Abstract
This book chapter will comment on fluorescent reporter proteins and nanocrystals’ applicability as fluorescent markers. Fluorescent reporter proteins in the Drosophila model system offer a degree of specificity that allows monitoring cellular and biochemical phenomena in vivo, such as autophagy, mitophagy, and changes in the redox state of cells. Titanium dioxide (TiO2) nanocrystals (NCs) have several biological applications and emit in the ultraviolet, with doping of europium ions can be visualized in the red luminescence. Therefore, it is possible to monitor nanocrystals in biological systems using different emission channels. CdSe/CdS magic-sized quantum dots (MSQDs) show high luminescence stability in biological systems and can be bioconjugated with biological molecules. Therefore, this chapter will show exciting results of the group using fluorescent proteins and nanocrystals in biological systems.
Keywords
- nanocrystals
- fluorescent proteins
- fluorescent markers
- magic-sized quantum dots
- titanium dioxide
1. Introduction
Several types of tools have been developed in order to monitor biological processes through fluorescence images. Some of these tools are the use of fluorescent proteins and nanomaterials. This book chapter will comment in particular on green fluorescent protein and luminescent nanocrystals.
The green fluorescent protein (GFP) of Jellyfish
One of the best and most used
The development of different nanoscale materials has increased for different applications. Titanium dioxide (TiO2) nanocrystals (NCs) have been used in several types of cosmetics, food, and the textile industry [9, 10]. This is because this NC has a wide variety of properties that improve materials, such as its bioluminescence and chemical stability [11]. Bioluminescent techniques are widely used in biomedicine for studies of drug screening, molecular markers, and monitoring of molecular reactions, among other applications [12]. Bioluminescent NCs, such as TiO2, present an excellent opportunity to obtain ultra-sensitive and enhanced analyzes and images, in addition to allowing the study of bioluminescence [13, 14, 15]. The use of bioluminescent imaging in vivo allows the visualization of biological processes in intact living organisms, providing abundant quantitative space–time information beyond the reach of conventional in vitro tests and fixed material [15].
Doping is a technique that allows the incorporation of substitutional ions into the crystalline structure of materials, generating exciting properties [16]. TiO2 nanocrystals (NCs) with europium ions incorporated in their structure can be visualized in red fluorescence [17]. This acquired property makes it possible to track luminescence, thus being able to be coupled to biomolecules and drugs for studies of effects and tracking them, for example, which can assist in the studies of quantitative monitoring of molecular reactions and cellular behaviors, allowing a better understanding of the functions dynamic and complicated biological phenomena [18, 19].
Quantum dots (QDs) of cadmium chalcogenides (CdSe, CdS, and CdTe) absorb and emit in the visible electromagnetic spectrum, and for this reason, they are used in several applications of biological and biomedical marking, such as fluorescent probes, biosensors, and others. In the area of biological labeling, the great applicability of QDs occurs because they present several advantages over traditional organic fluorophores, such as a long fluorescence life span, ~ 100 times greater, which allows to distinguish it from the background b signal, seen that autofluorescence has a much shorter fluorescence life; absorption and emission spectra tunable; high photo resistance and chemo-degradation; and high fluorescence intensity [20, 21, 22]. However, this comparison of the fluorescence intensity of the QDs was performed in non-aqueous solvents, with unconjugated QDs, and in non-biological media, since the fluorescence intensity may be lower when the QDs are conjugated and used in biological labeling experiments [23].
Ultra-small PQs (USPQs) are nanocrystals with extremely small sizes, presenting strong quantum confinement effects, in which most of their atoms are located on the surface [24]. A large number of atoms on the surface and the presence of several pendant bonds lead to changes in the properties of nanocrystals, which can be observed in the fluorescence spectra [25].
