity of
background entities; the main (foreground) entities, such as police force, are of
much higher-fidelity (e.g., crowd simulation(Reynolds 2006))

3. In an unrelated field (Internet simulations), evaluation of distributed
computing/communication applications; the network application can be evaluated

Behavioral System(s) of
Interest

Purpose

Background
Phenomena

Short-term
Prediction

State-Space
Exploration

Immersive
Training

Surrogate
System

Proto
Agents

Agent-Based
Models

System
Dynamics

Finite State
Machines

Petri Nets

Swarm-Based
Methods

Binary Decision
Diagrams

Sub System 1

Sub System 2

Sub System Sn

System

Model Types
(non-exhaustive)

under the effects of background traffic and general network operation (e.g., fluid
and packet-level simulation (Nicol, Liljenstam et al. 2003))

Short-Term Prediction
Prediction of immediate trajectory constitutes another class of simulations, in which heavy
initialization is performed based on data and calibration, followed by short extrapolation via
simulation. The assumption is that prediction will be more accurate due to closeness of
initial state to reality and shortness of future period, together minimizing chance of
deviation. Typically, this type of simulation is performed in a series of what-if case analysis
to choose the best recourse from among a set of possible actions. Simulation needs are
characterized by the need for extensive assimilation of configuration data and for high
simulation speed for each scenario. Accuracy expectations tend to be relatively high.

Emergent Phenomena
This class of efforts is characterized by its emphasis on exploration of interesting aggregate
behaviors evolved from disaggregated behaviors of an ensemble of entities. The emphasis
on exploration brings the needs of long simulation times and large number of simulation
runs. However, generally speaking, the level of fidelity is relatively low, since the focus is on
observing the nature of overall patterns from relatively simple individual behaviors.
Examples of this type of simulations include Ising Spin (Tomov, McGuigan et al. 2005),
Segregation (Schelling 1978), and SugarScape models.

Training and Entertainment – Surrogate or Immersive
A class of behavioral simulations deals with training and/or entertainment objectives. For
example, to train government agencies in emergency management, population reactions
and responses are modeled and simulated in a synthetic environment; the environment
serves as surrogate of the real world for training purposes (Chaturvedi, Foong et al. 2005).
Similarly, for law enforcement and military purposes, immersive environments are used
that include intelligent agents serving the role of antagonists (and sometimes allies as well)
(Mastaglio and Callahan 1995; Devine and Gross 1998; Verdesca, Munro et al. 2005). The
level of fidelity expected is extremely high for high quality training. Semi-automated forces
fall in this category(Davis, Lucas et al. 2005). In civilian use, corporations can use such
surrogate or immersive environments for management training in negotiation, team
building, and so on. Again, the fidelity level expected of the automated behavior is very
high, with consequent indulgence in higher-end computing platforms. Analogous needs are
arising in entertainment industry, in which intelligent actors in a highly realistic synthetic
environment are employed (e.g., SimCity). However, there is typically a tradeoff between
fidelity and speed for real-time performance on commodity (low-end) computing platforms.

4. Computational Time Requirements

A truly enabling generation of simulation tools for computational social science would,
ideally, bring progress along all five dimensions simultaneously. While progress along any
single dimension is not difficult, achieving any two together is difficult, achieving three is
daunting, four is heroic and all five is a grand challenge.

www.intechopen.com

Computational Spectrum of Agent Model Simulation 193

Fig. 2. Relation among Modeled System, Modeling Purpose, and Modeling Alternatives

To make an analogy, in financial market applications, simulation is used in different ways
with different end goals and computational demands. Off-line simulations such as financial
analytics and portfolio risk analysis are performed at relatively higher computational cost
but with emphasis on longer-term prediction. Online simulations such as real-time trading
solutions are a relatively recent trend in which the focus is on short-term prediction; but
with as a high a fidelity as can be accommodated under real-time constraints. The important
distinction is that the expectations of result quality and execution speed are set based on the
intended usage of the particular type of simulation.
Here, we identify a few important classes of simulation usage in social behavioral
simulations.

Situational Background Phenomena
In this class of simulations, the objective is to achieve reasonably rich, heterogeneous
behavior among a large population of entities, but the emphasis is relatively less on
sophistication in any one entity. Examples of this type of simulation usage are:

1. Evaluation of key social players; their behavior and influence are evaluated in the
context of large low-fidelity populace (e.g., LeaderSim(Silverman 2008))

2. Animation of background crowds; need low fidelity but good heterogeneity of
background entities; the main (foreground) entities, such as police force, are of
much higher-fidelity (e.g., crowd simulation(Reynolds 2006))

3. In an unrelated field (Internet simulations), evaluation of distributed
computing/communication applications; the network application can be evaluated

Behavioral System(s) of
Interest

Purpose

Background
Phenomena

Short-term
Prediction

State-Space
Exploration

Immersive
Training

Surrogate
System

Proto
Agents

Agent-Based
Models

System
Dynamics

Finite State
Machines

Petri Nets

Swarm-Based
Methods

Binary Decision
Diagrams

Sub System 1

Sub System 2

Sub System Sn

System

Model Types
(non-exhaustive)

under the effects of background traffic and general network operation (e.g., fluid
and packet-level simulation (Nicol, Liljenstam et al. 2003))

Short-Term Prediction
Prediction of immediate trajectory constitutes another class of simulations, in which heavy
initialization is performed based on data and calibration, followed by short extrapolation via
simulation. The assumption is that prediction will be more accurate due to closeness of
initial state to reality and shortness of future period, together minimizing chance of
deviation. Typically, this type of simulation is performed in a series of what-if case analysis
to choose the best recourse from among a set of possible actions. Simulation needs are
characterized by the need for extensive assimilation of configuration data and for high
simulation speed for each scenario. Accuracy expectations tend to be relatively high.

Emergent Phenomena
This class of efforts is characterized by its emphasis on exploration of interesting aggregate
behaviors evolved from disaggregated behaviors of an ensemble of entities. The emphasis
on exploration brings the needs of long simulation times and large number of simulation
runs. However, generally speaking, the level of fidelity is relatively low, since the focus is on
observing the nature of overall patterns from relatively simple individual behaviors.
Examples of this type of simulations include Ising Spin (Tomov, McGuigan et al. 2005),
Segregation (Schelling 1978), and SugarScape models.

