\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"Milestone",originalUrl:"/media/original/124"}},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"8427",leadTitle:null,fullTitle:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods",title:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods",subtitle:null,reviewType:"peer-reviewed",abstract:"To prevent bacterial adherence, invasion and infection, antimicrobials such as antibiotics are being used and vastly researched nowdays. Several factors such as natural selection, mutations in genes, the presence of efflux pumps, impermeability of the cell wall, structural changes in enzymes and receptors, biofilm formation, and quorum sensing cause microorganisms to develop resistance against antimicrobials. Isolates that synthesize extended spectrum-β-lactamases (ESBL), induced β-lactamases (IBL), carbapenamases, metallo-β-lactamases (MBLs), and New Delhi metallo-β-lactamases (NDM) have emerged. Determining virulence factors such as biofilms and the level of antimicrobial activities of antimicrobial agents alone and in combination with appropriate doses against microorganisms is very important for the diagnosis, inhibition, and prevention of microbial infection. The goal of this book is to provide information on all these topics.",isbn:"978-1-78985-790-0",printIsbn:"978-1-78985-789-4",pdfIsbn:"978-1-83962-103-1",doi:"10.5772/intechopen.78751",price:119,priceEur:129,priceUsd:155,slug:"antimicrobials-antibiotic-resistance-antibiofilm-strategies-and-activity-methods",numberOfPages:152,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"0fdedc9bf6c23241235a0ae011c0304c",bookSignature:"Sahra Kırmusaoğlu",publishedDate:"April 3rd 2019",coverURL:"https://cdn.intechopen.com/books/images_new/8427.jpg",numberOfDownloads:20717,numberOfWosCitations:39,numberOfCrossrefCitations:32,numberOfCrossrefCitationsByBook:5,numberOfDimensionsCitations:66,numberOfDimensionsCitationsByBook:5,hasAltmetrics:1,numberOfTotalCitations:137,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 28th 2018",dateEndSecondStepPublish:"June 18th 2018",dateEndThirdStepPublish:"August 17th 2018",dateEndFourthStepPublish:"November 5th 2018",dateEndFifthStepPublish:"January 4th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"179460",title:"Associate Prof.",name:"Sahra",middleName:null,surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/179460/images/system/179460.jpeg",biography:"Dr. Kırmusaoğlu, PhD, is an assistant professor of Microbiology\nat the Department of Molecular Biology and Genetics, T.C. Haliç\nUniversity. She specialized in Microbiology at Abant Izzet Baysal\nUniversity (Biology Department), Turkey. Her previous experience\nincludes laboratory manager at microbiology laboratories in several\nresearch and private hospitals. Throughout her career, she collaborated\nwith academicians/researchers from Abant Izzate Baysal University (AIBU), Middle East Technical University (METU), and Istanbul\nUniversity Cerrahpaşa Faculty of Medicine, and has participated in various research projects.\nDr. Kırmusaoğlu’s research interests include medical microbiology, pathogenic bacteria, bacterial biofilms, antibiofilm and antibacterial activity, bacterial drug resistance, pathogen–host interactions, pathogenesis, molecular microbiology, and microbiota. She has published several international research articles, books, book chapters, and congress proceedings.\nShe is also the editor of Disinfection, Bacterial Pathogenesis and Antibacterial Control,\nand Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods\npublished by IntechOpen. In addition to these, she wrote the book Genel Biyoloji Laboratuvar\nKılavuzu (General Biology Laboratory Manual) published by Hipokrat Publisher.