
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Design and Implementation of FPGA- based Systolic Array for LZ Data Compression 75

Design and Implementation of FPGA- based Systolic Array for LZ Data
Compression

Mohamed A. Abd El Ghany, Magdy A. El-Moursy* and Aly E. Salama

X

Design and Implementation of FPGA- based
Systolic Array for LZ Data Compression

Mohamed A. Abd El Ghany, Magdy A. El-Moursy* and Aly E. Salama**

Electronics Engineering Dept., German University in Cairo, Cairo, Egypt
Electronics Research Institute, Cairo, Egypt, Mentor Graphics Corporation, Cairo, Egypt*

Electronics and communication Dept., Cairo University, Cairo, Egypt**

1. Introduction

Data compression is becoming an essential component of high speed data communications
and storage. Lossless data compression is the process of encoding ("compressing") a body of
data into a smaller body of data which can, at a later time, be uniquely decoded
("decompressed") back to the original data. In lossy compression, the decompressed data
contains some approximation of the original data.
Hardware implementation of data compression algorithms is receiving increasing attention
due to exponential expansion in network traffic and digital data storage usage. Many lossless
data compression techniques have been proposed in the past and widely used, e.g., Huffman
code (Huffman, 1952) ; (Gallager, 1978);(Park & Prasanna, 1993), arithmetic code (Bodden et
al., 2004);(Said, 2004);(Said, 2003); (Howard & Vetter, 1992), run-length code (Golomb, 1966),
and Lempel–Ziv (LZ) algorithms (Ziv & Lempel, 1977);(Ziv & Lempel, 1978);(Welch,
1984);(Salomon, 2004). Among those, LZ algorithms are the most popular when no prior
knowledge or statistical characteristics of the data being compressed are available. The
principle of the LZ algorithms is to find the longest match between the recently received
string which is stored in the input buffer and the incoming string. Once this match is located,
the incoming string is represented with a position tag and a length variable linking the new
string to the old existing one. Since the repeated data is linked to an older one, more concise
representation is achieved and compression is performed. The latency of the compression
process is defined by the number of clock cycles needed to produce a codeword (matching
results).
To fulfill real-time requirements, several hardware realizations of LZ and its variants have
been presented in the literature. Different hardware architectures, including content
addressable memory (CAM) (Lin & Wu, 2000);(Jones, 1992);(Lee & Yang, 1995), Systolic array
(Ranganathan & Henriques, 1993);(Jung & Burleson, 1998);(Hwang & Wu, 2001), and
embedded processor (Chang et al., 1994), have been proposed in the past. The microprocessor
approach is not attractive for real- time applications, since it does not fully explore hardware
parallelism (Hwang & Wu, 2001). CAM has been considered one of the fastest architectures
to search for a given string in a long world, which is necessary process in LZ. A CAM- based
LZ data compressor can process one input symbol per clock cycle, regardless of the buffer
length and string length. A CAM- based LZ can achieve optimum speed for compression.

5

www.intechopen.com

Data Storage76

However, CAMs require highly complex hardware and dissipate high power. The CAM
approach performs string matching through full parallel search, while the systolic-array
approach exploits pipelining.
As compared to CAM- based designs, systolic –array-based designs are slower, but better in
hardware cost and testability (Hwang & Wu, 2001); (Hwang & Wu, 1995); (Hwang & Wu,
1997). Preliminary design for systolic – array contains thousands of processing elements (PEs)
(Ranganathan & Henriques, 1993). High speed designs were then reported later, requiring
only tens of PEs (Jung & Burleson, 1998);(hwang et al., 2001). A technique to enhance the
efficiency of systolic- array approach which is used to implement Lempel- Ziv algorithm is
described in this chapter. A parallel technique for LZ-based data compression is presented.
The technique employs transforming a data–dependent algorithm to a data – independent
algorithm. A control variable is introduced to indicate early completion which improves the
latency. The proposed implementation is area and speed efficient. The effect of the input
buffer length on the compression ratio is analyzed. An FPGA implementation for the
proposed technique is carried out. The implemented design verifies that data can be
compressed and decompressed on-the- fly which opens new areas of research in data
compression.
The organization of this chapter is as follows: In Section 2, the LZ compression algorithm is
explained. The results and comments about some software simulations are discussed. The
dependency graph (DG) to investigate the data dependency of every computation step in the
algorithm is shown. The most recent systolic array architecture is described and an area and
speed efficient architecture is proposed in Section 3. In Section 4, the proposed systolic array
structure is compared with the most recent structures (Hwang et al., 2001) in terms of area,
and latency. An FPGA implementation for the proposed architecture showing the real time
operations is demonstrated in Section 5. Finally, conclusions are provided in Section 6.