The quantum dots of magic-sized (MSQDs) are nanocrystals with extremely small sizes (<2 nm) and that present physical property utterly different from traditional QDs [26]. Although MSQDs have similar properties to USQDs, including composition and size, some fundamental properties place these QDs in different classes. The characteristic properties of MSQDs are thermodynamically stable structures, wide luminescence range, high size stability over time, relatively narrow absorption spectra and/or heterogeneous (discontinuous) growth [27, 28, 29, 30, 31]. The structures are thermodynamically stable; they are formed from the arrangement of a certain number of atoms, which gives it high stability. Nguyen et al. made theoretical predictions of different types of CdSe MSQDs structures aligned with the literature’s experimental results [32]. The term magic size is related to a (magic) number of atoms in the structure that makes QDs extremely stable [32]. The broad luminescence spectrum occurs due to MSQDs having internal atomic defects (absence or extra presence of atoms) [27, 29, 32].
The development of new alternatives for the study of biomolecules in organic systems has grown considerably. The high specificity and sensitivity of scientific methodologies based on fluorescence clarify biological events [33]. Fluorescent probes based on organic dyes have been shown to identify biomolecules [34, 35]. Silva et al. demonstrated that the biocompatibility of CdSe/CdS MSQRd could be tuned in the synthesis, [36] present high luminescence stability in biological systems [37], can be bioconjugated with several biomolecules aiming at the most diverse luminescent probes [38, 39, 40, 41, 42] and in biosensors [43, 44].
This chapter shows recent results that the group has been working with fluorescent reporter proteins and the applicability of nanocrystals as fluorescent markers. Nanocrystals of pure and europium doped TiO2 and CdSe/CdS (MSQDs) will be some of the exciting tools for marking in biological systems.
2. Fluorescent proteins and nanocrystals
This section will show the group results using GFP tagged proteins and nanocrystals’ applicability as fluorescent markers.
2.1 Drosophila lines expressing fluorescent proteins
In 2011, Albrecht et al. established a monitoring system that allows assessing the status of chemically defined redox species (the redox pair GSH/GSSH and H2O2) in subcellular compartments cytosol and mitochondria

Figure 1.
Figure 2 shows three different transgenic lines of

Figure 2.
The expression of fluorescent proteins in
2.2 Nanocrystals as luminescent markers (nanomarkers)
Figure 3 shows exciting results on pure and europium (Eu) doped TiO2 NCs. TiO2 NCs absorb and emit in the ultraviolet, but when incorporating the europium ions in its crystalline structure, by replacing some titanium ions, it shows luminescence in red. The colors emitted by the pure and Eu doped TiO2 NCs (Figure 3a), and the crystalline structure in the anatase phase (Figure 3b) are illustrated. Also, in Figure 3c, the emission spectra of these nanocrystals are observed.

Figure 3.
(a) Photographic image of nanopowders, (b) anatase crystalline structure, (c) luminescence spectra of pure and Eu doped TiO2 NCs.
In order to investigate whether TiO2 and TiO2:Eu nanocrystals could be tracked on adult

Figure 4.
In order to distinguish between intrinsic fluorescence from fat body and TiO2 fluorescence, the pixel intensity was measured and compared among all fat body spheres of control images and TiO2 treated samples. As we can observe in the graphic in Figure 5a there was a drastic increase in fluorescence due to the presence of TiO2. The fat body spheres of the control animals (Figure 4E and G) also showed intrinsic fluorescence when excited with red light; however, when the animals have exposed to TiO2:Eu the intensity of fluorescence was higher (Figure 4F and H). The pixel intensity analysis showed that the presence of TiO2:Eu caused a significant increase in fluorescence (Figure 5b). The observation that the NCs of TiO2 and TiO2:Eu could be detected in the fat body of newly emerged adult animals indicates that the bioaccumulation of nanocrystals during larval development persisted until the beginning of the adult stage. Surprisingly, we observed that animals dissected on the second day of its emergence no longer had fat bodies fluorescent spheres containing nanocrystals. This may indicate that one day following the emergence, the animals were able to excrete the NC. The disappearance of nanocrystals may also be related to the rapid absorption of the fat body during the first days of life. Similar results were described by Jovanovic et al. 2016, which observed that animals that received TiO2 during the larval stage did not have TiO2 as adults [9].