\nShe has contributed to a chapter translation of the book Sherris Medical Microbiology\nby Ryan et al. as one of the translation authors of Sherris Tıbbi Mikrobiyoloji, which is a\nTurkish translated book edited by Prof. Dr. Dürdal Us and Prof. Dr. Ahmet Başustaoğlu.",institutionString:"Haliç University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"5",institution:{name:"Haliç University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"897",title:"Pharmaceutical Microbiology",slug:"pharmaceutical-microbiology"}],chapters:[{id:"65914",title:"Introductory Chapter: The Action Mechanisms of Antibiotics and Antibiotic Resistance",doi:"10.5772/intechopen.85211",slug:"introductory-chapter-the-action-mechanisms-of-antibiotics-and-antibiotic-resistance",totalDownloads:4316,totalCrossrefCites:6,totalDimensionsCites:9,hasAltmetrics:1,abstract:null,signatures:"Sahra Kırmusaoğlu, Nesrin Gareayaghi and Bekir S. Kocazeybek",downloadPdfUrl:"/chapter/pdf-download/65914",previewPdfUrl:"/chapter/pdf-preview/65914",authors:[{id:"179460",title:"Associate Prof.",name:"Sahra",surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"},{id:"248288",title:"Prof.",name:"Bekir",surname:"Kocazeybek",slug:"bekir-kocazeybek",fullName:"Bekir Kocazeybek"},{id:"406463",title:"Dr.",name:"Nesrin",surname:"Gareayaghi",slug:"nesrin-gareayaghi",fullName:"Nesrin Gareayaghi"}],corrections:null},{id:"64597",title:"Antimicrobial Resistance",doi:"10.5772/intechopen.82303",slug:"antimicrobial-resistance",totalDownloads:1209,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Klebsiella pneumoniae (K. pneumoniae) pose an emerging threat to public health sector worldwide. They are one of the potent nosocomial pathogens and cause variety of infections including pneumonia, septicaemia, wound infections, urinary tract infections and catheter-associated infections. From the last two decades, these pathogens are becoming more powerful due to the acquisition of resistomes on different types of plasmids and transposons. There are four main mechanisms of antibacterial resistance such as efflux pump, target alteration, membrane permeability and notably enzymes hydrolysis. K. pneumoniae produce different types of enzymes but most importantly extended spectrum-β-lactamase (ESBL), carbapenemase and metallo-β-lactamase (MBL). K. pneumoniae carbapenemases (KPCs) and New Delhi metallo-β-lactamase (NDM) producing isolates displayed resistance not only against the β-lactam drugs (penicillins, cephalosporins and carbapenems) but also to other classes of antibiotics (aminoglycosides and quinolones). Therapeutic options available to treat serious infections caused by these extensively drug-resistant pathogens are limited to colistin, tigecycline and fosfomycin. Hence, combination therapy has also been recommended to treat such bacteria with clinical side effects, therefore, new treatment regime must be required. Moreover, we are relying on conventional diagnostic tools, however, novel techniques must be required for robust identification of multi-drug-resistant bacteria.",signatures:"Muhammad Usman Qamar, Muhammad Hidayat Rasool, Shah Jahan,\nMuhammad Shafique and Bilal Aslam",downloadPdfUrl:"/chapter/pdf-download/64597",previewPdfUrl:"/chapter/pdf-preview/64597",authors:[{id:"201590",title:"Dr.",name:"Bilal",surname:"Aslam",slug:"bilal-aslam",fullName:"Bilal Aslam"},{id:"229169",title:"Dr.",name:"Muhammad",surname:"Shafique",slug:"muhammad-shafique",fullName:"Muhammad Shafique"},{id:"247821",title:"Dr.",name:"Muhammad Usman",surname:"Qamar",slug:"muhammad-usman-qamar",fullName:"Muhammad Usman Qamar"},{id:"261133",title:"Dr.",name:"Muhammad Hidayat",surname:"Rasool",slug:"muhammad-hidayat-rasool",fullName:"Muhammad Hidayat Rasool"},{id:"261134",title:"Dr.",name:"Shah",surname:"Jahan",slug:"shah-jahan",fullName:"Shah Jahan"}],corrections:null},{id:"64267",title:"Alternative Approaches to Combat Medicinally Important Biofilm-Forming Pathogens",doi:"10.5772/intechopen.80341",slug:"alternative-approaches-to-combat-medicinally-important-biofilm-forming-pathogens",totalDownloads:1139,totalCrossrefCites:1,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Bacteria have developed the capability to produce structured communities (or cluster of cells) via adherence to surface to form biofilms that facilitate or prolong their survival under extreme environmental condition. Bacterial biomass adheres to inanimate and biotic surfaces in the hospital setting as well as in the environment. In the healthcare system, the biofilm formation on medical devices allows bacteria to sustain as a reservoir and becomes more resistant to antimicrobial agents. However, biofilm formation facilitates pathogens to sabotage the host defenses that are linked to long-term retention within the host cell. Therefore, in this review, we provide some steps leading to the formation of biofilm within the host and on inanimate surfaces, also