2. Lempel-ziv coding algorithm

The LZ algorithm was proposed by Ziv and Lempel in (Ranganathan & Henriques, 1993).
The relationship between n and Ls for optimal compression performance is briefly examined.
The data dependency of every computation step in the LZ compression algorithm is
investigated.

2.1 The compression algorithm:
The LZ algorithm and its variants use a sliding window that moves a long with the cursor.
The window can be divided into two parts, the part before the cursor, called the dictionary,
and the part starting at the cursor, called the look-ahead buffer. The lengths of these two
parts are input parameters to compression algorithm. The basic algorithm is very simple, and
loops executing the following steps:

1. Find the longest match of a string starting at the cursor and completely contained in
the look-ahead buffer to a string starting in the dictionary.

2. Output a triple parameter (Ip, Lmax, S) containing the position Ip of the occurrence in
the window, the length Lmax of the match and the next symbol S past the match.

3. Move the cursor Lmax + 1 symbols forward.

www.intechopen.com

Design and Implementation of FPGA- based Systolic Array for LZ Data Compression 77

 Let us consider an example with window length of (n=9) and look-ahead buffer length (Ls=3)
shown in Fig. 1.
Let the content of the window be denoted as Xi, i = 0,1,…..,n-1 and that of the look-ahead
buffer be Yj, j = 0,1,……Ls-1 (i.e., Yj = Xi+ n-Ls). According to LZ algorithm, the content of look-
ahead buffer is compared with the dictionary content starting from X0 to Xn-Ls-1 to find the
longest match length. If the best match in the window is found to start from position Ip and
the match length is Lmax. Then Lmax symbols will be represented by a codeword (Ip, Lmax). The
codeword length is Lc:

Lc = 1 + [log2 (n-Ls)] + [Log2 Ls] bits (1)
Lc is fixed. Assume w bits are required to represent a symbol in the window, l = [log2 Ls] bits
are required to represent Lmax, and p = [log2 (n-Ls)] bits are required to represent Ip. Then the
compression ratio is (l + p) / (Lmax * w), where 0 ≤ Lmax ≤ Ls. Hence the compression ratio
depends on the match situation.

Fig. 1. window of the LZ compressor example

The codeword design and the choice of widow length are crucial in achieving maximum
compression. The LZ technique involves the conversion of variable length substrings into
fixed length codewords that represent the pointer and the length of the match. Hence,
selection of values of n and Ls can greatly influence the compression efficiency of the LZ
algorithm.

2.2 Compression Algorithm Paramters Selection
Simulation for the performance of the LZ algorithm for different buffers lengths is performed
using the Calgary corpus and the Silesia Corpus (Deorowicz, 2003) [16], as shown in Fig. 2
and Fig. 3, respectively. In these experiments, the codeword is up to 2 bytes long.
From Fig. 2 and Fig. 3, the compression ratio decreases when n exceeds 1024. The above
improvement in the compression ratio can be obtained only when Ls = 8, 16, or 32. Based on
the results, the best Ls for a good compression ratio is 24. Increasing Ls beyond that will
require a much faster growing n (as well as hardware cost and computation time), with
saturating or even decreasing compression ratio. The reason is that repeating patterns tend to
be short, and that increasing Ls and n also increases the codeword length (l + p). To achieve a
good performance for different data formats, Ls may range from 8 to 32, while n may be from
1k to 8 k. The simulation results verify the results proposed in (Arias et al., 2004).

www.intechopen.com

Data Storage78

Fig. 2. The relationship between the compression ratio of Calgary corpus and Ls for different
values of n

Fig. 3. The relationship between the compression ratio of Silesia corpus and Ls for different
values of n.

