\r\n\t(i) Quantum dots of very high-quality optical applications, Quantum dot light-emitting diodes (QD-LED) and ‘QD-White LED’, Quantum dot photodetectors (QDPs), Quantum dot solar cells (Photovoltaics).
\r\n
\r\n\t(ii) Quantum Computing (quantum bits or ‘qubits’), (vii) The Future of Quantum Dots (broad range of real-time applications, magnetic quantum dots & graphene quantum dots), Superconducting Loop, Quantum Entanglement, Quantum Fingerprints.
\r\n
\r\n\t(iii) Biomedical and Environmental Applications (to study intracellular processes, tumor targeting, in vivo observation of cell trafficking, diagnostics and cellular imaging at high resolutions), Bioconjugation, Cell Imaging, Photoelectrochemical Immunosensor, Membranes and Bacterial Cells, Resonance Energy-Transfer Processes, Evaluation of Drinking Water Quality, Water and Wastewater Treatment, Pollutant Control.
",isbn:"978-1-80356-594-1",printIsbn:"978-1-80356-593-4",pdfIsbn:"978-1-80356-595-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"0dd5611c62c91569bd2819e68852002a",bookSignature:"Prof. Jagannathan Thirumalai",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11756.jpg",keywords:"LED, Organic LEDs, Dyes & Pigments, Solar Cells, Laser Photonics, Electronic Switching Devices, Qubits, Josephson Junction, Bioconjugation, Cell Imaging, Photoelectrochemical Immunosensor, Membranes, and Bacterial Cells",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 16th 2022",dateEndSecondStepPublish:"May 27th 2022",dateEndThirdStepPublish:"July 26th 2022",dateEndFourthStepPublish:"October 14th 2022",dateEndFifthStepPublish:"December 13th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. J. Thirumalai received his Ph.D. from Alagappa University, Karaikudi, He was also awarded the Post-doctoral Fellowship from Pohang University of Science and Technology (POSTECH), the Republic of Korea. His research interests focus on luminescence, self-assembled nanomaterials, and thin-film optoelectronic devices. He has published more than 60 SCOPUS/ISI indexed papers and 11 book chapters, edited 4 books, and member of several national and international societies like RSC, OSA, etc. His h-index is 19.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"99242",title:"Prof.",name:"Jagannathan",middleName:null,surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai",profilePictureURL:"https://mts.intechopen.com/storage/users/99242/images/system/99242.png",biography:"Dr. J. Thirumalai received his Ph.D. from Alagappa University, Karaikudi in 2010. He was also awarded the Post-doctoral Fellowship from Pohang University of Science and Technology (POSTECH), Republic of Korea, in 2013. He worked as Assistant Professor of Physics, B.S. Abdur Rahman University, Chennai, India (2011 to 2016). Currently, he is working as Senior Assistant Professor of Physics, Srinivasa Ramanujan Centre, SASTRA Deemed University, Kumbakonam (T.N.), India. His research interests focus on luminescence, self-assembled nanomaterials, and thin film opto-electronic devices. He has published more than 60 SCOPUS/ISI indexed papers and 11 book chapters, edited 4 books and member in several national and international societies like RSC, OSA, etc. Currently, he served as a principal investigator for a funded project towards the application of luminescence based thin film opto-electronic devices, funded by the Science and Engineering Research Board (SERB), India. As an expert in opto-electronics and nanotechnology area, he has been invited as external and internal examiners to MSc and PhD theses, invited to give talk in some forum, review papers for international and national journals.",institutionString:"SASTRA University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"10",totalChapterViews:"0",totalEditedBooks:"6",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"17",title:"Nanotechnology and Nanomaterials",slug:"nanotechnology-and-nanomaterials"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347258",firstName:"Marica",lastName:"Novakovic",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"marica@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"5348",title:"Luminescence",subtitle:"An Outlook on the Phenomena and their Applications",isOpenForSubmission:!1,hash:"d982c49fed4423a0ea7367af4f917b82",slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/5348.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6489",title:"Light-Emitting Diode",subtitle:"An Outlook On the Empirical Features and Its Recent Technological Advancements",isOpenForSubmission:!1,hash:"20818f168134f1af35547e807d839463",slug:"light-emitting-diode-an-outlook-on-the-empirical-features-and-its-recent-technological-advancements",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/6489.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6242",title:"Hydroxyapatite",subtitle:"Advances in Composite Nanomaterials, Biomedical Applications and Its Technological Facets",isOpenForSubmission:!1,hash:"6a18a9b6617ae6d943649ea7ad9655cc",slug:"hydroxyapatite-advances-in-composite-nanomaterials-biomedical-applications-and-its-technological-facets",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/6242.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6124",title:"Micro/Nanolithography",subtitle:"A Heuristic Aspect on the Enduring Technology",isOpenForSubmission:!1,hash:"c94caf617c31b349bd3d9dd054a022a3",slug:"micro-nanolithography-a-heuristic-aspect-on-the-enduring-technology",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/6124.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5699",title:"Thin Film Processes",subtitle:"Artifacts on Surface Phenomena and Technological Facets",isOpenForSubmission:!1,hash:"164177fc1e3eca542ebad5fd34a79d1e",slug:"thin-film-processes-artifacts-on-surface-phenomena-and-technological-facets",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/5699.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9414",title:"Advances in Condensed-Matter and Materials Physics",subtitle:"Rudimentary Research to Topical Technology",isOpenForSubmission:!1,hash:"3aebac680de7d3af200eadd0a0b2f737",slug:"advances-in-condensed-matter-and-materials-physics-rudimentary-research-to-topical-technology",bookSignature:"Jagannathan Thirumalai and Sergey Ivanovich Pokutnyi",coverURL:"https://cdn.intechopen.com/books/images_new/9414.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5884",title:"Unraveling the Safety Profile of Nanoscale Particles and Materials",subtitle:"From Biomedical to Environmental Applications",isOpenForSubmission:!1,hash:"5e5811aa0f15ab9d8b6a235e8408875d",slug:"unraveling-the-safety-profile-of-nanoscale-particles-and-materials-from-biomedical-to-environmental-applications",bookSignature:"Andreia C. Gomes and Marisa P. Sarria",coverURL:"https://cdn.intechopen.com/books/images_new/5884.jpg",editedByType:"Edited by",editors:[{id:"146466",title:"Prof.",name:"Andreia",surname:"Ferreira de Castro Gomes",slug:"andreia-ferreira-de-castro-gomes",fullName:"Andreia Ferreira de Castro Gomes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7325",title:"Nanostructures in Energy Generation, Transmission and Storage",subtitle:null,isOpenForSubmission:!1,hash:"8e49924dd2c3e28c82fdc115ce04f925",slug:"nanostructures-in-energy-generation-transmission-and-storage",bookSignature:"Yanina Fedorenko",coverURL:"https://cdn.intechopen.com/books/images_new/7325.jpg",editedByType:"Edited by",editors:[{id:"199149",title:"Dr.",name:"Yanina",surname:"Fedorenko",slug:"yanina-fedorenko",fullName:"Yanina Fedorenko"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9230",title:"Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis",subtitle:null,isOpenForSubmission:!1,hash:"1d1af591d87490c9ad728a1352e62d96",slug:"smart-nanosystems-for-biomedicine-optoelectronics-and-catalysis",bookSignature:"Tatyana Shabatina and Vladimir Bochenkov",coverURL:"https://cdn.intechopen.com/books/images_new/9230.jpg",editedByType:"Edited by",editors:[{id:"237988",title:"Prof.",name:"Tatyana",surname:"Shabatina",slug:"tatyana-shabatina",fullName:"Tatyana Shabatina"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9322",title:"Hybrid Nanomaterials",subtitle:"Flexible Electronics Materials",isOpenForSubmission:!1,hash:"beff6cce44f54582ee8a828759d24f19",slug:"hybrid-nanomaterials-flexible-electronics-materials",bookSignature:"Rafael Vargas-Bernal, Peng He and Shuye Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/9322.jpg",editedByType:"Edited by",editors:[{id:"182114",title:"D.Sc.",name:"Rafael",surname:"Vargas-Bernal",slug:"rafael-vargas-bernal",fullName:"Rafael Vargas-Bernal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"9662",title:"Semi-Empirical Modelling and Management of Flotation Deinking Banks by Process Simulation",doi:"10.5772/8445",slug:"semi-empirical-modelling-and-management-of-flotation-deinking-banks-by-process-simulation",body:'\n\t\t
\n\t\t\t
1. Introduction
\n\t\t\t
Energy use rationalization and the substitution of fossil with renewable hydrocarbon sources can be considered as some of the most challenging objectives for the sustainable development of industrial activities. In this context, the environmental impact of recovered papers deinking is questioned (Byström & Lönnstedt, 2000) and the use of recovered cellulose fibres for the production of bio-fuel and carbohydrate-based chemicals (Hunter, 2007; Sjoede et al., 2007) is becoming a possible alternative to papermaking. Though there is still room for making radical changes in deinking technology and/or in intensifying the number of unit operations (Julien Saint Amand, 1999; Kemper, 1999), the current state of the paper industry dictates that most effort be devoted to reduce cost by optimizing the design of flotation units (Chaiarrekij et al., 2000; Hernandez et al., 2003), multistage banks (Dreyer et al., 2008; Cho et al., 2009; Beneventi et al., 2009) and the use of deinking additives (Johansson & Strom, 1998; Theander & Pugh, 2004). Thereafter, the improvement of the flotation deinking operation towards lower energy consumption and higher separation selectivity appears to be necessary for a sustainable use of recovered fibres in papermaking.
\n\t\t\t
Nevertheless, over complex physical laws governing physico-chemical interactions and mass transport phenomena in aerated pulp slurries (Bloom & Heindel, 2003; Bloom, 2006), the variable composition and sorting difficulties of raw materials (Carré & Magnin, 2003; Tatzer et al., 2005) hinder the use of a mechanistic approach for the simulation of the flotation deinking process. At this time, the use of model mass transfer equations and the experimental determination of the corresponding transport coefficients is the most widely used method for the accurate simulation of flotation deinking mills (Labidi et al., 2007; Miranda et al., 2009; Cho et al., 2009).
\n\t\t\t
Solving the mass balance equations in flotation deinking and generally in papermaking systems with several recycling loops and constraints is not straightforward: this requires explicit treatment of the convergence by a robust algorithm and thus computer-aided process simulation appears as one of the most attractive tools for this purpose (Ruiz et al., 2003; Blanco et al., 2006; Beneventi et al., 2009). Process simulation software are widely used in papermaking (Dahlquist, 2008) for process improvement and to define new control strategies. However, paper deinking mills have been involved in this process rationalization effort only recently and the full potential of process simulation for the optimization and management of flotation deinking lines remains underexploited.
\n\t\t\t
This chapter describes the four stages that have been necessary for the development of a flotation deinking simulation module based on a semi-empirical approach, i.e.:
\n\t\t\t
the identification of transport mechanisms and their corresponding mass transfer equations;
the validation of model equations on a laboratory-scale flotation cell;
the correlation of mass transfer coefficients with the addition of chemical additives in the pulp slurry;
the implementation of model equations on a commercial process simulation platform, the simulation of industrial flotation deinking banks and the comparison of simulation results with mill data.
\n\t\t\t
After the validation of the simulation methodology, deinking lines with different configurations are simulated in order to evaluate the impact of line design on process efficiency and specific energy consumption. As a step in this direction, single-stage with mixed tank/column cells, two-stage and three-stage configurations are evaluated and the total number of flotation units in each stage and their interconnection are used as main variables. Explicit correlations between ink removal efficiency, selectivity, energy consumption and line design are developed for each configuration showing that the performance of conventional flotation deinking banks can be improved by optimizing process design and by implementing mixed tank/column technologies in the same deinking line.
\n\t\t
\n\t\t
\n\t\t\t
2. Particle transport mechanisms
\n\t\t\t
Particle transport in flotation deinking cells can be modelled using semi-empirical equations accounting for four main transport phenomena, namely, hydrophobic particle flotation, entrainment and particle/water drainage in the froth (Beneventi et al., 2006).
\n\t\t\t
\n\t\t\t\t
2.1. Flotation
\n\t\t\t\t
In flotation deinking system, the gas and the solid phases are finely dispersed in water as bubbles and particles with size ranging between ~0.2 – 2 mm and ~10 – 100 µm, respectively. The collision between bubbles and hydrophobic particles can induce the formation of stable bubble/particle aggregates which are conveyed towards the surface of the liquid by convective forces (Fig. 1a). Similarly, lipophilic molecules adsorbed at the air/water interface are removed from the pulp slurry by air bubbles (Fig. 1b). The rate of removal of hydrophobic materials by adsorption/adhesion at the surface of air bubbles, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\tn\n\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t, can be described by the typical first order kinetic equation
where c\n\t\t\t\t\t\n\t\t\t\t\t\tn\n\t\t\t\t\t is the concentration of a specific type of particle (namely, ink, ash, organic fine elements and cellulose fibres) and k\n\t\t\t\t\t\n\t\t\t\t\t\tn\n\t\t\t\t\t its corresponding flotation rate constant,
\n\t\t\t\t\tQ\n\t\t\t\t\t\n\t\t\t\t\t\tg\n\t\t\t\t\t is the gas flow, α an empirical parameter, S is the cross sectional area of the flotation cell and K\n\t\t\t\t\t\n\t\t\t\t\t\tn\n\t\t\t\t\t is an experimentally determined parameter including particle/bubble collision dynamics and physicochemical factors affecting particle adhesion to the bubble surface.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
2.2. Entrainment
\n\t\t\t\t
During the rising motion of an air bubble in water, a low pressure area forms in the wake of the bubble inducing the formation of eddies with size and stability depending on bubble size and rising velocity. Both hydrophobic and hydrophilic small particles can remain trapped in eddy streamlines (Fig. 1c) and they can be subsequently entrained by the rising motion of air bubbles.
\n\t\t\t\t
Particles and solutes entrainment is correlated to their concentration in the pulp slurry and to the water upward flow in the froth (Zheng et al., 2005).
\n\t\t\t\t
Figure 1.
Scheme of transport mechanisms acting during the flotation deinking process. (a) Particle attachment and flotation, (b) liphopilic molecules adsorption, (c) influence of size on the path of cellulose particle in the wake of an air bubble (Beneventi et al. 2007), (d) water and particle drainage in the froth.
\n\t\t\t\t
The rate of removal due to entrainment, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\tn\n\t\t\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t, can be modelled by the equation:
where ϕ = c\n\t\t\t\t\t\n\t\t\t\t\t\t0f\n\t\t\t\t\t\n\t\t\t\t\t/c\n\t\t\t\t\t\n\t\t\t\t\t\tn\n\t\t\t\t\t is the entrainment coefficient, c\n\t\t\t\t\t\n\t\t\t\t\t\t0f\n\t\t\t\t\t is particle concentration at the pulp/froth interface, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tQ\n\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\t0\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\tis the water upward flow in the froth in the absence of drainage and V is the pulp volume in the flotation cell.
\n\t\t\t\t
The total rate of removal due to both flotation and entrainment is given by the sum of the two contributions, i.e.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\t\tn\n\t\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\tu\n\t\t\t\t\t\t\t\t\t\t\tp\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t=\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\tn\n\t\t\t\t\t\t\t\t\t\tf\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t+\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\tn\n\t\t\t\t\t\t\t\t\t\te\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
2.3. Water and particle drainage in the froth
\n\t\t\t\t
At the surface of the aerated pulp slurry, a froth phase is formed with water films dividing neighbouring bubbles and solid particles either dispersed in the liquid phase or attached to the surface of froth bubbles (Fig. 1d). Despite the complex dynamics of froth systems (Neethilng & Cilliers, 2002), water and particle drainage induced by gravitational forces can be considered as the two main phenomena governing mass transfers in the froth.
\n\t\t\t\t
The water drainage through the froth, described using the water hold-up in the froth (ε), and the froth retention time (FRT) in the flotation cell were taken as main parameters:
where Q\n\t\t\t\t\t\n\t\t\t\t\t\tg\n\t\t\t\t\t and Q\n\t\t\t\t\t\n\t\t\t\t\t\tf\n\t\t\t\t\t are the gas and the froth reject flows, h is the froth thickness and J\n\t\t\t\t\t\n\t\t\t\t\t\tg\n\t\t\t\t\t, J\n\t\t\t\t\t\n\t\t\t\t\t\tf\n\t\t\t\t\t are the gas and water superficial velocities in the froth. In flotation froths, the decrease of water hold-up versus time, is well described by an exponential decay (Gorain et al., 1998; Zheng et al., 2006)
where ε\n\t\t\t\t\t\n\t\t\t\t\t\t0\n\t\t\t\t\t is the water volume fraction at the froth/pulp interface and L\n\t\t\t\t\t\n\t\t\t\t\t\td\n\t\t\t\t\t is the water drainage rate constant.
\n\t\t\t\t
By analogy with particle entrainment in the aerated pulp slurry, the rate of the entrainment of particles/solutes dispersed in the froth by the water drainage stream, \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\tr\n\t\t\t\t\t\t\t\t\t\tn\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\t\td\n\t\t\t\t\t\t\t\t\t\t\to\n\t\t\t\t\t\t\t\t\t\t\tw\n\t\t\t\t\t\t\t\t\t\t\tn\n\t\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t is given by the equation
where δ = c\n\t\t\t\t\t\n\t\t\t\t\t\td\n\t\t\t\t\t\n\t\t\t\t\t/c\n\t\t\t\t\t\n\t\t\t\t\t\tnf\n\t\t\t\t\t is the particle drainage coefficient, c\n\t\t\t\t\t\n\t\t\t\t\t\tnf\n\t\t\t\t\t and c\n\t\t\t\t\t\n\t\t\t\t\t\td\n\t\t\t\t\t are particle concentrations in the froth and in the water drainage stream, respectively and Q\n\t\t\t\t\t\n\t\t\t\t\t\td\n\t\t\t\t\t is the water drainage flow.
\n\t\t\t\t
In order to close-up Eqs. (1-7), perfect mixing is assumed in the lower part and two counter-current piston flows in the upper part (upward flow for the froth and downward flow for water drainage).
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
3. Validation of model equations at the laboratory scale
\n\t\t\t
Mechanisms described by Eqs. (1-7) are extensively used in minerals flotation for the simulation of industrial processes. Nevertheless, due to the intrinsic difference between the composition and the rheological behaviour of minerals and recovered papers slurries, the use of Eqs. (1-7) for the simulation of industrial flotation deinking processes is not straightforward and model validation on a pilot flotation cell appears a necessary step.
\n\t\t\t
\n\t\t\t\t
3.1. Flotation cell set-up and flotation conditions
\n\t\t\t\t
To run pilot tests, a 19 cm diameter and 130 cm height flotation column was assembled (Fig. 2). The flotation column has two main regions: a collection region, where the pulp slurry is in contact with gas bubbles, and a ~15 cm height aeration region, where the pulp is re-circulated in tangential Venturi aerators where the gas flow is regulated by using a mass flow meter. The froth generated at the top of the flotation column is removed by using an adjustable reverse funnel connected to a vacuum pump. The pulp level in the cell and the froth retention time before removal can be modified by adjusting the position of the overflow system and of the reverse funnel, respectively.
\n\t\t\t\t
The retention time distribution obtained in the absence and in the presence of cellulose fibres (Fig. 3) shows that, whatever the liquid volume in the cell and the feed flow, the flotation cell can be described as a continuous stirred tank reactor (CSTR).
\n\t\t\t\t
Flotation experiments were performed using a conventional fatty acid chemical system in order to test independently the contribution of air flow, pulp feed flow, pulp hydraulic retention time in the cell and froth retention time on the ink removal efficiency and the flotation yield. Experimental conditions are summarized in Table 1.
\n\t\t\t\t
Figure 2.
Schematic representation of the flotation column used in this study. α) Pulp storage chest. β) Volumetric pump. χ) Adjustable froth removal device. δ) Volumetric pump to supply gas injectors. ε) Venturi-type air injectors. ϕ) Flotation cell outlet with adjustable overflow system. γ) Froth collection vessel. η) Vacuum pump. ι) Mass flow meter.
\n\t\t\t\t
Figure 3.
Mixing conditions in the flotation column. Reactor response to a step type increase in the tracer concentration. (a) Effect of the feed flow and cell volume in presence of water (b) Effect of cellulose fibres. Dotted lines represent the CSTR response.
\n\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
Cell Volume V (L)
\n\t\t\t\t\t\t\t
Pulp flow Q in (L/min)
\n\t\t\t\t\t\t\t
Air flow Q g (L/min)
\n\t\t\t\t\t\t\t
Froth removal thickness h (cm)
\n\t\t\t\t\t\t\t
HRT V/Q in (min)
\n\t\t\t\t\t\t\t
Air ratio Q g /Q in (%)
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
14.5
\n\t\t\t\t\t\t\t
2
\n\t\t\t\t\t\t\t
4
\n\t\t\t\t\t\t\t
3 - 1.5 - 4 - 8
\n\t\t\t\t\t\t\t
7.2
\n\t\t\t\t\t\t\t
200
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
14.5
\n\t\t\t\t\t\t\t
2
\n\t\t\t\t\t\t\t
6
\n\t\t\t\t\t\t\t
3 - 1.5 - 4 - 8
\n\t\t\t\t\t\t\t
7.2
\n\t\t\t\t\t\t\t
200
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
14.5
\n\t\t\t\t\t\t\t
2
\n\t\t\t\t\t\t\t
8
\n\t\t\t\t\t\t\t
3 - 1.5 - 4 - 8
\n\t\t\t\t\t\t\t
7.2
\n\t\t\t\t\t\t\t
200
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
14.5
\n\t\t\t\t\t\t\t
3.5
\n\t\t\t\t\t\t\t
4
\n\t\t\t\t\t\t\t
3 - 1.5 - 4 - 8
\n\t\t\t\t\t\t\t
4.1
\n\t\t\t\t\t\t\t
114
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
14.5
\n\t\t\t\t\t\t\t
4.5
\n\t\t\t\t\t\t\t
4
\n\t\t\t\t\t\t\t
3 - 1.5 - 4 - 8
\n\t\t\t\t\t\t\t
3.2
\n\t\t\t\t\t\t\t
89
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
14.5
\n\t\t\t\t\t\t\t
2.5
\n\t\t\t\t\t\t\t
5
\n\t\t\t\t\t\t\t
3 - 1.5 - 5 - 8
\n\t\t\t\t\t\t\t
5.8
\n\t\t\t\t\t\t\t
200
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
19.5
\n\t\t\t\t\t\t\t
2.5
\n\t\t\t\t\t\t\t
5
\n\t\t\t\t\t\t\t
3 - 1.5 - 5 - 8
\n\t\t\t\t\t\t\t
7.8
\n\t\t\t\t\t\t\t
200
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
24
\n\t\t\t\t\t\t\t
2.5
\n\t\t\t\t\t\t\t
5
\n\t\t\t\t\t\t\t
3 - 1.5 - 5 - 8
\n\t\t\t\t\t\t\t
9.6
\n\t\t\t\t\t\t\t
200
\n\t\t\t\t\t\t
\n\t\t\t\t\t
Table 1.