Figure 5.
Indirect quantification of TiO2 and TiO2:Eu fluorescence. (a) Pixel intensity analysis of fat body spheres of TiO2 treated
The optical properties and illustration of CdSe/CdS are shown in Figure 6. The aqueous solution and the illustration of the core/shell structure of CdSe/CdS MSQDs with a surfactant are exemplified to facilitate understanding (Figure 6

Figure 6.
(a) Photographic image of solution, (b) illustration of CdSe/CdS MSQDs, (c) optical absorption/luminescence spectra of CdSe/CdS MSQDs (d, e) incorporation of MSQDs by RAW 264.7. The intracellular location was determined by flow cytometry after incubation of CdSe/CdS MSQDs (200 ng/uL) with RAW 264.7 cell line (1x10^4/mL) at different time points. Cells were washed in saline solution before acquisition to exclude extracellular MSQDs. At least 5000 events were acquired in a FacsCalibur flow cytometer.
Bioimaging assays are biological applications QDs since they can be bioconjugated with proteins, antibodies, and DNA [39, 48, 49]. In general, these tests depend on the biocompatibility of QDs, which is obtained by functionalizing the surface of these nanoparticles [39, 50, 51, 52]. The bioconjugation allows the study and tracking of biomolecules in biological systems such as cell cultures and laboratory animals [53, 54]. The versatility of QDs associated with maltose-binding protein for intracellular delivery of the drug beta-cyclodextrin [55]. Other studies have used the quantum dots for
The tracking and study of biomolecules labeled with QDs in vitro and in vivo is a reality in several areas, allowing us to analyze the location and distribution of bioconjugate in biological systems. Silva et al. demonstrated that the CdSe/CdS MSQDs could be bioconjugated with several biomolecules aiming at the most diverse luminescent probes [38, 39, 40, 41, 42] in biosensors [43, 44]. Dias et al. labeled a phospholipase A2 isolated from

Figure 7.
Fluorescence microscopy images showing the tracking of BaltPLA2 in myoblast culture. (A) Cell control (myoblasts only); (B) myoblasts treated with MSQDs (200 ng/μL) for 18 h; (C) myoblasts treated with MSQDs (200 ng/μL)-BaltPLA2 (100 ng/μL) for 18 h. scale 50 μm.
3. Conclusion
In this chapter, we have shown that fluorescent reporter proteins in the
References
- 1.
Albrecht, S.C.; Barata, A.G.; Großhans, J.; Teleman, A.A.; Dick, T.P. In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab. 2011,14 , 819-829, doi:10.1016/j.cmet.2011.10.010 - 2.
Chudakov, D.M.; Matz, M. V.; Lukyanov, S.; Lukyanov, K.A. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 2010,90 , 1103-1163, doi:10.1152/physrev.00038.2009 - 3.
VanEngelenburg, S.B.; Palmer, A.E. Fluorescent biosensors of protein function. Curr. Opin. Chem. Biol. 2008,12 , 60-65, doi:10.1016/j.cbpa.2008.01.020 - 4.
Ong, C.; Yung, L.Y.L.; Cai, Y.; Bay, B.H.; Baeg, G.H. Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology 2015,9 , 396-403, doi:10.3109/17435390.2014.940405 - 5.
Pandey, U.B.; Nichols, C.D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery.Pharmacol. Rev. 2011,63 , 411-436, doi:10.1124/pr.110.003293 - 6.
Hales, K.G.; Korey, C.A.; Larracuente, A.M.; Roberts, D.M. Genetics on the fly: A primer on the drosophila model system. Genetics 2015,201 , 815-842, doi:10.1534/genetics.115.183392 - 7.
