Abstract
Endothelial cells play a critical role in maintaining the integrity of vascular structure and function. Endothelial dysfunction is closely associated with the development and progression of cardiovascular diseases (CVDs) like hypertension (HTN) and atherosclerosis. Gut microorganisms significantly contribute to atherosclerosis and related CVDs. Helicobacter pylori (H. pylori) colonizes in human gastric epithelium in a significant portion of general population in the world. Patients with H. pylori infection have significantly increased risk for CVDs including atherosclerosis, HTN, coronary heart disease, and cerebrovascular disease especially in younger patients (< 65 years old). H. pylori infection significantly impairs vascular endothelial function through multiple mechanisms including increased reactive oxygen species production and oxidative stress, inflammation, decreased nitric oxide formation, modification of the expression of cytokines and microRNAs, abnormalities of lipid and glucose metabolisms, and exosomes-mediated pathways. Endothelial dysfunction associated with H. pylori infection is reversible in both animal model and human subjects. Accumulating data suggests that H. pylori infection is an important risk factor for endothelial dysfunction and CVDs especially in young patients. Screening young male population for H. pylori infection and treating accordingly could be an effective approach for early prevention of CVDs especially premature atherosclerosis associated with H. pylori infection.
Keywords
- Helicobacter pylori
- atherosclerosis
- endothelial dysfunction
- cardiovascular disease
- exosomes
1. Introduction
Atherosclerosis is among the principal contributors to cardiovascular diseases (CVDs) especially coronary artery diseases (CAD) and stroke [1]. Despite in-depth understanding of the traditional cardiovascular risk factors including diabetes mellitus (DM), hypertension (HTN), hyperlipidemia, smoking, and obesity, and effective control of these known risk factors, CVDs remain the leading cause of mortality and morbidity in developed countries including the US [2, 3]. It is worrisome that the decline of all cardiovascular mortality rate has been slowing down since 2011 [4]. It is very problematic that patients presenting with ST elevation myocardial infarction over the past 20 years are getting younger [5], and the total number of death from CAD and stroke is projected to increase by about 18% by 2030 [6]. Clearly, there are other risk factors that have not been defined, and yet contribute significantly to the development and progression of atherosclerosis and related CAD and stroke.
Gut microorganisms significantly contribute to the development of atherosclerosis and related CVDs [7, 8, 9]. The microaerophilic Gram-negative bacterium
Growing evidences indicate that
2. Brief overview on H. pylori infection and cardiovascular diseases
The role of
A recent study, using a large database with a total of 208,196 patients diagnosed with peptic ulcer diseases, compared the cardiovascular outcome for subjects with and without
3. Helicobacter pylori infection and carotid atherosclerosis
The relationship between
Recently, a large patient database of 17,613 adult patients with carotid ultrasound examination and a 13C-urea breath
The data showed that, after adjusting for age, sex, body mass index, lipid profile, HTN, DM, and smoking,
4. H. pylori infection and endothelial dysfunction
4.1 H. pylori infection and endothelial dysfunction in patients
Endothelial cells play a critical role in maintaining the integrity of vascular structure and function. Endothelial dysfunction is an important contributing factor to the pathogenesis of CVDs including HTN and atherosclerosis [4]. Early studies with small patient samples suggested that there was no clear association between chronic infections, including infection with Chlamydia pneumoniae, cytomegalovirus, Epstein–Barr virus, and
However, accumulating data clearly supports the concept that
One of the important questions is whether endothelial dysfunction associated with
In a recent study, the investigators carefully selected 18 young patients (both male and female) with

Figure 1.
4.2 H. pylori infection and endothelial dysfunction in animal models
In the same recent study, the investigators used specific-pathogen-free male C57BL/6 mice to establish a mouse
Thoracic aorta was collected to evaluate endothelium-dependent relaxation to acetylcholine (Ach) and endothelium-independent relaxation to nitroglycerin (NTG) at week 1, 8, 12, and 24 after
Efforts were made to examine if eradication of
4.3 Potential mechanisms for the effect of H. pylori infection on endothelial function
It is important to know how
5. Role of exosomes in mediating the effect of H. pylori infection on endothelial function
To determine how

Figure 2.
Exosomes from human gastric epithelial cells GES-1 cultured with CagA+
Further studies [55], using the serum exosomes from patients with CagA+
Studies were also performed to determine if blocking exosomes release with GW4869

Figure 3.
