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1. Introduction  

Data compression is becoming an essential component of high speed data communications 
and storage. Lossless data compression is the process of encoding ("compressing") a body of 
data into a smaller body of data which can, at a later time, be uniquely decoded 
("decompressed") back to the original data. In lossy compression, the decompressed data 
contains some approximation of the original data.  
Hardware implementation of data compression algorithms is receiving increasing attention 
due to exponential expansion in network traffic and digital data storage usage. Many lossless 
data compression techniques have been proposed in the past and widely used, e.g., Huffman 
code (Huffman, 1952) ; (Gallager, 1978);( Park & Prasanna, 1993), arithmetic code (Bodden et 
al., 2004);(Said, 2004);(Said, 2003); (Howard & Vetter, 1992), run-length code (Golomb, 1966), 
and Lempel–Ziv (LZ) algorithms (Ziv & Lempel, 1977);( Ziv & Lempel, 1978);(Welch, 
1984);(Salomon, 2004). Among those, LZ algorithms are the most popular when no prior 
knowledge or statistical characteristics of the data being compressed are available. The 
principle of the LZ algorithms is to find the longest match between the recently received 
string which is stored in the input buffer and the incoming string. Once this match is located, 
the incoming string is represented with a position tag and a length variable linking the new 
string to the old existing one. Since the repeated data is linked to an older one, more concise 
representation is achieved and compression is performed. The latency of the compression 
process is defined by the number of clock cycles needed to produce a codeword (matching 
results).  
To fulfill real-time requirements, several hardware realizations of LZ and its variants have 
been presented in the literature. Different hardware architectures, including content 
addressable memory (CAM) (Lin & Wu, 2000);(Jones, 1992);(Lee & Yang, 1995), Systolic array 
(Ranganathan & Henriques, 1993);(Jung & Burleson, 1998);(Hwang & Wu, 2001), and 
embedded processor (Chang et al., 1994), have been proposed in the past. The microprocessor 
approach is not attractive for real- time applications, since it does not fully explore hardware 
parallelism (Hwang & Wu, 2001). CAM has been considered one of the fastest architectures 
to search for a given string in a long world, which is necessary process in LZ. A CAM- based 
LZ data compressor can process one input symbol per clock cycle, regardless of the buffer 
length and string length. A CAM- based LZ can achieve optimum speed for compression. 
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However, CAMs require highly complex hardware and dissipate high power. The CAM 
approach performs string matching through full parallel search, while the systolic-array 
approach exploits pipelining.  
As compared to CAM- based designs, systolic –array-based designs are slower, but better in 
hardware cost and testability (Hwang & Wu, 2001); (Hwang & Wu, 1995); (Hwang & Wu, 
1997). Preliminary design for systolic – array contains thousands of processing elements (PEs) 
(Ranganathan & Henriques, 1993). High speed designs were then reported later, requiring 
only tens of PEs (Jung & Burleson, 1998);(hwang et al., 2001). A technique to enhance the 
efficiency of systolic- array approach which is used to implement Lempel- Ziv algorithm is 
described in this chapter. A parallel technique for LZ-based data compression is presented. 
The technique employs transforming a data–dependent algorithm to a data – independent 
algorithm. A control variable is introduced to indicate early completion which improves the 
latency. The proposed implementation is area and speed efficient. The effect of the input 
buffer length on the compression ratio is analyzed. An FPGA implementation for the 
proposed technique is carried out. The implemented design verifies that data can be 
compressed and decompressed on-the- fly which opens new areas of research in data 
compression. 
The organization of this chapter is as follows: In Section 2, the LZ compression algorithm is 
explained. The results and comments about some software simulations are discussed. The 
dependency graph (DG) to investigate the data dependency of every computation step in the 
algorithm is shown. The most recent systolic array architecture is described and an area and 
speed efficient architecture is proposed in Section 3. In Section 4, the proposed systolic array 
structure is compared with the most recent structures (Hwang et al., 2001) in terms of area, 
and latency. An FPGA implementation for the proposed architecture showing the real time 
operations is demonstrated in Section 5. Finally, conclusions are provided in Section 6. 

 
2. Lempel-ziv coding algorithm  

The LZ algorithm was proposed by Ziv and Lempel in (Ranganathan & Henriques, 1993). 
The relationship between n and Ls for optimal compression performance is briefly examined. 
The data dependency of every computation step in the LZ compression algorithm is 
investigated. 