emphasizing various medically significant pathogens and debate current developments on novel approaches that aimed to prevent biofilm formations and its dispersion to patients.",signatures:"Mansab Ali Saleemi, Navindra Kumari Palanisamy and Eng Hwa Wong",downloadPdfUrl:"/chapter/pdf-download/64267",previewPdfUrl:"/chapter/pdf-preview/64267",authors:[{id:"256712",title:"Ph.D.",name:"Eng Hwa",surname:"Wong",slug:"eng-hwa-wong",fullName:"Eng Hwa Wong"},{id:"264554",title:"Ph.D. Student",name:"Mansab",surname:"Saleemi",slug:"mansab-saleemi",fullName:"Mansab Saleemi"},{id:"264555",title:"Dr.",name:"Navindra Kumari",surname:"Palanisamy",slug:"navindra-kumari-palanisamy",fullName:"Navindra Kumari Palanisamy"}],corrections:null},{id:"62795",title:"Origin and Control Strategies of Biofilms in the Cultural Heritage",doi:"10.5772/intechopen.79617",slug:"origin-and-control-strategies-of-biofilms-in-the-cultural-heritage",totalDownloads:1519,totalCrossrefCites:6,totalDimensionsCites:9,hasAltmetrics:0,abstract:"Biodeterioration is defined as the undesirable change in the properties of materials caused by the activity of biological agents. This process is complex and involves alterations in the physicochemical and mechanical properties by the action of organisms and depends on the microorganisms involved, type of substrate, and environmental conditions. The biodeterioration of cultural heritage is the physical or chemical damage caused by microorganisms on objects, monuments, or buildings that belong to the cultural heritage. Among the main materials that can be affected are: stone, metal, ceramic, polymers, and other materials. Among the main undesirable effects to these materials are: discoloration, dissolution, rupture, and efflorescence among others. Biofilms represent the usual form of growth of bacteria and consist of communities of microorganisms that grow attached to an inert surface or a living tissue, surrounded by an extracellular matrix that they themselves synthesize. The importance of biodeterioration by biofilms is mainly related to changes in pH values, ionic concentrations, oxide-reduction reactions in the biofilm thickness, and in the interface with the substrate and enzymatic degradation. This chapter presents evidence of the participation of biofilms and associated mechanisms in biodeterioration as well as the main prevention and control strategies.",signatures:"Laura E. Castrillón Rivera, Alejandro Palma Ramos,\nJorge I. Castañeda Sánchez and María Elisa Drago Serrano",downloadPdfUrl:"/chapter/pdf-download/62795",previewPdfUrl:"/chapter/pdf-preview/62795",authors:[{id:"59716",title:"Dr.",name:"Maria Elisa",surname:"Drago-Serrano",slug:"maria-elisa-drago-serrano",fullName:"Maria Elisa Drago-Serrano"},{id:"74103",title:"Dr.",name:"Laura",surname:"Castrillon Rivera",slug:"laura-castrillon-rivera",fullName:"Laura Castrillon Rivera"},{id:"208136",title:"Dr.",name:"Jorge Ismael",surname:"Castañeda-Sánchez",slug:"jorge-ismael-castaneda-sanchez",fullName:"Jorge Ismael Castañeda-Sánchez"},{id:"253064",title:"Prof.",name:"Alejandro",surname:"Palma Ramos",slug:"alejandro-palma-ramos",fullName:"Alejandro Palma Ramos"}],corrections:null},{id:"65644",title:"Antimicrobial Agents: Antibacterial Agents, Anti-biofilm Agents, Antibacterial Natural Compounds, and Antibacterial Chemicals",doi:"10.5772/intechopen.82560",slug:"antimicrobial-agents-antibacterial-agents-anti-biofilm-agents-antibacterial-natural-compounds-and-an",totalDownloads:1873,totalCrossrefCites:1,totalDimensionsCites:7,hasAltmetrics:0,abstract:"The surge in antimicrobial resistance coupled with the decline in the antimicrobial drug pipeline calls for the discovery and development of new agents to tackle antibiotic resistance and prevent a return to a post-antibiotic era. Several factors account for resistance of microbes; some are natural and others are acquired. Natural selection, presence of efflux pumps, impermeable cell wall, biofilm formation and quorum sensing are some of the factors. Though it is difficult to outwit the pathogens, the discovery and development of compounds with pleiotropic modes or mechanisms of action different from the conventional drugs currently being used can help us tackle antimicrobial resistance. Natural products have been known to be a rich source of bioactive compounds with diverse structures