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1. Introduction     
 

Human-computer interfaces are in continuous development, from keyboard, mouse, touch 
screen, to voice dictation, gesture recognition, etc. The aim is to facilitate the interaction 
between the human brain and the resources offered by a machine or a computer. Recently, a 
wider interest has emerged in directly interfacing the brain and the computer. The 
development of methods that combine the nervous system with artificial devices is 
attracting a growing interest from clinical research, because the interaction between brain 
and machines may lead to novel prosthetic devices or to a more efficient use of computer 
resources by breaking the barriers imposed at present by the classical human-machine 
interfaces. Individuals with impaired motor control may be disabled in the performance of 
their daily activities. Their motor performance, however, can be supported by artificial 
motor control systems. Such motor support systems may also assist healthy individuals in 
performing their tasks. One can also imagine interacting with different systems in parallel,  
or developing newer software tools without the need to physically typing the code.  
 
The brain output pathway allows it to interact through its natural biological interfaces. In 
order to design a system to support an impaired human motor control function or to 
directly interact the brain with computers and machines, one should address the method of 
interfacing with the human body. The interface should provide signals from the human 
body to derive motor intention. These interfaces and technologies are studied in the wide 
domain of neurotechnology. Neurotechnology is a multidisciplinary domain that integrates, 
not exclusively, knowledge and scientific evidence from neurosciences, engineering, and 
signal processing. The present chapter focuses specifically on Brain-Computer Interfaces. 
 
P. Sajda et al., defines (Sajda et al., 2008) the Brain-Computer Interface (BCI) as: “A Brain-
Computer Interface is a system that includes a means for measuring neural signals from the 
brain, a method/algorithm for decoding these signals and a methodology for mapping this 
decoding to a behavior or action”. The system is thus formed of three principal blocks. The 
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first two blocks are critical for the success of the BCI. Actually, the neural signals to be 
measured have to be chosen adequately and the decoding of these signals should be 
accurate. The use of the output of the decoder in the third block of a BCI application is a 
pure engineering problem. This block should take into account some specific aspects related 
to the errors that a BCI system may lead to and the particular context of a BCI. This chapter 
focuses on the first two blocks, i.e. the acquisition and decoding of neural signals.  
 
Informative neural signals may be collected at the microscopic level (e.g. spike trains), 
mesoscopic level (e.g. electrocorticogram) and/or, macroscopic level (e.g. 
electroencephalogram). In order to collect the spike trains, electrodes are generally 
implanted in a surgery with non negligible risk. BCI approaches based on these signals are 
invasive approaches. Besides the high surgical risks, such approaches have to face other 
challenges. The power consumption is a key issue limiting the possibility of advanced 
processing in the electrode implantation area. Therefore, neural signals have to be 
transmitted out of the implantation area which by itself is also a challenge. 
 
Clearly, non-invasive approaches, e.g. EEG signals-based systems, are more attractive than 
the invasive ones for the limited risk they may incur. However, signals in non invasive 
approaches are less precise than the spike trains measured in electrode-based approaches. 
Advanced processing is therefore required in the decoding block.  
 
In this chapter, we focus mainly on the non-invasive approaches for BCI. Several techniques 
have been proposed to measure relevant features from EEG or MRI signals and to decode 
the brain targets from those features. Such techniques are reviewed in the chapter with a 
focus on a specific approach. The basic idea is to make the comparison between a BCI 
system and the use of brain imaging in medical applications. Actually, based on neural 
signals like EEG, the electro-magnetic activity at the surface of the cortex may be measured. 
A practitioner would make use of such images of the cortex surface to detect abnormalities 
or diseases. The chapter shows this parallelism and how it has been exploited to build a 
state of the art BCI system. 
 
After a brief description of a general BCI system, a brief review of the neural signals and 
their measurements is provided. A particular focus is on EEG signals. EEG is a standard 
non-invasive and nearly risk-free method that has been extensively used in medical 
applications. In order to decode the signals collected, feature extraction is first performed. 
Based on the relevant features computed, a classification is performed. State of the art 
feature extraction approaches systems are presented in the chapter. Brain imaging 
techniques allow to visualize the surface of the cortex. This suggests using brain imaging 
techniques to evaluate the electro-magnetic activity at the cortex surface that will define a 
vector of features. These features will be given to the decoding/classification algorithm as 
input. At the output of the classification algorithm, the decoded intention would be 
detected. The chapter presents briefly several techniques for brain imaging with a focus on 
subspace correlation methods. These methods are detailed in the chapter. 
 