 
2.1 The compression algorithm:  
The LZ algorithm and its variants use a sliding window that moves a long with the cursor. 
The window can be divided into two parts, the part before the cursor, called the dictionary, 
and the part starting at the cursor, called the look-ahead buffer. The lengths of these two 
parts are input parameters to compression algorithm. The basic algorithm is very simple, and 
loops executing the following steps:  

1. Find the longest match of a string starting at the cursor and completely contained in 
the look-ahead buffer to a string starting in the dictionary. 

2. Output a triple parameter (Ip, Lmax, S) containing the position Ip of the occurrence in 
the window, the length Lmax of the match and the next symbol S past the match. 

3. Move the cursor Lmax + 1 symbols forward. 
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 Let us consider an example with window length of (n=9) and look-ahead buffer length (Ls=3) 
shown in Fig. 1. 
Let the content of the window be denoted as Xi, i = 0,1,…..,n-1 and that of the look-ahead 
buffer be Yj, j = 0,1,……Ls-1 (i.e., Yj = Xi+ n-Ls). According to LZ algorithm, the content of look-
ahead buffer is compared with the dictionary content starting from X0 to Xn-Ls-1 to find the 
longest match length. If the best match in the window is found to start from position Ip and 
the match length is Lmax. Then Lmax symbols will be represented by a codeword (Ip, Lmax). The 
codeword length is Lc:  

Lc = 1 + [log2 (n-Ls)] + [Log2 Ls]        bits           (1) 
Lc is fixed. Assume w bits are required to represent a symbol in the window, l = [log2 Ls] bits 
are required to represent Lmax, and p = [log2 (n-Ls)] bits are required to represent Ip. Then the 
compression ratio is (l + p) / (Lmax * w), where 0 ≤ Lmax ≤ Ls. Hence the compression ratio 
depends on the match situation.    

 
Fig. 1. window of the LZ compressor example 
 
The codeword design and the choice of widow length are crucial in achieving maximum 
compression. The LZ technique involves the conversion of variable length substrings into 
fixed length codewords that represent the pointer and the length of the match. Hence, 
selection of values of n and Ls can greatly influence the compression efficiency of the LZ 
algorithm. 

 
2.2 Compression Algorithm Paramters Selection 
Simulation for the performance of the LZ algorithm for different buffers lengths is performed 
using the Calgary corpus and the Silesia Corpus (Deorowicz, 2003) [16], as shown in Fig. 2 
and Fig. 3, respectively. In these experiments, the codeword is up to 2 bytes long. 
From Fig. 2 and Fig. 3, the compression ratio decreases when n exceeds 1024. The above 
improvement in the compression ratio can be obtained only when Ls = 8, 16, or 32. Based on 
the results, the best Ls for a good compression ratio is 24. Increasing Ls beyond that will 
require a much faster growing n (as well as hardware cost and computation time), with 
saturating or even decreasing compression ratio. The reason is that repeating patterns tend to 
be short, and that increasing Ls and n also increases the codeword length (l + p). To achieve a 
good performance for different data formats, Ls may range from 8 to 32, while n may be from 
1k to 8 k. The simulation results verify the results proposed in (Arias et al., 2004). 
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Fig. 2. The relationship between the compression ratio of Calgary corpus and Ls for different 
values of n 

 
Fig. 3. The relationship between the compression ratio of Silesia corpus and Ls for different 
values of n. 

 
2.3 Dependency graph: 
A dependency graph (DG) is a graph that shows the dependence of the computations that 
occur in an algorithm. The DG of the LZ algorithm can be obtained as shown in Fig. 4. In the 
DG, L (match length) and E (match signal) are propagated from cell to cell. X (content of the 
window) and Y (content of the look-ahead buffer) are broadcast horizontally and diagonally 
to all cells, respectively. The DG shown in Fig. 4 is called a global DG, because it contains 
global signals. The global DG can be transformed into a localized DG, by propagating the 
input data Y and X from cell to cell instead of broadcasting them. Processor assignment can 
be done by projection of the DG onto the surface normal to the projection vector selected. 
After processor assignment, the events are scheduled using a schedule vector.         
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                                                                                                                        i                                                                                     

 
Fig. 4. The dependence graph of the LZ compression algorithm. 