and functional group chirality. Various reports indicate medicinal plants with antibacterial, anti-biofilm, efflux pump inhibition, wound healing effects or properties and others used for upper respiratory and urinary tract infections. There is an urgent need to research into natural products particularly plants for antimicrobial agents including antibacterial agents, anti-biofilm agents, antibacterial natural compounds and antibacterial chemicals. This chapter throws more light on such antimicrobials.",signatures:"Yaw Duah Boakye, Newman Osafo, Cynthia Amaning Danquah,\nFrancis Adu and Christian Agyare",downloadPdfUrl:"/chapter/pdf-download/65644",previewPdfUrl:"/chapter/pdf-preview/65644",authors:[{id:"182058",title:"Dr.",name:"Christian",surname:"Agyare",slug:"christian-agyare",fullName:"Christian Agyare"},{id:"196452",title:"Dr.",name:"Newman",surname:"Osafo",slug:"newman-osafo",fullName:"Newman Osafo"},{id:"252789",title:"Dr.",name:"Yaw Duah",surname:"Boakye",slug:"yaw-duah-boakye",fullName:"Yaw Duah Boakye"},{id:"262750",title:"Dr.",name:"Cynthia",surname:"Amaning Danquah",slug:"cynthia-amaning-danquah",fullName:"Cynthia Amaning Danquah"},{id:"262752",title:"Dr.",name:"Francis",surname:"Adu",slug:"francis-adu",fullName:"Francis Adu"}],corrections:null},{id:"65613",title:"The Methods for Detection of Biofilm and Screening Antibiofilm Activity of Agents",doi:"10.5772/intechopen.84411",slug:"the-methods-for-detection-of-biofilm-and-screening-antibiofilm-activity-of-agents",totalDownloads:9058,totalCrossrefCites:11,totalDimensionsCites:20,hasAltmetrics:0,abstract:"Biofilm producer microorganisms cause nosocomial and recurrent infections. Biofilm that is a sticky exopolysaccharide is the main virulence factor causing biofilm-related infections. Biofilm formation begins with attachment of bacteria to biotic surface such as host cell or abiotic surface such as prosthetic devices. After attachment, aggregation of bacteria is started by cell-cell adhesion. Aggregation continues with the maturation of biofilm. Dispersion is started by certain conditions such as phenol-soluble modulins (PSMs). By this way, sessile bacteria turn back into planktonic form. Bacteria embedded in biofilm (sessile form) are more resistant to antimicrobials than planktonic bacteria. So it is hard to treat biofilm-embedded bacteria than planktonic forms. For this reason, it is important to detect biofilm. There are a few biofilm detection and biofilm production methods on prosthetics, methods for screening antibacterial effect of agents against biofilm-embedded microorganism and antibiofilm effect of agents against biofilm production and mature biofilm. The aim of this chapter is to overview direct and indirect methods such as microscopy, fluorescent in situ hybridization, and Congo red agar, tube method, microtiter plate assay, checkerboard assay, plate counting, polymerase chain reaction, mass spectrometry, MALDI-TOF, and biological assays used by antibiofilm researches.",signatures:"Sahra Kırmusaoğlu",downloadPdfUrl:"/chapter/pdf-download/65613",previewPdfUrl:"/chapter/pdf-preview/65613",authors:[{id:"179460",title:"Associate Prof.",name:"Sahra",surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}],corrections:null},{id:"64272",title:"Streptomyces as a Source of Antimicrobials: Novel Approaches to Activate Cryptic Secondary Metabolite Pathways",doi:"10.5772/intechopen.81812",slug:"streptomyces-as-a-source-of-antimicrobials-novel-approaches-to-activate-cryptic-secondary-metabolite",totalDownloads:1604,totalCrossrefCites:7,totalDimensionsCites:16,hasAltmetrics:0,abstract:"Streptomyces is the most important bacterial genus for bioactive compound production. These soil bacteria are characterized by a complex differentiation cycle. Streptomyces is extremely important in biotechnology, producing approximately two thirds of all antibiotics, as well as many compounds of medical and agricultural interest. Drug discovery from streptomycetes became challenging once the most common compounds were discovered, and the system was basically abandoned by industry. Simultaneously, antibiotic resistance is increasing dramatically, and new antibiotics are required. Screening from nature is being resumed (exploring new environments, looking for elicitors, metagenome, etc.). Secondary metabolism is conditioned by