Several classifiers, e.g. Artificial Neural Networks (ANN), Independent Component 
Analysis (ICA) and other approaches have been used extensively in BCI systems. As an 

 

example both the Support Vector Machine (SVM) and the Gaussian Mixture Model (GMM) 
are presented. 
 
To illustrate the concepts presented, a BCI system is described and some experimental 
results are provided. The system makes use of signal subspace decomposition as feature 
extraction and support vector machine as classifier. The chapter provides some hints about 
the system implementation before providing conclusions and perspectives. 

 
2. BCI System 
 

The basic design and operation of a BCI system include the following components (Veltink 
et al., 2001)(Wolpaw et al., 2002)(Ebrahimi et al., 2003): 
 

1. Signal acquisition and digitization: The input is the EEG activity or brain signals 
from the user. This input is acquired by recording electrodes, amplified, and 
digitized. As stated above the signal acquisition defers largely from invasive and 
noninvasive approaches. 

 
2. Signal processing: It comprises two stages: 

a. Feature extraction: Features related to specific electrophysiology 
components are extracted. 

b. Decoding algorithm: It translates the signal features into device 
commands that accomplish the user’s request. 

 
3. Output device: In general, the output device may be prosthesis with its control 

system or a video screen. The output is the feedback the brain uses to maintain and 
improve communication or to control prosthesis. 

 
4. Operating format: It guides the operation (onset, offset, and timing) of the BCI. 

Fig. 1. Basic design and operation of a Brain-Computer Interface (BCI). 
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3. Feature Extraction 
 

Several measurement procedures have been used in modern BCI. As stated earlier, they can 
be divided into two categories. Non invasive procedures include Electroencephalography 
(EEG), Magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), 
positron emission tomography (PET) and near infrared spectroscopy (NIRS). 
Electrocorticography (ECoG), a method in which signals are recorded using intracranial 
electrodes, is used as an invasive procedure to collect signals. 

 
3.1 Spike Signals 
The brain has a fascinating design consisting of a huge number of neurons that operate in 
parallel and a distributed memory system formed of synapses. There are over 100 trillions of 
synapses in the cerebral cortex. Each neuron is assumed to produce a unique and consistent 
spike waveform which is difficult to detect. The duration of a spike is on average 1 
millisecond and its peak-to-peak voltage is from 100 to 400 V. The spikes cannot be used 
directly by the detection part of a BCI system. State of the art invasive BCI systems, start by 
sorting the spike trains (Shenoy et al., 2006). The distribution of specific spike signals can be 
used in order to detect the desired movement or intention.  

 
3.2 Non-Invasive Signals 
Non-invasive exploration of human brain functions has always been a central topic in 
biomedical research. This is not only motivated by the high risk of invasive implantation 
surgery but also because macroscopic information has inherent value due to the information 
it provides on the motor command. Before any movement occurs, motor commands carried 
by descending motor pathways must first be organized in the brain. The target of the 
movement is identified by pooling sensory information in the posterior parietal cerebral 
cortex (Jakson et al., 1999). This information is then transmitted to the supplementary motor 
and premotor areas where a motor plan is developed. The plan includes information about 
the specific muscles that need to be contracted, the strength of contraction, and sequence of 
contraction. The motor plan is implemented by commands transmitted from the primary 
motor cortex through the descending pathways. Successful execution of these motor 
commands, however, depends on feedback provided to the motor cortex through the 
ascending pathways to the somatosensory cortex as well as through the visual pathway. 
One should also add that during both the planning and execution stages of a movement, 
motor processing is also provided by 2 major control systems, the cerebellum and basal 
ganglia (Figures 2 and 3). 
 
In order to monitor the spatio-temporal evolution of the cortical activity within the human 
brain, several methods make use of the electric potential and/or magnetic fields associated 
with the intracellular current that flows within the active pyramidal cells of the cortex. 
Surface electrodes can record electrical potential differences from a scalp surface leading to 
what is called electroencephalography (EEG). Magnetoencephalography (MEG) makes use 
of a superconducting quantum interference device (SQUID) magnetometer in order to 
record the weak magnetic fields outside the head surface (Knuutila et al 1993). Moreover, 
one goal in electric and magnetic recordings is to form an image of the electrical sources 
distributed across the cortex (Mosher et al., 1992) (Dale & Sereno, 1993). 