Inhibition of exosome secretion by GW4869 significantly improved endothelium -dependent vascular relaxation in mice with CagA+
6. Effect of H. pylori infection on other cardiovascular risk factors
It is not surprising that
7. Significance and clinical implications
It is very concerning that cardiovascular mortality has been increasing since 2010 especially for males for unknown reasons [6]. It is also reported that the patients with ST elevation myocardial infarction over the past 20 years are getting younger [5]. The reasons for this reverse trend in cardiovascular mortality and mobility have yet to be defined.
There are substantial sex differences in many CVDs including (but not limited to) myocardial infarctions, heart failure, hypertension, and cardiac hypertrophy [88]. It is well known that premenopausal women are relatively protected from CVDs when compared to men. Typically, women are almost 10 years older than men when they have their first myocardial infarction [89]. It was believed that the decreased cardiovascular morbidity and mortality in young females was due to possible cardio-protective effects of estrogen [90]. However, several large clinical studies, including the HERS trials and the Women’s Health Initiative study [91, 92] showed that hormone replacement therapies (HRT) had no cardiovascular benefit in post-menopausal women. In contrast, there might have been an increased risk of CAD during the first year of HRT, and there was an increased risk of nonfatal ventricular arrhythmias among the women on HRT [91]. Thus, the mechanism(s) for decreased CVD risk in premenopausal women is still unclear. The prevalence of
Currently available data strongly suggest that
8. Conclusions

Figure 4.
Schematic illustration of the mechanism on endothelial dysfunction and atherosclerosis associated with
References
- 1.
Bhatt DL, Steg PG, Ohman EM. International prevalence, recognition, and treatment of cardiovascular risk factors in outpatients with atherothrombosis. Jama. 2006;295(2):180-9. DOI:10.1001/jama.295.2.180. - 2.
Jokinen E. Obesity and cardiovascular disease. Minerva pediatrica. 2015;67(1):25-32. DOI: 10.1161/CIRCRESAHA.115.306883 - 3.
Benjamin EJ, Blaha MJ, Chiuve SE. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation. 2017;135(10):e146-e603. DOI:10.1161/cir.0000000000000485. - 4.
Gimbrone MA, Jr., García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circulation research. 2016;118(4):620-36. DOI:10.1161/circresaha.115.306301. - 5.
Mentias A, Hill E, Barakat AF. An alarming trend: Change in the risk profile of patients with ST elevation myocardial infarction over the last two decades. Int J Cardiol. 2017;248:69-72. DOI:10.1016/j.ijcard.2017.05.011. - 6.
Pearson-Stuttard J, Guzman-Castillo M, Penalvo JL. Modeling Future Cardiovascular Disease Mortality in the United States: National Trends and Racial and Ethnic Disparities. Circulation. 2016;133(10):967-78. DOI:10.1161/CIRCULATIONAHA.115.019904. - 7.
Chistiakov DA, Bobryshev YV, Kozarov E, Sobenin IA, Orekhov AN. Role of gut microbiota in the modulation of atherosclerosis-associated immune response. Frontiers in microbiology. 2015;6:671. DOI:10.3389/fmicb.2015.00671. - 8.
Catry E, Bindels LB, Tailleux A. Targeting the gut microbiota with inulin-type fructans: preclinical demonstration of a novel approach in the management of endothelial dysfunction. Gut. 2018;67(2):271-83. DOI:10.1136/gutjnl-2016-313316. - 9.
Brown JM, Hazen SL. Microbial modulation of cardiovascular disease. Nature reviews Microbiology. 2018;16(3):171-81. DOI:10.1038/nrmicro.2017.149. - 10.
Mentis A, Lehours P, Mégraud F. Epidemiology and Diagnosis of Helicobacter pylori infection. Helicobacter. 2015;20 Suppl 1:1-7. DOI:10.1111/hel.12250. - 11.
Eusebi LH, Zagari RM, Bazzoli F. Epidemiology of Helicobacter pylori infection. Helicobacter. 2014;19 Suppl 1:1-5. DOI:10.1111/hel.12165. - 12.
Chew CA, Lye TF, Ang D, Ang TL. The diagnosis and management of H. pylori infection in Singapore. Singapore medical journal. 2017;58(5):234-40. DOI:10.11622/smedj.2017037. - 13.