Experimental conditions used to run flotation trials. The cross sectional area of the flotation column had a constant value, S = 283 cm2.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
3.2. Interpretation of experimental results with model equations
\n\t\t\t\t
\n\t\t\t\t\t
3.2.1. Water removal
\n\t\t\t\t\t
Froth flows measured during flotation experiments were fitted by using Eqs. (5, 6) and the water volume fraction in the top froth layer before removal was plotted as a function of the froth retention time in the cell. Fig. 4 shows that the water fraction in the froth had an exponential decay with increasing retention time and that Eq. (6) fitted with good accuracy experimental data. The absence of froth recovery when the retention time was higher than 30 s indicates that, when the water fraction was lower than ~0.02, gas bubbles collapsed in the reverse funnel and froth recovery was no longer possible. The decrease of froth processability in the vacuum system was attributed to the destabilization of froth liquid film and to the typical increase in froth viscosity (Shi & Zheng, 2003) when increasing FRT.
\n\t\t\t\t\t
Figure 4.
Water volume fraction in the froth removed by the vacuum device (all tested conditions) plotted as a function of the froth retention time in the cell.
\n\t\t\t\t\t
The frothing behaviour of the pulp slurry was therefore described by Eq. 6, with ε\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tο\n\t\t\t\t\t\t = 0.15 and L\n\t\t\t\t\t\t\n\t\t\t\t\t\t\td\n\t\t\t\t\t\t = 4.44 min-1.
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
3.2.2. Ink removal
\n\t\t\t\t\t
The variation of the ink concentration during the flotation transitory and steady states and with froth removal at different heights, were obtained by mass balance from Eqs. (2-7) and the models of reactors. In order to limit the number of free variables in the equation system, the entrainment coefficient of ink particles was assumed similar to that of silica particles with same size (Machaar & Dobby, 1992), namely ~0.2. As expected from Eq. (2), the increase in the gas flow gave a corresponding increase in the ink flotation rate constant which fairly deviated from a linear correlation, i.e. k\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tink\n\t\t\t\t\t\t\n\t\t\t\t\t\t= 0.15 Q\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tg\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t0.73\n\t\t\t\t\t\t (k in min-1, Q\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tg\n\t\t\t\t\t\t in L/min). The ink drainage coefficient given by model equations was δ\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tink\n\t\t\t\t\t\t = 0.30, thus reflecting the limited drainage of ink particles through the froth and the low variation of ink concentration in the pulp when the froth removal height was increased (Fig. 5a). Flotation rate constants and ink drainage coefficient obtained by fitting experimental data were used to predict the contribution of cell volume and froth removal height on the residual ink concentration in the pulp. Calculated ink removal efficiencies matched with experimental values (Fig. 5b).
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
3.3.3. Fibres removal
\n\t\t\t\t\t
This approach was repeated for fibres, fines and ashes. Since cellulose fibres are hydrophilic particles with large-un-floatable size (~1.5x0.1 mm), only entrainment and drainage were assumed to govern their transport during flotation.
\n\t\t\t\t\t
Fitting of experimental data gave an entrainment coefficient extremely high for this class of large particles: ϕ\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tfibres\n\t\t\t\t\t\t = 0.30, and a drainage coefficient of δ\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tfibres\n\t\t\t\t\t\t = 0.80. The relevant contribution of entrainment was associated with the natural tendency of cellulose fibres to generate large flocks with small gas bubbles trapped in.
\n\t\t\t\t
\n\t\t\t\t
\n\t\t\t\t\t
3.3.4. Fines and ash removal
\n\t\t\t\t\t
Fines and ashes displayed an intermediate behaviour between ink and fibres. Fitting of experimental data gave low flotation rate constants proportional to the gas flow, k\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tfines\n\t\t\t\t\t\t\n\t\t\t\t\t\t= 0.018 Q\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tg\n\t\t\t\t\t\t for fines and k\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tash\n\t\t\t\t\t\t\n\t\t\t\t\t\t= 0.021 Q\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tg\n\t\t\t\t\t\t for ash (k in min-1, Q\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tg\n\t\t\t\t\t\t in L/min).
\n\t\t\t\t\t
Figure 5.
Variation of ink concentration plotted as a function of the flotation time and of the froth removal height. (a) Influence of gas flow on residual ink concentration, pulp flow Q\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tin\n\t\t\t\t\t\t\t\t = 2 L/min, cell volume V = 14.5 L. Dotted lines represent experimental data fitting with model equations. (b) Influence of cell volume on residual ink concentration, pulp flow Q\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tin\n\t\t\t\t\t\t\t\t = 2.5 L/min, gas flow Q\n\t\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t\tg\n\t\t\t\t\t\t\t\t = 5 L/min. Dotted lines represent trends obtained from model calculations.
\n\t\t\t\t\t
Like ink particles, entrainment coefficients for fines and ash were assumed similar to that of silica particles with similar size, namely ϕ\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tfines\n\t\t\t\t\t\t = 0.25 and ϕ\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tash\n\t\t\t\t\t\t = 0.45 and, as expected for poorly floatable particles, drainage coefficients had high values, namely δ\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tfines\n\t\t\t\t\t\t = 0.85 and δ\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tash\n\t\t\t\t\t\t = 0.8.
\n\t\t\t\t\t
Present results show that model equations derived from the minerals flotation field allowed modelling the flotation deinking of recovered papers when using a conventional-fatty acid chemical system. The contribution of pulp flow, cell volume, viz. HRT, and froth removal height on ink removal and yield was predicted with good accuracy. However, chemical variables (such as the presence of surfactants), which can strongly affect the flotation deinking process, were not accounted in the model. As a step in this direction, the contribution of a model non-ionic surfactant on particle and water transport was investigated.
\n\t\t\t\t
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
4. Correlation of transport coefficients with surfactant addition
\n\t\t\t
Recovered papers may release in process waters a wide variety of dissolved and colloidal substances (Brun et al., 2003; Pirttinen & Stenius, 1998) which limit the use of conventional analytical techniques for the dosage of non-ionic surfactants. In order to avoid using over complex purification and analysis procedures, the surfactant concentration in the pulp slurry can be estimated using an indirect method based on the measurement of surface tension by maximum bubble pressure (Pugh, 2001; Comley et al., 2002). Thereafter, in the presence of a reference surfactant (in this study, an alkyl phenol ethoxylate, NP 20EO, added at the inlet of the flotation cell) it becomes possible to quantify the effect of surfactant concentration on particle, water and surfactant molecules transport during the flotation process and to establish direct cross correlations between surfactant concentration and transport coefficients.
\n\t\t\t
\n\t\t\t\t
4.1. Surfactant removal
\n\t\t\t\t
The removal of surfactant molecules from the pulp slurry during flotation is strongly affected by surfactant concentration and by the froth removal thickness (Fig. 6a). Indeed, the increase in NP 20EO concentration boosted surfactant removal and decreased the impact of the froth removal thickness on the residual surfactant in the floated pulp. Surfactant removal rates and drainage coefficients (Fig. 6b) obtained by fitting experimental data with Eqs. (1-7), show that the removal rate constant increased with the equivalent concentration, while the drainage coefficient decreased. This trend was interpreted as reflecting the contribution of the initial surfactant concentration on bubble size and on froth stability: a decrease in bubble coalescence/burst in the aerated pulp and in the froth leads to an increase in the surfactant removal rate and a decrease in the drainage rate, respectively.
\n\t\t\t\t
Figure 6.
Surfactant removal from the pulp slurry during flotation. (a) Decrease in the surfactant equivalent concentration in the pulp slurry during flotation plotted as a function of the froth removal thickness and of NP 20EO concentration (dotted lines represent data fitting with Eqs. (1-7). (b) Surfactant removal rate constant and drainage coefficient obtained from the interpolation of experimental data with model equations.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
4.2. Gas and water hold-up
\n\t\t\t\t
\n\t\t\t\t\tFig. 7 shows that the rise in the surfactant flotation rate constant (Fig. 6b) can be ascribed to an increase in the gas hold-up with the surfactant concentration. This trend is due to the bubble stabilization induced by the adsorption of surfactant molecules on the bubble surface and the ensuing stabilization of liquid films formed between colliding bubbles (Danov et al., 1999; Valkovska et al., 2000). The water hold-up in the froth calculated from water recovery data and Eqs. (5, 6) shows an exponential decay (Fig. 8a) and the water hold-up at the pulp/froth interface, ε0, increases with the surfactant concentration, whereas the water drainage coefficient, L\n\t\t\t\t\t\n\t\t\t\t\t\td\n\t\t\t\t\t, decreases (Fig. 8b). This trend reflects the NP 20EO contribution in i) decreasing bubble size in the aerated pulp, ii) stabilizing liquid films between froth bubbles and iii) preventing bubble burst in the froth.
\n\t\t\t\t
Figure 7.
Effect of the model non-ionic surfactant (NP 20EO) on gas hold-up. Air flow 2 L/min.
\n\t\t\t\t
Figure 8.
Frothing behaviour of the pulp slurry in the flotation cell. (a) Water hold-up in the froth plotted as a function of the froth retention time and of the added non-ionic surfactant concentration. Dotted lines represent data fitting with Eq. 7. (b) Water hold-up at the froth/pulp slurry interface and water drainage rate constant.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
4.3. Ink removal
\n\t\t\t\t
In the absence of surfactant, ink particles are efficiently removed during flotation (Fig. 9a). However, ink removal is strongly affected by the low frothing behaviour of the pulp slurry
\n\t\t\t\t
Figure 9.
Effect of surfactant concentration on ink removal. (a) Variation of ink concentration in the pulp after flotation. (b) Ink flotation rate constant and drainage coefficient.
\n\t\t\t\t
(Fig. 8) and the increase in the froth removal thickness is responsible for a strong increase in the residual ink concentration in the floated pulp. The addition of surfactant (NP 20EO) in the pulp slurry reduces the ink flotation rate constant (Fig. 9b) and ink removal sensitivity to the FRT. For the highest surfactant concentration, 16 µM, the ink concentration is not affected by the froth removal thickness thus reflecting the stabilization of froth bubbles. The decrease of the ink flotation rate constant for increasing NP 20EO concentration is due to non-ionic surfactant adsorption at both the bubble/ and ink/water interface which induces a decrease in both bubble surface tension and ink/water interfacial energy (Epple et al, 1994). In the froth phase, the non-ionic surfactant improves bubble stability and water hold-up reducing ink particles detachment due to bubble burst and their drainage from the froth into the aerated pulp slurry (Fig. 9b).
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
4.4. Fibre removal
\n\t\t\t\t
The transfer of hydrophilic cellulose fibres in the froth decreases when increasing the surfactant concentration (Fig. 10a). As obtained for surfactant and ink, the froth stabilization due to NP 20EO addition progressively suppresses the contribution of the froth removal thickness on fibre concentration and at the highest surfactant dosage the froth has a constant fibre concentration. The decrease in the fibre entrainment coefficient shown in Fig. 10b is associated with the suppression of fibre flocculation by calcium soap and with a decrease of bubble entrapment in fibre flocs and of the convective motion of fibre/bubble flocs towards the froth.
\n\t\t\t\t
The constant fibre drainage coefficient (Fig. 10b) indicates that fibre drainage is mainly governed by the intensity of the water drainage flow.Fillers and fine elements have a behaviour similar to that of ink particles, i.e. the increase in surfactant dosage depressed fillers/fines flotation and drainage.
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
5. Simulation of conventional flotation deinking banks
\n\t\t\t
\n\t\t\t\t
5.1. Implementation of model equations in a process simulation software
\n\t\t\t\t
Within the current industrial context (environmental and safety constraints, globalization of the economy, need to shorten the “time to market” of products), computer science is more
\n\t\t\t\t
Figure 10.
Fibre removal in the froth. (a) Influence of froth removal height and surfactant concentration on the fibre concentration in the froth during flotation. (b) Fibre entrainment and drainage coefficients plotted as a function of surfactant concentration.
\n\t\t\t\t
and more often used to design, analyse and optimize industrial processes. This specific area, called “Computer Aided Process Engineering” (CAPE), knows a big success in industries such as oil and gas, chemical and pharmaceutical. Process simulation software are used by chemical engineers in order to provide them with material and energy balances of the process, physical properties of the streams and elements required for equipment design, such as heat duty of exchangers or columns hydraulics. Moreover, process simulation software can also be used for cost estimates (capital expenditure, CAPEX and operational expense, OPEX), to evaluate environmental or security impact, to optimize flowsheets or operating conditions, for debottlenecking of an existing plant, for operator training… At a conceptual level, two kinds of process simulation software exist, the “module oriented” and the “equation oriented” approaches. Software based on this last approach are mainly dedicated to process dynamic simulation (Aspen Dynamics, gPROMS) and they can be compared to solvers for systems of algebraic and differential equations, directly written by users. The “module oriented” approach is adopted by most of the commercial process simulation software (Aspen Plus, Chemcad, Pro/II, ProSimPlus) and correspond to the natural conception of a process, which is constituted by unit operations dedicated to a specific task (heat transfer, reaction, separation). A general view of the structure of these software is provided on Fig. 11.
\n\t\t\t\t
These software provide unit operation library, including most common units such as chemical reactors, heat exchangers, distillation or absorption columns, pumps, turbines, compressors and, sometimes, some more specific equipments such as brazed plate fin heat exchangers, belt filters.
\n\t\t\t\t
User supplies operating and sizing parameters of each unit operations (also called modules) and linked them with streams, which represent material, energy or information flux circulating between the equipments of the real process. Other important parts of a process simulation software are the databases and the physical properties server, on which rely unit operations models to give consistent results, and solvers, which are numerical tools required to access convergence of the full flow sheet.
\n\t\t\t\t
Figure 11.
Structure of a process simulation software.
\n\t\t\t\t
Pure component databases include fixed-value properties (molar weight, critical point characteristics, normal boiling point…) and correlation coefficients for temperature-dependent properties (liquid and vapour heat capacity, vapour pressure, liquid and vapour viscosity…). The main reference for thermophysical properties of pure components is DIPPR (Design Institute for Physical Property Data, http://dippr.byu.edu/) which includes, in its 2008 version, 49 thermophysical properties (34 constant properties and 15 temperature-dependent properties) for 1973 compounds. This number of compounds is to compare with the number of chemical substances referenced by the Chemical Abstracts (http://www.cas.org/), which was greater than 33 millions in 2008. The difference between these two figures shows the importance to have models to predict pure physical properties. These models can be based on chemical structure or intrinsic properties of the molecule (molar weight, normal boiling point, critical temperature…), but they are then mainly reliable for a given chemical family. The use of molecular simulation becomes more and more frequent to compute missing data.
\n\t\t\t\t
Modelling of a physical system rests on the knowledge of pure component and binary properties. Thus, binary interaction parameters between compounds are generally required by thermodynamic models to obtain the mixture behaviour. These parameters are obtained by fitting experimental data to thermodynamics model, the main sources of these data being the DECHEMA (http://www.dechema.de/en/start_en.html) and the NIST (http://www.nist.gov/index.html). Two kinds of methods exist in order to compute fluid phase equilibria. The first way to solve the problem consists in applying a different model to each phase: fugacities in liquid phase are calculated from a reference state which is characterized by the pure component in the same conditions of physical state, temperature and pressure, ideal laws being corrected by using a Gibbs free energy model or an activity coefficients model (NRTL, UNIQUAC, UNIFAC…). Fugacities in vapor phase are calculated by using an Equation of State (ideal gases, SRK, PR…). These methods are used in order to represent the heterogeneity of the system and are classically called heterogeneous methods. Their use covers the low pressure field and it should be noted that they do not satisfy the continuity in the critical zone between vapour phase and liquid phase. The second way to solve the fluid phase equilibria calculation consists in homogeneous methods, which apply the same model, usually an Equation of State, to the two phases, allowing thus to ensure continuity at the critical point. Equations of State with their classical mixing rules (SRK, PR, LKP…) are included in this second category. However, the field of application of these model is limited to non polar or few polar systems. By integrating Gibbs free energy models in the mixing rules for Cubic Equations of State, some authors succeeded in merging both approaches. These models are often called combined approach. It has to be noted that some specific models have been developed for some particular fields of application, like electrolyte solutions, strong acids…
\n\t\t\t\t
User interface helps users to transcribe its problem in the process simulation software language. Providers now propose graphical tools which allows user to build his flowsheet by “drag-and-drop”. Numerous tools are also available to ensure fast access to information and convenient learning: information layers, colour management, right click, double click...
\n\t\t\t\t
New communication standard, called CAPE-OPEN (http://www.colan.org/), is developed to permit the interoperability and integration of software components in process simulation software. Thanks to this standard, a commercial process simulation software can now use a unit operation or a thermodynamic model developed by an expert. With this approach, a process simulation software becomes a blend of software components focused on the real needs expressed by the user.
\n\t\t\t\t
Within this context, correlations shown in Figs. 6-10 and Eqs. (1-7) were coded in FORTRAN in order to obtain a module for the flotation deinking unit operation. The effect of non-ionic surfactant concentration and distribution on ink removal selectivity was then simulated for the conventional multistage flotation system shown in Fig. 12.
\n\t\t\t\t
Figure 12.
Scheme of the conventional multistage deinking line simulated in this study (a) and of relevant pulp stream, flotation process and particle transport variables used to simulate each flotation unit (b).
\n\t\t\t\t
In the simulated system (Fig. 12), a pulp stream of 32000 L/min is processed in a first stage composed by six flotation cells in series. The outlet pulp of the sixth cell is considered as the outlet of the entire system, whereas, froths generated in the first stage are mixed and further processed in a second stage made of a series of two flotation cells. The froth of the second stage is the reject of the entire system. In order to insure a froth flow sufficient to feed the second stage and to avoid ink drainage, the froth is removed from the first stage with no retention and 75% of the pulp stream processed in the second stage is circulated at the inlet of the second stage. The remaining 25% is cascaded back at the inlet of the first stage. The froth retention time in the second stage ranges between 10 s and 4 min to stabilize the water reject to 5% (i.e. 1600 L/min). Main characteristics of the flotation line used to run simulations are given in Table 2.
\n\t\t\t\t
Overall mass balance calculations involving multi stage systems were resolved using a process simulation software (ProSimPlus). Transport coefficients in each flotation cell composing the multistage system were calculated from the surfactant concentration at the inlet of each unit.
\n\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
Volume (L)
\n\t\t\t\t\t\t\t
Feed flow (L/min)
\n\t\t\t\t\t\t\t
Aeration rate per cell (%)
\n\t\t\t\t\t\t\t
Cross section (m 2 )
\n\t\t\t\t\t\t\t
Feed consistency (g/L)
\n\t\t\t\t\t\t\t
Line capacity (T/day)
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t
20000
\n\t\t\t\t\t\t\t
40000
\n\t\t\t\t\t\t\t
50
\n\t\t\t\t\t\t\t
12
\n\t\t\t\t\t\t\t
10
\n\t\t\t\t\t\t\t
580
\n\t\t\t\t\t\t
\n\t\t\t\t\t
Table 2.
Characteristics of each flotation cell in the simulated de-inking line.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
5.2. Surfactant removal
\n\t\t\t\t
As shown in Fig. 13a, for a constant surfactant concentration in the pulp feed flow, the surfactant load progressively decreases when the pulp is processed all along the first and the second stage. However, within the range of simulated conditions, the surfactant concentration in the second stage is ~1.5 times higher than in the first stage indicating the low capacity of the first line to concentrate surfactants in the froth phase. Surfactant removal efficiencies illustrated in Fig. 13b show that flotation units in the first stage have similar yield which asymptotically increases from ~6% to ~15%. This trend can be associated to the influence of surfactant concentration on the flotation rate and on pulp frothing. With a low
\n\t\t\t\t
Figure 13.
Effect of surfactant concentration in the pulp feed flow on surfactant distribution and removal. Surfactant concentration (a) and removal (b) in each flotation unit composing the multistage system.