 

 
Fig. 2. Cortical projections involving the motor areas. (From (Berne RM, Levy MN, 
Koeppen BM, Stanton BA. Physiology, Fourth edition, 1998). 
 

 
Fig. 3. Flow diagram showing the sequence of activity in the voluntary motor and 
somatosensory feedback pathways. (From Berne RM, Levy MN, Koeppen BM, Stanton BA. 
Physiology, Fourth edition, 1998). 
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3.2.1 Electroencephalography 
The EEG is a recording of the rhythmic electrical activity that can be made from the cerebral 
cortex via electrodes placed on the surface of the skull. In clinical neurology, EEG is 
recorded from a grid of standard recording sites. EEG is recorded as a potential difference 
between a signal or active electrode (electrode that records the activity at the site of interest 
on the surface of the skull) and a reference or indifferent electrode (e.g. electrode placed at 
the ear lobe) (Westbrook, 2000). A conductive paste will be used to decrease contact 
impedance and electrode migration (Westbrook, 2000).  
Different EEG standard exist and mainly differ in the position of the electrodes on the skull. 
In the international 10-20 system EEG signals are recorded from a 59 electrodes placed on 
the skull as shown in Fig. 4 (Sajda et al., 2003). The signals are usually referenced to the left 
mastoid. 
 

 
Fig. 4. The International 10-20 electrodes placement system (From Jasper HH. The ten-
twenty electrode system of the international federation. In: Internal Federation of Societies 
for Electroencephalography and Clinical Neurophysiology. Recommendations for the 
practice of clinical electroencephalography. Elsevier, 1983: 3-10). 
 
EEG patterns are characterized by the frequency and amplitude of the electrical activity 
(Westbrook, 2000). The normal human EEG shows activity over the range of 1-30 Hz with 
amplitudes in the range of 20-100 V. The observed frequencies have been divided into 
several groups: 

 Alpha (8-13Hz): Alpha waves of moderate amplitude are typical of relaxed 
wakefulness and are most prominent over the parietal and occipital sites. 

 Beta (13-30 Hz): Lower amplitude beta activity is more prominent in frontal areas 
and over other regions during intense mental activity. They are associated with an 

 

alert state of mind and can reach frequencies near 50 hertz during intense mental 
activity. 

 Delta (0.5-4 Hz): Delta waves are normal during drowsiness and early slow-wave 
sleep 

 Theta (4-7 Hz): Theta waves arise from emotional stress, especially frustration or 
disappointment. 

 Mu (8-12 Hz): Mu waves are linked to cortical motor activity and have been 
associated with beta activity. Mu waves diminish with movement or the intention 
to move. They occupy the same frequency band as Alpha waves. 

 Gamma (26-40 Hz): Gamma waves are considered to reflect the mechanism of 
consciousness. 

These waves, especially Mu and Beta, have been used as features in several BCI systems. An 
example of EEG waves is provided in Fig. 5. 
 

 
Fig. 5. EEG in a normal resting awake human. The recordings were made from eight 
channels at the same time. The electrode positions are indicated. (From Berne RM, Levy 
MN, Koeppen BM, Stanton BA. Physiology, Fourth edition, 1998). 
 
The importance of the EEG resides in its ability to describe the activity on the cortex surface. 
Therefore, several techniques of brain imaging proposed the use of EEG in order to provide 
a full image of the electrical activity on the surface of the cortex. Based on the EEG signals, 
different sets of features can be derived. Classical features used in different BCI systems are 
first briefly described. Brain Imaging based features are then provided in detail. 

 
3.2.2 EEG-Based Classical Features 
Several features have been classically derived from the EEG data and used by the decoding 
algorithm (Hammon & de Sa, 2007). The key idea is to derive some relevant and robust 
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features from the EEG signals that would reliably represent the task to be detected. Time 
and frequency analysis of the EEG signals are used to derive such features. 
 
EEG patterns frequency based features 
The patterns described above, i.e. delta, theta, alpha/mu, beta and gamma (26-40Hz), may 
be used as features. Classical filters or Fast Fourier Transform permit to compute those 
patterns and their corresponding energies in the analysis window. Those energies define the 
feature vector that is used at the input of the decoding process. Advanced techniques make 
use of filter banks in order to determine the energies of the above patterns.  
 
