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Abstract

Many signal processing systems, particularly in the multimedia and telecommunication do-
mains, are synthesized to execute data-intensive applications: their cost related aspects –
namely power consumption and chip area – are heavily influenced, if not dominated, by the
data access and storage aspects. This chapter presents a power-aware memory allocation
methodology. Starting from the high-level behavioral specification of a given application, this
framework performs the assignment of of the multidimensional signals to the memory layers
– the on-chip scratch-pad memory and the off-chip main memory – the goal being the reduc-
tion of the dynamic energy consumption in the memory subsystem. Based on the assignment
results, the framework subsequently performs the mapping of signals into the memory lay-
ers such that the overall amount of data storage be reduced. This software system yields a
complete allocation solution: the exact storage amount on each memory layer, the mapping
functions that determine the exact locations for any array element (scalar signal) in the spec-
ification, and, in addition, an estimation of the dynamic energy consumption in the memory
subsystem.

1. Introduction

Many multidimensional signal processing systems, particularly in the areas of multimedia
and telecommunications, are synthesized to execute data-intensive applications, the data
transfer and storage having a significant impact on both the system performance and the
major cost parameters – power and area.
In particular, the memory subsystem is, typically, a major contributor to the overall energy
budget of the entire system (8). The dynamic energy consumption is caused by memory ac-
cesses, whereas the static energy consumption is due to leakage currents. Savings of dynamic
energy can be potentially obtained by accessing frequently used data from smaller on-chip
memories rather than from the large off-chip main memory, the problem being how to op-
timally assign the data to the memory layers. Note that this problem is basically different
from caching for performance (15), (22), where the question is to find how to fill the cache
such that the needed data be loaded in advance from the main memory. As on-chip storage,
the scratch-pad memories (SPMs) – compiler-controlled static random-access memories, more

8
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energy-efficient than the hardware-managed caches – are widely used in embedded systems,
where caches incur a significant penalty in aspects like area cost, energy consumption, hit
latency, and real-time guarantees. A detailed study (4) comparing the tradeoffs of caches as
compared to SPMs found in their experiments that the latter exhibit 34% smaller area and
40% lower power consumption than a cache of the same capacity. Even more surprisingly,
the runtime measured in cycles was 18% better with an SPM using a simple static knapsack-
based allocation algorithm. As a general conclusion, the authors of the study found absolutely
no advantage in using caches, even in high-end embedded systems in which performance is
important. 1 Different from caches, the SPM occupies a distinct part of the virtual address
space, with the rest of the address space occupied by the main memory. The consequence is
that there is no need to check for the availability of the data in the SPM. Hence, the SPM does
not possess a comparator and the miss/hit acknowledging circuitry (4). This contributes to
a significant energy (as well as area) reduction. Another consequence is that in cache mem-
ory systems, the mapping of data to the cache is done during the code execution, whereas in
SPM-based systems this can be done at compilation time, using a suitable algorithm – as this
chapter will show.
The energy-efficient assignment of signals to the on- and off-chip memories has been studied
since the late nineties. These previous works focused on partitioning the signals from the ap-
plication code into so-called copy candidates (since the on-chip memories were usually caches),
and on the optimal selection and assignment of these to different layers into the memory hier-
archy (32), (7), (18). For instance, Kandemir and Choudhary analyze and exploit the temporal
locality by inserting local copies (21). Their layer assignment builds a separate hierarchy per
loop nest and then combines them into a single hierarchy. However, the approach lacks a
global view on the lifetimes of array elements in applications having imperfect nested loops.
Brockmeyer et al. use the steering heuristic of assigning the arrays having the lowest access
number over size ratio to the lowest memory layer first, followed by incremental reassign-
ments (7). Hu et al. can use parts of arrays as copies, but they typically use cuts along the array
dimensions (18) (like rows and columns of matrices). Udayakumaran and Barua propose a
dynamic allocation model for SPM-based embedded systems (29), but the focus is global and
stack data, rather than multidimensional signals. Issenin et al. perform a data reuse analysis
in a multi-layer memory organization (19), but the mapping of the signals into the hierarchi-
cal data storage is not considered. The energy-aware partitioning of an on-chip memory in
multiple banks has been studied by several research groups, as well. Techniques of an ex-
ploratory nature analyze possible partitions, matching them against the access patterns of the
application (25), (11). Other approaches exploit the properties of the dynamic energy cost and
the resulting structure of the partitioning space to come up with algorithms able to derive the
optimal partition for a given access pattern (6), (1).
Despite many advances in memory design techniques over the past two decades, existing
computer-aided design methodologies are still ineffective in many aspects. In several previ-
ous works, the reduction of the dynamic energy consumption in hierarchical memory sub-
systems is addressed using in part enumerative approaches, simulations, profiling, heuristic
explorations of the solution space, rather than a formal methodology. Also, several models of
mapping the multidimensional signals into the physical memory were proposed in the past
(see (12) for a good overview).