 
3. Systolic array architecture  

The hardware architectures of LZ data compression demonstrate that systolic array 
compressors are better in hardware cost and testability. The main difference between 
systolic arrays and other architectures is that systolic arrays can operate at a higher clock 
rate (due to nearest-neighbor communication) and can easily be implemented and tested 
(due to regularity and homogeneity). In the following subsections, the most recent systolic 
array architectures are described. The high performance architecture is proposed.  

 
3.1 Design-1 
This architecture was first proposed in (Ziv & Lempel, 1977). The space-time diagram and 
its final array architecture are given in Fig. 5, where D represents a unit delay on the signal 
line between two processing elements. In Table 1, the six –sets of comparisons have to be 
done in sequence in order to find the maximum matching substring. 
 

(1) (2) (3) (4) (5) (6) 
X0- Y0 X1- Y0 X2- Y0 X3- Y0 X4- Y0 X5- Y0 
X1- Y1 X2- Y1 X3- Y1 X4- Y1 X5- Y1 X6- Y1 
X2- Y2 X3- Y2 X4- Y2 X5- Y2 X6- Y2 X7- Y2 

Table 1. The six- sets of required comparisons 
 
Let us consider six processing elements (PE’s) in parallel, each performing one vertical set of 
comparisons. Each processing element would require 3 time units (Ls =3) to complete its set 
of comparisons. As shown in Fig. 5, the delay  blocks in each PE delay the Y by two time 
steps and the X by one time step. A space- time diagram is used to illustrate the sequence of 
comparisons as performed by each PE. The data brought into PE0 are routed systolically 
through each processor from left to right. In the first time unit, X0 and Y0 are compared at 
PE0. In the second time unit, X1 and Y1 are compared, X0 flows to PE1, and Y0 is delayed by 
one cycle (time unit). In the third time unit, X2 andY2 are compared at PE0. At this time, Y0 
gets to PE1along with X1, and PE1 performs its first comparison at the third cycle, PE0 
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completes all its required comparisons and stores an integer specifying the number of 
successful comparisons in a register called Li. Another register called Lmax, holds the 
maximum matching length obtained from the previous PE's. In the fourth time unit, PE0 
compares the values of Lmax (which for PE0 is 0) and Li, and the greater of the two is sent to 
the Lmax register of the next PE. The result of the Li - Lmax comparison is sent to the next PE 
after a delay of one time unit for proper synchronization. Finally, the Lmax value emerging 
out from the last PE (PE5 in this case) is the length of the longest matching substring. There 
is another register called PE's id, whose contents are passed along with the Lmax value to the 
next PE. Its contents indicate the id of the processor element where the Lmax value occurred 
which becomes the pointer to the match. 
    

 
 

Fig. 5. Design-1 and its space-time diagram indicating the sequence of events in the 6 PE’s. 
 
The functional block of the PE is shown in Fig. 6, in which the control circuit is not included. 
Two comparators are needed in the PE: one is for equality check of Yj and Xi and the other 
together with two multiplexers are for determining Lmax and Ip. If Yj and Xi are equal, a 
counter is incremented each time until an unsuccessful comparison occurs. Sequences Xi and 
Yj can be generated by the buffer shown in Fig. 7, which is organized in two levels the upper 
level of the buffer holds the incoming symbols to be compressed. The contents of the upper 
level are copied into the lower level whenever the "load" line goes high. The lower level is 
used to provide data to the PE's in the correct sequence. 

time PE0 PE1 PE2 PE3 PE4 PE5 
1 X0-Y0      
2 X1-Y1      
3 X2-Y2 X1-Y0     
4 Lmax X2-Y1     
5  X3-Y2 X2-Y0    
6  Lmax X3-Y1    
7   X4-Y2 X3-Y0   
8   Lmax X4-Y1   
9    X5-Y2 X4-Y0  
10    Lmax X5-Y1  
11     X6-Y2 X5-Y0 
12     Lmax X6-Y1 
13      X7-Y2 
14      Lmax 
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Fig. 6. The functional block of design-1 PE. 
 