Wavelet transform features 
Wavelet transform permits to apply an adequate filter bank on signals. Compared to 
classical filter banks, wavelet transform offer a more precise analysis since the time window 
is selected depending on the analysis frequency band leading to a more precise analysis. 
Several types of wavelets, Symlet, Daubechies and Coiflet, (Darvishi & Al Ani, 2007) (Xu et 
al. 2007) (Hammon et al., 2008) have been successfully used in state of the art BCI systems. 
 
Autoregressive models features 
Autoregressive (AR) modeling has been used successfully in several domains. A p-order AR 
model consists in predicting the current sample of the signal from a linear combination of 
the previous p samples. This leads to an all-pole model in the z-transform domain and the 
corresponding parametric spectrum can be determined. Estimating the linear combination 
coefficient in the model is generally done in order to minimize the prediction error 
following the minimum mean square error criterion. Several efficient algorithms are 
available to solve this estimation problem (Kay 1999). 
In BCI, both simple autoregressive (Hammon & de Sa, 2007) and multivariate autoregressive 
(Anderson et al., 1998) models have been experimented with satisfactory results.  
 
Independent Component Analysis features 
Principal component analysis (PCA) has been used with success to extract independent 
components from multi-electrode EEG signals (Lagerlund et al., 1997). Independent 
component analysis (ICA) has been proposed as an improvement of the PCA (Hyvarinen  & 
Oja, 2000) (Vorobyov & Cichoki, 2002).  Kohonen LVQs have been also used for this purpose 
(Pregenzer & Pfurtscheller, 1999). 

 
3.2.3 EEG-Based Brain Imaging Features 
As stated earlier EEG is particularly useful in BCI, because EEG has a short time constant 
and is a relatively simple, inexpensive, and noninvasive procedure. Although EEG 
frequency bands give a general description of brain activity, EEG signals provide additional 
information to estimate electrical activity at the cortical surface. Several approaches have 
been proposed and successfully experimented to visualize the electrical activity at the cortex 
surface. This is part of the brain imaging field. Brain imaging is often used by practitioners 
in order to detect diseases. 
As discussed previously, the electrical activity on the cortex surface also reflects the 
movement to be executed. Therefore, it has been proposed (Khachab et al., 2007) to use brain 
imaging techniques in order to extract reliable features for the decoding process of a BCI 

 

system. The underlying idea is to consider a grid representing the cortical surface and 
compute the electrical activity in every point of this grid. This provides relevant features for 
the BCI system. 
Several approaches for source imaging exist (Jung et al., 2001) (Gavit et al., 2001) (Rajapakse 
& Piyaratna, 2001) (Michel et al., 2004). While they may be all experimented in the case of 
BCI, the MUSIC-like brain imaging techniques (Mosher & Leahy, 1998, 1999) have been 
selected for their robustness. This approach is briefly represented here. 
Consider a current dipole located at a position r  on the cortical surface and with a moment 
vectorq . This dipole creates (Sajda et al., 2003) a voltage potential v at the sensor position 

s  such as:  
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(1) 

where (.)g  is the lead vector. 
Assume p the current dipole sources. The voltage for n time instances is recorded 
simultaneously at m sensors. The spatio-temporal data matrix can be written as: 




















































)()(

)()(
.

),(),(

),(),(

)()(

)()(

1

111

1

111

1

111

npp

n

pm
T

m
T

p
TT

nmm

n

tqtq

tqtq

rsgrsg

rsgrsg

tvtv

tvtv















 

(2a) 

or equivalently, 
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where G(ri) represents the matrix of raw lead vectors associating the ith source dipole and 
the m sensors, and where Q is the matrix whose jth column represents the time series of the 
moment of the jth dipole source. 
Brain imaging or localization of current sources on the cortical surface can be seen as the 
solution to Eq. 2 where the current sources positions and moments are unknown (Mosher  & 
Leahy, 1999). This is obviously a nonlinear problem with no direct solution. The complexity 
is increased by the fact that the measured voltage at the sensors includes some measurement 
noise. Including measurement noise, Eq. 2 becomes: 