differentiation; although the relationship between both has long remained elusive, differentiation as a trigger for antibiotic production remains basically unexplored. Most cultures used in screening campaigns for new bioactive molecules have been performed empirically, and workflow was extremely productive during the so-called golden age of antibiotics; however, currently there is a bottleneck. Streptomyces is still the most important natural source of antibiotics, and it also harbors many cryptic secondary metabolite pathways not expressed under laboratory conditions. In this chapter, we review strategies based on differentiation, one of the keys improving secondary metabolite production and activating cryptic pathways to face the challenges of drug discovery.",signatures:"Ángel Manteca and Paula Yagüe",downloadPdfUrl:"/chapter/pdf-download/64272",previewPdfUrl:"/chapter/pdf-preview/64272",authors:[{id:"269991",title:"Dr.",name:"Angel",surname:"Manteca",slug:"angel-manteca",fullName:"Angel Manteca"},{id:"272633",title:"Dr.",name:"Paula",surname:"Yagüe",slug:"paula-yague",fullName:"Paula Yagüe"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:[{id:"23",label:"women in science book program"}]},relatedBooks:[{type:"book",id:"6148",title:"Bacterial Pathogenesis and Antibacterial Control",subtitle:null,isOpenForSubmission:!1,hash:"92128a5094670f6b0c9321640f60d3a3",slug:"bacterial-pathogenesis-and-antibacterial-control",bookSignature:"Sahra",coverURL:"https://cdn.intechopen.com/books/images_new/6148.jpg",editedByType:"Edited by",editors:[{id:"179460",title:"Associate Prof.",name:"Sahra",surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8133",title:"Pathogenic Bacteria",subtitle:null,isOpenForSubmission:!1,hash:"b26e69f94525a38ead8ac88e3c68631a",slug:"pathogenic-bacteria",bookSignature:"Sahra Kırmusaoğlu and Sonia Bhonchal Bhardwaj",coverURL:"https://cdn.intechopen.com/books/images_new/8133.jpg",editedByType:"Edited by",editors:[{id:"179460",title:"Associate Prof.",name:"Sahra",surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8032",title:"Staphylococcus and Streptococcus",subtitle:null,isOpenForSubmission:!1,hash:"b9ddbf132ac8ea9d2a7613836e5a27ca",slug:"staphylococcus-and-streptococcus",bookSignature:"Sahra Kırmusaoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/8032.jpg",editedByType:"Edited by",editors:[{id:"179460",title:"Associate Prof.",name:"Sahra",surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6601",title:"Disinfection",subtitle:null,isOpenForSubmission:!1,hash:"ea121cf9b26d006bc6d7c7f92195852d",slug:"disinfection",bookSignature:"Sahra Kırmusaoğlu",coverURL:"https://cdn.intechopen.com/books/images_new/6601.jpg",editedByType:"Edited by",editors:[{id:"179460",title:"Associate Prof.",name:"Sahra",surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4648",title:"Concepts, Compounds and the Alternatives of Antibacterials",subtitle:null,isOpenForSubmission:!1,hash:"ba284c040146d00fdd709cabc4c8cb5a",slug:"concepts-compounds-and-the-alternatives-of-antibacterials",bookSignature:"Varaprasad Bobbarala",coverURL:"https://cdn.intechopen.com/books/images_new/4648.jpg",editedByType:"Edited by",editors:[{id:"90574",title:"Dr.",name:"Varaprasad",surname:"Bobbarala",slug:"varaprasad-bobbarala",fullName:"Varaprasad Bobbarala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6978",title:"Antimicrobial Resistance",subtitle:"A Global Threat",isOpenForSubmission:!1,hash:"949e88946357845e5843b4d7fbc1701f",slug:"antimicrobial-resistance-a-global-threat",bookSignature:"Yashwant Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/6978.jpg",editedByType:"Edited by",editors:[{id:"79718",title:"Dr.",name:"Yashwant",surname:"Kumar",slug:"yashwant-kumar",fullName:"Yashwant Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4759",title:"Antimicrobial Resistance",subtitle:"An Open Challenge",isOpenForSubmission:!1,hash:"04be7bb9b8da174cdb838a38c75236b4",slug:"antimicrobial-resistance-an-open-challenge",bookSignature:"Maria Cristina Ossiprandi",coverURL:"https://cdn.intechopen.com/books/images_new/4759.jpg",editedByType:"Edited by",editors:[{id:"80691",title:"Prof.",name:"Maria Cristina",surname:"Ossiprandi",slug:"maria-cristina-ossiprandi",fullName:"Maria Cristina Ossiprandi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"73132",slug:"corrigendum-to-soil-erosion-influencing-factors-in-the-semiarid-area-of-northern-shaanxi-province-ch",title:"Corrigendum