1 Caches have been a big success for desktops though, where the usual approach to adding SRAM is to
configure it as a cache.
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However, they all failed
(a) to provide efficient implementations,
(b) to prove their effectiveness in hierarchical memory organizations, and
(c) to provide quantitative measures of quality for the mapping solutions.
Moreover, the reduction of power consumption and the mapping of signals in hierarchical
memory subsystems were treated in the past as completely separate problems.
This chapter presents a power-aware memory allocation methodology. Starting from the high-
level behavioral specification of a given application, where the code is organized in sequences
of loop nests and the main data structures are multidimensional arrays, this framework per-
forms the assignment of of the multidimensional signals to the memory layers – the on-chip
scratch-pad memory and the off-chip main memory – the goal being the reduction of the dy-
namic energy consumption in the memory subsystem. Based on the assignment results, the
framework subsequently performs the mapping of signals into the memory layers such that
the overall amount of data storage be reduced. This software system yields a complete allo-
cation solution: the exact storage amount on each memory layer, the mapping functions that
determine the exact locations for any array element (scalar signal) in the specification, metrics
of quality for the allocation solution, and also an estimation of the dynamic energy consump-
tion in the memory subsystem using the CACTI power model (31). Extensions of the current
framework to support dynamic allocation are currently under development.
The rest of the chapter is organized as follows. Section 2 presents the algorithm that assigns
the signals to the memory layers, aiming to minimize the dynamic energy consumption in the
hierarchical memory subsystem subject to SPM size constraints. Section 3 describes the global
flow of the memory allocation approach, focusing on the mapping aspects. Section 4 discusses
on implementation and presents experimental results. Finally, Section 5 summarizes the main
conclusions of this research.

2. Power-aware signal assignment to the memory layers

The algorithms describing the functionality of real-time multimedia and telecommunication
applications are typically specified in a high-level programming language, where the code is
organized in sequences of loop nests having as boundaries linear functions of the outer loop
iterators. Conditional instructions are very common as well, and the multidimensional array
references have linear indexes (the variables being the loop iterators).2

Figure 1 shows an illustrative example whose structure is similar to the kernel of a motion
detection algorithm (9) (the actual code containing also a delay operator – not relevant in this
context). The problem is to automatically identify those parts of arrays from the given appli-
cation code that are more intensely accessed, in order to steer their assignment to the energy-
efficient data storage layer (the on-chip scratch-pad memory) such that the dynamic energy
consumption in the hierarchical memory subsystem be reduced.
The number of storage accesses for each array element can certainly be computed by the sim-
ulated execution of the code. For instance, the number of accesses was counted for every pair
of possible indexes (between 0 and 80) of signal A (see Fig. 1). The array elements near the