Training and Entertainment – Surrogate or Immersive
A class of behavioral simulations deals with training and/or entertainment objectives. For
example, to train government agencies in emergency management, population reactions
and responses are modeled and simulated in a synthetic environment; the environment
serves as surrogate of the real world for training purposes (Chaturvedi, Foong et al. 2005).
Similarly, for law enforcement and military purposes, immersive environments are used
that include intelligent agents serving the role of antagonists (and sometimes allies as well)
(Mastaglio and Callahan 1995; Devine and Gross 1998; Verdesca, Munro et al. 2005). The
level of fidelity expected is extremely high for high quality training. Semi-automated forces
fall in this category(Davis, Lucas et al. 2005). In civilian use, corporations can use such
surrogate or immersive environments for management training in negotiation, team
building, and so on. Again, the fidelity level expected of the automated behavior is very
high, with consequent indulgence in higher-end computing platforms. Analogous needs are
arising in entertainment industry, in which intelligent actors in a highly realistic synthetic
environment are employed (e.g., SimCity). However, there is typically a tradeoff between
fidelity and speed for real-time performance on commodity (low-end) computing platforms.

4. Computational Time Requirements

A truly enabling generation of simulation tools for computational social science would,
ideally, bring progress along all five dimensions simultaneously. While progress along any
single dimension is not difficult, achieving any two together is difficult, achieving three is
daunting, four is heroic and all five is a grand challenge.

www.intechopen.com

Modeling, Simulation and Optimization – Focus on Applications194

Among the five, of immediate interest for moving to next generation is simultaneous
progress along scale and speed. In this combination, the components at play can be itemized
in order to get an estimate of the computational requirements at hand. For an estimate, we
will focus on agent-based view of the model, although equivalent measures can also be
defined for other modeling frameworks.
The overall organization of agent-based simulation is that a series of experiments is run
(e.g., with different leadership theories in an anti-establishment simulation), each
experiment being executed using multiple scenarios (e.g., with different levels of
displeasure among populations). Each scenario is executed multiple times, to arrive at good
confidence intervals (e.g., with different random number seeds). Each simulation is typically
organized as a series of time steps, each time step advancing the state of the entire model to
that time step. At each time step, the rule sets of each agent are executed. A table itemizing
these components of computational runtime that affect the speed of simulation is shown in
Table 1.

Factor Notes Factor-Specific Cumulative
Low High Low High

Agent Rule
Execution Time

From µs (for simple
algebra) to ms (for
complex
optimization)

10-6
seconds

10-3
seconds

10-6
seconds

10-3
seconds

Number of
Agents

From handful of team
agents up to global
world populations

101
agents

109
agents

10-5
seconds

106
seconds

Number of
Time Steps

Simple evolution to
complex dynamics

101 109 10-4
seconds

107
seconds

Number of
Simulation
Runs

Single sample run to
multiple trials

100 102 10-4
seconds

109
seconds

Number of
Scenarios

From a few to full
parameter sweeps or
with Monte Carlo

101 106 10-3
seconds

1015
seconds

Number of
Experiments

From focused
contexts to cross-
domain/cross-
context

100 102 10-3
seconds

1017
seconds

Table 1. Range of Computational Time (on One Processor) Depending on Different Factors

4.1 Symbolic Simplicity vs. Computational Complexity
When dealing with computational complexity, it is worth noting that apparent simplicity or
complexity of symbolic representation of rule sets does not necessarily have a direct
correlation with computation time. A common misconception is that “simple” rules
translate to “simple” computation. In particular, there is a prevalent notion that simulations
aimed at discovering emergent behavior are characterized by simple computation. The
fallacy in logic is the translation from simplicity of symbolic expression of rules to simplicity
of computation. Here, we present two counterexamples to illustrate.

Richness of Temporal Behavior despite Symbolic Simplicity
An example of a “simple” rule set that requires long simulation times is the Manneville-
Pomeau Map:

 1 (1)nn
z

n xx dx mo 

This map is useful to model turbulent, sporadic or intermittent behavior: The state variable
xn corresponding to time step n could represent a behavioral component, such as the mood
of a person, or level of resentment towards oppression. Although this rule is relatively
“simple” with respect to its symbolic expression, it is well-known that this map exhibits
interesting behavior only when evaluated along the span of prolonged iteration. For z≥3 and
x0=10-3, the onset of interesting behavior does not arrive until about 109 iterations. This type
of model is an example of scenarios in which, although the dynamics are relatively “simple”
to express symbolically, very long simulation times are needed to adequately exercise and
capture the relevant dynamics.

Algorithmic Complexity despite Small Formulation Size
Yet another instance of simplicity of symbolic expression not equating to simplicity of
computation is optimization-based rule sets. For example, Mixed Integer Programming-
based model formulations are widely used in social behavioral models to capture individual
optimization capabilities of interacting entities. For example, a behavioral model of people
acting for/against an order from a leader is formulated as an integer programming problem
in Ref(Whitmeyer 2007). These types of formulations are prone to heavy computational
demands, despite simplicity of formulation. Consider the following “simple” model based
on a Mixed Integer Programming formulation:

1 2

1 2

1 2

1 2

1 2

5 6
5 5 9

max
5

in
0, 5

, t

x
xx

x
x x

x

x

x x


 
 
 

Solving this problem via branch-and-bound involves solving 29 instances of its linear-
programming relaxations, each relaxation being solved by Simplex method. The cost thus
adds up even for a simple problem, at the level of each agent. Note that the cost of this
integer solving operation is incurred at every time step of every agent. At large scale, the
computational cost can become prohibitive for reasonable use in a design of experiments.

4.2 Continuous vs. Discrete Event Execution – Semantics and Implementation
Another important class of computational considerations involves resolving notions of
continuous and discrete time advancement mechanisms among model entities.
Most social science simulations are commonly defined in terms of time-stepped execution,
in which time is advanced globally in fixed increments, and all agents are updated at each
time step. However, some models are either inherently asynchronous in their formulation,
or amenable to an alternative, asynchronous execution style for faster evolution. In such

www.intechopen.com

Computational Spectrum of Agent Model Simulation 195

Among the five, of immediate interest for moving to next generation is simultaneous
progress along scale and speed. In this combination, the components at play can be itemized
in order to get an estimate of the computational requirements at hand. For an estimate, we
will focus on agent-based view of the model, although equivalent measures can also be
defined for other modeling frameworks.
The overall organization of agent-based simulation is that a series of experiments is run
(e.g., with different leadership theories in an anti-establishment simulation), each
experiment being executed using multiple scenarios (e.g., with different levels of
displeasure among populations). Each scenario is executed multiple times, to arrive at good
confidence intervals (e.g., with different random number seeds). Each simulation is typically
organized as a series of time steps, each time step advancing the state of the entire model to
that time step. At each time step, the rule sets of each agent are executed. A table itemizing
these components of computational runtime that affect the speed of simulation is shown in
Table 1.