\n\t\t\t\t
surfactant concentration in the feed flow, surfactant removal in flotation cells of the second stage is lower than in the first stage. Similar yields are obtained with extremely high surfactant concentrations, i.e. >15 µmol/L. The different froth retention time in the first and in the second stage is at the origin of this trend. Indeed, in the first stage the froth is removed with no retention and surfactant molecules are subjected only to flotation and entrainment. Whereas, in the second stage the froth retention time ranges between 10 s and 4 min in order to promote water drainage and to stabilise the froth flow at 1600 L/min.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
5.3. Ink removal
\n\t\t\t\t
For all simulated concentrations, mixing the feed pulp with the pulp flow cascaded back from the second stage gives an increase in the ink concentration at the inlet of the first stage (Fig. 14a). In general, the ink concentration progressively decreases all along the first and the second stage, however, the ink distribution in the deinking line is strongly affected by the surfactant concentration. Fig. 14a shows that, at high surfactant load, the ink concentration along the deinking line progressively converges to the ink concentration in the feed flow. In this condition, the collision and the attachment of ink particles to air bubbles is disfavoured, flotation is depressed and ink removal is due to the hydraulic partitioning of the pulp flow into the reject and the floated pulp streams.
\n\t\t\t\t
Ink removal versus surfactant concentration plots illustrated in Fig. 14b show that in all flotation cells of the first stage ink removal monotonically decreases, while in the second stage a peak in ink removal appears at 3 µmol/L. For all simulated conditions, ink removal in the second stage is lower than in the first stage. This behaviour is associated to different froth retention time and surfactant concentration in the two stages (Fig. 13a).
\n\t\t\t\t
The peak in ink removal in the second stage reflected the progressive depression of ink upward transfer from the pulp to the froth by flotation and of ink drop back from the froth to the pulp by drainage. At low surfactant concentration, < 3 µmol/L, ink removal is governed by particle transport in the froth. The froth is unstable and bubble burst and water drainage induce ink to drop back into the pulp with an ensuing decrease in ink removal. At
\n\t\t\t\t
Figure 14.
Ink distribution and removal in the flotation line at increasing surfactant concentration in the pulp feed flow. (a) Ink concentration, (b) ink removal.
\n\t\t\t\t
high surfactant concentration, > 3 µmol/L, froth bubbles are progressively stabilized and ink drainage is reduced. The presence of a maximum in the ink removal vs. surfactant concentration curve corresponds to the best compromise between froth stabilization and ink floatability depression.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
5.4. Process yield
\n\t\t\t\t
Simulation results show that both the variation of surfactant load in the pulp feed flow and its distribution in the two flotation stages affect the yield of the deinking line. Except for a peak in ink removal in the second stage at 3 µmol/L, Fig. 15a shows that the ink removal efficiency of the entire deinking line progressively decreases when increasing surfactant concentration.
\n\t\t\t\t
Figure 15.
Total ink and surfactant removal (a) and fibres, fines, ash loss (b) plotted as a function of surfactant concentration in the pulp feed flow.
\n\t\t\t\t
Similar trends are obtained for fibre, fines and ash (Fig. 15b) and only surfactant removal increases when increasing the surfactant load in the pulp feed flow. Fig. 15 shows that with a surfactant load in the pulp flow comparable with the amount released by a standard pulp stock composition of 50% old newspaper and 50% old magazines, i.e. ~4 µmol/L, ink is efficiently removed (~70%), fibre, fines and ash loss have realistic values for a deinking line, i.e. 5, 19 and 65% respectively, and surfactant removal does not exceed 17%. The high sensitivity of the process yield to the surfactant load in the pulp stream and the low surfactant removal efficiency lead to assume that a conventional deinking line weakly attenuates fluctuations in the amount of surface active agents released by recovered papers with a direct effect on the stability of the process yield and on surfactant accumulation in process waters.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
5.5. Comparison of simulation results with mill data
\n\t\t\t\t
\n\t\t\t\t\tFig. 16a shows that the residual ink content obtained by simulation with a surfactant load of 4 µmol/L is in good agreement with data collected during mill trial. In the first stage, residual ink obtained from simulation displays higher values than experimental data. This mismatch can be ascribed to the different ink load in the pulp feed flow.
\n\t\t\t\t
The residual ink content in the floated pulp (ERIC) is lower than that of the model pulp used in laboratory experiments and to run simulations (i.e. 830 ppm). When using the industrial pulp composition to run simulations this discrepancy is strongly attenuated.
\n\t\t\t\t
The variation of the surfactant concentration in the deinking mill is in good agreement with simulation results. Fig. 16b shows that surfactant concentration in the first stage is nearly constant and the decrease predicted by process simulation can not be observed since it is within the experimental error. As predicted by the simulation, the surfactant concentration in the second stage is 1.4-1.5 times higher than in the first stage and it progressively decreases all along the line. Ink and surfactant removal determined for the industrial deinking line in the first and second stages matches with quite good accuracy with the yield predicted by process simulation (Fig. 17) thus indicating that particle and water transport mechanisms used for the simulation of the industrial line describe with reasonable accuracy the deinking process.
\n\t\t\t\t
Figure 16.
Comparison of residual ink concentration (a) and surfactant relative concentration (b) obtained from process simulation with mill data.
\n\t\t\t\t
Figure 17.
Comparison of ink (a) and surfactant removal (b) obtained at the industrial scale with simulation results.
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
6. Optimization of deinking lines by process simulation
\n\t\t\t
\n\t\t\t\t
6.1. Deinking line layout
\n\t\t\t\t
In order to clarify the contribution of multistage deinking lines design on ink removal and process yield, six bank configurations of increasing complexity are modelled. As summarized in Table 3, flotation banks are assembled using flotation cells with two different aspect ratios, 0.7 for the tank cell, 2 for the column cell, and with a constant pulp capacity of 20 m3. With both cell geometries, pulp aeration is assumed to take place in Venturi aerators with an aeration rate Q\n\t\t\t\t\t\n\t\t\t\t\t\tg\n\t\t\t\t\t/Q\n\t\t\t\t\t\n\t\t\t\t\t\tpulp\n\t\t\t\t\t = 0.5 and a pressure drop of 1.2 bar (Kemper, 1999). To run simulations under realistic conditions, the superficial gas velocity in a single column cell is set at 2.4 cm/s, which corresponds to an air flow rate of 10 m3/min or half that in the tank cell. Similarly, the pulp flow processed in flotation columns is limited to a maximal value of 10 m3/min. Fig. 18a-d illustrates the four single-stage lines simulated in this study. The first case (Fig. 18a), consists in a simple series of flotation tanks, with common launder collecting flotation froths from each cell to produce the line reject. The number of tanks is varied from 6 to 9. In order to limit fibre loss, rejects of flotation cells at the end of the line are cascaded back at the line inlet (Fig. 18b) while the froth rejected from the first few cells is rejected. Using this configuration, the simulation is carried out with the number of tanks in the line and cascaded reject flows being used as main variables. In the third configuration (Fig. 18c), the pulp retention time at the head of the line is doubled by placing two tanks in parallel followed by a series of 7 tanks whose rejects are returned at the line inlet. The last single-stage configuration (Fig. 18d) consists in a stack of 4 to 6 flotation columns in parallel, followed by a series of 3 to 5 tanks whose rejects are sent back to the line inlet. The aim of this configuration is to increase ink concentration and pulp retention time at the head of the line and to assess the potential of column flotation for ink removal efficiency.
\n\t\t\t\t
As depicted in Fig. 18, two- and three-stage deinking lines were also simulated. As previously mentioned, the two-stage line shown in Fig. 18e is the most widely used one in flotation deinking. In this classical configuration, reject of the first stage, are generated in 5 to 9 primary cells in series. To recover valuable fibres in these combined reject stream, rejects of the primary line are processed in a second stage with 1 to 4 tanks. The number of flotation tanks in the first and in the second stage is here used as main variable to optimize the line design. The three-stage line shown in Fig. 18f is made of a first stage with 7 to 8 flotation tanks, a second stage with 2 tanks and a third stage with 1 tank. The pulp processed in the third stage is partitioned between the inlets of the third and of the second stage.
\n\t\t\t\t
Table 3.
Relevant characteristics of flotation units used to assembly the flotation lines simulated in this study. + Estimated assuming a bubble slip velocity relative to the pulp downstream flow of ~7 cm/s.
\n\t\t\t\t
Figure 18.
Flotation lines simulated in this study. (a) Simple line made of a series of n flotation cells. (b) Line with n flotation cells with the reject of the last n-m cells cascaded back at the line inlet. (c) Line composed by n flotation cells with the first two cells in parallel and the remaining cells in series. The reject of the last n-2 cells is cascaded back at the inlet of the line. (d) Line composed by a stack of m flotation columns in parallel and a series of n cells. The reject of flotation cells is cascaded back at the inlet of the line. (e) Conventional two-stage line with n cells in the primary stage and m cells in the secondary stage. (f) Three-stage line with n = 8, m = 2.
\n\t\t\t\t
The pulp processed in the second stage is partitioned between the inlets of the second stage itself and of the first stage. In order to limit the number of variables, all simulations are run with zero froth retention time. Under this condition, ink removal and fibre/fillers loss are maximized because particle and water drainage phenomena from the froth to the pulp are suppressed but this is obtained at the expense of ink removal selectivity. Simulation results are therefore representative of deinking lines operated at their maximal ink removal capacity.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
6.2. Ink removal selectivity and specific energy consumption
\n\t\t\t\t
Flotation lines assembled here for simulation purposes are characterized by a fixed (tank cells) and an adjustable (column cells) feed flow. Since the introduction of recirculation loops modifies the processing capacity and the pulp retention time in the whole line, predicting particle removal efficiencies is not sufficient to establish a performance scale between different configurations. Consequently, the specific energy consumption, which is given by the equation
where Q\n\t\t\t\t\t\n\t\t\t\t\t\tg\n\t\t\t\t\t is the gas flow injected in each flotation cell (n) in the multistage system, P\n\t\t\t\t\t\n\t\t\t\t\t\tinj\n\t\t\t\t\t the pressure feed of each static aerator (1.2 bar), ρ the aeration rate Q\n\t\t\t\t\t\n\t\t\t\t\t\tg\n\t\t\t\t\t\n\t\t\t\t\t/Q\n\t\t\t\t\t\n\t\t\t\t\t\tpulp\n\t\t\t\t\t (0.5 in the simulated conditions), Q\n\t\t\t\t\t\n\t\t\t\t\t\tout\n\t\t\t\t\t and c\n\t\t\t\t\t\n\t\t\t\t\t\tout\n\t\t\t\t\t are the pulp volumetric flow and consistency at the outlet of the deinking line, the ink removal efficiency and the ink removal selectivity (Z factor) (Zhu et al., 2005), have to be taken into account to establish a correlation between process efficiency and line design.
\n\t\t\t\t
\n\t\t\t\t\tFig. 19a illustrates that when the cascade ratio is raised in single-stage lines, the deinking selectivity increases by 4-5 times, whereas the specific energy consumption slightly decreases. Reduced energy is caused by a net increase in pulp production capacity. However, these gains are generally associated with a decrease in ink removal. Hence, the reference target of 80 % ink removal with selectivity factor Z = 8 could only be obtained with a line made of 9 tanks with a cascade ratio of 0.6 and a specific energy consumption of 60 kWh/t. Because target ink removal and selectivity can be achieved only by increasing energy consumption, this configuration does not represent a real gain in terms of process performance. The addition of a high ink removal efficiency stage comprising a stack of flotation columns in parallel at the line head, Fig. 19b, reduces specific energy consumption by 25-50 %. Nevertheless, the efficient removal of floatable mineral fillers and the absence of hydrophilic particle drainage in the froth limits the selectivity factor to ~7.5. According to experimental studies (Robertson et al. 1998; Zhu & Tan, 2005), the increase of the froth retention time and the implementation of a froth washing stage would improve the selectivity factor with a minimum loss in ink removal. Under these conditions, a flotation columns stack equipped with optimized froth retention/washing systems would markedly decrease specific energy consumption. Similarly to the results obtained for single-stage lines, Fig. 20a shows that improved ink removal selectivity in two-stage lines is coupled with a decrease ink removal.
\n\t\t\t\t
Figure 19.
Ink removal efficiency and selectivity obtained for tested configurations plotted as a function of the specific energy consumption. (a) Flotation line composed by 6 to 9 flotation cells and with the reject of the last n-m cells cascaded back at the line inlet (Fig. 18a-b). (b) Flotation line composed by a stack of flotation cells or columns in parallel followed by a series of flotation cells (Fig. 18c-d).
\n\t\t\t\t
Figure 20.
Ink removal efficiency and selectivity obtained for tested configurations plotted as a function of the specific energy consumption. (a) Deinking line composed by a 1ry and a 2ry stage with different number of flotation cells in the two stages (Fig. 18e). The legend in the pictures indicates the number of cells in the 1ry stage. b) Line of 3 stages (Fig. 18f).
\n\t\t\t\t
The selectivity factor appears to be directly correlated to the number of flotation tanks in the secondary line as it progressively decreases from ~17.5 to 5 when increasing the number of tanks in the second stage. Selectivity drops when the reject flow increases which, for two- and single-stage lines, is induced by the increase of the number of tanks in the second stage and the decrease of the cascade ratio, respectively.
\n\t\t\t\t
In turn, ink removal efficiency is found here to be governed by the number of cells in the first stage. Fig. 20a shows that, with a constant number of tanks in the second stage, ink removal increases by 10 % for each additional cell in the first stage, while selectivity slightly increases. Seven tanks in the first stage and two tanks in the second stage are needed to reach the target of 80 % ink removal and a selectivity factor of 9. With this configuration, the specific energy consumption of the two-stage line (52 kWh/t) is lower than the energy required by a single stage line with the same deinking efficiency/selectivity (60 kWh/t). Overall, the best energetic efficiency is given by the single line with a stack of six flotation columns at the line head (Fig. 19b).
\n\t\t\t\t
If we consider the two-stage line with ink removal and selectivity targets as reference system, the addition of a third stage with a single tank boosts up selectivity, slightly decreases ink removal from 81 to 78% and does not affect specific energy consumption (Fig. 20b). The selectivity index of the three-stage line can be further increased from 21.5 to 41 by setting at 16 s froth residence time in the third stage cell. However, the selectivity gain is coupled to a decrease in ink removal from 78 to 72 % and the need for an additional tank in the first stage to attain the ink removal target of 80 %. With this last configuration of 8 tanks in the first stage, 2 tanks in the second stage and 1 tank in the third stage, 80 % ink removal is attained along the highest selectivity factor of all tested configurations. However, the gain in separation efficiency results in a sizeable increase in the specific energy consumption. As for the other tested configurations, the effective benefit provided by this configuration should be thoroughly evaluated in the light of recovered papers, rejects disposal and energy costs.
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
7. Conclusions
\n\t\t\t
This chapter summarizes the four steps that have been necessary to develop and validate a process simulation module that can be used for the management of multistage flotation deinking lines, namely, i) the identification of mass transfer equations, ii) their validation on a laboratory-scale flotation cell, iii) the correlation of mass transfer coefficients with the addition of chemical additives and iv) the simulation of industrial flotation deinking banks.
\n\t\t\t
Due to the variability of raw materials and the complexity of physical laws governing flotation phenomena in fibre slurries, general mass transport equations were derived from minerals flotation and validated on a laboratory flotation column when processing a recovered papers pulp slurry in the presence of increasing concentration of a model non-ionic surfactant.
\n\t\t\t
Cross correlations between particle transport coefficients and surfactant concentration obtained from laboratory tests were used to simulate an industrial two-stage flotation deinking line and a good agreement between simulation and mill data was obtained thus validating the use of the present approach for process simulation.
\n\t\t\t
Thereafter, the contribution of flotation deinking banks design on ink removal efficiency, selectivity and specific energy consumption was simulated in order to establish direct correlations between the line design and its performance. The simulation of a progressive increase of the line complexity from a one to a three-stage configuration and the use of tank/column cells showed that:
\n\t\t\t
In single-stage banks, ink removal selectivity and specific energy consumption can be improved by increasing the cascade ratio (i.e. the ratio between the number of cascaded cells and the total number of cells in the line) with a minimum decrease in the ink removal efficiency. Above a cascade ratio of 0.6, the ink removal efficiency drops.
The addition of a stack of flotation columns in the head of a single stage line gives an increase in ink removal selectivity and a decrease in specific energy consumption.
In two-stage banks, the ink removal efficiency is mainly affected by the number of flotation tanks in the first stage, whereas, the number of cells in the second stage affects the fibre removal, which linearly increases with the number of cells.
The addition of a third stage allows increasing ink removal selectivity with a negligible effect on the ink removal efficiency and on the specific energy consumption.
Overall, the best deinking performance is obtained with a stack of flotation columns at the line head and the three-stage bankg.
\n\t\t
\n\t
Acknowledgments
\n\t\t\t
This paper is the outline of a research project conducted over the last four years. Authors wish to thank Mr. J. Allix, Dr. B. Carré, Dr. G. Dorris, Dr. F. Julien Saint Amand, Mr. X. Rousset and Dr. E. Zeno for their valuable contribution.