2 Typical piece-wise linear operations can be transformed into affine specifications (17). In addition,
pointer accesses can be converted at compilation to array accesses with explicit index functions (16).
Moreover, specifications where not all loop structures are for loops and not all array indexes are affine
functions of the loop iterators can be transformed into affine specifications that captures all the memory
references amenable to optimization (20). Extensions to support a larger class of specifications are thus
possible, but they are orthogonal to the work presented in this chapter.
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Fig. 1. Code derived from a motion detection (9) kernel (m = n = 16, M = N = 64) and the
exact map of memory read accesses (obtained by simulation) for the 2-D signal A.

center of the index space are accessed with high intensity (for instance, A[40][40] is accessed
2,178 times; A[16][40] is accessed 1,650 times), whereas the array elements at the periphery
are accessed with a significantly lower intensity (for instance, A[0][40] is accessed 33 times
and A[0][0] only once).
The drawbacks of such an approach are twofold. First, the simulated execution may be com-
putationally ineffective when the number of array elements is very significant, or when the
application code contains deep loop nests. Second, even if the simulated execution were fea-
sible, such a scalar-oriented technique would not be helpful since the addressing hardware of
the data memories would result very complex. An address generation unit (AGU) is typically
implemented to compute arithmetic expressions in order to generate sequences of addresses
(26); a set of array elements is not a good input for the design of an efficient AGU.
Our proposed computation methodology for power-aware signal assignment to the memory
layers is described below, after defining a few basic concepts.
Each array reference M[x1(i1, . . . , in)] · · · [xm(i1, . . . , in)] of an m-dimensional signal M, in the
scope of a nest of n loops having the iterators i1, . . . , in , is characterized by an iterator
space and an index (or array) space. The iterator space signifies the set of all iterator vectors
i = (i1, . . . , in) ∈ Z

n in the scope of the array reference, and it can be typically represented
by a so-called Z-polytope (a polyhedron bounded and closed, restricted to the set Zn): { i ∈
Zn | A · i ≥ b }. The index space is the set of all index vectors x = (x1, . . . , xm) ∈ Zm of
the array reference. When the indexes of an array reference are linear mappings with integer
coefficients of the loop iterators, the index space consists of one or several linearly bounded
lattices (27): { x = T · i + u ∈ Zm | A · i ≥ b , i ∈ Zn}. For instance, the array reference
A[i + 2 ∗ j + 3][j + 2 ∗ k] from the loop nest

for (i=0; i<=2; i++)

for (j=0; j<=3; j++)

for (k=0; k<=4; k++)

if ( 6*i+4*j+3*k ≤ 12 ) · · ·
A[i+2*j+3][j+2*k] · · ·

has the iterator space P =


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inequalities i ≤ 2, j ≤ 3, and k ≤ 4 are redundant.)
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Fig. 2. The mapping of the iterator space into the index space of the array reference A[i + 2 ∗
j + 3][j + 2 ∗ k].

The A-elements of the array reference have the indices x, y:






[

x
y

]

= T · i + u =

[

1 2 0
0 1 2

]





i
j
k



+

[

3
0

]





i
j
k



 ∈ P







. The points of the index

space lie inside the Z-polytope { x ≥ 3 , y ≥ 0 , 3x − 4y ≤ 15 , 5x + 6y ≤ 63 , x, y ∈ Z},
whose boundary is the image of the boundary of the iterator space P (see Fig. 2). However, it
can be shown that only those points (x,y) satisfying also the inequalities −6x + 8y ≥ 19k − 30,
x − 2y ≥ −4k + 3, and y ≥ 2k ≥ 0, for some positive integer k, belong to the index space;
these are the black points in the right quadrilateral from Fig. 2. In this example, each point in
the iterator space is mapped to a distinct point of the index space; this is not always the case,
though.
Algorithm 1: Power-aware signal assignment to the SPM and off-chip memory layers
Step 1 Extract the array references from the given algorithmic specification and decompose the array
references for every indexed signal into disjoint lattices.