EQGV T  .  
(3) 

where E designates the measurement noise matrix. 
The measurement noise is supposed to be zero-mean and white and not correlated with the 
useful signals, i.e. the Ree = e2.I is a diagonal autocorrelation matrix. Moreover, the 
orientations of the moments of the current sources are assumed to be time-invariant. Let us 
consider the autocorrelation function of the voltage measurement, it can be estimated using: 
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features from the EEG signals that would reliably represent the task to be detected. Time 
and frequency analysis of the EEG signals are used to derive such features. 
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following the minimum mean square error criterion. Several efficient algorithms are 
available to solve this estimation problem (Kay 1999). 
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3.2.3 EEG-Based Brain Imaging Features 
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As discussed previously, the electrical activity on the cortex surface also reflects the 
movement to be executed. Therefore, it has been proposed (Khachab et al., 2007) to use brain 
imaging techniques in order to extract reliable features for the decoding process of a BCI 

 

system. The underlying idea is to consider a grid representing the cortical surface and 
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where (.)g  is the lead vector. 
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or equivalently, 
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where G(ri) represents the matrix of raw lead vectors associating the ith source dipole and 
the m sensors, and where Q is the matrix whose jth column represents the time series of the 
moment of the jth dipole source. 
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Leahy, 1999). This is obviously a nonlinear problem with no direct solution. The complexity 
is increased by the fact that the measured voltage at the sensors includes some measurement 
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where S  corresponds to the first p eigenvectors. 
 
A least square estimation of the current sources consists in minimizing the cost function: 

222 minminmin TT QGGVQGVE   
(6) 

where G  is the pseudo inverse of the gain matrix G . 

Eq 6 is clearely non linear and would require high computational search in order to find a 
solution. The “MUltiple SIgnal Classification” (MUSIC) has been proposed in (Schmidt 
1981) to reduce the complexity of this search. The MUSIC algorithm is briefly introduced 
hereafter in terms of subspace correlations. Given the rank of the Gain matrix p and the rank 
of the signal matrix Fs that is at least equal to p, the smallest subspace correlation value 
represents the minimum subspace correlation between principal vectors in the Gain matrix 
and the signal subspace matrix Fs. The subspace of any individual column gi with the signal 
subspace will exceed this smallest subspace correlation. While searching the parameters, if 
the minimum subspace correlation approaches unity, then all the subspace correlations 
approach unity. Thus, a search strategy of the parameter set consists in finding p peaks of 
the metric: 
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The gain vectors g are considered for all points of a grid that represents the cortical surface. 
The point of the grid with the highest subcorrelation coefficient is selected and the algorithm 
may tries to have a fine detection of the dipole around this point or restart looking for the 
next dipole. However, and for the BCI system, the algorithm is stopped at the first stage and 
a feature vector is built including all the subspace correlations obtained in the different 
points of the grid. This vector is then used as input for the decoding process of the BCI 
system.  
The computation of the subspace correlation coefficients is performed on the points of a grid 
representing the cortical surface of the brain. Two grids have been studied: the first, a 
spherical grid defined to be 1 cm inside the skull; the second, a grid with no analytical form 
designed to follow, at 1cm distance, the skull. For the nonanalytic grid, the skull has been 
divided into layers on the z-axis. In every layer, the grid is defined as an ellipse that is 1cm 
distant from the skull position. For a few layers, skull points were lacking to precisely define 
the ellipse. In such cases points were borrowed from adjacent layers and a linear 
interpolation is performed to estimate the required skull point. 
The present study uses the MUSIC-like brain imaging techniques of signal subspace 
correlations and metrics to localize brain activity positions (Mosher & Leahy, 1999). Two 
pattern recognition algorithms have been tested as classifiers: the artificial neural network 
multilayer perceptron and the support vector machines. Experiments have been conducted 
on subject 1 of a reference database (NIPS 2001 Brain Computer Interface Workshop) (Sajda 
et al., 2003) . 

 

 

4. Classifiers or Decoding Process 
 

Several classifiers have been used in BCI systems. Two principal classifiers are presented 
here: Artificial neural network (ANN) and Support Vector Machines (SVM). 