\n\t\t
\n',keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/9662.pdf",chapterXML:"https://mts.intechopen.com/source/xml/9662.xml",downloadPdfUrl:"/chapter/pdf-download/9662",previewPdfUrl:"/chapter/pdf-preview/9662",totalDownloads:3686,totalViews:259,totalCrossrefCites:0,totalDimensionsCites:0,totalAltmetricsMentions:0,impactScore:0,impactScorePercentile:19,impactScoreQuartile:1,hasAltmetrics:0,dateSubmitted:null,dateReviewed:null,datePrePublished:null,datePublished:"April 1st 2010",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/9662",risUrl:"/chapter/ris/9662",book:{id:"3646",slug:"process-management"},signatures:"Davide Beneventi, Olivier Baudouin and Patrice Nortier",authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Particle transport mechanisms",level:"1"},{id:"sec_2_2",title:"2.1. Flotation",level:"2"},{id:"sec_3_2",title:"2.2. Entrainment",level:"2"},{id:"sec_4_2",title:"2.3. Water and particle drainage in the froth",level:"2"},{id:"sec_6",title:"3. Validation of model equations at the laboratory scale",level:"1"},{id:"sec_6_2",title:"3.1. Flotation cell set-up and flotation conditions",level:"2"},{id:"sec_7_2",title:"3.2. Interpretation of experimental results with model equations",level:"2"},{id:"sec_7_3",title:"3.2.1. Water removal",level:"3"},{id:"sec_8_3",title:"3.2.2. Ink removal",level:"3"},{id:"sec_9_3",title:"3.3.3. Fibres removal",level:"3"},{id:"sec_10_3",title:"3.3.4. Fines and ash removal",level:"3"},{id:"sec_13",title:"4. Correlation of transport coefficients with surfactant addition",level:"1"},{id:"sec_13_2",title:"4.1. Surfactant removal",level:"2"},{id:"sec_14_2",title:"4.2. Gas and water hold-up ",level:"2"},{id:"sec_15_2",title:"4.3. Ink removal",level:"2"},{id:"sec_16_2",title:"4.4. Fibre removal",level:"2"},{id:"sec_18",title:"5. Simulation of conventional flotation deinking banks",level:"1"},{id:"sec_18_2",title:"5.1. Implementation of model equations in a process simulation software",level:"2"},{id:"sec_19_2",title:"5.2. Surfactant removal",level:"2"},{id:"sec_20_2",title:"5.3. Ink removal",level:"2"},{id:"sec_21_2",title:"5.4. Process yield",level:"2"},{id:"sec_22_2",title:"5.5. Comparison of simulation results with mill data ",level:"2"},{id:"sec_24",title:"6. Optimization of deinking lines by process simulation",level:"1"},{id:"sec_24_2",title:"6.1. Deinking line layout",level:"2"},{id:"sec_25_2",title:"6.2. Ink removal selectivity and specific energy consumption",level:"2"},{id:"sec_27",title:"7. Conclusions",level:"1"},{id:"sec_28",title:"Acknowledgments",level:"1"}],chapterReferences:[{id:"B1",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBeneventi\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAllix\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZeno\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNortier\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCarré\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Simulation of surfactant contribution to ink removal selectivity in flotation deinking lines, Sep. Purif. Technol., 64 (3), 357-367.\n\t\t\t'},{id:"B2",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBeneventi\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBenesse\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCarré\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJulien\n\t\t\t\t\t\t\tSaint.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAmand\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSalgueiro\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Modelling deinking selectivity in multistage flotation systems. Sep. Purif. Technol., 54 (1), 57-67.\n\t\t\t'},{id:"B3",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBeneventi\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRousset\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZeno\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 Modelling transport phenomena in a flotation de-inking column. Focus on gas flow, pulp and froth retention time, Int. J. Miner. Process., 80 (1), 43-57.\n\t\t\t'},{id:"B4",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBeneventi\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZeno\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNortier\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCarré\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDorris\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Optimization and Management of Flotation Deinking Banks by Process Simulation, Ind. Eng. Chem. Res., 48 (8), 3964-3972.\n\t\t\t'},{id:"B5",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBlanco\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDahlquist\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKappen\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tManninen\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNegro\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRitala\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 Modelling and simulation in pulp and paper industry. Current state and future perspectives, Cellulose Chem. Tech., 40 (3-4), 249-258.\n\t\t\t'},{id:"B6",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBloom\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 A mathematical model of continuous flotation deinking, Math. Comp. Model. Dyn. Sys., 12 (4), 277-311.\n\t\t\t'},{id:"B7",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBloom\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHeindel\n\t\t\t\t\t\t\tT. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 Modeling flotation separation in a semi-batch process, Chem. Eng. Sci., 58 (2), 353-365.\n\t\t\t'},{id:"B8",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBrun\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDelagoutte\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBlanco\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 Identification and quantification of the main sources of dissolved and colloidal materials in recovered papers, Revue ATI, 57 (4), 12-18.\n\t\t\t'},{id:"B9",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tByström\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLönnstedt\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000 Paper recycling: a discussion of methodological approaches, Resour. Conserv. Recycl., 28 (1), 55-65.\n\t\t\t'},{id:"B10",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCarré\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMagnin\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 Printing processes and deinkability, International paperworld, 12\n\t\t\t\t\t41\n\t\t\t\t\t45 .\n\t\t\t'},{id:"B11",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChabot\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGopal\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKrinshnagopalan\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1996 Flexographic newspaper deinking : treatment of wash filtrate effluent by membrane technology, 4th Research Forum on Recycling, Chateau Frontenac, Quebec, October 7-9, 233-242.\n\t\t\t'},{id:"B12",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChaiarrekij\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDhingra\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRamarao\n\t\t\t\t\t\t\tB. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000 Deinking of recycled pulps using column flotation: energy and environmental benefits, Resour. Conserv. Recycl., 28 (3-4), 219-226.\n\t\t\t'},{id:"B13",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCho\n\t\t\t\t\t\t\tB. U.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRyu\n\t\t\t\t\t\t\tJ. Y.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSong\n\t\t\t\t\t\t\tB. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Modeling and simulation of separation process in flotation system, J. Ind. Eng. Chem., 15 (2), 196-201.\n\t\t\t'},{id:"B14",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tComley\n\t\t\t\t\t\t\tB. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHarris\n\t\t\t\t\t\t\tP. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBradshaw\n\t\t\t\t\t\t\tD. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHarris\n\t\t\t\t\t\t\tM. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002 Frother characterization using dynamic surface tension measurements, Int. J. Mineral Process., 64\n\t\t\t\t\t81\n\t\t\t\t\t100 .\n\t\t\t'},{id:"B15",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDahlquist\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Process Simulation for Pulp and Paper Industries: Current Practice and Future Trend, Chem. Prod. Process Modeling, 3 (1), 18.\n\t\t\t'},{id:"B16",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDanov\n\t\t\t\t\t\t\tK. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tValkovska\n\t\t\t\t\t\t\tD. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tIvanov\n\t\t\t\t\t\t\tI. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999 Effect of Surfactants on the Film Drainage, J. Colloid Int. Sci., 211\n\t\t\t\t\t291\n\t\t\t\t\t303 .\n\t\t\t'},{id:"B17",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDorris\n\t\t\t\t\t\t\tG. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNguyen\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1995 Flotation of model inks. Part II. Flexo ink dispersions without fibres, J. Pulp Paper Sci., 21 (2), 55-62.\n\t\t\t'},{id:"B18",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDreyer\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBritz\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRenner\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHeikkilä\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGrimm\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Circuit designs for secondary accept in deinking flotation. Proceedings of the 13th PTS-CTP Deinking Symposyum, 16\n\t\t\t\t\t15\n\t\t\t\t\t17 April 2008, Leipzig, Germany.\n\t\t\t'},{id:"B19",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEpple\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSchmidt\n\t\t\t\t\t\t\tD. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBerg\n\t\t\t\t\t\t\tJ. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1994 The effect of froth stability and wettability on the flotation of a xerographic toner, Colloid Polym. Sci., 272\n\t\t\t\t\t1264\n\t\t\t\t\t1272 .\n\t\t\t'},{id:"B20",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGorain\n\t\t\t\t\t\t\tB. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHarris\n\t\t\t\t\t\t\tM. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFranzidis\n\t\t\t\t\t\t\tJ. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tManlapig\n\t\t\t\t\t\t\tE. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998 The effect of froth residence time on the kinetics of flotation, Miner. Eng., 11\n\t\t\t\t\t627\n\t\t\t\t\t638 .\n\t\t\t'},{id:"B21",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHernandez\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGomez\n\t\t\t\t\t\t\tC. O.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFinch\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 A. Gas dispersion and de-inking in a flotation column, Miner. Eng., 16 (8), 739-744.\n\t\t\t'},{id:"B22",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHunter\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Fuel plus from the forest: a short review and introduction to the biorefinery concept, Appita J., 60 (1), 10-12.\n\t\t\t'},{id:"B23",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJohansson\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tStrom\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998 Surface chemistry of flotation deinking: effect of various chemical conditions on ink agglomerate character and floatability, Nord. Pulp Pap. Res. J., 13 (1), 37-49.\n\t\t\t'},{id:"B24",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJordan\n\t\t\t\t\t\t\tB. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPopson\n\t\t\t\t\t\t\tS. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1994 Measuring the concentration of residual ink in recycled newsprint, J. Pulp Paper Sci., 20 (6), 161-167.\n\t\t\t'},{id:"B25",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJulien\n\t\t\t\t\t\t\tSaint.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAmand\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999 Hydrodynamics of deinking flotation, Int. J. Mineral Process., 56 (1), 277-316.\n\t\t\t'},{id:"B26",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKemper\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999 State-of-the-art and new technologies in flotation deinking, Int. J. Mineral Process., 56 (1), 317-333.\n\t\t\t'},{id:"B27",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLabidi\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPelach\n\t\t\t\t\t\t\tM. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTuron\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMutjé\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Predicting flotation efficiency using neural networks, Chem. Eng. Process., 46 (4), 314-322.\n\t\t\t'},{id:"B28",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMaachar\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDobby\n\t\t\t\t\t\t\tG. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1992 Measurement of feed water recovery and entrainment solids recovery in flotation columns, Canadian Metallurgical Quarterly\n\t\t\t\t\t31\n\t\t\t\t\t167\n\t\t\t\t\t172 .\n\t\t\t'},{id:"B29",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMiranda\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBlanco\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNegro\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Accumulation of dissolved and colloidal material in papermaking-Application to simulation, Chem. Eng. J., 148 (2), 385-393.\n\t\t\t'},{id:"B30",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNeethling\n\t\t\t\t\t\t\tS. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCilliers\n\t\t\t\t\t\t\tJ. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002 Solids motion in flowing froths. Chem. Eng. Sci., 57\n\t\t\t\t\t607\n\t\t\t\t\t615 .\n\t\t\t'},{id:"B31",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNguyen\n\t\t\t\t\t\t\tA. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHarvey\n\t\t\t\t\t\t\tP. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJameson\n\t\t\t\t\t\t\tG. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 Influence of gas flow rate and frothers on water recovery in a froth column, Miner. Eng., 16\n\t\t\t\t\t1143\n\t\t\t\t\t1147 .\n\t\t\t'},{id:"B32",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPirttinen\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tStenius\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998 The effect of dissolved and colloidal substances on flotation deinking efficiency, Progr. Paper Recycl., 7\n\t\t\t\t\t38\n\t\t\t\t\t46 .\n\t\t\t'},{id:"B33",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPugh\n\t\t\t\t\t\t\tR. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 Dynamic Surface tension measurements in mineral flotation and de-inking flotation systems and the development of the on line dynamic surface tension detector, Miner. Eng., 14\n\t\t\t\t\t1019\n\t\t\t\t\t1031 .\n\t\t\t'},{id:"B34",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRobertson\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPatton\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPelton\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998 Washing the fibers from foams for higher yields in flotation deinking. Tappi J., 81 (6), 138-142.\n\t\t\t'},{id:"B35",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRuiz\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOttenio\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCarré\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 La simulation numérique au service des papetiers, ATIP, 57 (3), 24-31.\n\t\t\t'},{id:"B36",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSchwarz\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGrano\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 Effect of particle hydrophobicity on particle and water transport across a flotation froth, Colloids and Surfaces A: Physicochem. Eng. Aspects, 256\n\t\t\t\t\t157\n\t\t\t\t\t164 .\n\t\t\t'},{id:"B37",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShi\n\t\t\t\t\t\t\tF. N.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZheng\n\t\t\t\t\t\t\tX. F.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 The rheology of flotation froths, Int. J. Miner. Process., 69\n\t\t\t\t\t115\n\t\t\t\t\t128 .\n\t\t\t'},{id:"B38",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSjoede\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAlriksson\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJoensson\n\t\t\t\t\t\t\tL. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNilvebrant\n\t\t\t\t\t\t\tN. O.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 The potential in bioethanol production from waste fiber sludges in pulp mill-based biorefineries, Appl. Biochem. Biotech., 137-140 (1-12), 327-337.\n\t\t\t'},{id:"B39",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTatzer\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWolf\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPanner\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 Industrial application for inline material sorting using hyperspectral imaging in the NIR range, Real-Time Imaging, 11 (2), 99-107.\n\t\t\t'},{id:"B40",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTheander\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPugh\n\t\t\t\t\t\t\tR. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004 Surface chemicals concepts of flotation de-inking, Colloids and Surfaces A: Physicochem. Eng. Aspects, 240 (1-3), 111-130.\n\t\t\t'},{id:"B41",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tValkovska\n\t\t\t\t\t\t\tD. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDanov\n\t\t\t\t\t\t\tK. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tIvanov\n\t\t\t\t\t\t\tI. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000 Effect of surfactants on the stability of films between two colliding small bubbles, Colloids and Surfaces A: Physicochem. Eng. Aspects, 175\n\t\t\t\t\t179\n\t\t\t\t\t192 .\n\t\t\t'},{id:"B42",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVera\n\t\t\t\t\t\t\tM. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMathe\n\t\t\t\t\t\t\tZ. T.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFranzidis\n\t\t\t\t\t\t\tJ. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHarris\n\t\t\t\t\t\t\tM. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tManlapig\n\t\t\t\t\t\t\tE. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tO’Connor\n\t\t\t\t\t\t\tC. T.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002 The modelling of froth zone recovery in batch and continuously operated laboratory flotation cells, Int. J. Miner. Process., 64\n\t\t\t\t\t135\n\t\t\t\t\t151 .\n\t\t\t'},{id:"B43",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVolmer\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1925 Thermodynamic deductions from the equation of state for adsorbed material, J. Phys. Chem., 115\n\t\t\t\t\t233\n\t\t\t\t\t238 .\n\t\t\t'},{id:"B44",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWard\n\t\t\t\t\t\t\tA. F. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTordai\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1946 Time dependence of boundary tensions of solutions. I. The role of diffusion in time effects, J. Chem. Phys., 14\n\t\t\t\t\t453\n\t\t\t\t\t461 .\n\t\t\t'},{id:"B45",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZheng\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFranzidis\n\t\t\t\t\t\t\tJ. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJohnson\n\t\t\t\t\t\t\tN. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 An evaluation of different models of water recovery in flotation, Miner. Eng., 19\n\t\t\t\t\t871\n\t\t\t\t\t882 .\n\t\t\t'},{id:"B46",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZheng\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFranzidis\n\t\t\t\t\t\t\tJ. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJohnson\n\t\t\t\t\t\t\tN. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tManlapig\n\t\t\t\t\t\t\tE. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 Modelling of entrainment in industrial flotation cells: the effect of solids suspension, Miner. Eng., 18\n\t\t\t\t\t51\n\t\t\t\t\t58 .\n\t\t\t'},{id:"B47",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhu\n\t\t\t\t\t\t\tJ. Y.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTan\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 Dynamic drainage of froth with wood fibres, Ind. Eng. Chem. Res., 44 (9), 3336-3342\n\t\t\t'},{id:"B48",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhu\n\t\t\t\t\t\t\tJ. Y.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTan\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tScallon\n\t\t\t\t\t\t\tK. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhao\n\t\t\t\t\t\t\tY. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDeng\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 Deinking selectivity (Z-factor): a new parameter to evaluate the performance of flotation deinking process, Sep. Purif. Technol., 43 (1), 33-41.\n\t\t\t'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Davide Beneventi",address:null,affiliation:'
Laboratoire de Génie des Procédés Papetiers (LGP2), UMR CNRS 5518, Grenoble INP-Pagora - 461, Thailand
Laboratoire de Génie des Procédés Papetiers (LGP2), UMR CNRS 5518, Grenoble INP-Pagora - 461, Thailand