Fig. 3. The decomposition of the array space of signal M in 6 disjoint lattices.
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The motivation of the decomposition of the array references relies on the following intuitive
idea: the disjoint lattices belonging to many array references are actually those parts of arrays
more heavily accessed during the code execution. This decomposition can be analytically per-
formed, using intersections and differences of lattices – operations quite complex (3) involving
computations of Hermite Normal Forms and solving Diophantine linear systems (24), com-
puting the vertices of Z-polytopes (2) and their supporting polyhedral cones, counting the
integral points in Z-polyhedra (5; 10), and computing integer projections of polytopes (30).
Figure 3 shows the result of such a decomposition for the three array references of signal M.
The resulting lattices have the following expressions (in non-matrix format):
L1 = {x = 0, y = t | 5 ≥ t ≥ 0}
L2 = {x = t1, y = t2 | 5 ≥ t2 ≥ 1 , 2t2 − 1 ≥ t1 ≥ 1}
L3 = {x = 2t, y = t | 5 ≥ t ≥ 1}
L4 = {x = 2t1 + 2, y = t2 | 4 ≥ t1 ≥ t2 ≥ 1}
L5 = {x = 2t1 + 1, y = t2 | 4 ≥ t1 ≥ t2 ≥ 1}
L6 = {x = t, y = 0 | 10 ≥ t ≥ 1}
Step 2 Compute the number of memory accesses for each disjoint lattice.
The total number of memory accesses to a given linearly bounded lattice of a signal is com-
puted as follows:
Step 2.1 Select an array reference of the signal and intersect the given lattice with it. If the
intersection is not empty, then the intersection is a linearly bounded lattice as well (27).
Step 2.2 Compute the number of points in the (non-empty) intersection: this is the number of
memory accesses to the given lattice (as part of the selected array reference).
Step 2.3 Repeat steps 2.1 and 2.2 for all the signal’s array references in the code, cumulating
the numbers of accesses.
For example, let us consider one of signal A’s lattices3 { 64 ≥ x , y ≥ 16} obtained in Step
1. Intersecting it with the array reference A[k][l] (see the code in Fig. 1), we obtain the lattice
{i = t1, j = t2, k = t3, l = t4 | 64 ≥ t1, t2, t3, t4 ≥ 16, t1 + 16 ≥ t3 ≥ t1 − 16, t2 + 16 ≥
t4 ≥ t2 − 16}. The size of this set is 2,614,689 , which is the number of memory accesses to the
given lattice as part of the array reference A[k][l]. Since the given lattice is also included in
the other array reference4 in the code – A[i][j], a similar computation yields 1,809,025 accesses
to the same lattice as part of A[i][j]. Hence, the total amount of memory accesses to the given
lattice is 2,614,689+1,809,025=4,423,714.
Figure 4 displays a computed map of memory accesses for the signal A, where A’s index space
is in the horizontal plane xOy and the numbers of memory accesses are on the vertical axis Oz.
This computed map is an approximation of the exact map in Fig. 1 since the accesses within
each lattice are considered uniform, equal to the average values obtained above. The advan-
tage of this map construction is that the (usually time-expensive) simulation is not needed any
more, being replaced by algebraic computations. Note that a finer granularity in the decom-
position of the index space of a signal in disjoint lattices entails a computed map of accesses
closer to the exact map.
Step 3 Select the lattices having the highest access numbers, whose total size does not exceed the
maximum SPM size (assumed to be a design constraint), and assign them to the SPM layer. The other
lattices will be assigned to the main memory.

3 When the lattice has T=I – the identity matrix – and u=0, the lattice is actually a Z-polytope, like in this
example.

4 Note that in our case, due to Step 1, any disjoint lattice is either included in the array reference or disjoint
from it.
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Fig. 4. Computed 3D map of memory read accesses for the signal A from the illustrative code
in Figure 1.