2.3 Dependency graph:
A dependency graph (DG) is a graph that shows the dependence of the computations that
occur in an algorithm. The DG of the LZ algorithm can be obtained as shown in Fig. 4. In the
DG, L (match length) and E (match signal) are propagated from cell to cell. X (content of the
window) and Y (content of the look-ahead buffer) are broadcast horizontally and diagonally
to all cells, respectively. The DG shown in Fig. 4 is called a global DG, because it contains
global signals. The global DG can be transformed into a localized DG, by propagating the
input data Y and X from cell to cell instead of broadcasting them. Processor assignment can
be done by projection of the DG onto the surface normal to the projection vector selected.
After processor assignment, the events are scheduled using a schedule vector.

0,4

0,6

0,8

1

1,2

4 8 16 32 64 128co
m

pr
es

si
on

 ra
tio

Ls values

n=256

n=512

n=102
4

0,4

0,6

0,8

1

1,2

4 8 16 32 64 128co
m

pr
es

si
on

 ra
tio

Ls values

n=25
6
n=51
2
n=10
24

www.intechopen.com

Design and Implementation of FPGA- based Systolic Array for LZ Data Compression 79

 i

Fig. 4. The dependence graph of the LZ compression algorithm.

3. Systolic array architecture

The hardware architectures of LZ data compression demonstrate that systolic array
compressors are better in hardware cost and testability. The main difference between
systolic arrays and other architectures is that systolic arrays can operate at a higher clock
rate (due to nearest-neighbor communication) and can easily be implemented and tested
(due to regularity and homogeneity). In the following subsections, the most recent systolic
array architectures are described. The high performance architecture is proposed.

3.1 Design-1
This architecture was first proposed in (Ziv & Lempel, 1977). The space-time diagram and
its final array architecture are given in Fig. 5, where D represents a unit delay on the signal
line between two processing elements. In Table 1, the six –sets of comparisons have to be
done in sequence in order to find the maximum matching substring.

(1) (2) (3) (4) (5) (6)
X0- Y0 X1- Y0 X2- Y0 X3- Y0 X4- Y0 X5- Y0
X1- Y1 X2- Y1 X3- Y1 X4- Y1 X5- Y1 X6- Y1
X2- Y2 X3- Y2 X4- Y2 X5- Y2 X6- Y2 X7- Y2

Table 1. The six- sets of required comparisons

Let us consider six processing elements (PE’s) in parallel, each performing one vertical set of
comparisons. Each processing element would require 3 time units (Ls =3) to complete its set
of comparisons. As shown in Fig. 5, the delay blocks in each PE delay the Y by two time
steps and the X by one time step. A space- time diagram is used to illustrate the sequence of
comparisons as performed by each PE. The data brought into PE0 are routed systolically
through each processor from left to right. In the first time unit, X0 and Y0 are compared at
PE0. In the second time unit, X1 and Y1 are compared, X0 flows to PE1, and Y0 is delayed by
one cycle (time unit). In the third time unit, X2 andY2 are compared at PE0. At this time, Y0
gets to PE1along with X1, and PE1 performs its first comparison at the third cycle, PE0

www.intechopen.com

Data Storage80

completes all its required comparisons and stores an integer specifying the number of
successful comparisons in a register called Li. Another register called Lmax, holds the
maximum matching length obtained from the previous PE's. In the fourth time unit, PE0
compares the values of Lmax (which for PE0 is 0) and Li, and the greater of the two is sent to
the Lmax register of the next PE. The result of the Li - Lmax comparison is sent to the next PE
after a delay of one time unit for proper synchronization. Finally, the Lmax value emerging
out from the last PE (PE5 in this case) is the length of the longest matching substring. There
is another register called PE's id, whose contents are passed along with the Lmax value to the
next PE. Its contents indicate the id of the processor element where the Lmax value occurred
which becomes the pointer to the match.

Fig. 5. Design-1 and its space-time diagram indicating the sequence of events in the 6 PE’s.