Factor Notes Factor-Specific Cumulative
Low High Low High

Agent Rule
Execution Time

From µs (for simple
algebra) to ms (for
complex
optimization)

10-6
seconds

10-3
seconds

10-6
seconds

10-3
seconds

Number of
Agents

From handful of team
agents up to global
world populations

101
agents

109
agents

10-5
seconds

106
seconds

Number of
Time Steps

Simple evolution to
complex dynamics

101 109 10-4
seconds

107
seconds

Number of
Simulation
Runs

Single sample run to
multiple trials

100 102 10-4
seconds

109
seconds

Number of
Scenarios

From a few to full
parameter sweeps or
with Monte Carlo

101 106 10-3
seconds

1015
seconds

Number of
Experiments

From focused
contexts to cross-
domain/cross-
context

100 102 10-3
seconds

1017
seconds

Table 1. Range of Computational Time (on One Processor) Depending on Different Factors

4.1 Symbolic Simplicity vs. Computational Complexity
When dealing with computational complexity, it is worth noting that apparent simplicity or
complexity of symbolic representation of rule sets does not necessarily have a direct
correlation with computation time. A common misconception is that “simple” rules
translate to “simple” computation. In particular, there is a prevalent notion that simulations
aimed at discovering emergent behavior are characterized by simple computation. The
fallacy in logic is the translation from simplicity of symbolic expression of rules to simplicity
of computation. Here, we present two counterexamples to illustrate.

Richness of Temporal Behavior despite Symbolic Simplicity
An example of a “simple” rule set that requires long simulation times is the Manneville-
Pomeau Map:

 1 (1)nn
z

n xx dx mo 

This map is useful to model turbulent, sporadic or intermittent behavior: The state variable
xn corresponding to time step n could represent a behavioral component, such as the mood
of a person, or level of resentment towards oppression. Although this rule is relatively
“simple” with respect to its symbolic expression, it is well-known that this map exhibits
interesting behavior only when evaluated along the span of prolonged iteration. For z≥3 and
x0=10-3, the onset of interesting behavior does not arrive until about 109 iterations. This type
of model is an example of scenarios in which, although the dynamics are relatively “simple”
to express symbolically, very long simulation times are needed to adequately exercise and
capture the relevant dynamics.

Algorithmic Complexity despite Small Formulation Size
Yet another instance of simplicity of symbolic expression not equating to simplicity of
computation is optimization-based rule sets. For example, Mixed Integer Programming-
based model formulations are widely used in social behavioral models to capture individual
optimization capabilities of interacting entities. For example, a behavioral model of people
acting for/against an order from a leader is formulated as an integer programming problem
in Ref(Whitmeyer 2007). These types of formulations are prone to heavy computational
demands, despite simplicity of formulation. Consider the following “simple” model based
on a Mixed Integer Programming formulation:

1 2

1 2

1 2

1 2

1 2

5 6
5 5 9

max
5

in
0, 5

, t

x
xx

x
x x

x

x

x x


 
 
 

Solving this problem via branch-and-bound involves solving 29 instances of its linear-
programming relaxations, each relaxation being solved by Simplex method. The cost thus
adds up even for a simple problem, at the level of each agent. Note that the cost of this
integer solving operation is incurred at every time step of every agent. At large scale, the
computational cost can become prohibitive for reasonable use in a design of experiments.

4.2 Continuous vs. Discrete Event Execution – Semantics and Implementation
Another important class of computational considerations involves resolving notions of
continuous and discrete time advancement mechanisms among model entities.
Most social science simulations are commonly defined in terms of time-stepped execution,
in which time is advanced globally in fixed increments, and all agents are updated at each
time step. However, some models are either inherently asynchronous in their formulation,
or amenable to an alternative, asynchronous execution style for faster evolution. In such

www.intechopen.com

Modeling, Simulation and Optimization – Focus on Applications196

asynchronous execution models, updates to agents are processed via staggered timestamps
across agents. An example of such asynchrony of agent activity in the model definition itself
is a civil violence model(Epstein 2002). In general, asynchronous (discrete event) execution
can deliver much faster advances in simulation time than naïve time-stepped approaches.
Computational consideration arises in this regard for speeding up simulations via
asynchronous model execution(Perumalla 2007), both in sequential and parallel execution
contexts.
In the sequential execution context (executing on one processor), a computational
consideration is in automatically converting a time-stepped execution to an asynchronous
(discrete event) execution, with consequential improvement in speed of simulation.
Techniques for executing continuous models in a discrete event fashion are known(Nutaro
2003) and additional ones are being developed(Perumalla 2007), which could be applied to
social system execution.
In the parallel execution context, additional complexity arises. While it is relatively
straightforward to map synchronous (time-stepped) execution to parallel computing
platforms, the mapping of asynchronous execution is not so obvious. Efficient execution of
asynchronous activity requires much more complex handling. The fundamental issue at
hand is the preservation of correct causal dependencies among agents across time
instants(Fujimoto 2000). Correctness requires that agents be updated in time-stamp order.
A naïve method would be to compute the minimum time of update required among all
model units (e.g., agents), and perform a parallel update of all units’ states up to only that
minimum update time. Clearly, only one unit (or only a very few number of units, if more
than one unit has the same minimum time of update) can be processed at each iteration. The
cost of computing the global minimum time can constitute a large overhead; additionally,
parallel execution of all units when only one (or very few) units are eligible for update can
add significant overhead. Specialized time synchronization algorithms are needed to resolve
these challenges (e.g., see (Perumalla and Fujimoto 2001)).

5. Case Study: GARFIELD

Lately, the state-of-the-art is advancing the computational capabilities of social behavioral
simulations. The focus has increased on improving scale, speed or both. One of the recent
directions is exploiting graphics processors’ data parallel execution capabilities for fast
agent-based simulations. Here we present some performance results from a system called
GARFIELD (Graphical Agents Reacting in a Field) for simulating agent-based models on
graphics processors. Additional implementation details can be found in Ref. (Perumalla and
Aaby 2008).