Storing on-chip all the signals is, obviously, the most desirable scenario in point of view of
dynamic energy consumption, which is typically impossible. We assume here that the SPM
size is constrained to smaller values than the overall storage requirement. In our tests, we
computed the ratio between the dynamic energy reduction and the SPM size after mapping;
the value of the SPM size maximizing this ratio was selected, the idea being to obtain the
maximum benefit (in energy point of view) for the smallest SPM size.

3. Mapping signals within memory layers

This design phase has the following goals: (a) to map the signals (already assigned to the
memory layers) into amounts of data storage as small as possible, both for the SPM and the
main memory; (b) to compute these amounts of storage after mapping on both memory layers
(allocation solution) and be able to determine the memory location of each array element from
the specification (assignment solution); (c) to use mapping functions simple enough in order
to ensure an address generation hardware of a reasonable complexity; (d) to ascertain that any
scalar signals (array elements) simultaneously alive are mapped to distinct storage locations.
Since the mapping models (13) and (28) play an important part in this section, they will be
explained and illustrated below.
To reduce the size of a multidimensional array mapped to memory, the model (13) considers
all the possible canonical5 linearizations of the array; for any linearization, the largest distance
at any time between two live elements is computed. This distance plus 1 is then the stor-
age “window” required for the mapping of the array into the data memory. More formally,
|WA| = min max { dist(Ai, Aj) } + 1, where |WA| is the size of the storage window of a
signal A, the minimum is taken over all the canonical linearizations, while the maximum is
taken over all the pairs of A-elements (Ai,Aj) simultaneously alive.
This mapping model will be illustrated for the loop nest from Fig. 5(a). The graph above
the code represents the array (index) space of signal A. The points represent the A-elements
A[index1][index2] which are produced (and consumed as well) in the loop nest. The points
to the left of the dashed line represent the elements produced till the end of the iteration
(i = 14, j = 4), the black points being the elements still alive (i.e., produced and still used as

5 For instance, a 2-D array can be typically linearized concatenating the rows or concatenating the
columns. In addition, the elements in a given dimension can be mapped in the increasing or decreasing
order of the respective index.
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Fig. 5. (a-b) Illustrative examples having a similar code structure. The mapping model by
array linearization yields a better allocation solution for the former example, whereas the
bounding window model behaves better for the latter one.

operands in the next iterations), while the circles representing A-elements already ‘dead’ (i.e.,
not needed as operands any more). The light grey points to the right of the dashed line are
A-elements still unborn (to be produced in the next iterations).
If we consider the array linearization by column concatenation in the increasing order of the
columns ((A[index1][index2], index1=0,18), index2=0,9), two elements simultaneously alive,
placed the farthest apart from each other, are A[9][0] and A[9][9]. The distance between them
is 9×19=171. Now, if we consider the array linearization by row concatenation in the increas-
ing order of the rows ((A[index1][index2], index2=0,9), index1=0,18), the maximum distance
between live elements is 99 (e.g., between A[4][5] and A[14][4]). For all the canonical lin-
earizations, the maximum distances have the values {99, 109, 171, 181}. The best canonical
linearization for the array A is the concatenation row by row, increasingly. A memory win-
dow WA of 99+1=100 successive locations (relative to a certain base address) is sufficient to
store the array without mapping conflicts: it is sufficient that any access to A[index1][index2]
be redirected to WA[(10 ∗ index1 + index2) mod 100].
In order to avoid the inconvenience of analyzing different linearization schemes, another
possibility is to compute a maximal bounding window WA = (w1, . . . , wm) large enough
to encompass at any time the simultaneously alive A-elements. An access to the element
A[index1] . . . [indexm] can then be redirected without any conflict to the window location
WA[index1 mod w1] . . . [indexm mod wm]; in its turn, the window is mapped, relative to a base
address, into the physical memory by a typical canonical linearization, like row or column
concatenation for 2-D arrays. Each window element wk is computed as the maximum differ-
ence in absolute value between the k-th indexes of any two A-elements (Ai,Aj) simultaneously
alive, plus 1. More formally, wk = max { |xk(Ai)− xk(Aj)| } + 1, for k = 1, . . . , m. This
ensures that any two array elements simultaneously alive are mapped to distinct memory lo-
cations. The amount of data memory required for storing (after mapping) the array A is the
volume of the bounding window WA, that is, |WA| = Π