'}],corrections:null},book:{id:"3646",type:"book",title:"Process Management",subtitle:null,fullTitle:"Process Management",slug:"process-management",publishedDate:"April 1st 2010",bookSignature:"Maria Pomffyova",coverURL:"https://cdn.intechopen.com/books/images_new/3646.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-307-085-8",pdfIsbn:"978-953-51-5876-9",reviewType:"peer-reviewed",numberOfWosCitations:14,isAvailableForWebshopOrdering:!0,editors:[{id:"7712",title:"Ing., PhD.",name:"Maria",middleName:null,surname:"Pomffyova",slug:"maria-pomffyova",fullName:"Maria Pomffyova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"800"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"9665",type:"chapter",title:"Process Management",slug:"process-management",totalDownloads:5095,totalCrossrefCites:0,signatures:"Kongkiti Phusavat",reviewType:"peer-reviewed",authors:[null]},{id:"9672",type:"chapter",title:"Process Performance Measurement as Part of Business Process Management in Manufacturing Area",slug:"process-performance-measurement-as-part-of-business-process-management-in-manufacturing-area",totalDownloads:9125,totalCrossrefCites:1,signatures:"Jiri Tupa",reviewType:"peer-reviewed",authors:[null]},{id:"9658",type:"chapter",title:"A Design for Quality Management Information System in Short Delivery Time Processes",slug:"a-design-for-quality-management-information-system-in-short-delivery-time-processes",totalDownloads:3195,totalCrossrefCites:0,signatures:"Jing Sun",reviewType:"peer-reviewed",authors:[null]},{id:"9666",type:"chapter",title:"Design Cycle Period Management",slug:"design-cycle-period-management",totalDownloads:2836,totalCrossrefCites:0,signatures:"Bahram, Soltanmohammad",reviewType:"peer-reviewed",authors:[null]},{id:"9661",type:"chapter",title:"Supervisory Control of Industrial Processes",slug:"supervisory-control-of-industrial-processes",totalDownloads:2367,totalCrossrefCites:0,signatures:"Alexander A. Ambartsumyan",reviewType:"peer-reviewed",authors:[null]},{id:"9669",type:"chapter",title:"An Approach to Technological Processes Automation using Technological Coalitions Based on Discrete Event Models",slug:"an-approach-to-technological-processes-automation-using-technological-coalitions-based-on-discrete-e",totalDownloads:2874,totalCrossrefCites:0,signatures:"Alexander Ambartsumian and Dmitry Kazansky",reviewType:"peer-reviewed",authors:[null]},{id:"9662",type:"chapter",title:"Semi-Empirical Modelling and Management of Flotation Deinking Banks by Process Simulation",slug:"semi-empirical-modelling-and-management-of-flotation-deinking-banks-by-process-simulation",totalDownloads:3686,totalCrossrefCites:0,signatures:"Davide Beneventi, Olivier Baudouin and Patrice Nortier",reviewType:"peer-reviewed",authors:[null]},{id:"9671",type:"chapter",title:"Meeting Organizational Performance with Shared Knowledge Management Processes",slug:"meeting-organizational-performance-with-shared-knowledge-management-processes",totalDownloads:3636,totalCrossrefCites:1,signatures:"Massimo Franco and Stefania Mariano",reviewType:"peer-reviewed",authors:[null]},{id:"9668",type:"chapter",title:"Optimizing of Enterprise Communication Processes Management",slug:"optimizing-of-enterprise-communication-processes-management",totalDownloads:2773,totalCrossrefCites:0,signatures:"Maria Pomffyova",reviewType:"peer-reviewed",authors:[null]},{id:"9667",type:"chapter",title:"Virtual Work Group Collaboration in a Manufacturing Process",slug:"virtual-work-group-collaboration-in-a-manufacturing-process",totalDownloads:3486,totalCrossrefCites:0,signatures:"Jorge Luis Gonzalez-Trujillo",reviewType:"peer-reviewed",authors:[null]},{id:"9659",type:"chapter",title:"Integration of BPM Systems",slug:"integration-of-bpm-systems",totalDownloads:5509,totalCrossrefCites:0,signatures:"Chaoying Ma, Andrea Caldera, Miltos Petridis, Liz Bacon and Gill Windall",reviewType:"peer-reviewed",authors:[null]},{id:"9660",type:"chapter",title:"The Reputation Crisis: Risk Management Based Logical Framework to the Corporate Sustainability",slug:"the-reputation-crisis-risk-management-based-logical-framework-to-the-corporate-sustainability",totalDownloads:10274,totalCrossrefCites:0,signatures:"Ayse Kucuk Yilmaz and Ferziye Kucuk",reviewType:"peer-reviewed",authors:[null]},{id:"9656",type:"chapter",title:"Planning Approaches to the Management of Water Problems in Mexico",slug:"planning-approaches-to-the-management-of-water-problems-in-mexico",totalDownloads:3346,totalCrossrefCites:0,signatures:"Laura C. Ruelas-Monjardin",reviewType:"peer-reviewed",authors:[null]},{id:"9664",type:"chapter",title:"Utilizing Wastewater Reuse and Desalination Processes to Reduce the Environmental Impacts of Agriculture",slug:"utilizing-wastewater-reuse-and-desalination-processes-to-reduce-the-environmental-impacts-of-agricul",totalDownloads:2520,totalCrossrefCites:0,signatures:"Nava Haruvy and Sarit Shalhevet",reviewType:"peer-reviewed",authors:[null]},{id:"9657",type:"chapter",title:"Integration of Environmental Processes into Land-use Management Decisions",slug:"Integration-of-Environmental-Processes-into-Land-use",totalDownloads:2717,totalCrossrefCites:0,signatures:"Christine Furstm Katrin Pietzsch, Carsten Lorz and Franz Makeschin",reviewType:"peer-reviewed",authors:[null]},{id:"9673",type:"chapter",title:"Guidelines to Improve Construction and Demolition Waste Management in Portugal",slug:"guidelines-to-improve-construction-and-demolition-waste-management-in-portugal",totalDownloads:5580,totalCrossrefCites:2,signatures:"Armanda Couto and Joao Pedro Couto",reviewType:"peer-reviewed",authors:[null]},{id:"9663",type:"chapter",title:"Establishment a Resource Management Program for Accreditation Process at the Medical Laboratory",slug:"establishment-a-resource-management-program-for-accreditation-process-at-the-medical-laboratory",totalDownloads:5382,totalCrossrefCites:0,signatures:"Sedef Yenice",reviewType:"peer-reviewed",authors:[null]},{id:"9670",type:"chapter",title:"Understanding Discrepancy: A Conceptual Persistent Healthcare Quality Improvement Process for Software Development Management",slug:"understanding-discrepancy-a-conceptual-persistent-healthcare-quality-improvement-process-for-softwar",totalDownloads:2642,totalCrossrefCites:1,signatures:"Po-Hsun Cheng, Sheau-Ling Hsieh, Tsan-Nan Chien, Ying-Pei Chen, Mei-Ju Su, Yung-Chien Weng, Sao-Jie Chen, Feipei Lai and Jin-Shin Lai",reviewType:"peer-reviewed",authors:[null]}]},relatedBooks:[{type:"book",id:"106",title:"Supply Chain Management",subtitle:null,isOpenForSubmission:!1,hash:"5e9e8cec79b6ffe25eefcb7ec35083cc",slug:"supply-chain-management",bookSignature:"Pengzhong Li",coverURL:"https://cdn.intechopen.com/books/images_new/106.jpg",editedByType:"Edited by",editors:[{id:"19636",title:"Prof.",name:"Pengzhong",surname:"Li",slug:"pengzhong-li",fullName:"Pengzhong Li"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"15529",title:"Supply Chain Optimization: Centralized vs Decentralized Planning and Scheduling",slug:"supply-chain-optimization-centralized-vs-decentralized-planning-and-scheduling",signatures:"Georgios K.D. Saharidis",authors:[{id:"22237",title:"Dr.",name:"Georgios",middleName:null,surname:"Saharidis",fullName:"Georgios Saharidis",slug:"georgios-saharidis"}]},{id:"15530",title:"Integrating Lean, Agile, Resilience and Green Paradigms in Supply Chain Management (LARG_SCM)",slug:"integrating-lean-agile-resilience-and-green-paradigms-in-supply-chain-management-larg-scm-",signatures:"Helena Carvalho and V. Cruz-Machado",authors:[{id:"18263",title:"Prof.",name:"Helena",middleName:null,surname:"Carvalho",fullName:"Helena Carvalho",slug:"helena-carvalho"},{id:"22440",title:"Prof.",name:"Virgílio",middleName:null,surname:"Cruz Machado",fullName:"Virgílio Cruz Machado",slug:"virgilio-cruz-machado"}]},{id:"15531",title:"A Hybrid Fuzzy Approach to Bullwhip Effect in Supply Chain Networks",slug:"a-hybrid-fuzzy-approach-to-bullwhip-effect-in-supply-chain-networks",signatures:"Hakan Tozan and Ozalp Vayvay",authors:[{id:"18492",title:"Associate Prof.",name:"Hakan",middleName:null,surname:"Tozan",fullName:"Hakan Tozan",slug:"hakan-tozan"},{id:"24798",title:"Prof.",name:"Ozalp",middleName:null,surname:"Vayvay",fullName:"Ozalp Vayvay",slug:"ozalp-vayvay"}]},{id:"15532",title:"Managing and Controlling Public Sector Supply Chains",slug:"managing-and-controlling-public-sector-supply-chains",signatures:"Intaher Marcus Ambe and Johanna A Badenhorst-Weiss",authors:[{id:"18550",title:"Mr",name:"Intaher Marcus",middleName:null,surname:"Ambe",fullName:"Intaher Marcus Ambe",slug:"intaher-marcus-ambe"},{id:"23294",title:"Prof",name:"Johanna A",middleName:null,surname:"Badenhorst-Weiss",fullName:"Johanna A Badenhorst-Weiss",slug:"johanna-a-badenhorst-weiss"}]},{id:"15533",title:"Supply Chain Management Based on Modeling & Simulation: State of the Art and Application Examples in Inventory and Warehouse Management",slug:"supply-chain-management-based-on-modeling-simulation-state-of-the-art-and-application-examples-in-in",signatures:"Francesco Longo",authors:[{id:"19723",title:"Dr.",name:"Francesco",middleName:null,surname:"Longo",fullName:"Francesco Longo",slug:"francesco-longo"}]},{id:"15534",title:"Supply Chain Process Benchmarking Using a Self-Assessment Maturity Grid",slug:"supply-chain-process-benchmarking-using-a-self-assessment-maturity-grid",signatures:"Sander de Leeuw",authors:[{id:"21754",title:"Dr.",name:"Sander",middleName:null,surname:"de Leeuw",fullName:"Sander de Leeuw",slug:"sander-de-leeuw"}]},{id:"15535",title:"Supply Chain Resilience Using the Mapping Approach",slug:"supply-chain-resilience-using-the-mapping-approach",signatures:"A.P. Barroso, V.H. Machado and V. Cruz Machado",authors:[{id:"22440",title:"Prof.",name:"Virgílio",middleName:null,surname:"Cruz Machado",fullName:"Virgílio Cruz Machado",slug:"virgilio-cruz-machado"},{id:"19465",title:"Prof.",name:"Ana Paula",middleName:null,surname:"Barroso",fullName:"Ana Paula Barroso",slug:"ana-paula-barroso"},{id:"22439",title:"Prof.",name:"Virgínia Helena",middleName:null,surname:"Machado",fullName:"Virgínia Helena Machado",slug:"virginia-helena-machado"}]},{id:"15536",title:"Capacity Collaboration in Semiconductor Supply Chain with Failure Risk and Long-term Profit",slug:"capacity-collaboration-in-semiconductor-supply-chain-with-failure-risk-and-long-term-profit",signatures:"Guanghua Han, Shuyu Sun and Ming Dong",authors:[{id:"19923",title:"Prof.",name:"Shuyu",middleName:null,surname:"Sun",fullName:"Shuyu Sun",slug:"shuyu-sun"},{id:"22375",title:"Prof.",name:"Ming",middleName:null,surname:"Dong",fullName:"Ming Dong",slug:"ming-dong"},{id:"22381",title:"Mr.",name:"Guanghua",middleName:null,surname:"Han",fullName:"Guanghua Han",slug:"guanghua-han"}]},{id:"15537",title:"A Cost-based Model for Risk Management in RFID-Enabled Supply Chain Applications",slug:"a-cost-based-model-for-risk-management-in-rfid-enabled-supply-chain-applications",signatures:"Manmeet Mahinderjit-Singh, Xue Li and Zhanhuai Li",authors:[{id:"19639",title:"Dr.",name:"Manmeet",middleName:null,surname:"Mahinderjit Singh",fullName:"Manmeet Mahinderjit Singh",slug:"manmeet-mahinderjit-singh"},{id:"21559",title:"Prof.",name:"Xue",middleName:null,surname:"Li",fullName:"Xue Li",slug:"xue-li"},{id:"22534",title:"Mr",name:"Zhanhuai",middleName:null,surname:"Li",fullName:"Zhanhuai Li",slug:"zhanhuai-li"}]},{id:"15538",title:"Inventories, Financial Metrics, Profits, and Stock Returns in Supply Chain Management",slug:"inventories-financial-metrics-profits-and-stock-returns-in-supply-chain-management",signatures:"Carlos Omar Trejo-Pech, Abraham Mendoza and Richard N. Weldon",authors:[{id:"21767",title:"Dr.",name:"Carlos",middleName:null,surname:"Trejo-Pech",fullName:"Carlos Trejo-Pech",slug:"carlos-trejo-pech"},{id:"22815",title:"Dr.",name:"Abraham",middleName:null,surname:"Mendoza",fullName:"Abraham Mendoza",slug:"abraham-mendoza"},{id:"25395",title:"Dr.",name:"Richard",middleName:null,surname:"Weldon",fullName:"Richard Weldon",slug:"richard-weldon"}]},{id:"15539",title:"Differential Game for Environmental-Regulation in Green Supply Chain",slug:"differential-game-for-environmental-regulation-in-green-supply-chain",signatures:"Yenming J Chen and Jiuh-Biing Sheu",authors:[{id:"19612",title:"Dr.",name:"Yenming",middleName:"J",surname:"Chen",fullName:"Yenming Chen",slug:"yenming-chen"},{id:"19615",title:"Dr.",name:"Jiuh-Biing",middleName:null,surname:"Sheu",fullName:"Jiuh-Biing Sheu",slug:"jiuh-biing-sheu"}]},{id:"15540",title:"Logistics Strategies to Facilitate Long-Distance Just-in-Time Supply Chain System",slug:"logistics-strategies-to-facilitate-long-distance-just-in-time-supply-chain-system",signatures:"Liang-Chieh (Victor) Cheng",authors:[{id:"21154",title:"Dr.",name:"Liang Chieh (Victor)",middleName:null,surname:"Cheng",fullName:"Liang Chieh (Victor) Cheng",slug:"liang-chieh-(victor)-cheng"}]},{id:"15541",title:"Governance Mode in Reverse Logistics: A Research Framework",slug:"governance-mode-in-reverse-logistics-a-research-framework",signatures:"Qing Lu, Mark Goh and Robert De Souza",authors:[{id:"22832",title:"Dr.",name:"Robert",middleName:null,surname:"de Souza",fullName:"Robert de Souza",slug:"robert-de-souza"},{id:"23119",title:"Dr.",name:"Mark",middleName:null,surname:"Goh",fullName:"Mark Goh",slug:"mark-goh"},{id:"23120",title:"Dr.",name:"Qing",middleName:null,surname:"Lu",fullName:"Qing Lu",slug:"qing-lu"}]},{id:"15542",title:"Supply Chain Management and Automatic Identification Management Convergence: Experiences in the Pharmaceutical Scenario",slug:"supply-chain-management-and-automatic-identification-management-convergence-experiences-in-the-pharm",signatures:"U. Barchetti, A. Bucciero, A. L. Guido, L. Mainetti and L. Patrono",authors:[{id:"18608",title:"Dr.",name:"Alberto",middleName:null,surname:"Bucciero",fullName:"Alberto Bucciero",slug:"alberto-bucciero"},{id:"22648",title:"Eng.",name:"Ugo",middleName:null,surname:"Barchetti",fullName:"Ugo Barchetti",slug:"ugo-barchetti"},{id:"22649",title:"Eng.",name:"Anna Lisa",middleName:null,surname:"Guido",fullName:"Anna Lisa Guido",slug:"anna-lisa-guido"},{id:"22650",title:"Prof.",name:"Luca",middleName:null,surname:"Mainetti",fullName:"Luca Mainetti",slug:"luca-mainetti"},{id:"22651",title:"Prof.",name:"Luigi",middleName:null,surname:"Patrono",fullName:"Luigi Patrono",slug:"luigi-patrono"}]},{id:"15543",title:"Strategic Fit in Supply Chain Management: A Coordination Perspective",slug:"strategic-fit-in-supply-chain-management-a-coordination-perspective",signatures:"S. Kamal Chaharsooghi and Jafar Heydari",authors:[{id:"15869",title:"Dr.",name:"Seyed Kamal",middleName:null,surname:"Chaharsooghi",fullName:"Seyed Kamal Chaharsooghi",slug:"seyed-kamal-chaharsooghi"},{id:"18801",title:"Dr.",name:"Jafar",middleName:null,surname:"Heydari",fullName:"Jafar Heydari",slug:"jafar-heydari"}]},{id:"15544",title:"Towards Improving Supply Chain Coordination through Business Process Reengineering",slug:"towards-improving-supply-chain-coordination-through-business-process-reengineering",signatures:"Marinko Maslaric and Ales Groznik",authors:[{id:"18677",title:"Dr.",name:"Marinko",middleName:null,surname:"Maslaric",fullName:"Marinko Maslaric",slug:"marinko-maslaric"},{id:"22725",title:"Dr.",name:"Ales",middleName:null,surname:"Groznik",fullName:"Ales Groznik",slug:"ales-groznik"}]},{id:"15545",title:"Integrated Revenue Sharing Contracts to Coordinate a Multi-Period Three-Echelon Supply Chain",slug:"integrated-revenue-sharing-contracts-to-coordinate-a-multi-period-three-echelon-supply-chain",signatures:"Mei-Shiang Chang",authors:[{id:"22157",title:"Prof.",name:"Mei-Shiang",middleName:null,surname:"Chang",fullName:"Mei-Shiang Chang",slug:"mei-shiang-chang"}]},{id:"15546",title:"The Impact of Demand Information Sharing on the Supply Chain Stability",slug:"the-impact-of-demand-information-sharing-on-the-supply-chain-stability",signatures:"Jing Wang and Ling Tang",authors:[{id:"22160",title:"Prof.",name:"Jing",middleName:null,surname:"Wang",fullName:"Jing Wang",slug:"jing-wang"},{id:"22889",title:"Miss",name:"Ling",middleName:null,surname:"Tang",fullName:"Ling Tang",slug:"ling-tang"}]},{id:"15547",title:"Complexity in Supply Chains: A New Approachto Quantitative Measurement of the Supply-Chain-Complexity",slug:"complexity-in-supply-chains-a-new-approachto-quantitative-measurement-of-the-supply-chain-complexity",signatures:"Filiz Isik",authors:[{id:"19462",title:"Mrs",name:"Filiz",middleName:null,surname:"Isik",fullName:"Filiz Isik",slug:"filiz-isik"}]},{id:"15548",title:"A Multi-Agent Model for Supply Chain Ordering Management: An Application to the Beer Game",slug:"a-multi-agent-model-for-supply-chain-ordering-management-an-application-to-the-beer-game",signatures:"Mohammad Hossein Fazel Zarandi, Mohammad Hassan Anssari, Milad Avazbeigi and Ali Mohaghar",authors:[{id:"8321",title:"Mr.",name:"Miludin",middleName:null,surname:"Milankovic",fullName:"Miludin Milankovic",slug:"miludin-milankovic"},{id:"23527",title:"Prof.",name:"Mohammad Hossein",middleName:null,surname:"Fazel Zarandi",fullName:"Mohammad Hossein Fazel Zarandi",slug:"mohammad-hossein-fazel-zarandi"},{id:"23528",title:"M",name:"Mohammad Hassan",middleName:null,surname:"Anssari",fullName:"Mohammad Hassan Anssari",slug:"mohammad-hassan-anssari"},{id:"24043",title:"Dr.",name:"Ali",middleName:null,surname:"Mohaghar",fullName:"Ali Mohaghar",slug:"ali-mohaghar"}]},{id:"15549",title:"A Collaborative Vendor – Buyer Deteriorating Inventory Model for Optimal Pricing, Shipment and Payment Policy with Two – Part Trade Credit",slug:"a-collaborative-vendor-buyer-deteriorating-inventory-model-for-optimal-pricing-shipment-and-payment-",signatures:"Nita H. Shah and Kunal T. Shukla",authors:[{id:"19031",title:"Dr.",name:"Nita",middleName:null,surname:"Shah",fullName:"Nita Shah",slug:"nita-shah"},{id:"19499",title:"Mr",name:"Kunal",middleName:null,surname:"Shukla",fullName:"Kunal Shukla",slug:"kunal-shukla"}]},{id:"15550",title:"Quantifying the Demand Fulfillment Capability of a Manufacturing Organization",slug:"quantifying-the-demand-fulfillment-capability-of-a-manufacturing-organization",signatures:"César Martínez-Olvera",authors:[{id:"18528",title:"Dr.",name:"Cesar",middleName:null,surname:"Martinez-Olvera",fullName:"Cesar Martinez-Olvera",slug:"cesar-martinez-olvera"},{id:"127345",title:"Prof.",name:"Cesar",middleName:null,surname:"Martinez-Olvera",fullName:"Cesar Martinez-Olvera",slug:"cesar-martinez-olvera"}]},{id:"15551",title:"Continuum-Discrete Models for Supply Chains and Networks",slug:"continuum-discrete-models-for-supply-chains-and-networks",signatures:"Ciro D’Apice, Rosanna Manzo and Benedetto Piccoli",authors:[{id:"11309",title:"Dr.",name:"Benedetto",middleName:null,surname:"Piccoli",fullName:"Benedetto Piccoli",slug:"benedetto-piccoli"},{id:"11311",title:"Prof.",name:"Ciro",middleName:null,surname:"D'Apice",fullName:"Ciro D'Apice",slug:"ciro-d'apice"},{id:"11312",title:"Dr.",name:"Rosanna",middleName:null,surname:"Manzo",fullName:"Rosanna Manzo",slug:"rosanna-manzo"},{id:"117681",title:"Prof.",name:"Benedetto",middleName:null,surname:"Piccoli",fullName:"Benedetto Piccoli",slug:"benedetto-piccoli"},{id:"117684",title:"Dr.",name:"Rosanna",middleName:null,surname:"Manzo",fullName:"Rosanna Manzo",slug:"rosanna-manzo"}]},{id:"15552",title:"Services and Support Supply Chain Design for Complex Engineering Systems",slug:"services-and-support-supply-chain-design-for-complex-engineering-systems",signatures:"John P.T. Mo",authors:[{id:"6394",title:"Prof.",name:"John P.T.",middleName:null,surname:"Mo",fullName:"John P.T. Mo",slug:"john-p.t.-mo"}]},{id:"15553",title:"Lifecycle Based Distributed Cooperative Service Supply Chain for Complex Product",slug:"lifecycle-based-distributed-cooperative-service-supply-chain-for-complex-product",signatures:"Pengzhong Li, Rongxin Gu and Weimin Zhang",authors:[{id:"19636",title:"Prof.",name:"Pengzhong",middleName:null,surname:"Li",fullName:"Pengzhong Li",slug:"pengzhong-li"},{id:"22403",title:"Dr.",name:"Weimin",middleName:null,surname:"Zhang",fullName:"Weimin Zhang",slug:"weimin-zhang"},{id:"22404",title:"Dr.",name:"Rongxin",middleName:null,surname:"Gu",fullName:"Rongxin Gu",slug:"rongxin-gu"}]},{id:"15554",title:"A Generalized Algebraic Model for Optimizing Inventory Decisions in a Centralized or Decentralized Three-Stage Multi-Firm Supply Chain with Complete Backorders for Some Retailers",slug:"a-generalized-algebraic-model-for-optimizing-inventory-decisions-in-a-centralized-or-decentralized-t",signatures:"Kit Nam Francis Leung",authors:[{id:"21408",title:"Dr.",name:"Kit-nam Francis",middleName:null,surname:"Leung",fullName:"Kit-nam Francis Leung",slug:"kit-nam-francis-leung"}]},{id:"15555",title:"Life Cycle Costing, a View of Potential Applications: from Cost Management Tool to Eco-Efficiency Measurement",slug:"life-cycle-costing-a-view-of-potential-applications-from-cost-management-tool-to-eco-efficiency-meas",signatures:"Francesco Testa, Fabio Iraldo, Marco Frey and Ryan O’Connor",authors:[{id:"9825",title:"Dr.",name:"Francesco",middleName:null,surname:"Testa",fullName:"Francesco Testa",slug:"francesco-testa"},{id:"10764",title:"Prof.",name:"Fabio",middleName:null,surname:"Iraldo",fullName:"Fabio Iraldo",slug:"fabio-iraldo"},{id:"22437",title:"Prof.",name:"Marco",middleName:null,surname:"Frey",fullName:"Marco Frey",slug:"marco-frey"},{id:"22438",title:"Dr.",name:"Ryan",middleName:null,surname:"O'Connor",fullName:"Ryan O'Connor",slug:"ryan-o'connor"},{id:"127346",title:"Prof.",name:"Ryan",middleName:null,surname:"O'Connor",fullName:"Ryan O'Connor",slug:"ryan-o'connor"}]}]}],publishedBooks:[{type:"book",id:"3216",title:"Operations Management",subtitle:null,isOpenForSubmission:!1,hash:"36030d013037e8d86323ddd323644874",slug:"operations-management",bookSignature:"Massimiliano M. Schiraldi",coverURL:"https://cdn.intechopen.com/books/images_new/3216.jpg",editedByType:"Edited by",editors:[{id:"168845",title:"Prof.",name:"Massimiliano",surname:"Schiraldi",slug:"massimiliano-schiraldi",fullName:"Massimiliano Schiraldi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3603",title:"Supply Chain",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"supply_chain",bookSignature:"Vedran Kordic",coverURL:"https://cdn.intechopen.com/books/images_new/3603.jpg",editedByType:"Edited by",editors:[{id:"396",title:"Dr.",name:"Vedran",surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3646",title:"Process Management",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"process-management",bookSignature:"Maria Pomffyova",coverURL:"https://cdn.intechopen.com/books/images_new/3646.jpg",editedByType:"Edited by",editors:[{id:"7712",title:"Ing., PhD.",name:"Maria",surname:"Pomffyova",slug:"maria-pomffyova",fullName:"Maria Pomffyova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3695",title:"Supply Chain",subtitle:"the Way to Flat Organisation",isOpenForSubmission:!1,hash:null,slug:"supply_chain_the_way_to_flat_organisation",bookSignature:"Yanfang Huo and Fu Jia",coverURL:"https://cdn.intechopen.com/books/images_new/3695.jpg",editedByType:"Edited by",editors:[{id:"131846",title:"Prof.",name:"Yanfang",surname:"Huo",slug:"yanfang-huo",fullName:"Yanfang Huo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"106",title:"Supply Chain Management",subtitle:null,isOpenForSubmission:!1,hash:"5e9e8cec79b6ffe25eefcb7ec35083cc",slug:"supply-chain-management",bookSignature:"Pengzhong Li",coverURL:"https://cdn.intechopen.com/books/images_new/106.jpg",editedByType:"Edited by",editors:[{id:"19636",title:"Prof.",name:"Pengzhong",surname:"Li",slug:"pengzhong-li",fullName:"Pengzhong Li"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[]},onlineFirst:{chapter:{type:"chapter",id:"63590",title:"The Diesel Soot Particles Fractal Growth Model and Its Agglomeration Control",doi:"10.5772/intechopen.80851",slug:"the-diesel-soot-particles-fractal-growth-model-and-its-agglomeration-control",body:'\n
\n
1. Introduction
\n
Large diesel agriculture machinery plays an important role in economic development, but it also brings sharp problems in environmental protection. Diesel emissions are one of the most important sources of air pollution. There are many kinds of harmful substances, such as HC, CO, NOX, and soot particles, but the emission of harmful gases from diesel engines, such as HC and CO, is quite low; NOX emissions are also in the same order of magnitude as gasoline engines. The soot particles emitted are respirable particles, causing the most serious air pollution [1, 2].
\n
Particles emitted by diesel engines are usually composed of soot, organic soluble components, and sulfides [3]. The main components of particles discharged from a typical heavy-duty diesel engine under transient conditions are shown in Figure 1. Usually, soot accounts for 50–80% of total particulate matter. It is one of the most important harmful emissions [3]. Therefore, it is of great significance to control the emission of soot particles from diesel engine emissions.
\n
Figure 1.
The composition of particulate emissions from the heavy-duty diesel [3].
\n
Soot is a very fine particle formed by a complex reaction mechanism in the flame of the fuel-rich region when burning hydrocarbons in the absence of air, mainly composed of a mixture of amorphous carbon and organic matter [4]. Since the concentration and particle size of soot particles emitted by the gasoline engine is lower than that of the diesel engine [5], this chapter mainly analyzes the soot particles of the diesel engine.
\n
At present, the study of soot particles in diesel engines has focused on optical properties, chemical composition, particle size distribution, source analysis, and human health assessment [6, 7], but research on particle morphology (morphology and surface structure) is almost blank, especially the morphological structure of the particles. Most soot particles have complex fractal morphology [8, 9], affecting the nature of the particles. By studying its fractal structure, the deposition of particles, the viscous resistance of the particles and the adsorption of toxic molecules can be deduced. Therefore, it is necessary to control the fractal condensation and growth morphology of diesel soot particles.
\n
Based on the fractal growth physical model of soot particles from large diesel agriculture machinery, this chapter simulates the morphological structure of collision for the single-single particles, single-clusters, clusters-clusters, firstly. Moreover, combining with the collision frequency, the fractal growth is controlled to agglomeration using the main environmental factors interference for diesel engine soot particles, in order to make them condensed into regular geometry or larger density particles, reduce the viscous drag for capturing by the capturer or settlement and to realize the control of the pollution of the environment.
\n
\n
\n
2. The condensation growth process of the soot and its simulation method
\n
\n
2.1. The generation process of soot
\n
The soot particles generation process undergoes complex chemical reactions and physical processes. Firstly, it undergoes gas phase reactions, phase transitions from gaseous to solid state. Then the formation of soot particles in diesel cylinders undergoes the evolution of kinetic events such as nucleation, condensation, collision fragmentation, growth, and surface oxidation [10, 11, 12, 13, 14]. The specific formation process described by the soot particle model is shown in Figure 2.
\n
Figure 2.
The soot generation process.
\n
\n
\n
2.2. The simulation method of soot structure
\n
According to the characteristics of the soot growth process, the dynamic Monte Carlo method [15] is used to establish the soot fractal growth model. As shown in Figure 3, in a two-dimensional Euclidean space with many particles, one initial particle is set as the target particle, and the other particles are candidate particles. One of the candidate particles is selected to collide with the target particle according to a randomly generated locus, and adheres according to the adhesion probability. One other candidate particle repeats the above process, and the analogy eventually forms an agglomerate. If the motion reaches the boundary of the space, the particle is absorbed by the target particle and disappears. After the particles are released, they do Brownian motion, and they are required to move to the neighboring left, right, upper, and lower surrounding squares with a probability of 1/4. The process will continue until the particles leave the boundary or reach the agglomerate. There are two kinds of collision for particles: the collision of the particle with particle (Figure 4), the collision of the cluster with cluster (Figure 5).
\n
Figure 3.
The diagram of growth process. ((a) set target particle; (b) collide with target particle; (c) analogy of collide with target particle; (d) form an agglomerate).