One of the strengths of systems like GARFIELD is the combination of large scale and high
speed achievable on some low- to medium fidelity models. Fig. 3 shows graphical snapshots
of a few example simulations executed under GARFIELD. Fig. 4 shows the speed
differential that can be obtained by optimizing fine-grained models to GPUs, as compared
to the speed of interpreter-based frameworks such as Repast and NetLogo.

(a) Mood Diffusion (b) Game of Life (c) Schelling Segregation

Fig. 3. Graphical Snapshots from Large-scale Execution of Different Behavioral Simulation
Models using GARFIELD

Benefits of large-scale simulation: The Game of Life invented by John H. Conway,
published in (Gardner 1970), is a simulation when executed on large grid sizes exhibits
some interesting benefits of large-scale execution. In Game of Life, it is well-known that
several interesting patterns emerge both spatially and temporally. With a small-scale
execution (e.g., with 100×100 grids), several experiments have to be initiated in order to
explore and cover many possible patterns and to exercise their dynamic behaviors.
However, in an execution with a 2048×2048 grid randomly initialized with live and dead
cells, a large number of patterns emerge naturally, reducing the need for instantiating a
simulation run for exercising/exploring each pattern separately. It is edifying to see the
patterns emerge out of evolution from a randomized initial condition. The laborious and
painstaking process of cogitating about potentially interesting behaviors can be substituted
by exploration via the brute force of scale.

91

659

4,595

72

376

1,915

1

5
10 12 13 16

1

10

100

1,000

10,000

10,000 100,000 1,000,000 10,000,000 100,000,000

Number of Agents

Sp
ee

du
p

Repast J/GARFIELD Repast .Net/GARFIELD CPU/GARFIELD
Fig. 4. Speedup of GARFIELD compared to Repast for the Game of Life Model. GARFIELD
simulations are over 4000-fold faster than with traditional tool kits, and also scale to over
100-fold larger scenarios. However, usability is not as high as with other traditional toolkits.

www.intechopen.com

Computational Spectrum of Agent Model Simulation 197

asynchronous execution models, updates to agents are processed via staggered timestamps
across agents. An example of such asynchrony of agent activity in the model definition itself
is a civil violence model(Epstein 2002). In general, asynchronous (discrete event) execution
can deliver much faster advances in simulation time than naïve time-stepped approaches.
Computational consideration arises in this regard for speeding up simulations via
asynchronous model execution(Perumalla 2007), both in sequential and parallel execution
contexts.
In the sequential execution context (executing on one processor), a computational
consideration is in automatically converting a time-stepped execution to an asynchronous
(discrete event) execution, with consequential improvement in speed of simulation.
Techniques for executing continuous models in a discrete event fashion are known(Nutaro
2003) and additional ones are being developed(Perumalla 2007), which could be applied to
social system execution.
In the parallel execution context, additional complexity arises. While it is relatively
straightforward to map synchronous (time-stepped) execution to parallel computing
platforms, the mapping of asynchronous execution is not so obvious. Efficient execution of
asynchronous activity requires much more complex handling. The fundamental issue at
hand is the preservation of correct causal dependencies among agents across time
instants(Fujimoto 2000). Correctness requires that agents be updated in time-stamp order.
A naïve method would be to compute the minimum time of update required among all
model units (e.g., agents), and perform a parallel update of all units’ states up to only that
minimum update time. Clearly, only one unit (or only a very few number of units, if more
than one unit has the same minimum time of update) can be processed at each iteration. The
cost of computing the global minimum time can constitute a large overhead; additionally,
parallel execution of all units when only one (or very few) units are eligible for update can
add significant overhead. Specialized time synchronization algorithms are needed to resolve
these challenges (e.g., see (Perumalla and Fujimoto 2001)).

5. Case Study: GARFIELD

Lately, the state-of-the-art is advancing the computational capabilities of social behavioral
simulations. The focus has increased on improving scale, speed or both. One of the recent
directions is exploiting graphics processors’ data parallel execution capabilities for fast
agent-based simulations. Here we present some performance results from a system called
GARFIELD (Graphical Agents Reacting in a Field) for simulating agent-based models on
graphics processors. Additional implementation details can be found in Ref. (Perumalla and
Aaby 2008).

One of the strengths of systems like GARFIELD is the combination of large scale and high
speed achievable on some low- to medium fidelity models. Fig. 3 shows graphical snapshots
of a few example simulations executed under GARFIELD. Fig. 4 shows the speed
differential that can be obtained by optimizing fine-grained models to GPUs, as compared
to the speed of interpreter-based frameworks such as Repast and NetLogo.

(a) Mood Diffusion (b) Game of Life (c) Schelling Segregation

Fig. 3. Graphical Snapshots from Large-scale Execution of Different Behavioral Simulation
Models using GARFIELD

Benefits of large-scale simulation: The Game of Life invented by John H. Conway,
published in (Gardner 1970), is a simulation when executed on large grid sizes exhibits
some interesting benefits of large-scale execution. In Game of Life, it is well-known that
several interesting patterns emerge both spatially and temporally. With a small-scale
execution (e.g., with 100×100 grids), several experiments have to be initiated in order to
explore and cover many possible patterns and to exercise their dynamic behaviors.
However, in an execution with a 2048×2048 grid randomly initialized with live and dead
cells, a large number of patterns emerge naturally, reducing the need for instantiating a
simulation run for exercising/exploring each pattern separately. It is edifying to see the
patterns emerge out of evolution from a randomized initial condition. The laborious and
painstaking process of cogitating about potentially interesting behaviors can be substituted
by exploration via the brute force of scale.

91

659

4,595

72

376

1,915

1

5
10 12 13 16

1

10

100

1,000

10,000

10,000 100,000 1,000,000 10,000,000 100,000,000

Number of Agents

Sp
ee

du
p

Repast J/GARFIELD Repast .Net/GARFIELD CPU/GARFIELD
Fig. 4. Speedup of GARFIELD compared to Repast for the Game of Life Model. GARFIELD
simulations are over 4000-fold faster than with traditional tool kits, and also scale to over
100-fold larger scenarios. However, usability is not as high as with other traditional toolkits.

www.intechopen.com

Modeling, Simulation and Optimization – Focus on Applications198

1

10

100

1000

10000

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Number of Agents

Fr
am

e
R

at
e

(lo
g

sc
al

e)

Game of Life Mood Diffusion Segregation (Vision=1)
Fig. 5. Number of iterations per wall-clock second (absolute frame rate) achieved with the
models on GPU

With regard to real-time aspect of speed, Fig. 5 shows the frame rate achieved for increasing
number of agents in three applications. Real time execution is seen to be achievable in
GARFIELD, with over 100 frames (time steps) per second clocked even in the largest grid
sizes, of over 16 million agents. In smaller configurations, the frame rate is orders of
magnitude higher.