m
k=1wk.
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In the illustrative example shown in Fig. 5(a), the bounding window of the signal A is
WA = (11 , 10). It follows that the storage allocation for signal A is 100 locations if the
linearization model is used, and w1 × w2=110 locations when the bounding window model is
applied. However, in the example shown in Fig. 5(b), where the code has a similar structure,
the bounding window model yields a better allocation result – 30 storage locations, since the
2-D window of A is WA = (5 , 6), whereas the linearization model yields 32 locations (the
best canonical linearization being the row concatenation in the increasing order of rows).
Our software system incorporates both mapping models, their implementation being based
on the same polyhedral framework operating with lattices, used also in Section 2. This is ad-
vantageous both from the point of view of computational efficiency and relative to the amount
of allocated data storage – since the mapping window for each signal is the smallest one of
the two models. Moreover, this methodology can be applied independently to the memory
layers, providing a complete storage allocation/assignment solution for distributed memory
organizations.
Before explaining the global flow of the algorithm, let us examine the simple case of a code
with only one array reference in it: take, for instance, the two nested loops from Fig. 5(b),
but without the second conditional statement that consumes the A-elements. In the bounding
window model, WA can be determined by computing the integer projections on the two axes
of the lattice of A[i][j], represented graphically by all the points inside the quadrilateral from
Fig. 5(b). It can be directly observed that the integer projections of this polygon have the
sizes: w1 = 11 and w2 = 7. In the linearization model, denoting x and y the two indexes,
the distance between two A-elements A1(x1, y1) and A2(x2, y2), assuming row concatenation
in the increasing order of the rows, is: dist(A1, A2) = (x2 − x1)∆y + (y2 − y1), where ∆y
is the range of the second index (here, equal to 7) in the array space.6 Then, the A-elements
at a maximum distance have the minimum and, respectively, the maximum index vectors
relative to the lexicographic order. These array A-elements are represented by the points M =
A[2][7] and N = A[12][7] in Fig. 5(b), and dist(M, N) = (12-2)×7 +(0-0)=70. Similarly, in the
linearization by column concatenation, the array elements at the maximum distance from each
other are still the elements with (lexicographically) minimum and maximum index vectors,
provided an interchange of the indexes is applied first. These are the points M′ = A[9][4] and
N′ = A[4][10] in Fig. 5(b). More general, the maximum distance between the points of a live
lattice in a canonical linearization is the distance between the (lexicographically) minimum
and maximum index vectors, providing an index permutation is applied first. The distance

between the array elements Ai(xi
1, xi

2, . . . , xi
m) and Aj(x

j
1, x

j
2, . . . , x

j
m) is:

dist(Ai, Aj) = (x
j
1 − xi

1)∆x2 · · ·∆xm + (x
j
2 − xi

2)∆x3 · · ·∆xm + · · ·+ (x
j
m−1 − xi

m−1)∆xm +

(x
j
m − xi

m) where the index vector of Aj is lexicographically larger than of Ai (∆xi is the range
of xi).
Algorithm 2: For each memory layer (SPM and main memory) compute the mapping windows for
every indexed signal having lattices assigned to that layer.