\n
Figure 4.
The collision of single particles and single particle.
\n
Figure 5.
The collision of clusters and clusters.
\n
Taking the collision of the single particle as an example to illustrate the collision of the particles, the trajectory vectors of two collision particles is firstly determined in Figure 6. Two small balls are defined as \n\n\nB\n1\n\n\n (target particles) and \n\n\nB\nm\n\n\n (random particles) to represent two separate particles, with radius \n\n\nR\n1\n\n\n and \n\n\nR\nm\n\n\n, respectively. The coordinates of \n\n\nB\n1\n\n\n are given, the coordinates of \n\n\nB\nm\n\n\n are random, and the radius of the concentric sphere \n\n\nB\ns\n\n\n of the small ball \n\n\nB\n1\n\n\n is defined as \n\n\nR\ns\n\n\n(\n\n\nR\ns\n\n=\n\nR\n1\n\n+\n\nR\nm\n\n\n). Then let \n\n\nB\nm\n\n\n move according to a random trajectory. When \n\n\nB\nm\n\n\n meets the fixed ball \n\n\nB\n1\n\n\n, Eq.(1) is satisfied, where \n\n\nx\ns\n0\n\n\n is the center of the ball \n\n\nB\n1\n\n\n.
When the random particle \n\n\nB\nm\n\n\n adsorbs and condenses on the target particle \n\n\nB\n1\n\n\n, its random motion trajectory vector \n\nv\n\n exactly intersects with or intersects the ball \n\n\nB\n1\n\n\n, and can be defined as Eq.(2),
where \n\n\nx\nm\n\n\n is the sphere center coordinate after the collision of the ball \n\n\nB\nm\n\n\n, and \n\n\nx\nm\n0\n\n\n is the initial sphere center coordinate of the ball \n\n\nB\nm\n\n\n.
\n
The collision of two small balls can be defined Eq.(3).
Solve both sides of squared Eq.(3) simultaneously to obtain a quadratic equation with unknown \n\n\nc\nn\n\n\n. \n\n\nc\nn\n\n\n is the judgment factor, if \n\n\nc\nn\n\n\n has no solution, two balls cannot collide; if \n\n\nc\nn\n\n\n has a solution, the two balls collide with two cases. One is that when there is a unique solution, the two balls just collide with each other; when there are two solutions, the smallest solution is \n\n\nc\nmin\n\n\n according to the physical conditions. Then the coordinates of randomly moving ball \n\n\nB\nm\n\n\n are also determined as Eq.(4). This process describes a simple collision process between particles and particles. Based on this, it can be used to simulate the collision and clustering process between clusters and clusters. The collision process is still established by using Monte Carlo method.
The shape of aggregates formed by fractal growth of soot is closely related to the radius of gyration, soot radius, and fractal dimension, which is shown in Figure 7. The \n\n\nR\ng\n\n\n characterizes the compactness of soot condensation growth, \n\n\nR\ne\n\n\n characterizes the size of the soot agglomerates formed by fractal growth. The fractal dimension of the surface roughness of soot agglomerates is closely related to the adsorption of particles. The calculation of fractal dimension \n\n\nD\nf\n\n\n of soot agglomerates is based on the box calculation method [16] and shown in Eq.(5), where \n\n\nN\nn\n\n\nA\n\n\n is the minimum number of boxes needed to contain \n\nA\n\n, \n\n1\n/\n\nT\nn\n\n\n is the boundary of the small box. When \n\n\nT\nn\n\n\n is large enough, the box dimension is approximate as Eq.(6), and the fractal dimension calculation method for soot agglomerates is shown in Figure 7.
The sandbox method for the fractal dimension of soot condensed matter.
\n
\n
\n
\n
3. The analysis and condensation control of soot particles fractal growth
\n
\n
3.1. The theory of control
\n
The formation of soot particles in diesel engines is affected by factors such as temperature, pressure, soot particle concentration, and oxidation rate [17]. According to the characteristics of free particles moving in a continuous medium state, it can be considered that the soot growth of a soot particle (condensation collision) has a distribution parameter equation of motion with boundary conditions as Eq.(7).
\n\nη\n\nx\ny\n\n\n is the condensation temperature. \n\nF\n\n represents the environmental disturbance term, called the forcing term, which is a non-linear function term. \n\nu\n\nx\ny\n\n\n is the initial value of the digitization, called the source term. The solution to the system Eq.(8) is very tedious. To facilitate the analysis of the solution, a discrete power system of Eq.(8) is introduced as Eq.(9).
Obviously, when \n\nr\n=\n1\n\n, Eq.(12) becomes system Eq.(9). By iterating simplification of Eq.(9), a simple control system can be obtained as Eq.(13).
3.2. The control of fractal growth for diesel engines’ soot particles from source item and nonlinear term
\n
According to the control method of [18], this chapter analyzes the effect of this control method on the fractal growth of soot particles. Assuming that \n\nH\n\n is a condensed region, \n\n\nH\n¯\n\n\n is a condensed boundary, and \n\nM\n\n is the scope of control of the source item \n\nu\n\nx\ny\n\n\n, and satisfies \n\nMathcal\n\nM\n∈\nH\n\n. In addition, for any \n\n\nx\ny\n\n∈\nH\n\n, there is \n\n0\n≤\nη\n\nx\ny\n\n≤\n1\n\n established. Since the analytical function \n\nu\n\nx\ny\n\n\n satisfies the maximum principle in \n\nH\n\n, for any \n\n\nx\ny\n\n∈\nH\n−\n\nH\n¯\n\n\n, condition \n\n0\n≤\nη\n\n\nx\n\ny\n\n\n<\n1\n\n must be true, so \n\nα\n\n and \n\nu\n\n in Eq.(11) must be as small as possible, represented by an inequality:
\n\n\n0\n≤\nΩ\n\nr\n\n<\n1\n\n, where \n\nr\n=\n1\n,\n2\n,\n⋯\n\n. Since \n\n0\n≤\nsin\n\n\nΩ\n\nt\n\n\n\n<\nΩ\n\nr\n\n<\n1\n\n holds, the system (10) satisfies the relationship Eq.(14).
And because \n\n0\n<\nα\n≤\n1\n,\n0\n<\nu\n≤\n1\n\n, it turns out to have \n\n\n∂Ψ\n\n∂\nα\n\n\n>\n0\n\n and \n\n\n∂Ψ\n\n∂\nu\n\n\n>\n0\n\n is true, \n\nΩ\n\nr\n\n\n is monotonically increasing about \n\nα\n\n and \n\nu\n\n, respectively.
\n
The particle condensation temperature \n\nη\n\n will increase with the increase of the nonlinear term \n\nα\n\nsin\n\nη\n\n\n and the source term \n\nu\n\n. For system Eq. (8), when the action region of source item \n\nu\n\n is circular (\n\nr\n\n is a radius), the values of \n\nu\n\n are constants and random numbers(rand represents a random number in the range (0,1), respectively, and the resulting simulated pictures are shown in Figures 8–10. Comparing with Figure 3 and Figure 4 without interference and other model [19] shown in Figure 11, this chapter simulates the morphological structure of collision for the single-single particles, single-clusters, clusters-clusters, and it is obvious that the effect of the increase of the interference term and the action region on the control of the aggregation of particles is more and more condensed than in the absence of the interference term. The concentration of the particles after the condensation is greater for the settlement and the aggregation. Condensation can also have a fixed direction. The control method on the fractal growth reduces the complexity of the surface area of aggregated particles and reflects the effectiveness of the control method.
\n
Figure 8.
The control of single direction.
\n
Figure 9.
The control of multiple direction.
\n
Figure 10.
Particles’ center point coagulation control.
\n
Figure 11.
Fractal diffusion of soot particles established by others [19].
\n
\n
\n
\n
4. The meaning of the soot particles condensed control
\n
The fractal structure of the particles is closely related to the binding resistance and the adsorption of the particles. The literature [20] investigated the relationship between the viscous resistance and the fractal structure of the particles during the descending process. Particles with a fractal structure will have a larger fractal dimension, the smaller the viscous resistance, and the faster the sedimentation rate than spherical particles of the same volume. The fractal dimension of the particle before control shown in Figures 3 and 4 is 2.029 and 2.236, respectively. The fractal dimension of the particle after control in Figure 8 is 2.3273. Obviously, the viscous resistance of the particle in Figure 8 is small, which is conducive to the settlement of particles.
\n
The fractal dimension of particles directly affects the surface adsorption. The relationship between the number of saturated molecules adsorbed in single layer \n\n\nN\nm\n\n\n and the cross-sectional area of adsorbed molecules \n\n\nS\nm\n\n\n is given by Eq. (17), where \n\nξ\n\n is the scale factor and \n\n\nD\nf\n\n\n is the fractal dimension of the particle.
Obviously, the adsorption of toxic particulates by atmospheric particles is not only related to the composition and chemical properties of gas molecules but also related to the fractal dimension of the particle surface. The roughness of the surface of atmospheric particles also affects the adsorption of toxic gases in the atmosphere. The bigger fractal dimension particles have, the stronger adsorption of toxic particulate matter atmospheric particles have. Then, atmospheric particles will greatly affect human health.
\n
The controlled particulate matter (Figure 8) can adsorb more toxic particulate matter and cause it to control the settlement and reduce the environmental pollution. In addition, if the particulate matter still cannot settle after control, it will be controlled as in Figure 6 (fractal dimension is 2.029) and Figure 7 (fractal dimension 2.021, 2.031 and 2.038, respectively) shape structure, in order to reduce the adsorption of particles on toxic particles and the harm to human health.
\n
\n
\n
5. Conclusions
\n
The analysis and its agglomeration control of soot particles fractal growth provides a new idea for the development of particulate matter traps and also provides a new solution for reducing environmental pollution. Based on the fractal growth physical model of soot particles from large diesel agriculture machinery, this chapter simulates the morphological structure of collision for the single particles and single particles, single particle and clusters, clusters and clusters, firstly. Moreover, combining with the collision frequency, the fractal growth is controlled to agglomeration using the main environmental factors interference for diesel engine soot particles, in order to make them condensed into regular geometry or larger density particles, reduce the viscous drag for capturing by the capturer or settlement and to realize the control of the pollution of the environment.
\n
If the particles cannot settle, they can be controlled to reduce the adsorption of inhalable particles to toxic particles and reduce the harm to human health. This chapter simulates the control of the aggregation fractal growth trend of diesel soot particles. The results of numerical simulation show that the proposed method is feasible and effective, which will help to understand and analyze the physical mechanism and kinetics of non-equilibrium condensation growth behavior of the actual carbon smoke particles and provide the solution to further reduce emissions of the inhalable particulate matter from diesel engines.
\n
\n
Acknowledgments
\n
The work was supported by the National Natural Science Foundation of China (No. 31700644), Postdoctoral Science Foundation of China (Nos. 2015 M582122 and 2016 T90644), Key research and development project of Shandong Province(Nos. 2016ZDJS02A07 and 2017GNC12105). Agricultural machinery research and development project of Shandong Province (No. 2018YF004).” The outstanding youth talent cultivation plan” project of Shandong Agriculture University (No. 564032). The authors are grateful to all study participants. The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.
\n
Nomenclature
\n\n\nα\n\n\n
the coefficient of equation.
\n\n\nη\n\nx\ny\n\n\n
the condensation temperature.
\n\n\n\nc\nn\n\n\n\n
the judgment factor.
\n\n\nu\n\nx\ny\n\n\n\n
the initial value of the digitization.
\n\n\n\nx\ns\n\n\n\n
the center of the ball \n\n\nB\nm\n\n\n.
\n',keywords:"soot particles, agglomeration, fractal growth, control, diesel engine",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/63590.pdf",chapterXML:"https://mts.intechopen.com/source/xml/63590.xml",downloadPdfUrl:"/chapter/pdf-download/63590",previewPdfUrl:"/chapter/pdf-preview/63590",totalDownloads:793,totalViews:95,totalCrossrefCites:0,dateSubmitted:"May 10th 2018",dateReviewed:"August 10th 2018",datePrePublished:"November 5th 2018",datePublished:"April 10th 2019",dateFinished:"September 17th 2018",readingETA:"0",abstract:"Based on the fractal growth physical model of soot particles from large diesel agriculture machinery, this chapter simulates the morphological structure of collision for the single particles and single particles, single particle and clusters, clusters and clusters, firstly. Moreover, combining with the collision frequency, the fractal growth is controlled to agglomeration using the main environmental factors interference for diesel engine soot particles, in order to make them condensed into regular geometry or larger density particles, reduce the viscous drag for capturing by the capturer or settlement and to realize the control of the pollution of the environment. The results of numerical simulation show that the proposed method is feasible and effective, which will help to understand and analyze the physical mechanism and kinetics of non-equilibrium condensation growth behavior of the actual carbon smoke particles and provide the solution to further reduce emissions of the inhalable particulate matter from diesel engines.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/63590",risUrl:"/chapter/ris/63590",signatures:"Ping Liu and Chunying Wang",book:{id:"8619",type:"book",title:"Kinetic Modeling for Environmental Systems",subtitle:null,fullTitle:"Kinetic Modeling for Environmental Systems",slug:"kinetic-modeling-for-environmental-systems",publishedDate:"April 10th 2019",bookSignature:"Rehab O. Abdel Rahman",coverURL:"https://cdn.intechopen.com/books/images_new/8619.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78984-727-7",printIsbn:"978-1-78984-726-0",pdfIsbn:"978-1-83962-125-3",isAvailableForWebshopOrdering:!0,editors:[{id:"92718",title:"Prof.",name:"Rehab O.",middleName:null,surname:"Abdel Rahman",slug:"rehab-o.-abdel-rahman",fullName:"Rehab O. Abdel Rahman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"258234",title:"Ph.D.",name:"Ping",middleName:null,surname:"Liu",fullName:"Ping Liu",slug:"ping-liu",email:"liuping@sdau.edu.cn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"258242",title:"Ms.",name:"Chunying",middleName:null,surname:"Wang",fullName:"Chunying Wang",slug:"chunying-wang",email:"wcychunying@126.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. The condensation growth process of the soot and its simulation method",level:"1"},{id:"sec_2_2",title:"2.1. The generation process of soot",level:"2"},{id:"sec_3_2",title:"2.2. The simulation method of soot structure",level:"2"},{id:"sec_5",title:"3. The analysis and condensation control of soot particles fractal growth",level:"1"},{id:"sec_5_2",title:"3.1. The theory of control",level:"2"},{id:"sec_6_2",title:"3.2. The control of fractal growth for diesel engines’ soot particles from source item and nonlinear term",level:"2"},{id:"sec_8",title:"4. The meaning of the soot particles condensed control",level:"1"},{id:"sec_9",title:"5. Conclusions",level:"1"},{id:"sec_10",title:"Acknowledgments",level:"1"},{id:"sec_12",title:"Nomenclature",level:"1"}],chapterReferences:[{id:"B1",body:'Poran A, Tartakovsky L. Performance and emissions of a direct injection internal combustion engine devised for joint operation with a high-pressure thermochemical recuperation system. Energy. 2017;124:214-226\n'},{id:"B2",body:'Robelia B, Mcneill K, Wammer K, et al. Investigating the impact of adding an environmental focus to a developmental chemistry course. Journal of Chemical Education. 2010;87(2):216-220\n'},{id:"B3",body:'Kittelson DB. Engines and nanoparticles: A review. Journal of Aerosol Science. 1998;29(5–6):575-588\n'},{id:"B4",body:'Tian H, Liao Z. Progress on the formation mechanism of biomass soot particles. Clean Coal Technology. 2017;23(3):7-15\n'},{id:"B5",body:'Shuai J et al. Review of formation mechanism and emission characteristics of particulate matter from automotive gasoline engines. Transactions of CSICE;2016(2):105-116\n'},{id:"B6",body:'Maozhao XIE. The Computational Combustion Theory of the Internal Combustion Engine. Dalian: Dalian Institute of Technology Press; 2005\n'},{id:"B7",body:'M Balthasar, M Frenklach. Monte-Carlo simulation of soot particle coagulation and aggregation: The effect of a realistic size distribution. Proceedings of the Combustion. 2005;30(1):1467-1475\n'},{id:"B8",body:'Zhang L, Liu ST. Directed control for fractal growth with environmental disturbance. Control Theory & Applications. 2011;28(12):1786-1790\n'},{id:"B9",body:'Liu P, Liu ST. Nonlinear generalized synchronization of two different spatial Julia sets. Control Theory & Applications. 2013;30(9):1159-1164\n'},{id:"B10",body:'Hu E, Hu X, Liu T, et al. The role of soot particles in the tribological behavior of engine lubricating oils. Wear. 2013;304(1–2):152-161\n'},{id:"B11",body:'Liu Y, Tao F, Foster DE, et al. Application of a multiple-step phenomenological soot model to HSDT diesel multiple injection modeling. In: 2005 SAE World Congress. Warrendale: SAE Transactions; 2005. pp. 1141-1156\n'},{id:"B12",body:'Pang KM, Ng HK, Gan S. Investigation of fuel injection pattern on soot formation and oxidation processes in a light-duty diesel engine using integrated CFD-reduced chemistry. Fuel. 2012;96(7):404-418\n'},{id:"B13",body:'Ming-rui W, Hui-ya Z, Liang K, Wei-dong Z. Numerical simulation for the growth of diesel particulate matter and its influential factor analysis. Advances in Natural Science. 2008;9(18):1028-1033\n'},{id:"B14",body:'Koto F, Yanagimoto T, Mori K, et al. The Clarification of Fuel-Vapor Concentration on the Process of Initial Combustion and Soot Formation in a Di Diesel Engine. 2017;2003.1:1-253-1-258\n'},{id:"B15",body:'A Witten T, Sander LM. Diffusion-limited aggregation, a kinetic critical phenomenon. Physical Review Letters. 1981;47(19):1400 (p 4)\n'},{id:"B16",body:'Jizhong Z. Fractal. Beijing: Tsinghua University Press; 2011\n'},{id:"B17",body:'Deng X, Dav RN. Breakage of fractal agglomerates. Chemical Engineering Science. 2017;161:117-126\n'},{id:"B18",body:'Pfeifer P, Avnir D. Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces. The Journal of Chemical Physics. 1983;79(7):3558-3565\n'},{id:"B19",body:'Sun J, Qiao W, Liu S. Controlling fractal diffusion of differently-sized soot particles. International Journal of Bifurcation and Chaos. 2018\n'},{id:"B20",body:'Chou CK, Lee CT. On the aerodynamic behavior of fractal agglomerates. Journal of Aerosol Science. 1997;28(2):620-635\n'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Ping Liu",address:"liupingsdau@126.com",affiliation:'
College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, China
College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, China
'}],corrections:null},book:{id:"8619",type:"book",title:"Kinetic Modeling for Environmental Systems",subtitle:null,fullTitle:"Kinetic Modeling for Environmental Systems",slug:"kinetic-modeling-for-environmental-systems",publishedDate:"April 10th 2019",bookSignature:"Rehab O. Abdel Rahman",coverURL:"https://cdn.intechopen.com/books/images_new/8619.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-1-78984-727-7",printIsbn:"978-1-78984-726-0",pdfIsbn:"978-1-83962-125-3",isAvailableForWebshopOrdering:!0,editors:[{id:"92718",title:"Prof.",name:"Rehab O.",middleName:null,surname:"Abdel Rahman",slug:"rehab-o.-abdel-rahman",fullName:"Rehab O. Abdel Rahman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"240300",title:"MSc.",name:"Bo-Ram",middleName:null,surname:"Ye",email:"ramiz@kiost.ac.kr",fullName:"Bo-Ram Ye",slug:"bo-ram-ye",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"60185",title:"Cultivating Spirulina maxima: Innovative Approaches",slug:"cultivating-spirulina-maxima-innovative-approaches",abstract:"This chapter reports an annual production of Spirulina (Arthrospira) maxima in Ansan, South Korea (37.287°N, 126.833°E) with temperate four seasons climate for testing industrial application. Construction on pilot plant of semi-open raceway system (ORS) with each 20 ton culture volume has been established in early 2011 based on building information modeling (BIM). An optimized design of pilot culture system for microalgae scale-up culture in temperate area and details of culture was presented. In scale-up trials using two ORSs, the strain displayed satisfactory annual growth under batch condition. In an annual trial, average biomass concentration was recorded at 0.99 ± 0.16 g/L, which showed stable productivity in a year. Maximum concentration was estimated at 1.418 ± 0.09 g/L in August, while minimum production was estimated at 0.597 ± 0.05 g/L in October. Despite insufficient solar radiation and nutrients, ORS was favorable for S. maxima production. The technical strategies contribute to the annual production of S. maxima in this region: controlling the culture temperature, reducing production cost, and retrospective climatic data-based BIM construction of the greenhouse. Consequently, pilot production of S. maxima was feasible in Korean climates, a region previously thought to be outside its geographic limits.",signatures:"Taeho Kim, Woo-Seok Choi, Bo-Ram Ye, Soo-Jin Heo, Dongkyu Oh,\nSeongEun Kim, Kwang-Sik Choi and Do-Hyung Kang",authors:[{id:"231886",title:"Ph.D.",name:"Do-Hyung",surname:"Kang",fullName:"Do-Hyung Kang",slug:"do-hyung-kang",email:"dohkang@kiost.ac.kr"},{id:"240298",title:"MSc.",name:"Taeho",surname:"Kim",fullName:"Taeho Kim",slug:"taeho-kim",email:"kt1024@kiost.ac.kr"},{id:"240299",title:"MSc.",name:"Woo-Seok",surname:"Choi",fullName:"Woo-Seok Choi",slug:"woo-seok-choi",email:"wooseokchoi@kiost.ac.kr"},{id:"240300",title:"MSc.",name:"Bo-Ram",surname:"Ye",fullName:"Bo-Ram Ye",slug:"bo-ram-ye",email:"ramiz@kiost.ac.kr"},{id:"240301",title:"Dr.",name:"Soo-Jin",surname:"Heo",fullName:"Soo-Jin Heo",slug:"soo-jin-heo",email:"sjheo@kiost.ac.kr"},{id:"240302",title:"MSc.",name:"Dongkyu",surname:"Oh",fullName:"Dongkyu Oh",slug:"dongkyu-oh",email:"gododgun@gmail.com"},{id:"240303",title:"MSc.",name:"SeongEun",surname:"Kim",fullName:"SeongEun Kim",slug:"seongeun-kim",email:"godhkim@naver.com"},{id:"240304",title:"Prof.",name:"Kwang-Sik",surname:"Choi",fullName:"Kwang-Sik Choi",slug:"kwang-sik-choi",email:"skchoi@jejunu.ac.kr"}],book:{id:"6764",title:"Cyanobacteria",slug:"cyanobacteria",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"231886",title:"Ph.D.",name:"Do-Hyung",surname:"Kang",slug:"do-hyung-kang",fullName:"Do-Hyung Kang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"239382",title:"Prof.",name:"María F.",surname:"Fillat",slug:"maria-f.-fillat",fullName:"María F. Fillat",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"239644",title:"Dr.",name:"Andrés",surname:"González",slug:"andres-gonzalez",fullName:"Andrés González",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"239646",title:"Dr.",name:"M Teresa",surname:"Bes",slug:"m-teresa-bes",fullName:"M Teresa Bes",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"240298",title:"MSc.",name:"Taeho",surname:"Kim",slug:"taeho-kim",fullName:"Taeho Kim",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"240299",title:"MSc.",name:"Woo-Seok",surname:"Choi",slug:"woo-seok-choi",fullName:"Woo-Seok Choi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"240301",title:"Dr.",name:"Soo-Jin",surname:"Heo",slug:"soo-jin-heo",fullName:"Soo-Jin Heo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"240302",title:"MSc.",name:"Dongkyu",surname:"Oh",slug:"dongkyu-oh",fullName:"Dongkyu Oh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"240303",title:"MSc.",name:"SeongEun",surname:"Kim",slug:"seongeun-kim",fullName:"SeongEun Kim",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"240304",title:"Prof.",name:"Kwang-Sik",surname:"Choi",slug:"kwang-sik-choi",fullName:"Kwang-Sik Choi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"OA-publishing-fees",title:"Open Access Publishing Fees",intro:"
The Open Access model is applied to all of our publications and is designed to eliminate subscriptions and pay-per-view fees. This approach ensures free, immediate access to full text versions of your research.