Yamaoka Y, Graham DY. Helicobacter pylori virulence and cancer pathogenesis. Future oncology (London, England). 2014;10(8):1487-500. DOI:10.2217/fon.14.29. - 14.
Xu Z, Li J, Wang H, Xu G. Helicobacter pylori infection and atherosclerosis: is there a causal relationship? Eur J Clin Microbiol Infect Dis. 2017;36(12):2293-301. DOI: 10.1007/s10096-017-3054-0 - 15.
Lee M, Baek H, Park JS. Current Helicobacter pylori infection is significantly associated with subclinical coronary atherosclerosis in healthy subjects: A cross-sectional study. PloS one. 2018;13(3):e0193646. DOI:10.1371/journal.pone.0193646. - 16.
Kodama M, Kitadai Y, Ito M. Immune response to CagA protein is associated with improved platelet count after Helicobacter pylori eradication in patients with idiopathic thrombocytopenic purpura. Helicobacter. 2007;12(1):36-42. DOI: 10.1111/j.1523-5378.2007.00477.x - 17.
Sawayama Y, Ariyama I, Hamada M. Association between chronic Helicobacter pylori infection and acute ischemic stroke: Fukuoka Harasanshin Atherosclerosis Trial (FHAT). Atherosclerosis. 2005;178(2):303-9. DOI:10.1016/j.atherosclerosis.2004.08.025. - 18.
Kronsteiner B, Bassaganya-Riera J, Philipson C. Systems-wide analyses of mucosal immune responses to Helicobacter pylori at the interface between pathogenicity and symbiosis. (1949-0984 (Electronic)). DOI: 10.1080/19490976.2015.1116673 - 19.
Izzotti A, Durando P, Ansaldi F, Gianiorio F, Pulliero A. Interaction between Helicobacter pylori, diet, and genetic polymorphisms as related to non-cancer diseases. Mutat Res. 2009;667(1-2):142-57. DOI: 10.1016/j.mrfmmm.2009.02.002 - 20.
Rocha M, Avenaud P, Menard A. Association of Helicobacter species with hepatitis C cirrhosis with or without hepatocellular carcinoma. Gut. 2005;54(3):396-401. DOI: 10.1136/gut.2004.042168 - 21.
Franceschi F, Gasbarrini A, Polyzos SA, Kountouras J. Extragastric Diseases and Helicobacter pylori. Helicobacter. 2015;20 Suppl 1:40-6. DOI: 10.1111/hel.12256 - 22.
Sonnenberg A, Genta RM. Helicobacter pylori is a risk factor for colonic neoplasms. The American journal of gastroenterology. 2013;108(2):208-15. DOI: 10.1038/ajg.2012.407 - 23.
Wang B, Yu M, Zhang R, Chen S, Xi Y, Duan G. A meta-analysis of the association between Helicobacter pylori infection and risk of atherosclerotic cardiovascular disease. Helicobacter. 2020;25(6):e12761. DOI:10.1111/hel.12761. - 24.
Sun J, Rangan P, Bhat SS, Liu L. A Meta-Analysis of the Association between Helicobacter pylori Infection and Risk of Coronary Heart Disease from Published Prospective Studies. Helicobacter. 2016;21(1):11-23. DOI:10.1111/hel.12234. - 25.
Xiong X, Chen J, He M, Wu T, Yang H. Helicobacter pylori infection and the prevalence of hypertension in Chinese adults: The Dongfeng-Tongji cohort. Journal of clinical hypertension (Greenwich, Conn). 2020;22(8):1389-95. DOI:10.1111/jch.13928. - 26.
Wan Z, Hu L, Hu M, Lei X, Huang Y, Lv Y. Helicobacter pylori infection and prevalence of high blood pressure among Chinese adults. (1476-5527 (Electronic)). DOI: 10.1038/s41371-017-0028-8 - 27.
Chen BF, Xu X, Deng Y. Relationship between Helicobacter pylori infection and serum interleukin-18 in patients with carotid atherosclerosis. Helicobacter. 2013;18(2):124-8. DOI:10.1111/hel.12014. - 28.
Kowalski M. Helicobacter pylori ( H. pylori ) infection in coronary artery disease: influence ofH. pylori eradication on coronary artery lumen after percutaneous transluminal coronary angioplasty. The detection ofH. pylori specific DNA in human coronary atherosclerotic plaque. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society. 2001;52(1 Suppl 1):3-31. - 29.