Devorkin, L.; Gorski, S.M. Monitoring autophagy in drosophila using fluorescent reporters in the UAS-GAL4 system. Cold Spring Harb. Protoc. 2014,2014 , 967-972, doi:10.1101/pdb.prot080341 - 8.
Kim, Y.Y.; Um, J.H.; Yoon, J.H.; Kim, H.; Lee, D.Y.; Lee, Y.J.; Jee, H.J.; Kim, Y.M.; Jang, J.S.; Jang, Y.G.; et al. Assessment of mitophagy in mt-Keima Drosophila revealed an essential role of the PINK1-Parkin pathway in mitophagy induction in vivo. FASEB J. 2019,33 , 9742-9751, doi:10.1096/fj.201900073R - 9.
Jovanović, B.; Jovanović, N.; Cvetković, V.J.; Matić, S.; Stanić, S.; Whitley, E.M.; Mitrović, T.L. The effects of a human food additive, titanium dioxide nanoparticles E171, on Drosophila melanogaster - a 20 generation dietary exposure experiment.Sci. Rep. 2018,8 , 1-12, doi:10.1038/s41598-018-36174-w - 10.
Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications. Chem. Rev. 2007,107 , 2891-2959 - 11.
Kamat, P. V. Journal of Physical Chemistry C . 2012, pp. 11849-11851 - 12.
Fleiss, A.; Sarkisyan, K.S. A brief review of bioluminescent systems (2019). Curr. Genet. 2019,65 , 877-882, doi:10.1007/s00294-019-00951-5 - 13.
Duarte, C.A.; Goulart, L.R.; Filice, letícia de S.C.; De Lima, I.L.; Campos-Fernándes, E.; Dantas, N.O.; Silva, A.C.A.; Soares, M.B.P.; Santos, R.R.; CArdoso, C.M.A.; et al. Characterization of Crystalline Phase of TiO 2. Materials (Basel). 2020,13 , 4071 - 14.
Barkalina, N.; Charalambous, C.; Jones, C.; Coward, K. Nanotechnology in reproductive medicine: Emerging applications of nanomaterials. Nanomedicine Nanotechnology, Biol. Med. 2014,10 , e921–e938, doi:10.1016/j.nano.2014.01.001 - 15.
Padmanabhan, P.; Kumar, A.; Kumar, S.; Chaudhary, R.K.; Gulyás, B. Nanoparticles in practice for molecular-imaging applications: An overview. Acta Biomater. 2016,41 , 1-16, doi:10.1016/j.actbio.2016.06.003 - 16.
Bharat, T.C.; Shubham; Mondal, S.; Gupta, H.S.; Singh, P.K.; Das, A.K. Synthesis of doped zinc oxide nanoparticles: A review. In Proceedings of the Materials Today: Proceedings; Elsevier Ltd, 2019; Vol. 11, pp. 767-775 - 17.
Sandoval, S.; Yang, J.; Alfaro, J.G.; Liberman, A.; Makale, M.; Chiang, C.E.; Schuller, I.K.; Kummel, A.C.; Trogler, W.C. Europium-doped TiO 2 hollow nanoshells: Two-photon imaging of cell binding. Chem. Mater. 2012,24 , 4222-4230, doi:10.1021/cm302642g - 18.
Ghaderi, S.; Ramesh, B.; Seifalian, A.M. Fluorescence nanoparticles “quantum dots” as drug delivery system and their toxicity: A review. J. Drug Target. 2011,19 , 475-486, doi:10.3109/1061186X.2010.526227 - 19.
Vollrath, A.; Schubert, S.; Schubert, U.S. Fluorescence imaging of cancer tissue based on metal-free polymeric nanoparticles-a review. J. Mater. Chem. B 2013,1 , 1994-2007, doi:10.1039/c3tb20089b - 20.
Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004,22 , 47-52, doi:10.1038/nbt927 - 21.
Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods. 2008,5 , 763-75 - 22.