5.1 Emergent Behavior with a Loyalty Model
In a more sophisticated application, it is possible to simulate populations of over several
million agents with fine-grained model computation. For example, a scenario of a
“leadership model” with 16 million individuals can be simulated, each individual obeying a
loyalty-based leadership model that maximizes an individual’s “utility” at each time step.
The example model is reproduced from (Brecke and Whitmeyer 2007; Whitmeyer 2007) as
follows:

Order { 1,0,1}
Behavior { 1,0,1}
Position { 1,0,1}

| |Loyalty
2

Lambda (1)

Mean (previous) Loyalty of Neighbors
| |Coercion

2
| |Idealogy

2
Utility 1

previous l

l

l

O
B
P

O BL

M
M

O BC R

P BI

U w L



   

  
  
  


 

   




 


 

   2 2 2
c iw C Iw

Given an order O, of interest is the variation of behavior B that is chosen by each individual
to maximize the individual’s utility U. Lambda’s time dependence induces variation of B
over time.
When Ml is defined as the mean loyalty of neighbors, the variation of B is less interesting, as
lambda follows some sort of a diffusion process which can be expected to converge to an
overall average across all individuals. To accommodate some dynamics, we make one
change, namely, Ml is defined as the maximum loyalty, instead of mean loyalty, among
neighbors. The rationale behind this variation is that the neighbor with the largest loyalty,
even if there is only one, potentially has an overbearing influence on all its neighbors.
Fig. 6(a)-(f) shows snapshots of simulation for a population of over 2 million individuals,
each executing the preceding loyalty model, with O=1, R=0.25, Wl=0.33, Wc=0.33, Wi=0.34,
and δ=0.01. P is uniformly randomized across the population.

(a) Initial behavior map divided along a
country border; loyal behaviors are below

the diagonal (blue), and opposite are above

(b) Behavior smoothens after a few time
steps, but neutral behaviors emerge along

diagonal [geographical map is omitted]

www.intechopen.com

Computational Spectrum of Agent Model Simulation 199

1

10

100

1000

10000

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Number of Agents

Fr
am

e
R

at
e

(lo
g

sc
al

e)

Game of Life Mood Diffusion Segregation (Vision=1)
Fig. 5. Number of iterations per wall-clock second (absolute frame rate) achieved with the
models on GPU

With regard to real-time aspect of speed, Fig. 5 shows the frame rate achieved for increasing
number of agents in three applications. Real time execution is seen to be achievable in
GARFIELD, with over 100 frames (time steps) per second clocked even in the largest grid
sizes, of over 16 million agents. In smaller configurations, the frame rate is orders of
magnitude higher.

5.1 Emergent Behavior with a Loyalty Model
In a more sophisticated application, it is possible to simulate populations of over several
million agents with fine-grained model computation. For example, a scenario of a
“leadership model” with 16 million individuals can be simulated, each individual obeying a
loyalty-based leadership model that maximizes an individual’s “utility” at each time step.
The example model is reproduced from (Brecke and Whitmeyer 2007; Whitmeyer 2007) as
follows:

Order { 1,0,1}
Behavior { 1,0,1}
Position { 1,0,1}

| |Loyalty
2

Lambda (1)

Mean (previous) Loyalty of Neighbors
| |Coercion

2
| |Idealogy

2
Utility 1

previous l

l

l

O
B
P

O BL

M
M

O BC R

P BI

U w L



   

  
  
  


 

   




 


 

   2 2 2
c iw C Iw

Given an order O, of interest is the variation of behavior B that is chosen by each individual
to maximize the individual’s utility U. Lambda’s time dependence induces variation of B
over time.
When Ml is defined as the mean loyalty of neighbors, the variation of B is less interesting, as
lambda follows some sort of a diffusion process which can be expected to converge to an
overall average across all individuals. To accommodate some dynamics, we make one
change, namely, Ml is defined as the maximum loyalty, instead of mean loyalty, among
neighbors. The rationale behind this variation is that the neighbor with the largest loyalty,
even if there is only one, potentially has an overbearing influence on all its neighbors.
Fig. 6(a)-(f) shows snapshots of simulation for a population of over 2 million individuals,
each executing the preceding loyalty model, with O=1, R=0.25, Wl=0.33, Wc=0.33, Wi=0.34,
and δ=0.01. P is uniformly randomized across the population.

(a) Initial behavior map divided along a
country border; loyal behaviors are below

the diagonal (blue), and opposite are above

(b) Behavior smoothens after a few time
steps, but neutral behaviors emerge along

diagonal [geographical map is omitted]

www.intechopen.com

Modeling, Simulation and Optimization – Focus on Applications200

(c) Fluctuations and growth of neutral
behavior from the diagonal is observed

(d) Growth smears over time into the
interiors, away from the diagonal

(e) Spread of neutral behavior is sustained
even after thousands of time steps

(f) Neutrality waves are regenerated
despite intermediate ebbs in prior time

steps
Fig. 6. Interesting spatial and temporal variation in the behavior of population under a
“loyalty-based” model (Brecke and Whitmeyer 2007; Whitmeyer 2007). Blue denotes
behavior loyal to leadership, green denotes neutrality and red represents anti-order stance.
Sustained waves of switching from/to neutral position indicates prolonged “unrest” due to
divisions in initial conditions

The high simulation speed of GARFIELD was helpful in uncovering this emergent
phenomenon, which was discovered when key parameters were varied in a large number of
combinations.

6. Case Study: µsik

While systems like GARFIELD are designed with scale and speed in mind for low- to
medium fidelity applications, new scalable systems are needed for the general class of social
behavioral simulations that can include high fidelity models, possibly enhanced by usability
features. For such applications, a system that scales from traditional multi-core desktop
machines to supercomputing platforms is very useful.