The operation of the buffer is as follows. When the longest match length is found, the same 
number of symbols are shifted into the in upper buffer from the source and then the 
symbols in the upper buffer are copied to the lower buffer in parallel to generate the next 
sequence to the processor array. In the Design- 1 array, The number of clock cycles needed 
to produce a codeword is 2 (n-Ls), so the utilization rate of each PE is Ls/ [(2 (n-Ls)], which is 
low since the PE is idle from the moment when Li is determined until the time the codeword 
is produced. The reason is that it seems impossible to compress subsequent input symbols 
before the present compression process is completed, because the number of input symbols 
needed to be shifted into the buffer is equal to the longest match length which is not 
available before the completion of the present compression process. Therefore, the design 
with more than Ls pipeline stages must have some idle PEs before the present codeword is 
produced. 

 
Fig. 7. the buffer. 

 
3.2 Design-2: 
The Design-2 was first proposed in (Hwang & Wu, 2001). The space-time diagram and its 
array architecture are given in Fig. 8. It consists of Ls process elements. The match element 
Yjs stay in the PEs, and Xi and Li both flow leftwards with delays of 1 and 2 clock cycles, 
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respectively. The first Li from the leftmost PE will be obtained after 2* Ls clock cycles. After 
that, one Li will be obtained every clock cycle. The block diagram of the Design-2 PE is 
shown in Fig. 9. 
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Fig. 8. Design- 2 space- time diagram and array. 

 
Fig. 9. The structure of Design- 2 PE. 
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3.3 Design-3: 
Design-3 was proposed in (Ranganathan & Henriques, 1993). The space-time diagram and 
the resulting array are given in Fig. 10. The value of Yi stays in the PE. The buffer element Xi 
moves systolically from right to left with delay of 2 clocks. Li propagates from right to left 
with 1 clock cycle. The first Li from the leftmost PE will be obtained after Ls clock cycles. 
After that, the subsequent ones will be obtained every clock cycle. The structure of Design-3 
PE is shown in Fig. 11. MRB is needed to determine Lmax and Ip. 

            
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 10. The space-time diagram and the resulting array of Design-3. 

 
Fig. 11. The structure of Design-3 PE. 
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3.4 The Interleaved Design: 
From the dependency graph shown in Fig. 4, the interleaved design is obtained by projecting 
all the nodes in a particular raw to a single processor element. This design was first proposed 
in (Hwang & Wu, 2001). The space–time diagram and the resulting array of the interleaved 
design are given in Fig. 12. The Yjs which need to be accessed in parallel do not change 
during the encoding step. The special buffer is needed to generate the interleaving symbols of 
Xi and Xi + [n- Ls/2] as shown in Fig. 13. The first Li will be obtained after Ls clock cycles from the 
leftmost PE and subsequent ones will be obtained every one clock cycle. 

  

Fig. 12. The space-time diagram and the resulting array of interleaved design. 
 

X0 X1 X2 X3 X4 X5 X6 X7 X8 

 
 
 
 
Fig. 13. buffer design for generating the interleaving symbols. 
 
Before the encoding process, the Yis are preloaded which take Ls extra cycles. During the 
encoding process, the time to preload new source symbols depend on how many source 
symbols were compressed in the previous compression step, Lmax. The block diagram of the 
processor element is shown in Fig. 14. 
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Fig. 14. The block diagram of interleaved design PE. 
 
Match results block MRB is needed to determine Lmax among the serially produced Lis. MRB 
is shown in Fig. 15. The PEs do not need to store their ids to record the position of the Lis. A 
special counter is needed to generate the sequence which interleaves the position of the first 
half of Lis and the position for the second half as shown in Fig. 16. The compression time of 
the interleaved design is n clock cycles. 

Fig. 15. the match results block 

 
Fig. 16. Special position counter in MRB for interleaved Design. 

 
3.5 Proposed Design (Design- P) 
From the dependence graph shown in Fig. 4, all the nodes in a particular row are projected to 
a single processor element (Abd El Ghany, 2007). This produces an array of length Ls. The 
space- time diagram and the resulting array of Design-P are given in Fig. 17, where D 
represents a unit delay on the signal line between two processing elements.  
As shown in Fig. 17, the architecture consists of Ls processing elements which are used for the 
comparison and L-encoder which is used to produce the matching length. Consequently, the 
look-ahead buffer symbols Yjs which do not change during the encoding step, stay in PEs. 