The functional block of the PE is shown in Fig. 6, in which the control circuit is not included.
Two comparators are needed in the PE: one is for equality check of Yj and Xi and the other
together with two multiplexers are for determining Lmax and Ip. If Yj and Xi are equal, a
counter is incremented each time until an unsuccessful comparison occurs. Sequences Xi and
Yj can be generated by the buffer shown in Fig. 7, which is organized in two levels the upper
level of the buffer holds the incoming symbols to be compressed. The contents of the upper
level are copied into the lower level whenever the "load" line goes high. The lower level is
used to provide data to the PE's in the correct sequence.

time PE0 PE1 PE2 PE3 PE4 PE5
1 X0-Y0
2 X1-Y1
3 X2-Y2 X1-Y0
4 Lmax X2-Y1
5 X3-Y2 X2-Y0
6 Lmax X3-Y1
7 X4-Y2 X3-Y0
8 Lmax X4-Y1
9 X5-Y2 X4-Y0
10 Lmax X5-Y1
11 X6-Y2 X5-Y0
12 Lmax X6-Y1
13 X7-Y2
14 Lmax

www.intechopen.com

Design and Implementation of FPGA- based Systolic Array for LZ Data Compression 81

Fig. 6. The functional block of design-1 PE.

The operation of the buffer is as follows. When the longest match length is found, the same
number of symbols are shifted into the in upper buffer from the source and then the
symbols in the upper buffer are copied to the lower buffer in parallel to generate the next
sequence to the processor array. In the Design- 1 array, The number of clock cycles needed
to produce a codeword is 2 (n-Ls), so the utilization rate of each PE is Ls/ [(2 (n-Ls)], which is
low since the PE is idle from the moment when Li is determined until the time the codeword
is produced. The reason is that it seems impossible to compress subsequent input symbols
before the present compression process is completed, because the number of input symbols
needed to be shifted into the buffer is equal to the longest match length which is not
available before the completion of the present compression process. Therefore, the design
with more than Ls pipeline stages must have some idle PEs before the present codeword is
produced.

Fig. 7. the buffer.

3.2 Design-2:
The Design-2 was first proposed in (Hwang & Wu, 2001). The space-time diagram and its
array architecture are given in Fig. 8. It consists of Ls process elements. The match element
Yjs stay in the PEs, and Xi and Li both flow leftwards with delays of 1 and 2 clock cycles,

w

w

Ip

p

l

Li
Lmax

Xi

Yj

 a b
Comparator
a=b

D

Incremente
r

 a b
Comparator
a > b

M
u
x

D

PE’s id
D

M
u
x

www.intechopen.com

Data Storage82

respectively. The first Li from the leftmost PE will be obtained after 2* Ls clock cycles. After
that, one Li will be obtained every clock cycle. The block diagram of the Design-2 PE is
shown in Fig. 9.

Li PE2 PE1 PE0 Time
 L0

X0-Y0
1

 L1
X1-Y0

2

 L0
X1-Y1

L2
X2-Y0

3

 L1
X2-Y1

L3
X3-Y0

4

 L0
X2-Y2

L2
X3-Y1

L4
X4-Y0

5

L0 L1
X3-Y2

L3
X4-Y1

L5
X5-Y0

6

L1 L2
X4-Y2

L4
X5-Y1

 7

L2 L3
X5-Y2

L5
X6-Y1

 8

L3 L4
X6-Y2

 9

L4 L5
X7-Y2

 10

L5 11
Fig. 8. Design- 2 space- time diagram and array.

Fig. 9. The structure of Design- 2 PE.

Li

Yj

Ei

Xi w

w

a b
Comparator
a = b

Reg

Accumulator D

D

D
D

D

X0 X1 X2 X3 X4 X5 X6 X7

PE2 PE1 PE0

Y2 Y1 Y0

D D

D

D D

D
Li

www.intechopen.com

Design and Implementation of FPGA- based Systolic Array for LZ Data Compression 83

3.3 Design-3:
Design-3 was proposed in (Ranganathan & Henriques, 1993). The space-time diagram and
the resulting array are given in Fig. 10. The value of Yi stays in the PE. The buffer element Xi
moves systolically from right to left with delay of 2 clocks. Li propagates from right to left
with 1 clock cycle. The first Li from the leftmost PE will be obtained after Ls clock cycles.
After that, the subsequent ones will be obtained every clock cycle. The structure of Design-3
PE is shown in Fig. 11. MRB is needed to determine Lmax and Ip.

Fig. 10. The space-time diagram and the resulting array of Design-3.

Fig. 11. The structure of Design-3 PE.