Yang YF, Li Y, Liu JH. Relation of Helicobacter pylori infection to peripheral arterial stiffness and 10-year cardiovascular risk in subjects with diabetes mellitus. Diabetes & vascular disease research. 2020;17(5):1479164120953626. DOI:10.1177/1479164120953626. - 30.
Ohnishi M, Fukui M, Ishikawa T. Helicobacter pylori infection and arterial stiffness in patients with type 2 diabetes mellitus. Metabolism: clinical and experimental. 2008;57(12):1760-4. DOI:10.1016/j.metabol.2008.08.001. - 31.
Longo-Mbenza B, Nsenga JN, Mokondjimobe E. Helicobacter pylori infection is identified as a cardiovascular risk factor in Central Africans. Vascular health and risk management. 2012;6:455-61. DOI:10.2147/vhrm.s28680. - 32.
Choi JM, Lim SH, Han YM. Association between Helicobacter pylori infection and arterial stiffness: Results from a large cross-sectional study. PloS one. 2019;14(8):e0221643. DOI:10.1371/journal.pone.0221643. - 33.
Wang JW, Tseng KL, Hsu CN. Association between Helicobacter pylori eradication and the risk of coronary heart diseases. PloS one. 2018;13(1):e0190219. DOI:10.1371/journal.pone.0190219. - 34.
Ameriso SF, Fridman Ea Fau - Leiguarda RC, Leiguarda Rc Fau - Sevlever GE, Sevlever GE. Detection of Helicobacter pylori in human carotid atherosclerotic plaques. (1524-4628 (Electronic)). DOI: 10.1161/01.str.32.2.385 - 35.
Mayr M, Kiechl S, Tsimikas S. Oxidized low-density lipoprotein autoantibodies, chronic infections, and carotid atherosclerosis in a population-based study. Journal of the American College of Cardiology. 2006;47(12):2436-43. DOI:10.1016/j.jacc.2006.03.024. - 36.
Hagiwara N, Toyoda K, Inoue T. Lack of association between infectious burden and carotid atherosclerosis in Japanese patients. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association. 2007;16(4):145-52. DOI:10.1016/j.jstrokecerebrovasdis.2007.02.001. - 37.
Shmuely H, Passaro DJ, Vaturi M. Association of CagA+ Helicobacter pylori infection with aortic atheroma. Atherosclerosis. 2005;179(1):127-32. DOI: 10.1016/j.atherosclerosis.2004.09.010 - 38.
Schottker B, Adamu MA, Weck MN, Muller H, Brenner H. Helicobacter pylori infection, chronic atrophic gastritis and major cardiovascular events: a population-based cohort study. Atherosclerosis. 2012;220(2):569-74. DOI:10.1016/j.atherosclerosis.2011.11.029. - 39.
Yu XJ, Yang X, Feng L, Wang LL, Dong QJ. Association between Helicobacter pylori infection and angiographically demonstrated coronary artery disease: A meta-analysis. Exp Ther Med. 2017;13(2):787-93. DOI:10.3892/etm.2017.4028. - 40.
Tabata N, Sueta D, Akasaka T. Helicobacter pylori Seropositivity in Patients with Interleukin-1 Polymorphisms Is Significantly Associated with ST-Segment Elevation Myocardial Infarction. PloS one. 2016;11(11):e0166240. DOI:10.1371/journal.pone.0166240. - 41.
Danesh J, Peto R. Risk factors for coronary heart disease and infection with Helicobacter pylori: meta-analysis of 18 studies. BMJ (Clinical research ed). 1998;316(7138):1130-2. DOI: 10.1136/bmj.316.7138.1130 - 42.
Gabrielli M, Santoliquido A, Cremonini F. CagA-positive cytotoxic H. pylori strains as a link between plaque instability and atherosclerotic stroke. European heart journal. 2004;25(1):64-8. DOI: 10.1016/j.ehj.2003.10.004 - 43.
Markus HS, Risley P, Mendall MA, Steinmetz H, Sitzer M. Helicobacter pylori infection, the cytotoxin gene A strain, and carotid artery intima-media thickness. Journal of cardiovascular risk. 2002;9(1):1-6. DOI: 10.1177/174182670200900101 - 44.
Rozankovic PB, Huzjan AL, Cupic H, Bencic IJ, Basic S, Demarin V. Influence of CagA-positive Helicobacter pylori strains on atherosclerotic carotid disease. Journal of neurology. 2011;258(5):753-61. DOI:10.1007/s00415-010-5824-9. - 45.