 
4.1 Artificial Neural Network (ANN) 
ANN, specifically the MultiLayer Perceptron (MLP), has been successfully used as a 
classifier in BCI systems. The units of computation in an ANN is called neuron, in reference 
to the human neuron it tries to simulate. These neurons are elementary machines that apply 
a nonlinear function, generally a sigmoid or a hyperbolic tangent, to a biased linear 
combination of its inputs. If xl, …, xl are the neuron input and y is its output, we can write: 
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where f( ) is the neuron function, b is the bias and {ak} are the linear combination weights 
representing the synapses connections.  
In the MLP structure, neurons are organized in layers. The neural units in a layer do not 
interact with each other. They take their inputs from the neurons of the preceding layer and 
provide their output to the neurons of the next layer. In other words, the outputs of neurons 
of layer i-1 excite the neurons of layer i. Therefore, MLP is completely defined by its 
structure and the connections weights. Once defined, the ANN parameters, the weights for 
each neuron, must be estimated. This is usually done according to a train set and using the 
gradient descent algorithm. In the train set, it is supposed available the inputs and desired 
outputs of the MLP for different experiments. The gradient descent will iteratively adjust the 
MLP parameters so as to have its output the closer to the desired output for the different 
experiments. 

 
4.2 Support Vector Machines (SVM) 
SVM is a recent class of classification and/or regression techniques based on the statistical 
learning theory developed in (Vapnik, 1998). Starting from simple ideas on linear separable 
classes, the case of linear non-separable classes is studied. The separation of classes using 
linear separation functions is extended to the nonlinear case. By projecting the classification 
problem to a higher dimension space, high performance non-linear classification may be 
achieved. In the higher dimension space, linear separation functions are used while the 
passage to this space is done with a non-linear function. Kernel functions permit to 
implement this solution without needing the mapping function or the dimension of the 
higher space. More detail is provided in (Cristianini & Taylor, 2000). In (Khachab et al., 2007) 
several kernel functions have been used and compared. 

 
5. Experiments 
 

5.1 Database 
Experiments have been conducted on subject 1 of a reference database from the NIPS 2001 
Brain Computer Interface Workshop (Sajda et al., 2003). The “EEG Synchronized Imagined 
Movement” database was considered. The task of the subjects was to synchronize an 
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where f( ) is the neuron function, b is the bias and {ak} are the linear combination weights 
representing the synapses connections.  
In the MLP structure, neurons are organized in layers. The neural units in a layer do not 
interact with each other. They take their inputs from the neurons of the preceding layer and 
provide their output to the neurons of the next layer. In other words, the outputs of neurons 
of layer i-1 excite the neurons of layer i. Therefore, MLP is completely defined by its 
structure and the connections weights. Once defined, the ANN parameters, the weights for 
each neuron, must be estimated. This is usually done according to a train set and using the 
gradient descent algorithm. In the train set, it is supposed available the inputs and desired 
outputs of the MLP for different experiments. The gradient descent will iteratively adjust the 
MLP parameters so as to have its output the closer to the desired output for the different 
experiments. 

 
4.2 Support Vector Machines (SVM) 
SVM is a recent class of classification and/or regression techniques based on the statistical 
learning theory developed in (Vapnik, 1998). Starting from simple ideas on linear separable 
classes, the case of linear non-separable classes is studied. The separation of classes using 
linear separation functions is extended to the nonlinear case. By projecting the classification 
problem to a higher dimension space, high performance non-linear classification may be 
achieved. In the higher dimension space, linear separation functions are used while the 
passage to this space is done with a non-linear function. Kernel functions permit to 
implement this solution without needing the mapping function or the dimension of the 
higher space. More detail is provided in (Cristianini & Taylor, 2000). In (Khachab et al., 2007) 
several kernel functions have been used and compared. 

 
5. Experiments 
 

5.1 Database 
Experiments have been conducted on subject 1 of a reference database from the NIPS 2001 
Brain Computer Interface Workshop (Sajda et al., 2003). The “EEG Synchronized Imagined 
Movement” database was considered. The task of the subjects was to synchronize an 
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indicated response with a highly predictable timed cue. Subjects were trained until their 
responses were within 100 ms of the synchronization signal. Eight classes of trials (explicit 
or imagined for left/right/both/neither) were randomly performed within a 7 minute 12 
seconds block. Each block is formed of 72 trials. A trial succession of events is shown in Fig. 
6. The EEG was recorded from 59 electrodes placed on a site corresponding to the 
International 10-20 system and referenced to the left mastoid. In a preprocessing stage, 
artifacts were filtered out from the EEG signals (Ebrahimi et al., 2003), and signals were 
sampled at 100 Hz. 
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Fig. 6. Illustration of one trial recording (reproduced from  
http://liinc.bme.columbia.edu/EEG_DATA/EEGdescription.htm). 