Ip 

l 

p 

p 

Code word 
d

Lmax 
Li 

a             b 
comparator 
a > b 

Ip 

M 
u 
x counter 

a             b 
comparator 
a = b 

n - Ls 

M
u
x 

Lmax 

Reg 

www.intechopen.com



Data Storage86

The dictionary element Xi moves systolically from left to right with a delay of 1 clock cycle. 
The match signal Ei of the processing element moves to the L-encoder. The output Li of the 
encoder is the matching length resulting from the comparisons at step i-1. The first Li will be 
obtained after one clock cycle and the subsequent ones will be obtained every clock cycle. 
Before the encoding process, the Yis are preloaded to be processed and this takes Ls extra 
cycles. During the encoding process, the time to preload new source symbols depends upon 
how many source symbols were compressed in the previous compression step, Lmax. 
The functional block of the PE is shown in Fig. 18. Only one equality comparator is needed 
for comparing Yj and incoming Xi. The comparator result Ei (match signal) propagates to L- 
encoder. The block diagram of L- encoder is shown in Fig. 19. According to Eis (match 
signals), L-encoder computes the match length Li corresponding to position i. 

 
                              Space 

Time 

                       
   
 
 
 
 
 
 
Fig. 17. Architecture of Design-P. 

 
Fig. 18. The functional block of Design-P PE. 

 PE2 PE1 PE0 Li 

1 X2-Y0 X1-Y1 X0-Y0  

2 X3-Y0 X2-Y1 X1-Y0 L0 

3 X4-Y0 X3-Y1 X2-Y0 L1 

4 X5-Y0 X4-Y1 X3-Y0 L2 

5 X6-Y0 X5-Y1 X4-Y0 L3 

6 X7-Y0 X6-Y1 X5-Y0 L4 
7    L5 
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Fig. 19. L-encode 
 
As shown in Fig. 17, it is clear that the maximum matching length is not produced by the L-
encoder. So, a match results block (MRB) is needed, as shown in Fig. 20, to determine Lmax 
among the serially produced Lis. Also, the PEs need not store their ids to record the position 
of the Lis (Ip). Since p = [log2(n-Ls)] bits are required to represent Ip, only a p- bit counter is 
required to provide the position i associated with each Li, since the time when Li is produced 
corresponds to its position. MRB uses a comparator to compare the current input Li and the 
present longest match length Lmax stored in the register. If the current input Li is larger than 
Lmax, then Li is loaded into the register and the content of the position counter is also loaded 
into another register which is used to store the present Ip. Another comparator is used to 
determine whether the whole window has been searched. It compares the content of the 
position counter with n- Ls, whose output is used as the codeword – ready signal. During the 
searching process, Li might be equal to Ls when I< n- Ls, i.e., the content in the look-ahead 
buffer can be fully matched to a subset of the dictionary, and hence searching the whole 
window is not always necessary. An extra comparator is used to determine whether Lmax is 
equal to Ls, and hence the string matching process is completed. Therefore, encoding a new 
set of data could start immediately. This will reduce the average compression time. The 
number of clock cycles needed to produce a codeword is [(n-Ls) + 1] clock cycles, so the 
utilization rate of each PE is (n-Ls) / [(n-Ls) + 1], which almost equals to one. This result is 
consistent since the PE is busy once Li is determined until the time at which the codeword is 
produced. 
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Fig. 20. The match results block (MRB) for design-P. 
 
Parallel compression can be achieved by using an appropriate number of Design- P modules. 
For example, two modules of Design– P can be used, as shown in Fig. 21. The input sequence 
of the first module (Xi) is obtained from the first position of Buffer. The input sequence of the 
second module (Xi +[(n – Ls)/2 ] ) is obtained starting at ((n –Ls)/2 ) position in the Dictionary. 
Note that the MRB now needs to determine Lmax among LI, LII that are produced at the same 
time. So, the MRB could be modified. The speed is two times the Design –P array. 

 
Fig. 21. Parallel compression. 
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4. The design comparison  

The comparison of four designs is given in Table 2. The Design-1 contains n- Ls processing 
elements, which are always active, resulting in a large area and high- power consumption. It 
is also slower than the others. Design-P has the maximum utilization rate, minimum latency 
time (high compression speed) and minimum area for LZ.  