As a gold Open Access publisher, an Open Access Publishing Fee is payable on acceptance following peer review of the manuscript. In return, we provide high quality publishing services and exclusive benefits for all contributors. IntechOpen is the trusted publishing partner of over 140,000 international scientists and researchers.
\\n\\n
The Open Access Publishing Fee (OAPF) is payable only after your book chapter, monograph or journal article is accepted for publication.
\\n\\n
OAPF Publishing Options
\\n\\n
\\n\\t
1,400 GBP Chapter - Edited Volume
\\n\\t
850 GBP Chapter - Book Series Topic (Annual Volume)
\\n\\t
10,000 GBP Monograph - Long Form
\\n\\t
4,000 GBP Compacts Monograph - Short Form
\\n\\t
850 GBP Journal Article (Across Portfolio)
\\n
\\n\\n
During the launching phase journals do not charge an APC, rather they will be funded by IntechOpen.
\\n\\n
*These prices do not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT as long as provision of the VAT registration number is made during the application process. This is made possible by the EU reverse charge method.
\\n\\n
Services included are:
\\n\\n
\\n\\t
An online manuscript tracking system to facilitate your work
\\n\\t
Personal contact and support throughout the publishing process from your dedicated Author Service Manager
\\n\\t
Assurance that your manuscript meets the highest publishing standards
\\n\\t
English language copyediting and proofreading, including the correction of grammatical, spelling, and other common errors
\\n\\t
XML Typesetting and pagination - web (PDF, HTML) and print files preparation
\\n\\t
Discoverability - electronic citation and linking via DOI
\\n\\t
Permanent and unrestricted online access to your work
\\n
\\n\\n
What isn't covered by the Open Access Publishing Fee?
\\n\\n
If your manuscript:
\\n\\n
\\n\\t
Exceeds the number of pages defined by the publishing guidelines, an additional fee per page may be required
\\n\\t
If a manuscript requires Heavy Editing or Language Polishing, this will incur additional fees.
\\n
\\n\\n
Your Author Service Manager will inform you of any items not covered by the OAPF and provide exact information regarding those additional costs before proceeding.
\\n\\n
Open Access Funding
\\n\\n
To explore funding opportunities and learn more about how you can finance your IntechOpen publication, go to our Open Access Funding page. IntechOpen offers expert assistance to all of its Authors. We can support you in approaching funding bodies and institutions in relation to publishing fees by providing information about compliance with the Open Access policies of your funder or institution. We can also assist with communicating the benefits of Open Access in order to support and strengthen your funding request and provide personal guidance through your application process. You can contact us at funders@intechopen.com for further details or assistance.
\\n\\n
For Authors who are still unable to obtain funding from their institutions or research funding bodies for individual projects, IntechOpen does offer the possibility of applying for a Waiver to offset some or all processing feed. Details regarding our Waiver Policy can be found here.
\\n\\n
Added Value of Publishing with IntechOpen
\\n\\n
Choosing to publish with IntechOpen ensures the following benefits:
\\n\\n
\\n\\t
Indexing and listing across major repositories, see details ...
\\n\\t
Long-term archiving
\\n\\t
Visibility on the world's strongest OA platform
\\n\\t
Live Performance Metrics to track readership and the impact of your chapter
\\n\\t
Dissemination and Promotion
\\n
\\n\\n
Benefits of Publishing with IntechOpen
\\n\\n
\\n\\t
Proven world leader in Open Access book publishing with over 10 years experience
\\n\\t
+5,700 OA books published
\\n\\t
Most competitive prices in the market
\\n\\t
Fully compliant with OA funding requirements
\\n\\t
Optimized processes that assure your research is made available to the scientific community without delay
\\n\\t
Personal support during every step of the publication process
\\n\\t
+184,650 citations in Web of Science databases
\\n\\t
Currently strongest OA platform with over 175 million downloads
As a gold Open Access publisher, an Open Access Publishing Fee is payable on acceptance following peer review of the manuscript. In return, we provide high quality publishing services and exclusive benefits for all contributors. IntechOpen is the trusted publishing partner of over 140,000 international scientists and researchers.
\n\n
The Open Access Publishing Fee (OAPF) is payable only after your book chapter, monograph or journal article is accepted for publication.
\n\n
OAPF Publishing Options
\n\n
\n\t
1,400 GBP Chapter - Edited Volume
\n\t
850 GBP Chapter - Book Series Topic (Annual Volume)
\n\t
10,000 GBP Monograph - Long Form
\n\t
4,000 GBP Compacts Monograph - Short Form
\n\t
850 GBP Journal Article (Across Portfolio)
\n
\n\n
During the launching phase journals do not charge an APC, rather they will be funded by IntechOpen.
\n\n
*These prices do not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT as long as provision of the VAT registration number is made during the application process. This is made possible by the EU reverse charge method.
\n\n
Services included are:
\n\n
\n\t
An online manuscript tracking system to facilitate your work
\n\t
Personal contact and support throughout the publishing process from your dedicated Author Service Manager
\n\t
Assurance that your manuscript meets the highest publishing standards
\n\t
English language copyediting and proofreading, including the correction of grammatical, spelling, and other common errors
\n\t
XML Typesetting and pagination - web (PDF, HTML) and print files preparation
\n\t
Discoverability - electronic citation and linking via DOI
\n\t
Permanent and unrestricted online access to your work
\n
\n\n
What isn't covered by the Open Access Publishing Fee?
\n\n
If your manuscript:
\n\n
\n\t
Exceeds the number of pages defined by the publishing guidelines, an additional fee per page may be required
\n\t
If a manuscript requires Heavy Editing or Language Polishing, this will incur additional fees.
\n
\n\n
Your Author Service Manager will inform you of any items not covered by the OAPF and provide exact information regarding those additional costs before proceeding.
\n\n
Open Access Funding
\n\n
To explore funding opportunities and learn more about how you can finance your IntechOpen publication, go to our Open Access Funding page. IntechOpen offers expert assistance to all of its Authors. We can support you in approaching funding bodies and institutions in relation to publishing fees by providing information about compliance with the Open Access policies of your funder or institution. We can also assist with communicating the benefits of Open Access in order to support and strengthen your funding request and provide personal guidance through your application process. You can contact us at funders@intechopen.com for further details or assistance.
\n\n
For Authors who are still unable to obtain funding from their institutions or research funding bodies for individual projects, IntechOpen does offer the possibility of applying for a Waiver to offset some or all processing feed. Details regarding our Waiver Policy can be found here.
\n\n
Added Value of Publishing with IntechOpen
\n\n
Choosing to publish with IntechOpen ensures the following benefits:
\n\n
\n\t
Indexing and listing across major repositories, see details ...
\n\t
Long-term archiving
\n\t
Visibility on the world's strongest OA platform
\n\t
Live Performance Metrics to track readership and the impact of your chapter
\n\t
Dissemination and Promotion
\n
\n\n
Benefits of Publishing with IntechOpen
\n\n
\n\t
Proven world leader in Open Access book publishing with over 10 years experience
\n\t
+5,700 OA books published
\n\t
Most competitive prices in the market
\n\t
Fully compliant with OA funding requirements
\n\t
Optimized processes that assure your research is made available to the scientific community without delay
\n\t
Personal support during every step of the publication process
\n\t
+184,650 citations in Web of Science databases
\n\t
Currently strongest OA platform with over 175 million downloads
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit B Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12102",title:"Current Trends in Ambulatory Care",subtitle:null,isOpenForSubmission:!0,hash:"fa37d79f81893fd0a9ab346ae1c3e4a9",slug:null,bookSignature:"Dr. Xin-Nong Li",coverURL:"https://cdn.intechopen.com/books/images_new/12102.jpg",editedByType:null,editors:[{id:"345917",title:"Dr.",name:"Xin-Nong",surname:"Li",slug:"xin-nong-li",fullName:"Xin-Nong Li"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12050",title:"Advanced Biodiesel - Technological Advances, Challenges, and Sustainability Considerations",subtitle:null,isOpenForSubmission:!0,hash:"bb86ab5c5ca0dab95f01941eb350f920",slug:null,bookSignature:"Dr. IMR Fattah",coverURL:"https://cdn.intechopen.com/books/images_new/12050.jpg",editedByType:null,editors:[{id:"463663",title:"Dr.",name:"IMR",surname:"Fattah",slug:"imr-fattah",fullName:"IMR Fattah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12172",title:"Health Risks of Food Additives - Recent Developments and Trends in Food Sector",subtitle:null,isOpenForSubmission:!0,hash:"f6aa23b1045d266d0928fcef04fa3417",slug:null,bookSignature:"Dr. Muhammad Sajid Arshad and Mr. Waseem Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/12172.jpg",editedByType:null,editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11500",title:"Multi-Objective Optimization - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"842f84f308439c0a55c4e8e6a8fd9c01",slug:null,bookSignature:"Dr. Adel El-Shahat",coverURL:"https://cdn.intechopen.com/books/images_new/11500.jpg",editedByType:null,editors:[{id:"193331",title:"Dr.",name:"Adel",surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:417},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"223",title:"Engineering Physics",slug:"physics-engineering-physics",parent:{id:"20",title:"Physics",slug:"physics"},numberOfBooks:5,numberOfSeries:0,numberOfAuthorsAndEditors:102,numberOfWosCitations:74,numberOfCrossrefCitations:57,numberOfDimensionsCitations:119,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"223",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10966",title:"Acoustic Emission",subtitle:"New Perspectives and Applications",isOpenForSubmission:!1,hash:"e4cbf5fe77dcf581393247bd9ac4277a",slug:"acoustic-emission-new-perspectives-and-applications",bookSignature:"Mahmut Reyhanoglu",coverURL:"https://cdn.intechopen.com/books/images_new/10966.jpg",editedByType:"Edited by",editors:[{id:"15068",title:"Dr.",name:"Mahmut",middleName:null,surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10168",title:"Electromagnetic and Acoustic Waves in Bioengineering Applications",subtitle:null,isOpenForSubmission:!1,hash:"fab55a6aa34e666274aabfdd3dc7f32d",slug:"electromagnetic-and-acoustic-waves-in-bioengineering-applications",bookSignature:"Ivo Čáp, Klára Čápová, Milan Smetana and Štefan Borik",coverURL:"https://cdn.intechopen.com/books/images_new/10168.jpg",editedByType:"Authored by",editors:[{id:"314791",title:"Dr.",name:"Ivo",middleName:null,surname:"Čáp",slug:"ivo-cap",fullName:"Ivo Čáp"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"10042",title:"Noise and Environment",subtitle:null,isOpenForSubmission:!1,hash:"11e8fca2f0f623d87dfbc3cf2b185e0d",slug:"noise-and-environment",bookSignature:"Daniela Siano and Alice Elizabeth González",coverURL:"https://cdn.intechopen.com/books/images_new/10042.jpg",editedByType:"Edited by",editors:[{id:"9960",title:"Dr.",name:"Daniela",middleName:null,surname:"Siano",slug:"daniela-siano",fullName:"Daniela Siano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8679",title:"Inverse Heat Conduction and Heat Exchangers",subtitle:null,isOpenForSubmission:!1,hash:"a994b17ac471c6d414d63c74a7ab74de",slug:"inverse-heat-conduction-and-heat-exchangers",bookSignature:"Suvanjan Bhattacharya, Mohammad Moghimi Ardekani, Ranjib Biswas and R. C. Mehta",coverURL:"https://cdn.intechopen.com/books/images_new/8679.jpg",editedByType:"Edited by",editors:[{id:"233630",title:"Dr.",name:"Suvanjan",middleName:null,surname:"Bhattacharyya",slug:"suvanjan-bhattacharyya",fullName:"Suvanjan Bhattacharyya"}],equalEditorOne:{id:"56358",title:"Dr.",name:"Rakhab",middleName:null,surname:"Mehta",slug:"rakhab-mehta",fullName:"Rakhab Mehta",profilePictureURL:"https://mts.intechopen.com/storage/users/56358/images/system/56358.jpeg",biography:"R. C. Mehta obtained his Ph.D. from the Indian Institute of Technology, Madras. He has worked as the Head of Aerodynamics\r\nDivision of Vikram Sarabhai Space Centre/Indian Space Research Organization and has participated in the design of launch and reentry vehicles. He has served as a Senior Fellow in the School of Mechanical and Aerospace Engineering at Nanyang Technological University, Singapore. He is the recipient of the Lifetime Achievement Award from the Flow Physics Society of India. He is a senior member of AIAA, has published over 120 papers in peer-reviewed national and international journals, five book chapters, and co-authored two books. He is a reviewer for many international journals and is presently Dean in the Noorul Islam Centre for Higher Education, Kumaracoil, India.",institutionString:"Noorul Islam University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Noorul Islam University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"521",title:"Acoustic Waves",subtitle:"From Microdevices to Helioseismology",isOpenForSubmission:!1,hash:"54432e5ff2c93e574f225da232e79c8c",slug:"acoustic-waves-from-microdevices-to-helioseismology",bookSignature:"Marco G. Beghi",coverURL:"https://cdn.intechopen.com/books/images_new/521.jpg",editedByType:"Edited by",editors:[{id:"41947",title:"Prof.",name:"Marco G.",middleName:null,surname:"Beghi",slug:"marco-g.-beghi",fullName:"Marco G. Beghi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"23416",doi:"10.5772/18862",title:"Use of Acoustic Waves for Pulsating Water Jet Generation",slug:"use-of-acoustic-waves-for-pulsating-water-jet-generation",totalDownloads:3819,totalCrossrefCites:7,totalDimensionsCites:15,abstract:null,book:{id:"521",slug:"acoustic-waves-from-microdevices-to-helioseismology",title:"Acoustic Waves",fullTitle:"Acoustic Waves - From Microdevices to Helioseismology"},signatures:"Josef Foldyna",authors:[{id:"32826",title:"Dr.",name:"Josef",middleName:null,surname:"Foldyna",slug:"josef-foldyna",fullName:"Josef Foldyna"}]},{id:"23410",doi:"10.5772/19815",title:"Compensation of Ultrasound Attenuation in Photoacoustic Imaging",slug:"compensation-of-ultrasound-attenuation-in-photoacoustic-imaging",totalDownloads:2475,totalCrossrefCites:4,totalDimensionsCites:10,abstract:null,book:{id:"521",slug:"acoustic-waves-from-microdevices-to-helioseismology",title:"Acoustic Waves",fullTitle:"Acoustic Waves - From Microdevices to Helioseismology"},signatures:"P. Burgholzer, H. Roitner, J. Bauer-Marschallinger, H. Grün, T. Berer and G. Paltauf",authors:[{id:"36294",title:"Dr.",name:"Peter",middleName:null,surname:"Burgholzer",slug:"peter-burgholzer",fullName:"Peter Burgholzer"},{id:"51111",title:"Dr",name:"Heinz",middleName:null,surname:"Roitner",slug:"heinz-roitner",fullName:"Heinz Roitner"},{id:"51112",title:"Mr.",name:"Johannes",middleName:null,surname:"Bauer-Marschallinger",slug:"johannes-bauer-marschallinger",fullName:"Johannes Bauer-Marschallinger"},{id:"51113",title:"MSc",name:"Hubert",middleName:null,surname:"Grün",slug:"hubert-grun",fullName:"Hubert Grün"},{id:"51114",title:"Dr.",name:"Thomas",middleName:null,surname:"Berer",slug:"thomas-berer",fullName:"Thomas Berer"},{id:"51115",title:"Mr.",name:"Günther",middleName:null,surname:"Paltauf",slug:"gunther-paltauf",fullName:"Günther Paltauf"}]},{id:"23415",doi:"10.5772/19722",title:"Acoustic–Gravity Waves in the Ionosphere During Solar Eclipse Events",slug:"acoustic-gravity-waves-in-the-ionosphere-during-solar-eclipse-events",totalDownloads:2948,totalCrossrefCites:5,totalDimensionsCites:10,abstract:null,book:{id:"521",slug:"acoustic-waves-from-microdevices-to-helioseismology",title:"Acoustic Waves",fullTitle:"Acoustic Waves - From Microdevices to Helioseismology"},signatures:"Petra Koucká Knížová and Zbyšek Mošna",authors:[{id:"35967",title:"Dr.",name:"Petra",middleName:null,surname:"Koucká Knížová",slug:"petra-koucka-knizova",fullName:"Petra Koucká Knížová"},{id:"89765",title:"MSc.",name:"Zbyšek",middleName:null,surname:"Mošna",slug:"zbysek-mosna",fullName:"Zbyšek Mošna"}]},{id:"23414",doi:"10.5772/18684",title:"Photoacoustic Technique Applied to Skin Research: Characterization of Tissue, Topically Applied Products and Transdermal Drug Delivery",slug:"photoacoustic-technique-applied-to-skin-research-characterization-of-tissue-topically-applied-produc",totalDownloads:3011,totalCrossrefCites:5,totalDimensionsCites:8,abstract:null,book:{id:"521",slug:"acoustic-waves-from-microdevices-to-helioseismology",title:"Acoustic Waves",fullTitle:"Acoustic Waves - From Microdevices to Helioseismology"},signatures:"Jociely P. Mota, Jorge L.C. Carvalho, Sérgio S. Carvalho and Paulo R. Barja",authors:[{id:"32237",title:"Dr.",name:"Paulo",middleName:null,surname:"Barja",slug:"paulo-barja",fullName:"Paulo Barja"},{id:"87448",title:"MSc.",name:"Jociely",middleName:null,surname:"Mota",slug:"jociely-mota",fullName:"Jociely Mota"},{id:"87449",title:"BSc",name:"Jorge",middleName:"Luis",surname:"Carvalho",slug:"jorge-carvalho",fullName:"Jorge Carvalho"},{id:"87450",title:"MSc.",name:"Sérgio",middleName:null,surname:"Carvalho",slug:"sergio-carvalho",fullName:"Sérgio Carvalho"}]},{id:"23421",doi:"10.5772/19910",title:"SAW Parameters Analysis and Equivalent Circuit of SAW Device",slug:"saw-parameters-analysis-and-equivalent-circuit-of-saw-device",totalDownloads:9022,totalCrossrefCites:6,totalDimensionsCites:7,abstract:null,book:{id:"521",slug:"acoustic-waves-from-microdevices-to-helioseismology",title:"Acoustic Waves",fullTitle:"Acoustic Waves - From Microdevices to Helioseismology"},signatures:"Trang Hoang",authors:[{id:"36754",title:"Dr.",name:"Trang",middleName:null,surname:"Hoang",slug:"trang-hoang",fullName:"Trang Hoang"}]}],mostDownloadedChaptersLast30Days:[{id:"72522",title:"Traffic Noise",slug:"traffic-noise",totalDownloads:1477,totalCrossrefCites:4,totalDimensionsCites:5,abstract:"Currently, noise pollution is a major problem especially in urban areas, and moreover traffic noise is the most significant source of noise in cities. A large number of cars and other road vehicles that have internal combustion engines are making road traffic noise a leading noise pollution source. Electric and hybrid cars, which are nowadays slowly replacing them, give rise to lower noise level in urban areas as their engines are generally silent. However, the mere absence of internal combustion engines cannot be the only measure for lowering noise levels in urban areas. The goal of this chapter is to define and describe traffic noise, the reasons for its occurrence, and all existing ways of reducing traffic noise.",book:{id:"10042",slug:"noise-and-environment",title:"Noise and Environment",fullTitle:"Noise and Environment"},signatures:"Sanja Grubesa and Mia Suhanek",authors:[{id:"316372",title:"Dr.",name:"Mia",middleName:null,surname:"Suhanek",slug:"mia-suhanek",fullName:"Mia Suhanek"},{id:"318126",title:"Dr.",name:"Sanja",middleName:null,surname:"Grubesa",slug:"sanja-grubesa",fullName:"Sanja Grubesa"}]},{id:"72544",title:"Applications of Heat Transfer Enhancement Techniques: A State-of-the-Art Review",slug:"applications-of-heat-transfer-enhancement-techniques-a-state-of-the-art-review",totalDownloads:890,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"The fundamentals of heat transfer and its applications, the classification of heat transfer technology and different heat transfer techniques, and the needs for augmentation and its benefits and the different combinations of two or more inserts and integral roughness elements for heat transfer augmentation purpose have been introduced and discussed in this chapter. It is shown that most of the compound techniques performed better than the individual inserts for heat transfer enhancement. This chapter has also been dedicated to understanding the basic concepts of vortex generators for heat transfer enhancement in plate-fin heat exchangers. The performance of transverse, longitudinal, and wing-type vortex generators has been discussed as well.",book:{id:"8679",slug:"inverse-heat-conduction-and-heat-exchangers",title:"Inverse Heat Conduction and Heat Exchangers",fullTitle:"Inverse Heat Conduction and Heat Exchangers"},signatures:"Suvanjan Bhattacharyya, Devendra K. Vishwakarma, Sanghati Roy, Ranjib Biswas and Mohammad Moghimi Ardekani",authors:null},{id:"72200",title:"Attenuation of Environmental Noise through Digital Filtering",slug:"attenuation-of-environmental-noise-through-digital-filtering",totalDownloads:714,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter proposes the implementation of an environmental noise cancelation system using the least mean squares algorithm with noise amplitude modulation (NAMLMS). The system was implemented in a dsPIC3020F10 digital processor. The results obtained demonstrate that low- and high-frequency signals are attenuated allowing the passage of an audible range between 5 kHz and 18.9 kHz, the above using real-time processing.",book:{id:"10042",slug:"noise-and-environment",title:"Noise and Environment",fullTitle:"Noise and Environment"},signatures:"Juan Ríos and Celedonio Aguilar",authors:[{id:"314253",title:"Dr.",name:"Juan",middleName:null,surname:"Rios",slug:"juan-rios",fullName:"Juan Rios"},{id:"317577",title:"Dr.",name:"Celedonio",middleName:null,surname:"Aguilar",slug:"celedonio-aguilar",fullName:"Celedonio Aguilar"}]},{id:"71295",title:"Equation of State",slug:"equation-of-state",totalDownloads:946,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"An equation of state (EOS) is a thermodynamic expression that relates pressure (P), temperature (T), and volume (V). This equation is used to describe the state of reservoir fluids at given conditions. The cubic equations of state (CEOS) such as Van der Waals, Redlich-Kwong, Soave, and Peng-Robinson are simple models that have been widely used in the oil industry. This chapter expressed literature for EOS that varies from simple expressions to multiple constant and convoluted types of equations. Many attempts have been made to describe the thermodynamic behavior of fluids to predict their physical properties at given conditions. So, several forms of the equation of state have been presented to the oil industry in order to calculate reservoir fluid properties. The heat exchanger is important in wildly fields as in aerospace, petrochemical industry, refrigeration, and other fields. The optimization design of the heat exchanger is a great significance to industry process to reduce production cost, realize energy conservation, and reduce energy consumption.",book:{id:"8679",slug:"inverse-heat-conduction-and-heat-exchangers",title:"Inverse Heat Conduction and Heat Exchangers",fullTitle:"Inverse Heat Conduction and Heat Exchangers"},signatures:"Eman Mohamed Mansour",authors:[{id:"277274",title:"Dr.",name:"Eman M.",middleName:null,surname:"Mansour",slug:"eman-m.-mansour",fullName:"Eman M. Mansour"}]},{id:"68149",title:"Fouling in Heat Exchangers",slug:"fouling-in-heat-exchangers-1",totalDownloads:1116,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"A major problem in industries that use heat exchanger equipment cooled with water in their industrial processes is biofouling. In the design and operation of heat exchangers cooled with water, a coefficient of biological must be considered, which affects the efficiency of the equipment. For this reason, it is necessary to apply appropriate antifouling treatments to the design of each heat exchanger. In order to minimize the undesirable phenomenon of biofouling, various mitigation methods have been developed over the last 30 years, both online and offline, of a physical, chemical, or biological nature. Most of these methods are well contrasted and are applied in the regular operation of the facilities, although some methodology approaches are in the research and development phase. However, the application of most of these methods requires interrupting the production, periodically, in order to clean the biofouling, seriously damaging the performance and operation of the installation. The “online” methods to biofouling control are chemical (oxidizing, and non-oxidants), biological and physical treatments. Nowadays, other methodologies of biofouling mitigation that do not affect the environment are being investigated, although, until now, none have been found that are substitutes for chemical agents and that have the same or with higher efficiency.",book:{id:"8679",slug:"inverse-heat-conduction-and-heat-exchangers",title:"Inverse Heat Conduction and Heat Exchangers",fullTitle:"Inverse Heat Conduction and Heat Exchangers"},signatures:"Sergio García and Alfredo Trueba",authors:null}],onlineFirstChaptersFilter:{topicId:"223",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713",scope:"
\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems. \r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.