Li PE2 PE1 PE0 time
 X5-Y0

L5

1

 X6-Y1
L5

X4-Y0
L4

2

 X7-Y2
L5

X5-Y1
L4

X3-Y0
L3

3

L5 X6-Y2
L4

X4-Y1
L3

X2-Y0
L2

4

L4 X5-Y2
L3

X3-Y1
L2

X1-Y0
L1

5

L3 X4-Y2
L2

X2-Y1
L1

X0-Y0
L0

6

L2 X3-Y1
L1

X1-Y1
L0

 7

L1 X2-Y2
L0

 8

L0 9

Li

Yj

Ei

Xi w

w

a b
comparator
a = b

Reg

Accumulator D

D

D

D

time

space

www.intechopen.com

Data Storage84

3.4 The Interleaved Design:
From the dependency graph shown in Fig. 4, the interleaved design is obtained by projecting
all the nodes in a particular raw to a single processor element. This design was first proposed
in (Hwang & Wu, 2001). The space–time diagram and the resulting array of the interleaved
design are given in Fig. 12. The Yjs which need to be accessed in parallel do not change
during the encoding step. The special buffer is needed to generate the interleaving symbols of
Xi and Xi + [n- Ls/2] as shown in Fig. 13. The first Li will be obtained after Ls clock cycles from the
leftmost PE and subsequent ones will be obtained every one clock cycle.

Fig. 12. The space-time diagram and the resulting array of interleaved design.

X0 X1 X2 X3 X4 X5 X6 X7 X8

Fig. 13. buffer design for generating the interleaving symbols.

Before the encoding process, the Yis are preloaded which take Ls extra cycles. During the
encoding process, the time to preload new source symbols depend on how many source
symbols were compressed in the previous compression step, Lmax. The block diagram of the
processor element is shown in Fig. 14.

Li PE2 PE1 PE0 time
 X0-Y0

L0

1

 X1-Y1
L0

X3-Y0
L3

2

 X2-Y2
L0

X4-Y1
L3

X1-Y0
L1

3

L0 X5-Y2
L3

X2-Y1
L1

X4-Y0
L4

4

L3 X3-Y2
L1

X5-Y1
L4

X2-Y0
L2

5

L1 X6-Y2
L4

X3-Y1
L2

X5-Y0
L5

6

L4 X4-Y1
L2

X6-Y1
L5

 7

L2 X7-Y2
L5

 8

L5 9

Li

X7 X4 X6 X3 X5 X2 X4 X1 X3 X0
PE2 PE1 PE0

D D
Y2 Y1 Y0

D D

Input sequence
Mux

www.intechopen.com

Design and Implementation of FPGA- based Systolic Array for LZ Data Compression 85

Fig. 14. The block diagram of interleaved design PE.

Match results block MRB is needed to determine Lmax among the serially produced Lis. MRB
is shown in Fig. 15. The PEs do not need to store their ids to record the position of the Lis. A
special counter is needed to generate the sequence which interleaves the position of the first
half of Lis and the position for the second half as shown in Fig. 16. The compression time of
the interleaved design is n clock cycles.

Fig. 15. the match results block

Fig. 16. Special position counter in MRB for interleaved Design.

3.5 Proposed Design (Design- P)
From the dependence graph shown in Fig. 4, all the nodes in a particular row are projected to
a single processor element (Abd El Ghany, 2007). This produces an array of length Ls. The
space- time diagram and the resulting array of Design-P are given in Fig. 17, where D
represents a unit delay on the signal line between two processing elements.
As shown in Fig. 17, the architecture consists of Ls processing elements which are used for the
comparison and L-encoder which is used to produce the matching length. Consequently, the
look-ahead buffer symbols Yjs which do not change during the encoding step, stay in PEs.

Ip

l

p

p

Code word
d

Lmax
Li

a b
comparator
a > b

Ip

M
u
x counter

a b
comparator
a = b

n - Ls

M
u
x

Lmax

Reg

www.intechopen.com

Data Storage86

The dictionary element Xi moves systolically from left to right with a delay of 1 clock cycle.
The match signal Ei of the processing element moves to the L-encoder. The output Li of the
encoder is the matching length resulting from the comparisons at step i-1. The first Li will be
obtained after one clock cycle and the subsequent ones will be obtained every clock cycle.
Before the encoding process, the Yis are preloaded to be processed and this takes Ls extra
cycles. During the encoding process, the time to preload new source symbols depends upon
how many source symbols were compressed in the previous compression step, Lmax.
The functional block of the PE is shown in Fig. 18. Only one equality comparator is needed
for comparing Yj and incoming Xi. The comparator result Ei (match signal) propagates to L-
encoder. The block diagram of L- encoder is shown in Fig. 19. According to Eis (match
signals), L-encoder computes the match length Li corresponding to position i.