Shan J, Bai X, Han L, Yuan Y, Yang J, Sun X. Association between atherosclerosis and gastric biomarkers concerning Helicobacter pylori infection in a Chinese healthy population. Exp Gerontol. 2018;112:97-102. DOI:10.1016/j.exger.2018.09.009. - 46.
Nagai Y, Matsumoto M, Metter EJ. The carotid artery as a noninvasive window for cardiovascular risk in apparently healthy individuals. Ultrasound in medicine & biology. 2002;28(10):1231-8. DOI: 10.1016/s0301-5629(02)00578-1 - 47.
Zhang L, Chen Z, Xia X. Helicobacter pylori infection selectively increases the risk for carotid atherosclerosis in young males. Atherosclerosis. 2019;291:71-7. DOI:10.1016/j.atherosclerosis.2019.10.005. - 48.
Khairy P, Rinfret S, Tardif JC. Absence of association between infectious agents and endothelial function in healthy young men. Circulation. 2003;107(15):1966-71. DOI:10.1161/01.Cir.0000064895.89033.97. - 49.
Coskun S, Kasirga E, Yilmaz O. Is Helicobacter pylori related to endothelial dysfunction during childhood? Pediatrics international : official journal of the Japan Pediatric Society. 2008;50(2):150-3. DOI:10.1111/j.1442-200X.2008.02542.x. - 50.
Oshima T, Ozono R, Yano Y. Association of Helicobacter pylori infection with systemic inflammation and endothelial dysfunction in healthy male subjects. Journal of the American College of Cardiology. 2005;45(8):1219-22. DOI:10.1016/j.jacc.2005.01.019. - 51.
Judaki A, Norozi S, Ahmadi MRH, Ghavam SM, Asadollahi K, Rahmani A. Flow mediated dilation and carotid intima media thickness in patients with chronic gastritis associated with Helicobacter pylori infection. Arquivos de gastroenterologia. 2017;54(4):300-4. DOI:10.1590/s0004-2803.201700000-39. - 52.
Rasmi Y, Rouhrazi H, Khayati-Shal E, Shirpoor A, Saboory E. Association of endothelial dysfunction and cytotoxin-associated gene A-positive Helicobacter pylori in patients with cardiac syndrome X. Biomedical journal. 2016;39(5):339-45. DOI:10.1016/j.bj.2016.01.010. - 53.
Blum A, Tamir S, Mualem K, Ben-Shushan RS, Keinan-Boker L, Paritsky M. Endothelial dysfunction is reversible in Helicobacter pylori-positive subjects. The American journal of medicine. 2011;124(12):1171-4. DOI:10.1016/j.amjmed.2011.08.015. - 54.
Malfertheiner P, Megraud F, O'Morain CA. Management of Helicobacter pylori infection--the Maastricht IV/ Florence Consensus Report. Gut. 2012;61(5):646-64. DOI:10.1136/gutjnl-2012-302084. - 55.
Xia X, Zhang L, Chi J. Helicobacter pylori Infection Impairs Endothelial Function Through an Exosome-Mediated Mechanism. Journal of the American Heart Association. 2020;9(6):e014120. DOI:10.1161/jaha.119.014120. - 56.
Sahara S, Sugimoto M, Vilaichone RK. Role of Helicobacter pylori cagA EPIYA motif and vacA genotypes for the development of gastrointestinal diseases in Southeast Asian countries: a meta-analysis. BMC Infect Dis. 2012;12:223. DOI: 10.1186/1471-2334-12-223 - 57.
Yamaoka Y, Orito E, Mizokami M. Helicobacter pylori in North and South America before Columbus. FEBS Lett. 2002;517(1-3):180-4. DOI: 10.1016/s0014-5793(02)02617-0 - 58.
Rasmi Y, Raeisi S Fau - Seyyed Mohammadzad MH, Seyyed Mohammadzad MH. Association of inflammation and cytotoxin-associated gene a positive strains of helicobacter pylori in cardiac syndrome x. (1523-5378 (Electronic)). DOI: 10.1111/j.1523-5378.2011.00923.x - 59.