Deerinck, T.J. The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging. Toxicol. Pathol. 2008,36 , 112-6, doi:10.1177/0192623307310950 - 23.
Wu, X.; Liu, H.; Liu, J.; Haley, K.N.; Treadway, J.A.; Larson, J.P.; Ge, N.; Peale, F.; Bruchez, M.P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 2002,21 , 41-46 - 24.
Dai, Q.; Li, D.; Chang, J.; Song, Y.; Kan, S.; Chen, H.; Zou, B.; Xu, W.; Xu, S.; Liu, B.; et al. Facile synthesis of magic-sized CdSe and CdTe nanocrystals with tunable existence periods. Nanotechnology 2007,18 , 405603, doi:10.1088/0957-4484/18/40/405603 - 25.
Murray, C.B.; Kagan, C.R.; Bawendi, M.G. Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies. Annu. Rev.Mater 2000,30 , 545 - 26.
Chen, X.; Samia, A.C.S.; Lou, Y.; Burda, C. Investigation of the crystallization process in 2 nm CdSe quantum dots. J. Am. Chem. Soc. 2005,127 , 4372-4375, doi:10.1021/ja0458219 - 27.
Riehle, F.S.; Bienert, R.; Thomann, R.; Urban, G.A. Blue Luminescence and Superstructures from Magic Size Clusters of CdSe. Nano Lett. 2009,9 , 514-518, doi:10.1021/nl080150o - 28.
McBride, J.R.; Dukes, A.D.; Schreuder, M. a; Rosenthal, S.J. On Ultrasmall Nanocrystals. Chem. Phys. Lett. 2010,498 , 1-9, doi:10.1016/j.cplett.2010.08.052 - 29.
Dukes, A.D.; McBride, J.R.; Rosenthal, S.J. Synthesis of Magic-Sized CdSe and CdTe Nanocrystals with Diisooctylphosphinic Acid. Chem. Mater. 2010,22 , 6402-6408, doi:10.1021/cm102370a - 30.
Bowers, M.J.; McBride, J.R.; Rosenthal, S.J. White-light emission from magic-sized cadmium selenide nanocrystals. J Am Chem Soc 2005,127 , 15378-15379 - 31.
Harrell, S.M.; McBride, J.R.; Rosenthal, S.J. Synthesis of ultrasmall and magic-sized CdSe nanocrystals. Chem. Mater. 2013,25 , 1199-1210 - 32.
Nguyen, K.A.; Day, P.N.; Pachter, R. Understanding structural and optical properties of nanoscale CdSe magic-size quantum dots: Insight from computational prediction. J. Phys. Chem. C 2010,114 , 16197-16209, doi:10.1021/jp103763d - 33.
Shashkova, S.; Leake, M.C. Single-molecule fluorescence microscopy review: Shedding new light on old problems. Biosci. Rep. 2017,37 , BSR20170031, doi:10.1042/BSR20170031 - 34.
Martynov, V.I.; Pakhomov, A.A.; Popova, N. V.; Deyev, I.E.; Petrenko, A.G. Synthetic Fluorophores for Visualizing Biomolecules in Living Systems. Acta Naturae 2016,8 , 33-46, doi:10.32607/20758251-2016-8-4-33-46 - 35.
Yan, F.; Fan, K.; Bai, Z.; Zhang, R.; Zu, F.; Xu, J.; Li, X. Fluorescein applications as fluorescent probes for the detection of analytes. TrAC - Trends Anal. Chem. 2017,97 , 15-35, doi:10.1016/j.trac.2017.08.013 - 36.
Almeida Silva, A.; Silva, M.J.; da Luz, F.A.; Silva, D.; de Deus, S.; Dantas, N. Controlling the Cytotoxicity of CdSe Magic-Sized Quantum Dots as a Function of Surface Defect Density. Nano Lett. 14 , 5452-5457, doi:10.1021/nl5028028 - 37.