 
5.2 Experimental Setup 
In order to test the BCI system, we have considered two segments from each period: A 
segment of 2 seconds corresponding to the blank screen, and a segment corresponding to 
the thinking of a movement. Only subject 1 was used in our experiments, for whom sensors 
coordinates (skull) were available. Ninety periods were available for this subject in the 
database. These were divided into 60 periods for training and 30 periods for testing. The 
cortical surface geometrical information was not available, however. Thus, two models have 
been defined for the grid. First, the spherical grid of a radius approximately equal to half of 
the distance between T7 and T8 of the International 10-20 system was used to represent the 
cortical surface. This sphere defined the grid that contains 100 points. Second, the non 
analytic grid defined in section 3.1 leading to approximately 120 points. 

 

5.3 Brain Imaging Using MUSIC 
Because the BCI system is based upon the calculation of neural activity on the cortical 
surface of the brain, it would be interesting to measure the ability of the MUSIC algorithm to 
detect this activity. Fig. 7 and Fig. 8 illustrate the subcorrelation coefficients for the 120 
points of the non parametric grid in left action and right action. The figures also show the 
placement of the skull sensors (International 10-20 system). Figures were obtained using the 
MAP3D software. It is clear that electrical activity occurs in the same part of the cortical 
surface with deviation depending on the direction of the actions. 
 

 
Fig. 7. Subcorrelation coefficients for left action. 

 
Fig. 8. Subcorrelation coefficients for right action. 

 
5.4 MLP-Based Classifier 
The first set of experiments aimed to optimize the classifier complexity, the number of cells 
in the hidden layer of the ANN. The analysis window on which the MUSIC algorithm is 
applied had a duration of 640 ms. It was assumed that the space dimension (number of 
dipoles) is equal to 10. The spherical grid was used in these experiments. The optimal 
number of hidden cells was found to be 15. One critical issue in the subspace correlation 
method is the dimension of the space, i.e. to determine the number of dipoles. Experiments 
have been conducted varying this number. Fig. 9 shows that the optimal dimension ranged 
between 10 and 15. 
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In the final set of MLP experiments, we have tried to optimize the length of the analysis 
window. In Fig. 10, error rates are shown for two window lengths: 640 ms and 1280 ms. The 
results show a better performance with the larger window. An error rate of 27% was 
reached. 
In the last experiment with MLP classifier, the non analytic grid is used. The other 
parameters were fixed to what is empirically found using the spherical grid. The error rate 
decreased to 24%. This shows that the choice of the grid is critical. 
 

 
Fig. 9. Error rate function of the dimension of the observation space for MLP. 
 

 
Fig. 10. Error rate function of the analysis window length: 640 ms and 1280 ms. 

 
5.5 SVM-Based Classifier 
Several kernel functions have been used: polynomial with degree 3, radial basis function, 
and hyperbolic tangent function. The parameters for each classifier have been optimized. 
Recall that the classification task is a three-class problem, the three classes being left action, 
right action or neither. Results are shown below in Table 1. For these experiments, features 
extracted on the non-parametric grid with optimal parameters found previously are used. 
The results demonstrate that the SVM classifier outperforms the MLP classifier.  
 
 
 
 

 

Classifier Error rate (%) 
Artificial Neural Network MLP 24 % 
SVM Polynomial Kernel 17 % 
SVM Radial Basis Kernel 16.7 % 
SVM Hyperbolic Tangent Kernel 20 % 

Table 1. Error rates obtained with SVM classifiers compared to MLP. 
 
In order to quantify the ability of the system to distinguish between “action” and “no 
action” events and between “left action” and “right action” events, experiments with a two 
classes-classification have been conducted. The results shown in Table 2 demonstrate that it 
is much easier to distinguish between “action” and “no action” classes than to determine 
which action has been thought. The Radial basis Kernel seems to provide the best results. 
These results outperform the best result obtained in (Sajda 2003), i.e. 24%. 
 

 Error rate (%) 
Classifier action/no action left/right 
SVM Polynomial Kernel 4% 23 % 
SVM Radial Basis Kernel 4% 16.7 % 
SVM Hyperbolic Tangent Kernel 4% 27 % 

Table 2. SVM classification performance in a two classes- classification problems. 