Suzuki H, Franceschi F Fau - Nishizawa T, Nishizawa T Fau - Gasbarrini A, Gasbarrini A. Extragastric manifestations of Helicobacter pylori infection. (1523-5378 (Electronic)). DOI: 10.1111/j.1523-5378.2011.00883.x - 60.
Suzuki N, Murata-Kamiya N, Yanagiya K. Mutual reinforcement of inflammation and carcinogenesis by the Helicobacter pylori CagA oncoprotein. (2045-2322 (Electronic)). DOI: 10.1038/srep10024 - 61.
Naumov I, Fenjvesi A. [Correlation between rapid urease test and pathohistological gastrobiopsy finding with positive immunological test in detecting Helicobacter pylori infection]. Med Pregl. 2011;64(7-8):413-7. DOI: 10.2298/mpns1108413n - 62.
Tobin NP, Henehan GT, Murphy RP. Helicobacter pylori-induced inhibition of vascular endothelial cell functions: a role for VacA-dependent nitric oxide reduction. American journal of physiology Heart and circulatory physiology. 2008;295(4):H1403-13. DOI:10.1152/ajpheart.00240.2008. - 63.
Chi J, Xia X, Zhang L. Helicobacter Pylori Induces GATA3-Dependent Chitinase 3 Like 1 (CHI3L1) Upregulation and Contributes to Vascular Endothelial Injuries. Medical science monitor : international medical journal of experimental and clinical research. 2019;25:4837-48. DOI:10.12659/msm.916311. - 64.
de Jesus Souza M, de Moraes JA, Da Silva VN. Helicobacter pylori urease induces pro-inflammatory effects and differentiation of human endothelial cells: Cellular and molecular mechanism. Helicobacter. 2019;24(3):e12573. DOI:10.1111/hel.12573. - 65.
Tafreshi M, Guan J, Gorrell RJ. Helicobacter pylori Type IV Secretion System and Its Adhesin Subunit, CagL, Mediate Potent Inflammatory Responses in Primary Human Endothelial Cells. Frontiers in cellular and infection microbiology. 2018;8:22. DOI:10.3389/fcimb.2018.00022. - 66.
Kalani M, Hodjati H, GhamarTalepoor A, Samsami Dehaghani A, Doroudchi M. CagA-positive and CagA-negative Helicobacter pylori strains differentially affect the expression of micro RNAs 21, 92a, 155 and 663 in human umbilical vein endothelial cells. Cellular and molecular biology (Noisy-le-Grand, France). 2017;63(1):34-40. DOI:10.14715/cmb/2017.63.1.7. - 67.
Buzas GM. Metabolic consequences of Helicobacter pylori infection and eradication. World journal of gastroenterology. 2014;20(18):5226-34. DOI: 10.3748/wjg.v20.i18.5226 - 68.
Iriz E, Cirak MY, Engin ED. Detection of Helicobacter pylori DNA in aortic and left internal mammary artery biopsies. Tex Heart Inst J. 2008;35(2):130-5. - 69.
Kilic A, Onguru O Fau - Tugcu H, Tugcu H Fau - Kilic S. Detection of cytomegalovirus and Helicobacter pylori DNA in arterial walls with grade III atherosclerosis by PCR. Pol J Microbiol. 2006;55(4):333-7. - 70.
Kaplan M, Yavuz Ss Fau - Cinar B, Cinar B Fau - Koksal V. Detection of Chlamydia pneumoniae and Helicobacter pylori in atherosclerotic plaques of carotid artery by polymerase chain reaction. (1201-9712 (Print)). DOI: 10.1016/j.ijid.2004.10.008 - 71.
Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569-79. DOI: 10.1038/nri855 - 72.
Borges FT, Reis LA, Schor N. Extracellular vesicles: structure, function, and potential clinical uses in renal diseases. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas. 2013;46(10):824-30. DOI: 10.1590/1414-431X20132964 - 73.
Pegtel DM, Gould SJ. Exosomes. (1545-4509 (Electronic)). Annu Rev Biochem. 2019 Jun 20;88:487-514. DOI: 10.1146/annurev-biochem-013118-111902 - 74.
Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-9. DOI: 10.1038/ncb1596 - 75.
Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nature communications. 2011;2:282. DOI: 10.1038/ncomms1285 - 76.
Bellingham SA, Guo Bb Fau - Coleman BM, Coleman Bm Fau - Hill AF, Hill AF. Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? (1664-042X (Electronic)). DOI: 10.3389/fphys.2012.00124 - 77.