Silva, A.C.A.; Deus, S.L.V. De; Silva, M.J.B.; Dantas, N.O. Highly stable luminescence of CdSe magic-sized quantum dots in HeLa cells. Sensors Actuators, B Chem. 2014,191 , 108-114, doi:10.1016/j.snb.2013.09.063 - 38.
Silva, A.C.A.; Dantas, N.O.; Silva, M.J.B.; Spanó, A.M.; Goulart, ; Luiz Ricardo Functional Nanocrystals : Towards Biocompatibility , Nontoxicity and. In Advances in Biochemistry & Applications in Medicine ; 2017; pp. 1-27 - 39.
Dias, E.H.V.; Pereira, D.F.C.; de Sousa, B.B.; Matias, M.S.; de Queiroz, M.R.; Santiago, F.M.; Silva, A.C.A.; Dantas, N.O.; Santos-Filho, N.A.; de Oliveira, F. In vitro tracking of phospholipase A 2 from snake venom conjugated with magic-sized quantum dots. Int. J. Biol. Macromol. 2019,122 , 461-468, doi:10.1016/j.ijbiomac.2018.10.185 - 40.
Silva, A.C.A.; Correia, L.I.V.; Silva, M.J.B.; Zóia, M.A.P.; Azevedo, F.V.P.V.; Rodrigues, Jéssica Peixoto Goulart, L.R.; Ávila, Veridiana de Melo Dantas, N.O. Biocompatible Magic Sized Quantum Dots: Luminescent Markers and Probes. In; Correia, L.I.V., Ed.; IntechOpen: Rijeka, 2018; p. Ch. 6 ISBN 978-1-78923-295-0 - 41.
Silva, A.C.A.; Azevedo, F.V.P.V.; Zóia, M.A.P.; Rodrigues, J.P.; Dantas, N.O.; Melo, V.R.Á.; Goulart, L.R. Magic Sized Quantum Dots as a Theranostic Tool for Breast Cancer. In Recent Studies & Advances in Breast Cancer ; Open Access eBooks: Wilmington, 2017; pp. 1-10 ISBN 978-81-935757-2-7 - 42.
Silva, A.C.A.; Neto, E.S.F.; Da Silva, S.W.; Morais, P.C.; Dantas, N.O. Modified phonon confinement model and its application to CdSe/CdS core-shell magic-sized quantum dots synthesized in aqueous solution by a new route. J. Phys. Chem. C 2013, doi:10.1021/jp308500r - 43.
de França, C.C.L.; Meneses, D.; Silva, A.C.A.; Dantas, N.O.; de Abreu, F.C.; Petroni, J.M.; Lucca, B.G. Development of novel paper-based electrochemical device modified with CdSe/CdS magic-sized quantum dots and application for the sensing of dopamine. Electrochim. Acta 2021,367 , 137486, doi:10.1016/j.electacta.2020.137486 - 44.
de Lima França, C.C.; da Silva Terto, E.G.; Dias-Vermelho, M. V.; Silva, A.C.A.; Dantas, N.O.; de Abreu, F.C. The electrochemical behavior of core-shell CdSe/CdS magic-sized quantum dots linked to cyclodextrin for studies of the encapsulation of bioactive compounds. J. Solid State Electrochem. 2016,20 , 2533-2540, doi:10.1007/s10008-016-3221-8 - 45.
Dooley, C.T.; Dore, T.M.; Hanson, G.T.; Jackson, W.C.; Remington, S.J.; Tsien, R.Y. Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J. Biol. Chem. 2004,279 , 22284-22293, doi:10.1074/jbc.M312847200 - 46.
Gutscher, M.; Pauleau, A.L.; Marty, L.; Brach, T.; Wabnitz, G.H.; Samstag, Y.; Meyer, A.J.; Dick, T.P. Real-time imaging of the intracellular glutathione redox potential. Nat. Methods 2008,5 , 553-559, doi:10.1038/nmeth.1212 - 47.