 Interleaved 
Design 

Design-P Design-1 Design-2 Design-3 

Number of PEs Ls Ls n – Ls Ls Ls 
Utilization 

(n-Ls)/ n (n-Ls)/ (n- 
Ls+ 1) 

Ls /2(n-Ls) (n-Ls)/ 
(n+Ls-1) 

(n-Ls)/ n 

Latency n n- Ls+ 1 2 (n –Ls)+1 n+Ls-1 n 
DFFs per PE 2w+l+1 2w + 1 3w+l+2p+1 2w+2l+2 3w+l+1 
accumulator Per  PE 

1 --- 1 1 
 

1 

Counter per MRB 2 1 --- 2 2 
Multiplexer per 
MRB 3 2 --- 3 3 

Multiplexer per 
buffer 1 --- --- --- --- 

Equality comparator 
per MRB 1 2 --- 1 1 

Table 2. The comparison between Design-P and Design-i. 

 
5. FPGA Implementation 

In this section, the proposed architecture for LZ is implemented on FPGA. As shown in Fig. 
22, the architecture consists of 3 major components: systolic-array LZ component (SALZC), 
block RAM, and host controller. The length of window (n) is assumed to be 1K, and the 
length of look-ahead buffer (Ls) is assumed to be 16. SALZ component contains 16 PEs and 
implements the most cost effective array architecture (Design –P). Full – custom layout is 
straight forward since the array is very regular. Only a single cell (PE) was hand – laid out. 
The other 15 PEs are copies of it. Since the array is systolic, routing also is simplified. Block 
RAM that is used as the data buffer (Dictionary) is not included in SALZ component. 
Thereby, the dictionary length can be increased by directly replacing the block RAM with a 
larger one. The dictionary length is a parameter to cover a broad range of applications, from 
text compression to lossless image compression. 

 
Fig. 22. LZ compression chip 
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The implementation of the proposed design (Design-P) and interleaved design (Design-i) are 
carried out using XILINX (Spartan II XC200) FPGA, for n= 1 k, Ls=16, w =8. The 
implementation results are shown in Table 3. The number of components and their 
percentage as compared with the available components on the chip are calculated.  
The compression rate of a compressor is defined as the number of input bits which can be 
compressed in one second. The compression rate (Rc) can be estimated as follows:      

    Rc = clk × [(LsW) /(n-Ls+1)]           (2) 
 

Where clk is the operating frequency. Note that only estimated Rc can be obtained, since it 
depends on the input data. It is not possible to predict exactly how many words will be 
compressed (Ls at most) and how many clock cycles will be required ((n – Ls +1) at most) for 
every compression step. In the proposed implementation, if the window length (n) is 1k, Ls 
=16, w =8, and clk = 105 MHz, The Rc is 13 M bit per second.  

 
Number 
of Slices 

Number 
of Slice 
Flip Flops 

Number 
of 4 input 

LUTs 

Number 
of 

BRAMs 
Maximum 
Frequency 

Design-P 310 13% 408 8% 419 8% 2  14% 105 MHz 
Design-i  471 20% 511 10% 650 13% 2 14% 79 MHz 

Table 3. The implementation results of Design-P and Design-i 
 
In order to use the parallel scheme to increase the compression rate, the host controller could 
be modified and an appropriate number of LZ compressor components could be connected 
in parallel, as shown in Fig. 23. Note that, the MRB now needs to determine Lmax among LI, LII 

and LIII. e.g., ten components could be implemented in one chip of large size to achieve a 
compression rate about 130 M bits per second. Moreover, by modifying the host controller 
and including, e.g., dictionaries, the proposed design can be used for other string-matching 
based LZ algorithms, such as LZ78 and LZW. The Design-P is flexible. 

 
Fig. 23. Multiple SALZC system. 

 
6. Conclusions 

In this chapter, a parallel algorithm for LZ based data compression is described by 
transforming a data–dependent algorithm to a data – independent regular algorithm. To 
further improve the latency, a control variable to indicate early completion is used. The 
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proposed implementation is area and speed efficient. The compression rate is increased by 
more than 40% and the design area is decreased by more than 30%. The design can be 
integrated into real – time systems so that data can be compressed and decompressed on – 
the - fly.  
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