The parallel discrete event simulation engines, such as µsik (Perumalla 2004; Perumalla
2005; Perumalla 2007), and ROSS (Holder and Carothers 2008), execute time-stepped and
discrete event simulations at very high speed on a single desktop machine for users with
limited compute power. The same engines are also capable of scaling to much larger
problem sizes on cluster machines, multi-core workstations, or even supercomputers. In
particular, the performance of the engine on supercomputing platforms is of particular
relevance, as it shows the potential of realizing extremely large-scale social behavioral
model simulations at very high speeds by leveraging tens of thousands of processor cores.
Recent demonstration of the possible performance shows the capability to simulate up to
half a billion events per wall clock second on 16,384 processors of a Blue Gene
supercomputer.

6.1 Agent Interaction Model
The performance benchmark used to demonstrate this capability is the PHOLD application,
which was designed as a generalized core of most simulations that include multiple
interacting entities that interact via time stamped events/messages. The PHOLD benchmark
(Perumalla 2007) is an abstraction of the interaction among multiple encapsulated units, to
capture the simulation dynamics of computational performance. Most interacting-entity
simulations map well to this model. In a way, good performance of this model is a necessary
condition for good performance of other detailed behavioral models.
In this benchmark, each unit selects a target unit at random for interaction in the future. The
selection of the destination unit is made at random, with some bias towards those units that
are instantiated on the same processor (more than one unit/agent is mapped to the same
processor). The interaction is scheduled with a period drawn from an exponential
distribution with mean 1.0, plus a minimum increment of 1.0 (i.e., a “lookahead” of 1.0).

Fig. 7. Runtime Performance of µsik on the PHOLD Benchmark on up to 16,000 Cores of a
Blue Gene Supercomputer.

www.intechopen.com

Computational Spectrum of Agent Model Simulation 201

(c) Fluctuations and growth of neutral
behavior from the diagonal is observed

(d) Growth smears over time into the
interiors, away from the diagonal

(e) Spread of neutral behavior is sustained
even after thousands of time steps

(f) Neutrality waves are regenerated
despite intermediate ebbs in prior time

steps
Fig. 6. Interesting spatial and temporal variation in the behavior of population under a
“loyalty-based” model (Brecke and Whitmeyer 2007; Whitmeyer 2007). Blue denotes
behavior loyal to leadership, green denotes neutrality and red represents anti-order stance.
Sustained waves of switching from/to neutral position indicates prolonged “unrest” due to
divisions in initial conditions

The high simulation speed of GARFIELD was helpful in uncovering this emergent
phenomenon, which was discovered when key parameters were varied in a large number of
combinations.

6. Case Study: µsik

While systems like GARFIELD are designed with scale and speed in mind for low- to
medium fidelity applications, new scalable systems are needed for the general class of social
behavioral simulations that can include high fidelity models, possibly enhanced by usability
features. For such applications, a system that scales from traditional multi-core desktop
machines to supercomputing platforms is very useful.

The parallel discrete event simulation engines, such as µsik (Perumalla 2004; Perumalla
2005; Perumalla 2007), and ROSS (Holder and Carothers 2008), execute time-stepped and
discrete event simulations at very high speed on a single desktop machine for users with
limited compute power. The same engines are also capable of scaling to much larger
problem sizes on cluster machines, multi-core workstations, or even supercomputers. In
particular, the performance of the engine on supercomputing platforms is of particular
relevance, as it shows the potential of realizing extremely large-scale social behavioral
model simulations at very high speeds by leveraging tens of thousands of processor cores.
Recent demonstration of the possible performance shows the capability to simulate up to
half a billion events per wall clock second on 16,384 processors of a Blue Gene
supercomputer.

6.1 Agent Interaction Model
The performance benchmark used to demonstrate this capability is the PHOLD application,
which was designed as a generalized core of most simulations that include multiple
interacting entities that interact via time stamped events/messages. The PHOLD benchmark
(Perumalla 2007) is an abstraction of the interaction among multiple encapsulated units, to
capture the simulation dynamics of computational performance. Most interacting-entity
simulations map well to this model. In a way, good performance of this model is a necessary
condition for good performance of other detailed behavioral models.
In this benchmark, each unit selects a target unit at random for interaction in the future. The
selection of the destination unit is made at random, with some bias towards those units that
are instantiated on the same processor (more than one unit/agent is mapped to the same
processor). The interaction is scheduled with a period drawn from an exponential
distribution with mean 1.0, plus a minimum increment of 1.0 (i.e., a “lookahead” of 1.0).

Fig. 7. Runtime Performance of µsik on the PHOLD Benchmark on up to 16,000 Cores of a
Blue Gene Supercomputer.

www.intechopen.com

Modeling, Simulation and Optimization – Focus on Applications202

The performance results are shown in Fig. 7, for the PHOLD scenario containing 1 million
interacting entities. These results are reproduced from Ref. (Perumalla 2007). The most
important metric to note is the number of events simulated per second, which translates to a
per-event overhead that is on the order of 20 to 30 microseconds per event. Such a low event
overhead makes it possible to contemplate executing even the finest grained agent
simulations at high efficiency. In other words, the engine is capable of sustaining
synchronized agent state evolution across processors with excellent parallel speedup.

7. Summary

The time seems to be ripe with respect to motivation as well as promise for next generation
modeling and simulation tools in support of computational social science. Dimensions such
as scale, speed, fidelity, usability and interoperability, which were once implicitly merged
together at small-scale, are now getting separated as a result of focus on next levels along
combinations of those dimensions. It is now possible to consider organizing the various
modeling frameworks along their respective features, and select the best combination based
on their fit with the specific purpose behind the simulation. The purposes behind
simulations are equally important to distinguish among themselves, in order to be able to
place the right levels of expectations on scale, fidelity and speed. Interoperability remains a
difficult challenge, as is the problem of shielding the modeler from complexities of
computational aspects driving the next generation systems. Automated compiler-based
parallel execution on shared memory, LAN, GPU and/or supercomputers is potentially
achievable, as is the possibility of integrating models at varying resolutions. The future
looks bright for lifting computational social science to a new “enabling” plane.

8. Acknowledgements

This article has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725
with the U.S. Department of Energy. Accordingly, the United States Government retains
and the publisher, by accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or allow others to do so, for
United States Government purposes. This effort has been partly supported by the RealSim
project at Oak Ridge National Laboratory sponsored by the Department of Homeland
Security.

9. References

Bagrodia, R. and W.-T. Liao (1994). "Maisie: A Language for the Design of Efficient Discrete-
Event Simulations." IEEE Transactions on Software Engineering 20(4): 225-238.