Hanson, G.T.; Aggeler, R.; Oglesbee, D.; Cannon, M.; Capaldi, R.A.; Tsien, R.Y.; Remington, S.J. Investigating Mitochondrial Redox Potential with Redox-sensitive Green Fluorescent Protein Indicators. J. Biol. Chem. 2004,279 , 13044-13053, doi:10.1074/jbc.M312846200 - 48.
Silva, A.C.A.; Correia, L.I.V.; Silva, M.J.B.; Zóia, M.A.P.; Azevedo, F.V.P.V.; Rodrigues, J.P.; Goulart, L.R.; Ávila, Veridiana de Melo Dantas, N.O. Biocompatible Magic Sized Quantum Dots: Luminescent Markers and Probes. In State of the Art in Nano-Bioimaging ; 2017; Vol. 1, pp. 95-104 ISBN 9789537619992 - 49.
Silva, A.C.A.; Azevedo, F.V.P.V.; Zóia, M.A.P.; Rodrigues, J.P.; Dantas, N.O.; Melo, V.R.Á.; Goulart, L.R. Magic Sized Quantum Dots as a Theranostic Tool for Breast Cancer. In Recent Studies & Advances in Breast Cancer ; 2017 ISBN 978-81-935757-2-7 - 50.
Silva, A.C.A.; Freschi, A.P.P.; Rodrigues, C.M.; Matias, B.F.; Maia, L.P.; Goulart, L.R.; Dantas, N.O. Biological analysis and imaging applications of CdSe/CdSxSe1−x/CdS core–shell magic-sized quantum dot. Nanomedicine Nanotechnology, Biol. Med. 2016,12 , 1421-1430, doi:10.1016/j.nano.2016.01.001 - 51.
Vlasceanu, G.; Grumezescu, A.M.; Gheorghe, I.; Chifiriuc, M.C.; Holban, A.M. Quantum dots for bioimaging and therapeutic applications. In Nanostructures for Novel Therapy: Synthesis, Characterization and Applications ; Elsevier Inc., 2017; pp. 497-515 ISBN 9780323461481 - 52.
Li, J.; Wu, D.; Miao, Z.; Zhang, Y. Preparation of Quantum Dot Bioconjugates and their Applications in Bio-Imaging. Curr. Pharm. Biotechnol. 2010,11 , 662-671, doi:10.2174/138920110792246582 - 53.
Gondim, B.L.C.; da Silva Catarino, J.; de Sousa, M.A.D.; de Oliveira Silva, M.; Lemes, M.R.; de Carvalho-Costa, T.M.; de Lima Nascimento, T.R.; Machado, J.R.; Rodrigues, V.; Oliveira, C.J.F.; et al. Nanoparticle-Mediated Drug Delivery: Blood-Brain Barrier as the Main Obstacle to Treating Infectious Diseases in CNS. Curr. Pharm. Des. 2019,25 , 3983-3996, doi:10.2174/1381612825666191014171354 - 54.
Makride, S.C.; Gasbarro, C.; Bello, J.M. Bioconjugation of quantum dot luminescent probes for Western blot analysis. Biotechniques 2005,39 , 501-506, doi:10.2144/000112004 - 55.
Field, L.D.; Walper, S.A.; Susumu, K.; Lasarte-Aragones, G.; Oh, E.; Medintz, I.L.; Delehanty, J.B. A Quantum Dot-Protein Bioconjugate That Provides for Extracellular Control of Intracellular Drug Release. Bioconjug. Chem. 2018,29 , 2455-2467, doi:10.1021/acs.bioconjchem.8b00357 - 56.
Kwon, J.; Jun, S.W.; Choi, S.I.; Mao, X.; Kim, J.; Koh, E.K.; Kim, Y.H.; Kim, S.K.; Hwang, D.Y.; Kim, C.S.; et al. FeSe quantum dots for in vivo multiphoton biomedical imaging. Sci. Adv. 2019,5 , doi:10.1126/sciadv.aay0044