Step 1 Compute underestimations of the window sizes on the current memory layer for each indexed
signal, taking into account only the live signals at the boundaries between the loop nests.
Let A be an m-dimensional signal in the algorithmic specification, and let PA be the set of dis-
joint lattices partitioning the index space of A. A high-level pseudo-code of the computation

6 To ensure that the distance is a nonnegative number, we shall assume that [x2 y2]
T ≻ [x1 y1]

T relative to
the lexicographic order. The vector y = [y1, . . . , ym]T is larger lexicographically than x = [x1, . . . , xm]T

(written y ≻ x) if (y1 > x1), or (y1 = x1 and y2 > x2), . . . , or (y1 = x1, . . . , ym−1 = xm−1, and ym > xm).
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of A’s preliminary windows is given below. Preliminary window sizes for each canonical lin-
earization according to DeGreef’s model (13) are computed first, followed by the computation
of the window size underestimate according to Tronçon’s model (28) in the same framework
operating with lattices. The meaning of the variables are explained as comments.

for ( each canonical linearization C ) {
for ( each disjoint lattice L ∈ PA ) // compute the (lexicographically) minimum and

maximum ...
compute xmin(L) and xmax(L) ; // ... index vectors of L relative to C

for ( each boundary n between the loop nests n and n + 1 ) { // the start of the code is
boundary 0

let PA(n) be the collection of disjoint lattices of A, which are alive at the bound-
ary n ;

// these are disjoint lattices produced before the boundary and con-
sumed after it

let Xmin
n = minL∈PA(n) {xmin(L)} and Xmax

n = maxL∈PA(n) {xmax(L)} ;

|WC (n)| = dist(Xmin
n , Xmax

n )+ 1 ; // The distance is computed in the canonical
linearization C

}
|WC | = maxn { |WC (n)| } ; // the window size according to (13) for the canonical

linearization C
} // (possibly, an underestimate)
for ( each disjoint lattice L ∈ PA )

for ( each dimension k of signal A )
compute xmin

k (L) and xmax
k (L) ; // the extremes of the integer projection of L

on the k-th axis
for ( each boundary n between the loop nests n and n + 1 ) { // the start of the code is

boundary 0
let PA(n) be the collection of disjoint lattices of A, which are alive at the boundary

n ;
for ( each dimension k of signal A ) {

let Xmin
k = minL∈PA(n) {xmin

k (L)} and Xmax
k = maxL∈PA(n) {xmax

k (L)} ;

wk(n) = Xmax
k − Xmin

k + 1 ; // The k-th side of A’s bounding window at
boundary n

}
}
for ( each dimension k of signal A ) wk = maxn{wk(n)} ; // k-th side of A’s window over

all boundaries
|W| = Π

m
k=1wk ; // the window size according to (28) (possibly, an underestimate)

Step 1 finds the exact values of the window sizes for both mapping models only when every
loop nest either produces or consumes (but not both!) the signal’s elements. Otherwise, when
in a certain loop nest elements of the signal are both produced and consumed (see the illus-
trative example from Fig. 5(a)), then the window sizes obtained at the end of Step 1 may be
only underestimates since an increase of the storage requirement can happen inside the loop
nest. Then, an additional step is required to find the exact values of the window sizes in both
mapping models.
Step 2 Update the mapping windows for each indexed signal in every loop nest producing and con-
suming elements of the signal.
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The guiding idea is that local or global maxima of the bounding window size |W| are reached
immediately before the consumption of an A-element, which may entail a shrinkage of some
side of the bounding window encompassing the live elements. Similarly, the local or global
maxima of |WC | are reached immediately before the consumption of an A-element, which
may entail a decrease of the maximum distance between live elements. Consequently, for
each A-element consumed in a loop nest which also produces A-elements, we construct the
disjoint lattices partially produced and those partially consumed until the iteration when the
A-element is consumed. Afterwards, we do a similar computation as in Step 1 which may
result in increased values for |WC | and/or |W|.
Finally, the amount of data memory allocated for signal A on the current memory layer is
|WA| = min { |W| , minC { |WC | } }, that is, the smallest data storage provided by the bound-
ing window and the linearization mapping models. In principle, the overall amount of data
memory after mapping is ∑A |WA| – the sum of the mapping window sizes of all the sig-
nals having lattices assigned to the current memory layer. In addition, a post-processing step
attempts to further enhance the allocation solution: our polyhedral framework allows to effi-
ciently check weather two multidimensional signals have disjoint lifetimes, in which case the
signals can share the largest of the two windows. More general, an incompatibility graph (14)
is used to optimize the memory sharing among all the signals at the level of whole code.