Brecke, P. and J. Whitmeyer (2007). Data for Leadership Theory Test.
Chaturvedi, A., C. M. Foong, et al. (2005). Bridging Kinetic and Non-kinetic Interactions

over Time and Space Continua. Interservice/Industry Training, Simulation and
Education Conference, Orlando, FL, USA.

Cowie, J., H. Liu, et al. (1999). Towards Realistic Million-Node Internet Simulations.
International Conference on Parallel and Distributed Processing Techniques and
Applications.

D'Souza, R., M. Lysenko, et al. (2007). SugarScape on Steroids: Simulating Over a Million
Agents at Interactive Rates. AGENT 2007 Conference on Complex Interaction and
Social Emergence. Evanston, IL.

Daley, D. J. and J. Gani (2001). Epidemic Modelling: An Introduction. Cambridge, UK,
Cambridge University Press.

Davis, D. M., R. F. Lucas, et al. (2005). "Joint Experimentation on Scalable Parallel
Processors." Journal of the International Test and Evaluation Association.

Devine, P. and G. Gross (1998). Lessons Learned from Human-in-the-Loop Trainer HLA
Implementation. Proceedings of the 1998 Interservice/Industry Training,
Simulation and Education Conference. Orlando, FL.

Epstein, J. (2002). "Modeling Civil Violence: An Agent-based Computational Approach."
PNAS 99(3): 7243-7250.

Fujimoto, R. M. (2000). Parallel and Distributed Simulation Systems, Wiley Interscience.
Gardner, M. (1970). Mathematical Games: The fantastic combinations of John Conway's new

solitaire game "Life". Scientific American. 223: 120-123.
Holder, A. O. and C. D. Carothers (2008). Analysis of Time Warp on a 32,768 Processor IBM

Blue Gene/L Supercomputer. European Modeling and Simulation Symposium.
Italy, Liophant.

Luke, S., C. Cioffi-Revilla, et al. (2004). MASON: A New Multi-Agent Simulation Toolkit.
SwarmFest Workshop.

Mastaglio, T. W. and R. Callahan (1995). "A Large-Scale Complex Environment for Team
Training." IEEE Computer 28(7): 49-56.

Nicol, D., M. Liljenstam, et al. (2003). Multiscale Modeling and Simulation of Worm Effects
on the Internet Routing Infrastructure. International Conference on Modeling
Techniques and Tools for Computer Performance Evaluation (Performance
TOOLS), Urbana, IL.

North, M. J., N. T. Collier, et al. (2006). "Experiences Creating Three Implementations of the
Repast Agent Modeling Toolkit." ACM Transactioins on Modeling and Computer
Simulation 16(1): 1-25.

North, M. J. and C. M. Macal (2007). Managing Business Complexity: Discovering Strategic
Solutions with Agent-Based Modeling and Simulation, Oxford University Press.

Nutaro, J. (2003). Parallel Discrete Event Simulation with Application to Continuous
Systems. Department of Electrical and Computer Engineering. Tucson, AZ,
University of Arizona. Ph.D.: 182.

Perumalla, K., R. Fujimoto, et al. (1998). "TeD - A Language for Modeling
Telecommunications Networks." Performance Evaluation Review 25(4).

Perumalla, K. S. (2004). "µsik - Software Package Homepage." Retrieved 2004/04/01, 2004,
from www.cc.gatech.edu/computing/pads/kalyan/musik.htm.

Perumalla, K. S. (2005). µsik - A Micro-Kernel for Parallel/Distributed Simulation Systems.
Workshop on Principles of Advanced and Distributed Simulation, Monterey, CA,
USA.

Perumalla, K. S. (2007). Model Execution. Handbook of Dynamic System Modeling, CRC
Press.

www.intechopen.com

Computational Spectrum of Agent Model Simulation 203

The performance results are shown in Fig. 7, for the PHOLD scenario containing 1 million
interacting entities. These results are reproduced from Ref. (Perumalla 2007). The most
important metric to note is the number of events simulated per second, which translates to a
per-event overhead that is on the order of 20 to 30 microseconds per event. Such a low event
overhead makes it possible to contemplate executing even the finest grained agent
simulations at high efficiency. In other words, the engine is capable of sustaining
synchronized agent state evolution across processors with excellent parallel speedup.

7. Summary

The time seems to be ripe with respect to motivation as well as promise for next generation
modeling and simulation tools in support of computational social science. Dimensions such
as scale, speed, fidelity, usability and interoperability, which were once implicitly merged
together at small-scale, are now getting separated as a result of focus on next levels along
combinations of those dimensions. It is now possible to consider organizing the various
modeling frameworks along their respective features, and select the best combination based
on their fit with the specific purpose behind the simulation. The purposes behind
simulations are equally important to distinguish among themselves, in order to be able to
place the right levels of expectations on scale, fidelity and speed. Interoperability remains a
difficult challenge, as is the problem of shielding the modeler from complexities of
computational aspects driving the next generation systems. Automated compiler-based
parallel execution on shared memory, LAN, GPU and/or supercomputers is potentially
achievable, as is the possibility of integrating models at varying resolutions. The future
looks bright for lifting computational social science to a new “enabling” plane.

8. Acknowledgements

This article has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725
with the U.S. Department of Energy. Accordingly, the United States Government retains
and the publisher, by accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or allow others to do so, for
United States Government purposes. This effort has been partly supported by the RealSim
project at Oak Ridge National Laboratory sponsored by the Department of Homeland
Security.

9. References

Bagrodia, R. and W.-T. Liao (1994). "Maisie: A Language for the Design of Efficient Discrete-
Event Simulations." IEEE Transactions on Software Engineering 20(4): 225-238.

Brecke, P. and J. Whitmeyer (2007). Data for Leadership Theory Test.
Chaturvedi, A., C. M. Foong, et al. (2005). Bridging Kinetic and Non-kinetic Interactions

over Time and Space Continua. Interservice/Industry Training, Simulation and
Education Conference, Orlando, FL, USA.

Cowie, J., H. Liu, et al. (1999). Towards Realistic Million-Node Internet Simulations.
International Conference on Parallel and Distributed Processing Techniques and
Applications.

D'Souza, R., M. Lysenko, et al. (2007). SugarScape on Steroids: Simulating Over a Million
Agents at Interactive Rates. AGENT 2007 Conference on Complex Interaction and
Social Emergence. Evanston, IL.