 Space

Time

Fig. 17. Architecture of Design-P.

Fig. 18. The functional block of Design-P PE.

 PE2 PE1 PE0 Li

1 X2-Y0 X1-Y1 X0-Y0

2 X3-Y0 X2-Y1 X1-Y0 L0

3 X4-Y0 X3-Y1 X2-Y0 L1

4 X5-Y0 X4-Y1 X3-Y0 L2

5 X6-Y0 X5-Y1 X4-Y0 L3

6 X7-Y0 X6-Y1 X5-Y0 L4
7 L5

www.intechopen.com

Design and Implementation of FPGA- based Systolic Array for LZ Data Compression 87

Fig. 19. L-encode

As shown in Fig. 17, it is clear that the maximum matching length is not produced by the L-
encoder. So, a match results block (MRB) is needed, as shown in Fig. 20, to determine Lmax
among the serially produced Lis. Also, the PEs need not store their ids to record the position
of the Lis (Ip). Since p = [log2(n-Ls)] bits are required to represent Ip, only a p- bit counter is
required to provide the position i associated with each Li, since the time when Li is produced
corresponds to its position. MRB uses a comparator to compare the current input Li and the
present longest match length Lmax stored in the register. If the current input Li is larger than
Lmax, then Li is loaded into the register and the content of the position counter is also loaded
into another register which is used to store the present Ip. Another comparator is used to
determine whether the whole window has been searched. It compares the content of the
position counter with n- Ls, whose output is used as the codeword – ready signal. During the
searching process, Li might be equal to Ls when I< n- Ls, i.e., the content in the look-ahead
buffer can be fully matched to a subset of the dictionary, and hence searching the whole
window is not always necessary. An extra comparator is used to determine whether Lmax is
equal to Ls, and hence the string matching process is completed. Therefore, encoding a new
set of data could start immediately. This will reduce the average compression time. The
number of clock cycles needed to produce a codeword is [(n-Ls) + 1] clock cycles, so the
utilization rate of each PE is (n-Ls) / [(n-Ls) + 1], which almost equals to one. This result is
consistent since the PE is busy once Li is determined until the time at which the codeword is
produced.

www.intechopen.com

Data Storage88

Fig. 20. The match results block (MRB) for design-P.

Parallel compression can be achieved by using an appropriate number of Design- P modules.
For example, two modules of Design– P can be used, as shown in Fig. 21. The input sequence
of the first module (Xi) is obtained from the first position of Buffer. The input sequence of the
second module (Xi +[(n – Ls)/2]) is obtained starting at ((n –Ls)/2) position in the Dictionary.
Note that the MRB now needs to determine Lmax among LI, LII that are produced at the same
time. So, the MRB could be modified. The speed is two times the Design –P array.

Fig. 21. Parallel compression.

Code word
d

Lmax

Li

l

p
p

done Ip

Lmax

Reg

a b
comparator
a > b

M
u
x

Ip
Reg

M
u
x counter

a b
comparator
a = b

n - Ls

Ls

a b
comparator
a = b

www.intechopen.com

Design and Implementation of FPGA- based Systolic Array for LZ Data Compression 89

4. The design comparison

The comparison of four designs is given in Table 2. The Design-1 contains n- Ls processing
elements, which are always active, resulting in a large area and high- power consumption. It
is also slower than the others. Design-P has the maximum utilization rate, minimum latency
time (high compression speed) and minimum area for LZ.