4. Experimental results

A hierarchical memory allocation tool has been implemented in C++, incorporating the al-
gorithms described in this chapter. For the time being, the tool supports only a two-level
memory hierarchy, where an SPM is used between the main memory and the processor core.
The dynamic energy is computed based on the number of accesses to each memory layer. In
computing the dynamic energy consumptions for the SPM and the main (off-chip) memory,
the CACTI v5.3 power model (31) was used.
Table 1 summarizes the results of our experiments, carried out on a PC with an Intel Core 2
Duo 1.8 GHz processor and 512 MB RAM. The benchmarks used are: (1) a motion detection
algorithm used in the transmission of real-time video signals on data networks; (2) the kernel
of a motion estimation algorithm for moving objects (MPEG-4); (3) Durbin’s algorithm for
solving Toeplitz systems with N unknowns; (4) a singular value decomposition (SVD) up-
dating algorithm (23) used in spatial division multiplex access (SDMA) modulation in mobile
communication receivers, in beamforming, and Kalman filtering; (5) the kernel of a voice
coding application – essential component of a mobile radio terminal.
The table displays the total number of memory accesses, the data memory size (in storage
locations/bytes), and the dynamic energy consumption assuming only one (off-chip) memory
layer; in addition, the SPM size and the savings of dynamic energy applying, respectively, a
previous model steered by the total number of accesses for whole arrays (7), another previous
model steered by the most accessed array rows/columns (18), and the current model, versus
the single-layer memory scenario; the CPU times. The energy consumptions for the motion
estimation benchmark were, respectively, 1894, 1832, and 1522 µJ; the saved energies relative
to the energy in column 4 are displayed as percentages in columns 6-8. Our experiments
show that the savings of dynamic energy consumption are from 40% to over 70% relative
to the energy used in the case of a flat memory design. Although previous models produce
energy savings as well, our model led to 20%-33% better savings than them.
Different from the previous works on power-aware assignment to the memory layers, our
framework provides also the mapping functions that determine the exact locations for any
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Application #Memory Mem. Dyn. energy SPM Dyn. energy Dyn. energy Dyn. energy CPU
parameters accesses size 1-layer [µJ] size saved (7) saved (18) saved [sec]

Motion detection 136,242 2,740 486 841 30.2% 44.5% 49.2% 4
M=N=32, m=n=4

Motion estimation 864,900 3,624 3,088 1,416 38.7% 40.7% 50.7% 23
M=32, N=16

Durbin algorithm 1,004,993 1,249 3,588 764 55.2% 58.5% 73.2% 28
N =500

SVD updating 6,227,124 34,950 22,231 12,672 35.9% 38.4% 46.0% 37
n =100

Vocoder 200,000 12,690 714 3,879 30.8% 32.5% 39.5% 8

Table 1. Experimental results.
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array element in the specification. This provides the necessary information for the automated
design of the address generation unit, which is one of our future development directions.
Different from the previous works on signal-to-memory mapping, our framework offers a
hierarchical strategy and, also, two metrics of quality for the memory allocation solutions:
(a) the sum of the minimum array windows (that is, the optimum memory sharing between
elements of same arrays), and (b) the minimum storage requirement for the execution of the
application code (that is, the optimum memory sharing between all the scalar signals or array
elements in the code) (3).

5. Conclusions

This chapter has presented an integrated computer-aided design methodology for power-
aware memory allocation, targeting embedded data-intensive signal processing applications.
The memory management tasks – the signal assignment to the memory layers and their map-
ping to the physical memories – are efficiently addressed within a common polyhedral frame-
work.
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