Daley, D. J. and J. Gani (2001). Epidemic Modelling: An Introduction. Cambridge, UK,
Cambridge University Press.

Davis, D. M., R. F. Lucas, et al. (2005). "Joint Experimentation on Scalable Parallel
Processors." Journal of the International Test and Evaluation Association.

Devine, P. and G. Gross (1998). Lessons Learned from Human-in-the-Loop Trainer HLA
Implementation. Proceedings of the 1998 Interservice/Industry Training,
Simulation and Education Conference. Orlando, FL.

Epstein, J. (2002). "Modeling Civil Violence: An Agent-based Computational Approach."
PNAS 99(3): 7243-7250.

Fujimoto, R. M. (2000). Parallel and Distributed Simulation Systems, Wiley Interscience.
Gardner, M. (1970). Mathematical Games: The fantastic combinations of John Conway's new

solitaire game "Life". Scientific American. 223: 120-123.
Holder, A. O. and C. D. Carothers (2008). Analysis of Time Warp on a 32,768 Processor IBM

Blue Gene/L Supercomputer. European Modeling and Simulation Symposium.
Italy, Liophant.

Luke, S., C. Cioffi-Revilla, et al. (2004). MASON: A New Multi-Agent Simulation Toolkit.
SwarmFest Workshop.

Mastaglio, T. W. and R. Callahan (1995). "A Large-Scale Complex Environment for Team
Training." IEEE Computer 28(7): 49-56.

Nicol, D., M. Liljenstam, et al. (2003). Multiscale Modeling and Simulation of Worm Effects
on the Internet Routing Infrastructure. International Conference on Modeling
Techniques and Tools for Computer Performance Evaluation (Performance
TOOLS), Urbana, IL.

North, M. J., N. T. Collier, et al. (2006). "Experiences Creating Three Implementations of the
Repast Agent Modeling Toolkit." ACM Transactioins on Modeling and Computer
Simulation 16(1): 1-25.

North, M. J. and C. M. Macal (2007). Managing Business Complexity: Discovering Strategic
Solutions with Agent-Based Modeling and Simulation, Oxford University Press.

Nutaro, J. (2003). Parallel Discrete Event Simulation with Application to Continuous
Systems. Department of Electrical and Computer Engineering. Tucson, AZ,
University of Arizona. Ph.D.: 182.

Perumalla, K., R. Fujimoto, et al. (1998). "TeD - A Language for Modeling
Telecommunications Networks." Performance Evaluation Review 25(4).

Perumalla, K. S. (2004). "µsik - Software Package Homepage." Retrieved 2004/04/01, 2004,
from www.cc.gatech.edu/computing/pads/kalyan/musik.htm.

Perumalla, K. S. (2005). µsik - A Micro-Kernel for Parallel/Distributed Simulation Systems.
Workshop on Principles of Advanced and Distributed Simulation, Monterey, CA,
USA.

Perumalla, K. S. (2007). Model Execution. Handbook of Dynamic System Modeling, CRC
Press.

www.intechopen.com

Modeling, Simulation and Optimization – Focus on Applications204

Perumalla, K. S. (2007). Scaling Time Warp-based Discrete Event Execution to 10^4
Processors on the Blue Gene Supercomputer. International Conference on
Computing Frontiers, Ischia, Italy.

Perumalla, K. S., Ed. (2007). Symposium on Asynchronous Methods in Scientific and
Mathematical Computing (ASYM). International Workshop on Principles of
Advanced and Distributed Simulation. San Diego, CA, USA, IEEE.

Perumalla, K. S. and B. Aaby (2008). Data Parallel Execution Challenges and Runtime
Performance of Agent Simulations on GPUs. Agent-Directed Simulation
Symposium.

Perumalla, K. S. and R. M. Fujimoto (2001). Virtual Time Synchronization over Unreliable
Network Transport. Workshop on Parallel and Distributed Simulation.

Reynolds, C. (2006). "Big Fast Crowds on PS3." Retrieved 2006/09/12, 2006, from
www.research.scea.com/pscrowd.

Schelling, T. (1978). Micromotives and Macrobehavior, W. W. Norton.
Silverman, B. G. (2008). "Human Behavior Model Research." Retrieved 2008/01/15, from

www.seas.upenn.edu/~barryg/HBMR.html.
Staniford, S., V. Paxson, et al. (2002). How to Own the Internet in Your Spare Time. USENIX

Security Symposium, San Francisco, CA.
Tomov, S., M. McGuigan, et al. (2005). "Benchmarking and Implementation of Probability-

based Simulations on Programmable Graphics Cards." Computers and Graphics
29(1).

Verdesca, M., J. Munro, et al. (2005). Using Graphics Processor Units to Accelerate OneSAF:
A Case Study in Technology Transition. Interservice/Industry Training, Simulation
and Education Conference (IITSEC).

Walter, B., A. Sannier, et al. (2005). UAV Swarm Control: Calculating Digital Phermone
Fields with the GPU. Interservice/Industry Training, Simulation and Education
Conference (IITSEC), Orlando, FL.

Whitmeyer, J. (2007). Learning Theories for Loyalty-based Leadership Model.
Wilensky, U. (1999). NetLogo. Evanston, IL, Center for Connected Learning and Computer-

Based Modeling, Northwestern University.
Zou, C. C., L. Gao, et al. (2003). Monitoring and Early Warning for Internet Worms. ACM

Conference on Computer and Communication Security (CCS), Washington, DC.

www.intechopen.com

Modeling Simulation and Optimization - Focus on Applications

Edited by Shkelzen Cakaj

ISBN 978-953-307-055-1

Hard cover, 312 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The book presents a collection of chapters dealing with a wide selection of topics concerning different

applications of modeling. It includes modeling, simulation and optimization applications in the areas of medical

care systems, genetics, business, ethics and linguistics, applying very sophisticated methods. Algorithms, 3-D

modeling, virtual reality, multi objective optimization, finite element methods, multi agent model simulation,

system dynamics simulation, hierarchical Petri Net model and two level formalism modeling are tools and

methods employed in these papers.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Kalyan S. Perumalla (2010). Computational Spectrum of Agent Model Simulation, Modeling Simulation and

Optimization - Focus on Applications, Shkelzen Cakaj (Ed.), ISBN: 978-953-307-055-1, InTech, Available from:

http://www.intechopen.com/books/modeling-simulation-and-optimization-focus-on-applications/computational-

spectrum-of-agent-model-simulation

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