 Interleaved
Design

Design-P Design-1 Design-2 Design-3

Number of PEs Ls Ls n – Ls Ls Ls
Utilization

(n-Ls)/ n (n-Ls)/ (n-
Ls+ 1)

Ls /2(n-Ls) (n-Ls)/
(n+Ls-1)

(n-Ls)/ n

Latency n n- Ls+ 1 2 (n –Ls)+1 n+Ls-1 n
DFFs per PE 2w+l+1 2w + 1 3w+l+2p+1 2w+2l+2 3w+l+1
accumulator Per PE

1 --- 1 1

1

Counter per MRB 2 1 --- 2 2
Multiplexer per
MRB 3 2 --- 3 3

Multiplexer per
buffer 1 --- --- --- ---

Equality comparator
per MRB 1 2 --- 1 1

Table 2. The comparison between Design-P and Design-i.

5. FPGA Implementation

In this section, the proposed architecture for LZ is implemented on FPGA. As shown in Fig.
22, the architecture consists of 3 major components: systolic-array LZ component (SALZC),
block RAM, and host controller. The length of window (n) is assumed to be 1K, and the
length of look-ahead buffer (Ls) is assumed to be 16. SALZ component contains 16 PEs and
implements the most cost effective array architecture (Design –P). Full – custom layout is
straight forward since the array is very regular. Only a single cell (PE) was hand – laid out.
The other 15 PEs are copies of it. Since the array is systolic, routing also is simplified. Block
RAM that is used as the data buffer (Dictionary) is not included in SALZ component.
Thereby, the dictionary length can be increased by directly replacing the block RAM with a
larger one. The dictionary length is a parameter to cover a broad range of applications, from
text compression to lossless image compression.

Fig. 22. LZ compression chip

www.intechopen.com

Data Storage90

The implementation of the proposed design (Design-P) and interleaved design (Design-i) are
carried out using XILINX (Spartan II XC200) FPGA, for n= 1 k, Ls=16, w =8. The
implementation results are shown in Table 3. The number of components and their
percentage as compared with the available components on the chip are calculated.
The compression rate of a compressor is defined as the number of input bits which can be
compressed in one second. The compression rate (Rc) can be estimated as follows:

 Rc = clk × [(LsW) /(n-Ls+1)] (2)

Where clk is the operating frequency. Note that only estimated Rc can be obtained, since it
depends on the input data. It is not possible to predict exactly how many words will be
compressed (Ls at most) and how many clock cycles will be required ((n – Ls +1) at most) for
every compression step. In the proposed implementation, if the window length (n) is 1k, Ls
=16, w =8, and clk = 105 MHz, The Rc is 13 M bit per second.

Number
of Slices

Number
of Slice
Flip Flops

Number
of 4 input

LUTs

Number
of

BRAMs
Maximum
Frequency

Design-P 310 13% 408 8% 419 8% 2 14% 105 MHz
Design-i 471 20% 511 10% 650 13% 2 14% 79 MHz

Table 3. The implementation results of Design-P and Design-i

In order to use the parallel scheme to increase the compression rate, the host controller could
be modified and an appropriate number of LZ compressor components could be connected
in parallel, as shown in Fig. 23. Note that, the MRB now needs to determine Lmax among LI, LII

and LIII. e.g., ten components could be implemented in one chip of large size to achieve a
compression rate about 130 M bits per second. Moreover, by modifying the host controller
and including, e.g., dictionaries, the proposed design can be used for other string-matching
based LZ algorithms, such as LZ78 and LZW. The Design-P is flexible.

Fig. 23. Multiple SALZC system.

6. Conclusions

In this chapter, a parallel algorithm for LZ based data compression is described by
transforming a data–dependent algorithm to a data – independent regular algorithm. To
further improve the latency, a control variable to indicate early completion is used. The

www.intechopen.com

Design and Implementation of FPGA- based Systolic Array for LZ Data Compression 91

proposed implementation is area and speed efficient. The compression rate is increased by
more than 40% and the design area is decreased by more than 30%. The design can be
integrated into real – time systems so that data can be compressed and decompressed on –
the - fly.