 
6. Conclusions 
 

Brain computer interfaces have gained large interest in the last decade. Two classes of 
approaches are distinguished: invasive and non-invasive. While invasive approaches 
require the implantation of sensors in a high risk surgery, non-invasive approaches rely on 
advanced signal processing and pattern recognition algorithms. Those algorithms are 
divided into two stages: a feature extraction stage and decoding/classification stage. 
Classical feature extraction algorithms try to explore the time-frequency characteristics of 
the EEG signals (Wavelet, Filter banks) or to statistically analyze the EEG signals (PCA, ICA) 
in order to reduce relevant features that would help to decode the intended action. An 
approach proposed by (Khachab et al., 2007) consists of using a brain imaging algorithm to 
deduce the electrical activity on a grid defined on the cortical surface. These activations are 
considered to form a feature vector.  
Several decoding/classification algorithms have been proposed in the literature. They take 
at their input the feature vectors and, based on those inputs, identify the intended action. 
Several machine learning algorithms have been used for this purpose. The chapter has 
briefly described the Artificial Neural Networks (ANN) and the Support Vector Machines 
(SVM). 
The results obtained with a BCI system that we have developed on a reference database 
have shown that the use of brain imaging permits to improve the performance of the BCI. 
They also show that SVM classifier outperforms the ANN in all the experiments conducted. 
Finally, one should notice that both the human control system (Fig. 3) and the BCI system 
(Fig. 1) include a feedback mechanism. However, the feedback mechanism in the BCI 
replaces somehow the human integrated one. This is due to the slow rate of information that 
can be processed by the BCI. Recent development tries to bypass the trial structure in order 
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extracted on the non-parametric grid with optimal parameters found previously are used. 
The results demonstrate that the SVM classifier outperforms the MLP classifier.  
 
 
 
 

 

Classifier Error rate (%) 
Artificial Neural Network MLP 24 % 
SVM Polynomial Kernel 17 % 
SVM Radial Basis Kernel 16.7 % 
SVM Hyperbolic Tangent Kernel 20 % 

Table 1. Error rates obtained with SVM classifiers compared to MLP. 
 
In order to quantify the ability of the system to distinguish between “action” and “no 
action” events and between “left action” and “right action” events, experiments with a two 
classes-classification have been conducted. The results shown in Table 2 demonstrate that it 
is much easier to distinguish between “action” and “no action” classes than to determine 
which action has been thought. The Radial basis Kernel seems to provide the best results. 
These results outperform the best result obtained in (Sajda 2003), i.e. 24%. 
 

 Error rate (%) 
Classifier action/no action left/right 
SVM Polynomial Kernel 4% 23 % 
SVM Radial Basis Kernel 4% 16.7 % 
SVM Hyperbolic Tangent Kernel 4% 27 % 

Table 2. SVM classification performance in a two classes- classification problems. 

 
6. Conclusions 
 

Brain computer interfaces have gained large interest in the last decade. Two classes of 
approaches are distinguished: invasive and non-invasive. While invasive approaches 
require the implantation of sensors in a high risk surgery, non-invasive approaches rely on 
advanced signal processing and pattern recognition algorithms. Those algorithms are 
divided into two stages: a feature extraction stage and decoding/classification stage. 
Classical feature extraction algorithms try to explore the time-frequency characteristics of 
the EEG signals (Wavelet, Filter banks) or to statistically analyze the EEG signals (PCA, ICA) 
in order to reduce relevant features that would help to decode the intended action. An 
approach proposed by (Khachab et al., 2007) consists of using a brain imaging algorithm to 
deduce the electrical activity on a grid defined on the cortical surface. These activations are 
considered to form a feature vector.  
Several decoding/classification algorithms have been proposed in the literature. They take 
at their input the feature vectors and, based on those inputs, identify the intended action. 
Several machine learning algorithms have been used for this purpose. The chapter has 
briefly described the Artificial Neural Networks (ANN) and the Support Vector Machines 
(SVM). 
The results obtained with a BCI system that we have developed on a reference database 
have shown that the use of brain imaging permits to improve the performance of the BCI. 
They also show that SVM classifier outperforms the ANN in all the experiments conducted. 
Finally, one should notice that both the human control system (Fig. 3) and the BCI system 
(Fig. 1) include a feedback mechanism. However, the feedback mechanism in the BCI 
replaces somehow the human integrated one. This is due to the slow rate of information that 
can be processed by the BCI. Recent development tries to bypass the trial structure in order 
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to overcome this problem. Important achievements have been obtained in this direction 
(Blankertz et al., 2006). 
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