Campbell TD, Khan M, Huang MB, Bond VC, Powell MD. HIV-1 Nef protein is secreted into vesicles that can fuse with target cells and virions. Ethn Dis. 2008;18(2 Suppl 2):S2-14-9. - 78.
Jaworski E, Narayanan A, Van Duyne R. Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem. 2014;289(32):22284-305. DOI: 10.1074/jbc.M114.549659 - 79.
Li N, Liu SF, Dong K. Exosome-Transmitted miR-25 Induced by H. pylori Promotes Vascular Endothelial Cell Injury by Targeting KLF2. (2235-2988 (Electronic)). DOI: 10.3389/fcimb.2019.00366 - 80.
Shimoda A, Ueda K, Nishiumi S. Exosomes as nanocarriers for systemic delivery of the Helicobacter pylori virulence factor CagA. Scientific reports. 2016;6:18346. DOI: 10.1038/srep18346 - 81.
Russo F, Jirillo E, Clemente C. Circulating cytokines and gastrin levels in asymptomatic subjects infected by Helicobacter pylori ( H. pylori ). Immunopharmacology and immunotoxicology. 2001;23(1):13-24. DOI:10.1081/iph-100102563. - 82.
Consolazio A, Borgia MC, Ferro D. Increased thrombin generation and circulating levels of tumour necrosis factor-alpha in patients with chronic Helicobacter pylori-positive gastritis. Alimentary pharmacology & therapeutics. 2004;20(3):289-94. DOI:10.1111/j.1365-2036.2004.02074.x. - 83.
Maciorkowska E, Kaczmarski M, Panasiuk A, Kondej-Muszynska K, Kemonai A. Soluble adhesion molecules ICAM-1, VCAM-1, P-selectin in children with Helicobacter pylori infection. World journal of gastroenterology. 2005;11(43):6745-50. DOI: 10.3748/wjg.v11.i43.6745 - 84.
Sipponen P, Laxen F, Huotari K, Harkonen M. Prevalence of low vitamin B12 and high homocysteine in serum in an elderly male population: association with atrophic gastritis and Helicobacter pylori infection. Scandinavian journal of gastroenterology. 2003;38(12):1209-16. DOI: 10.1080/00365520310007224 - 85.
Hoffmeister A, Rothenbacher D, Bode G. Current infection with Helicobacter pylori, but not seropositivity to Chlamydia pneumoniae or cytomegalovirus, is associated with an atherogenic, modified lipid profile. Arteriosclerosis, thrombosis, and vascular biology. 2001;21(3):427-32. DOI: 10.1161/01.atv.21.3.427 - 86.
Laurila A, Bloigu A, Nayha S, Hassi J, Leinonen M, Saikku P. Association of Helicobacter pylori infection with elevated serum lipids. Atherosclerosis. 1999;142(1):207-10. DOI: 10.1016/s0021-9150(98)00194-4 - 87.
Yoshikawa H, Aida K, Mori A, Muto S, Fukuda T. Involvement of Helicobacter pylori infection and impaired glucose metabolism in the increase of brachial-ankle pulse wave velocity. Helicobacter. 2007;12(5):559-66. DOI:10.1111/j.1523-5378.2007.00523.x. - 88.
Czubryt MP, Espira L, Lamoureux L, Abrenica B. The role of sex in cardiac function and disease. Can J Physiol Pharmacol. 2006;84(1):93-109. DOI:10.1139/y05-151. - 89.
Radovanovic D, Nallamothu BK, Seifert B. Temporal trends in treatment of ST-elevation myocardial infarction among men and women in Switzerland between 1997 and 2011. Eur Heart J Acute Cardiovasc Care. 2012;1(3):183-91. DOI:10.1177/2048872612454021. - 90.
Bell JR, Bernasochi GB, Varma U, Raaijmakers AJ, Delbridge LM. Sex and sex hormones in cardiac stress--mechanistic insights. J Steroid Biochem Mol Biol. 2013;137:124-35. DOI:10.1016/j.jsbmb.2013.05.015. - 91.
Grady D, Herrington D, Bittner V. Cardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/progestin Replacement Study follow-up (HERS II). JAMA. 2002;288(1):49-57. DOI: 10.1001/jama.288.1.49 - 92.
Rossouw JE, Anderson GL, Prentice RL. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA. 2002;288(3):321-33. DOI: 10.1001/jama.288.3.321