",coverUrl:"https://cdn.intechopen.com/series/covers/25.jpg",latestPublicationDate:"June 28th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:1,editor:{id:"197485",title:"Dr.",name:"J. Kevin",middleName:null,surname:"Summers",slug:"j.-kevin-summers",fullName:"J. Kevin Summers",profilePictureURL:"https://mts.intechopen.com/storage/users/197485/images/system/197485.jpg",biography:"J. Kevin Summers is a Senior Research Ecologist at the Environmental Protection Agency’s (EPA) Gulf Ecosystem Measurement and Modeling Division. He is currently working with colleagues in the Sustainable and Healthy Communities Program to develop an index of community resilience to natural hazards, an index of human well-being that can be linked to changes in the ecosystem, social and economic services, and a community sustainability tool for communities with populations under 40,000. He leads research efforts for indicator and indices development. Dr. Summers is a systems ecologist and began his career at the EPA in 1989 and has worked in various programs and capacities. This includes leading the National Coastal Assessment in collaboration with the Office of Water which culminated in the award-winning National Coastal Condition Report series (four volumes between 2001 and 2012), and which integrates water quality, sediment quality, habitat, and biological data to assess the ecosystem condition of the United States estuaries. He was acting National Program Director for Ecology for the EPA between 2004 and 2006. He has authored approximately 150 peer-reviewed journal articles, book chapters, and reports and has received many awards for technical accomplishments from the EPA and from outside of the agency. Dr. Summers holds a BA in Zoology and Psychology, an MA in Ecology, and Ph.D. in Systems Ecology/Biology.",institutionString:null,institution:{name:"Environmental Protection Agency",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:13,paginationItems:[{id:"38",title:"Pollution",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",slug:"ismail-m.m.-rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",biography:"Ismail Md. Mofizur Rahman (Ismail M. M. Rahman) assumed his current responsibilities as an Associate Professor at the Institute of Environmental Radioactivity, Fukushima University, Japan, in Oct 2015. He also has an honorary appointment to serve as a Collaborative Professor at Kanazawa University, Japan, from Mar 2015 to the present. \nFormerly, Dr. Rahman was a faculty member of the University of Chittagong, Bangladesh, affiliated with the Department of Chemistry (Oct 2002 to Mar 2012) and the Department of Applied Chemistry and Chemical Engineering (Mar 2012 to Sep 2015). Dr. Rahman was also adjunctly attached with Kanazawa University, Japan (Visiting Research Professor, Dec 2014 to Mar 2015; JSPS Postdoctoral Research Fellow, Apr 2012 to Mar 2014), and Tokyo Institute of Technology, Japan (TokyoTech-UNESCO Research Fellow, Oct 2004–Sep 2005). \nHe received his Ph.D. degree in Environmental Analytical Chemistry from Kanazawa University, Japan (2011). He also achieved a Diploma in Environment from the Tokyo Institute of Technology, Japan (2005). Besides, he has an M.Sc. degree in Applied Chemistry and a B.Sc. degree in Chemistry, all from the University of Chittagong, Bangladesh. \nDr. Rahman’s research interest includes the study of the fate and behavior of environmental pollutants in the biosphere; design of low energy and low burden environmental improvement (remediation) technology; implementation of sustainable waste management practices for treatment, handling, reuse, and ultimate residual disposition of solid wastes; nature and type of interactions in organic liquid mixtures for process engineering design applications.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",slug:"zinnat-ara-begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",biography:"Zinnat A. Begum received her Ph.D. in Environmental Analytical Chemistry from Kanazawa University in 2012. She achieved her Master of Science (M.Sc.) degree with a major in Applied Chemistry and a Bachelor of Science (B.Sc.) in Chemistry, all from the University of Chittagong, Bangladesh. Her work affiliations include Fukushima University, Japan (Visiting Research Fellow, Institute of Environmental Radioactivity: Mar 2016 to present), Southern University Bangladesh (Assistant Professor, Department of Civil Engineering: Jan 2015 to present), and Kanazawa University, Japan (Postdoctoral Fellow, Institute of Science and Engineering: Oct 2012 to Mar 2014; Research fellow, Venture Business Laboratory, Advanced Science and Social Co-Creation Promotion Organization: Apr 2018 to Mar 2021). The research focus of Dr. Zinnat includes the effect of the relative stability of metal-chelator complexes in the environmental remediation process designs and the development of eco-friendly soil washing techniques using biodegradable chelators.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,editorialBoard:[{id:"252368",title:"Dr.",name:"Meng-Chuan",middleName:null,surname:"Ong",slug:"meng-chuan-ong",fullName:"Meng-Chuan Ong",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVotQAG/Profile_Picture_2022-05-20T12:04:28.jpg",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",institutionURL:null,country:{name:"Malaysia"}}},{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}},{id:"187907",title:"Dr.",name:"Olga",middleName:null,surname:"Anne",slug:"olga-anne",fullName:"Olga Anne",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBE5QAO/Profile_Picture_2022-04-07T09:42:13.png",institutionString:null,institution:{name:"Klaipeda State University of Applied Sciences",institutionURL:null,country:{name:"Lithuania"}}}]},{id:"39",title:"Environmental Resilience and Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",editor:{id:"137040",title:"Prof.",name:"Jose",middleName:null,surname:"Navarro-Pedreño",slug:"jose-navarro-pedreno",fullName:"Jose Navarro-Pedreño",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRAXrQAO/Profile_Picture_2022-03-09T15:50:19.jpg",biography:"Full professor at University Miguel Hernández of Elche, Spain, previously working at the University of Alicante, Autonomous University of Madrid and Polytechnic University of Valencia. Graduate in Sciences (Chemist), graduate in Geography and History (Geography), master in Water Management, Treatment, master in Fertilizers and Environment and master in Environmental Management; Ph.D. in Environmental Sciences. His research is focused on soil-water and waste-environment relations, mainly on soil-water and soil-waste interactions under different management and waste reuse. His work is reflected in more than 230 communications presented in national and international conferences and congresses, 29 invited lectures from universities, associations and government agencies. Prof. Navarro-Pedreño is also a director of the Ph.D. Program Environment and Sustainability (2012-present) and a member of several societies among which are the Spanish Society of Soil Science, International Union of Soil Sciences, European Society for Soil Conservation, DessertNet and the Spanish Royal Society of Chemistry.",institutionString:"Miguel Hernández University of Elche, Spain",institution:null},editorTwo:null,editorThree:null,editorialBoard:[{id:"177015",title:"Prof.",name:"Elke Jurandy",middleName:null,surname:"Bran Nogueira Cardoso",slug:"elke-jurandy-bran-nogueira-cardoso",fullName:"Elke Jurandy Bran Nogueira Cardoso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGxzQAG/Profile_Picture_2022-03-25T08:32:33.jpg",institutionString:"Universidade de São Paulo, Brazil",institution:null},{id:"147289",title:"Prof.",name:"Francisco",middleName:null,surname:"Guevara-Hernández",slug:"francisco-guevara-hernandez",fullName:"Francisco Guevara-Hernández",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRCgVQAW/Profile_Picture_2022-06-27T11:25:21.png",institutionString:null,institution:{name:"Autonomous University of Chiapas",institutionURL:null,country:{name:"Mexico"}}},{id:"211260",title:"Dr.",name:"Sandra",middleName:null,surname:"Ricart",slug:"sandra-ricart",fullName:"Sandra Ricart",profilePictureURL:"https://mts.intechopen.com/storage/users/211260/images/system/211260.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}}]},{id:"40",title:"Ecosystems and Biodiversity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/40.jpg",editor:{id:"209149",title:"Prof.",name:"Salustiano",middleName:null,surname:"Mato",slug:"salustiano-mato",fullName:"Salustiano Mato",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLREQA4/Profile_Picture_2022-03-31T10:23:50.png",biography:"Salustiano Mato de la Iglesia (Santiago de Compostela, 1960) is a doctor in biology from the University of Santiago and a Professor of zoology at the Department of Ecology and Animal Biology at the University of Vigo. He has developed his research activity in the fields of fauna and soil ecology, and in the treatment of organic waste, having been the founder and principal investigator of the Environmental Biotechnology Group of the University of Vigo.\r\nHis research activity in the field of Environmental Biotechnology has been focused on the development of novel organic waste treatment systems through composting. The result of this line of work are three invention patents and various scientific and technical publications in prestigious international journals.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorTwo:{id:"60498",title:"Prof.",name:"Josefina",middleName:null,surname:"Garrido",slug:"josefina-garrido",fullName:"Josefina Garrido",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRj1VQAS/Profile_Picture_2022-03-31T10:06:51.jpg",biography:"Josefina Garrido González (Paradela de Abeleda, Ourense 1959), is a doctor in biology from the University of León and a Professor of Zoology at the Department of Ecology and Animal Biology at the University of Vigo. She has focused her research activity on the taxonomy, fauna and ecology of aquatic beetles, in addition to other lines of research such as the conservation of biodiversity in freshwater ecosystems; conservation of protected areas (Red Natura 2000) and assessment of the effectiveness of wetlands as priority areas for the conservation of aquatic invertebrates; studies of water quality in freshwater ecosystems through biological indicators and physicochemical parameters; surveillance and research of vector arthropods and invasive alien species.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorThree:{id:"464288",title:"Dr.",name:"Francisco",middleName:null,surname:"Ramil",slug:"francisco-ramil",fullName:"Francisco Ramil",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003RI7lHQAT/Profile_Picture_2022-03-31T10:15:35.png",biography:"Fran Ramil Blanco (Porto de Espasante, A Coruña, 1960), is a doctor in biology from the University of Santiago de Compostela and a Professor of Zoology at the Department of Ecology and Animal Biology at the University of Vigo. His research activity is linked to the taxonomy, fauna and ecology of marine benthic invertebrates and especially the Cnidarian group. Since 2004, he has been part of the EcoAfrik project, aimed at the study, protection and conservation of biodiversity and benthic habitats in West Africa. He also participated in the study of vulnerable marine ecosystems associated with seamounts in the South Atlantic and is involved in training young African researchers in the field of marine research.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorialBoard:[{id:"220987",title:"Dr.",name:"António",middleName:"Onofre",surname:"Soares",slug:"antonio-soares",fullName:"António Soares",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNtzQAG/Profile_Picture_1644499672340",institutionString:null,institution:{name:"University of the Azores",institutionURL:null,country:{name:"Portugal"}}}]},{id:"41",title:"Water Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/41.jpg",editor:{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang",profilePictureURL:"https://mts.intechopen.com/storage/users/349630/images/system/349630.jpg",biography:"Prof. Dr. Yizi Shang is a pioneering researcher in hydrology and water resources who has devoted his research career to promoting the conservation and protection of water resources for sustainable development. He is presently associate editor of Water International (official journal of the International Water Resources Association). He was also invited to serve as an associate editor for special issues of the Journal of the American Water Resources Association. He has served as an editorial member for international journals such as Hydrology, Journal of Ecology & Natural Resources, and Hydro Science & Marine Engineering, among others. He has chaired or acted as a technical committee member for twenty-five international forums (conferences). Dr. Shang graduated from Tsinghua University, China, in 2010 with a Ph.D. in Engineering. Prior to that, he worked as a research fellow at Harvard University from 2008 to 2009. Dr. Shang serves as a senior research engineer at the China Institute of Water Resources and Hydropower Research (IWHR) and was awarded as a distinguished researcher at National Taiwan University in 2017.",institutionString:"China Institute of Water Resources and Hydropower Research",institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"216491",title:"Dr.",name:"Charalampos",middleName:null,surname:"Skoulikaris",slug:"charalampos-skoulikaris",fullName:"Charalampos Skoulikaris",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRMsbQAG/Profile_Picture_2022-04-21T09:31:55.jpg",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"300124",title:"Prof.",name:"Thomas",middleName:null,surname:"Shahady",slug:"thomas-shahady",fullName:"Thomas Shahady",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002kuIgmQAE/Profile_Picture_2022-03-18T07:32:10.jpg",institutionString:null,institution:{name:"Lynchburg College",institutionURL:null,country:{name:"United States of America"}}}]}]},overviewPageOFChapters:{paginationCount:23,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:10,paginationItems:[{id:"82380",title:"Evolution of Parasitism and Pathogenic Adaptations in Certain Medically Important Fungi",doi:"10.5772/intechopen.105206",signatures:"Gokul Shankar Sabesan, Ranjit Singh AJA, Ranjith Mehenderkar and Basanta Kumar Mohanty",slug:"evolution-of-parasitism-and-pathogenic-adaptations-in-certain-medically-important-fungi",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fungal Infectious Diseases - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11400.jpg",subseries:{id:"4",title:"Fungal Infectious Diseases"}}},{id:"82367",title:"Spatial Variation and Factors Associated with Unsuppressed HIV Viral Load among Women in an HIV Hyperendemic Area of KwaZulu-Natal, South Africa",doi:"10.5772/intechopen.105547",signatures:"Adenike O. Soogun, Ayesha B.M. Kharsany, Temesgen Zewotir and Delia North",slug:"spatial-variation-and-factors-associated-with-unsuppressed-hiv-viral-load-among-women-in-an-hiv-hype",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82193",title:"Enterococcal Infections: Recent Nomenclature and emerging trends",doi:"10.5772/intechopen.104792",signatures:"Kavita Raja",slug:"enterococcal-infections-recent-nomenclature-and-emerging-trends",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82207",title:"Management Strategies in Perinatal HIV",doi:"10.5772/intechopen.105451",signatures:"Kayla Aleshire and Rima Bazzi",slug:"management-strategies-in-perinatal-hiv",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82013",title:"Streamlining Laboratory Tests for HIV Detection",doi:"10.5772/intechopen.105096",signatures:"Ramakrishna Prakash and Mysore Krishnamurthy Yashaswini",slug:"streamlining-laboratory-tests-for-hiv-detection",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"HIV-AIDS - Updates, Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"81972",title:"The Submicroscopic Plasmodium falciparum Malaria in Sub-Saharan Africa; Current Understanding of the Host Immune System and New Perspectives",doi:"10.5772/intechopen.105086",signatures:"Kwame Kumi Asare",slug:"the-submicroscopic-plasmodium-falciparum-malaria-in-sub-saharan-africa-current-understanding-of-the-",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:64,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Fungal Infectious Diseases",value:4,count:1,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:2,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:3,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:4,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"14",type:"subseries",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},onlineFirstChapters:{paginationCount:6,paginationItems:[{id:"82135",title:"Carotenoids in Cassava (Manihot esculenta Crantz)",doi:"10.5772/intechopen.105210",signatures:"Lovina I. Udoh, Josephine U. Agogbua, Eberechi R. Keyagha and Itorobong I. Nkanga",slug:"carotenoids-in-cassava-manihot-esculenta-crantz",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81246",title:"Role of Carotenoids in Cardiovascular Disease",doi:"10.5772/intechopen.102750",signatures:"Arslan Ahmad, Sakhawat Riaz, Muhammad Shahzaib Nadeem, Umber Mubeen and Khadija Maham",slug:"role-of-carotenoids-in-cardiovascular-disease",totalDownloads:34,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81159",title:"Potential of Carotenoids from Fresh Tomatoes and Their Availability in Processed Tomato-Based Products",doi:"10.5772/intechopen.103933",signatures:"Rose Daphnee Ngameni Tchonkouang, Maria Dulce Carlos Antunes and Maria Margarida Cortês Vieira",slug:"potential-of-carotenoids-from-fresh-tomatoes-and-their-availability-in-processed-tomato-based-produc",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"80902",title:"Computational Chemistry Study of Natural Apocarotenoids and Their Synthetic Glycopeptide Conjugates as Therapeutic Drugs",doi:"10.5772/intechopen.103130",signatures:"Norma Flores-Holguín, Juan Frau and Daniel Glossman-Mitnik",slug:"computational-chemistry-study-of-natural-apocarotenoids-and-their-synthetic-glycopeptide-conjugates-",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Norma",surname:"Flores-Holguín"},{name:"Daniel",surname:"Glossman-Mitnik"},{name:"Juan",surname:"Frau"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"14",title:"Cell and Molecular Biology",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression"},{id:"15",title:"Chemical Biology",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors"},{id:"17",title:"Metabolism",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation"},{id:"18",title:"Proteomics",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/9662",hash:"",query:{},params:{id:"9662"},fullPath:"/chapters/9662",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()