7. References

Abd El Ghany, M. A.; Salama, A. E. & Khalil, A. H. “Design and Implementation of FPGA-
based Systolic Array for LZ Data Compression” in Proc. IEEE International
Symposium on Circuits and Systems ISCAS07, May 2007

Arias, M.; Cumplido, R. & Feregrino C., (2004) "On the Design and Implementation of an
FPGA-based Lossless Data Compressor.", ReConFig’04, Colima, Mexico, Sep., 2004

Bodden, E.; Clasen, M.; Kneis, J. & Schluter, R., (2004) "Arithmetic coding revealed" pp. 8-57,
May 2004

Chang, J.; Jih, H. J & Liu, J. W., (1994) “A lossless data compression processor,” in Proc. 4th
VLSI Design/CAD Workshop, Aug. 1994, pp.134-137

Deorowicz, S., (2003) “Universal lossless data compression algorithms” Dissertation, Silesian
University, pp 92-119, 2003

Gallager, R. (1978)“Variations on a theme by Huffman,” IEEE Trans. Inform. Theory, vol. IT-
24, pp. 668-674, 1978

Golomb, S., (1966) “Run-length encoding,” IEEE Trans. Inform. Theory, Vol. IT-12, pp. 399-
401, July 1966

Howard, P. G. & Vetter, J. S., (1992) "Practical Implementations of Arithmetic Coding"
Brown University, Department of Computer Science, Technical Report No. (CS-91-45),
April 1992

Huffman, D. A. (1952) “A method for the construction of minimum-redundancy codes" Proc.
IRE, Vol. 40, pp. 1098-1101, September, 1952.

Hwang, S. –A & Wu, C. -W., (2001) “Unified VLSI Systolic Array Design for LZ Data
compression,” IEEE Trans. VLSI Systems, vol. 9, pp. 489- 499, August 2001

Jung, B. & Burleson, W. P., (1998) “Efficient VLSI for Lempel-Ziv compression in wireless
data communication networks,” IEEE Trans. VLSI Syst. Vol. 6, pp. 475-483, Sept.
1998

Lin, K. -J. & Wu, C.-W., (2000) "A low-power CAM design for LZ data compressor," IEEE
Transactions on Computers, Vol.49, No.10, pp. 1139-1145, Oct. 2000

Ranganathan, N. & Henriques, S., (1993) ”High-Speed VLSI Designs for Lempel-Ziv-Based
Data Compression,” IEEE Trans. Circuits and Systems. II: Analog and Digital Signal
Processing, vol. 40, pp.96-106, Feb. 1993

Park, H. & Prasanna, V.K. (1993) “Area efficient VLSI architectures for Huffman coding”,
IEEE Trans. Analog and Digital Signal Processing, Vol.40, pp.568-575,Sep.1993

Said, A., (2003), "Fast Arithmetic Coding," in Lossless Compression Handbook, 2003
Said, A., (2004) " Introduction to Arithmetic coding – Theory and Practice" Imaging Systems

Laboratory, HP Laboratories Palo Alto, April 2004
Salomon, D., (2004) "Data Compression" The complete reference, Computer Science

Department, California State University, Northridge, pp. 22-205, 2004
Sandoval, M. M. & Uribe, C. F. (2005) “A hardware Architecture for Elliptic Curve

Cryptography and Lossless Data Compression,” IEEE Computer Society, May 2005

www.intechopen.com

Data Storage92

Welch, T., (1984) "A technique for high-performance data compression," IEEE computer, Vol.
17, pp. 8-19, 1984

Ziv, J. & Lempel, A., (1977) “A universal algorithm for sequential data compression,” IEEE
Trans. Inform. Theory, Vol. IT-23, pp. 337-343, 1977

Ziv, J. & Lempel, A., (1978) “Compression of individual sequences via variable rate coding,”
IEEE Trans. Inform. Theory, Vol. IT-24, pp. 530-536, 1978

www.intechopen.com

Data Storage

Edited by Florin Balasa

ISBN 978-953-307-063-6

Hard cover, 226 pages

Publisher InTech

Published online 01, April, 2010

Published in print edition April, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The book presents several advances in different research areas related to data storage, from the design of a

hierarchical memory subsystem in embedded signal processing systems for data-intensive applications,

through data representation in flash memories, data recording and retrieval in conventional optical data

storage systems and the more recent holographic systems, to applications in medicine requiring massive

image databases.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mohamed A. Abd El Ghany, Magdy A. El-Moursy and Aly E. Salama (2010). Design and Implementation of

FPGA-based Systolic Array for LZ Data Compression, Data Storage, Florin Balasa (Ed.), ISBN: 978-953-307-

063-6, InTech, Available from: http://www.intechopen.com/books/data-storage/design-and-implementation-of-

fpga-based-systolic-array-for-lz-data-compression

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

