Open access peer-reviewed chapter

Introductory Chapter: Biomechanics, Concepts and Knowledge

By Redha Taiar

Submitted: February 10th 2020Reviewed: March 25th 2020Published: September 9th 2020

DOI: 10.5772/intechopen.92270

Downloaded: 277

1. The concepts and basis of biomechanics

The achievement of the human voluntary movement is seemingly simple, but rather it is considerably complex. As it is a very complex mechanism which allows many nerve structures to make decisional and/or reflexional choices, then this mechanism “defines” and “controls” the movement, through the nerve impulses intended for the musculoskeletal system. In the human body, around 640 muscles are involved with 213 bones rigidifying several segments ranging from a few cm3 to several thousand cm3 through more than 100 joints. The whole system thus allows greater than 100 degrees of freedom. Biomechanics study the complexity of the human body through behavior and performance in daily life with respect to musculoskeletal system with the aim to optimize the system [1, 2]. This discipline seems essential in today’s world and considerably promising for the future. Indeed, the concepts, methods, and analytical techniques that we use to characterize human mechanics represent major economic stakes. The development is necessarily inscribed in a vision of interactions between the physical sciences (metrology, complex mechanical and electronic systems), information sciences and technologies, and life sciences (materials, tissues, organs, and limbs) [3, 4, 5, 6, 7, 8]. The ambition of the research work carried out in biomechanics is to improve the performance of high-level athletes and the comfort and quality of life of patients and to minimize stress on joints in real-field or laboratory situations. Biomechanics is subdivided into kinematic (Figure 1) and kinetic (Figure 2) analyses. Kinematics is concerned with the analysis of motion (e.g., to determine the forces applied to a joint from the inverse dynamics), while kinetics studies the forces that cause or result from it (e.g., the reaction of the ground when walking).

Figure 1.

Kinematic device for 3D motion analysis. The example of a patient with myopathy.

Figure 2.

Kinetic analysis of motion. Correlation between modeled and experimental data.


2. Modelization in biomechanics

Different models can be considered ranging from the human body represented by its center of gravity to the model integrating both motor control and musculoskeletal modeling of the human body. With the current medical techniques (Scanner, MRI, and X-ray) and recent computer modeling, many technical and scientific advances are now possible in biomechanics [9]. The aim is to modelize mathematically (Figure 3) and simulate the mechanical behavior of the human body under the application of various constraints. This model will be correlated with cases of declared pathologies by considering behavioural control as a main objective of prevention (Figure 4). The simulation will make it possible to predict the appearance of pathologies that may slow down the stability or progression of human mechanics in all combined fields [10, 11, 12]. The recommendations will be applicable with the aim to optimize human mechanics.

Figure 3.

Dynamic modeling from kinematic data, example of a vertical jump.

Figure 4.

Dynamical simulation permitting the optimization of the movement.

Mathematical modeling in life sciences or medical sciences is hardly developed. This modeling involves applying physical laws to analyze both human and animal movements and to quantify and analyze the discriminating parameters of movement. Given its very complex approach, “skeletal” modeling consists of representing the body by a certain number of segments (often considered indeformable to simplify calculations). The interest of this modelling lies in the possibility of combining and coordinating research results [9] with an efficient way in innovative projects oriented towards CAD—simulation—rapid prototyping (Figure 5). Applications will be in medicine (e.g., development of new orthotics) and in sports (e.g., proposing a methodology for optimizing sports clothing).

Figure 5.

Anatomy (image formation), CAD, mesh, and finite element analysis of the knee joint. Procedure and quantification of mechanical stress at the joint level.

© 2020 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite and reference

Link to this chapter Copy to clipboard

Cite this chapter Copy to clipboard

Redha Taiar (September 9th 2020). Introductory Chapter: Biomechanics, Concepts and Knowledge, Recent Advances in Biomechanics, Redha Taiar, IntechOpen, DOI: 10.5772/intechopen.92270. Available from:

chapter statistics

277total chapter downloads

More statistics for editors and authors

Login to your personal dashboard for more detailed statistics on your publications.

Access personal reporting

Related Content

This Book

Next chapter

Muscle Mechanics and Electromyography

By Sarmad Shams, Muhammad Asif and Samreen Hussain

Related Book

First chapter

A Task-Level Biomechanical Framework for Motion Analysis and Control Synthesis

By Vincent De Sapio and Richard Chen

We are IntechOpen, the world's leading publisher of Open Access books. Built by scientists, for scientists. Our readership spans scientists, professors, researchers, librarians, and students, as well as business professionals. We share our knowledge and peer-reveiwed research papers with libraries, scientific and engineering societies, and also work with corporate R&D departments and government entities.

More About Us