to: Soil Erosion Influencing Factors in the Semiarid Area of Northern Shaanxi Province, China",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/73132.pdf",downloadPdfUrl:"/chapter/pdf-download/73132",previewPdfUrl:"/chapter/pdf-preview/73132",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/73132",risUrl:"/chapter/ris/73132",chapter:{id:"72647",slug:"soil-erosion-influencing-factors-in-the-semiarid-area-of-northern-shaanxi-province-china",signatures:"Ning Ai, Qingke Zhu, Guangquan Liu and Tianxing Wei",dateSubmitted:"February 25th 2020",dateReviewed:"May 22nd 2020",datePrePublished:"June 29th 2020",datePublished:"March 24th 2021",book:{id:"8937",title:"Soil Moisture Importance",subtitle:null,fullTitle:"Soil Moisture Importance",slug:"soil-moisture-importance",publishedDate:"March 24th 2021",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"315343",title:"Dr.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"319114",title:"Ph.D.",name:"Ning",middleName:null,surname:"Ai",fullName:"Ning Ai",slug:"ning-ai",email:"aining_office@126.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},{id:"319299",title:"Prof.",name:"Tianxing",middleName:null,surname:"Wei",fullName:"Tianxing Wei",slug:"tianxing-wei",email:"weitianxing925@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319300",title:"Prof.",name:"Qingke",middleName:null,surname:"Zhu",fullName:"Qingke Zhu",slug:"qingke-zhu",email:"xiangmub@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319301",title:"Prof.",name:"Guangquan",middleName:null,surname:"Liu",fullName:"Guangquan Liu",slug:"guangquan-liu",email:"gqliu@iwhr.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}}]}},chapter:{id:"72647",slug:"soil-erosion-influencing-factors-in-the-semiarid-area-of-northern-shaanxi-province-china",signatures:"Ning Ai, Qingke Zhu, Guangquan Liu and Tianxing Wei",dateSubmitted:"February 25th 2020",dateReviewed:"May 22nd 2020",datePrePublished:"June 29th 2020",datePublished:"March 24th 2021",book:{id:"8937",title:"Soil Moisture Importance",subtitle:null,fullTitle:"Soil Moisture Importance",slug:"soil-moisture-importance",publishedDate:"March 24th 2021",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"315343",title:"Dr.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"319114",title:"Ph.D.",name:"Ning",middleName:null,surname:"Ai",fullName:"Ning Ai",slug:"ning-ai",email:"aining_office@126.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},{id:"319299",title:"Prof.",name:"Tianxing",middleName:null,surname:"Wei",fullName:"Tianxing Wei",slug:"tianxing-wei",email:"weitianxing925@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319300",title:"Prof.",name:"Qingke",middleName:null,surname:"Zhu",fullName:"Qingke Zhu",slug:"qingke-zhu",email:"xiangmub@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319301",title:"Prof.",name:"Guangquan",middleName:null,surname:"Liu",fullName:"Guangquan Liu",slug:"guangquan-liu",email:"gqliu@iwhr.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}}]},book:{id:"8937",title:"Soil Moisture Importance",subtitle:null,fullTitle:"Soil Moisture Importance",slug:"soil-moisture-importance",publishedDate:"March 24th 2021",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"315343",title:"Dr.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11861",leadTitle:null,title:"Redefining Standard Model Particle Physics",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tToday, scientists describe the Universe mainly in terms of two theories: (1) Einstein's general theory of relativity (GTR), which describes the force of gravity and the large-scale structure of the Universe, and (2) quantum mechanics (QM), which describes the physics of the very small. However, as emphasized by Stephen Hawking and others, these two theories are known to be inconsistent with each other, so one needs to accommodate the gravitational force within the domain of QM by developing a quantum theory of gravity that will apply to both the large and small scales of the Universe. In a recent book entitled "The God Equation: The Quest for a Theory of Everything, Michio Kaku discusses the history and the nature of such a theory, which made significant progress during the 20th century through the development of the Standard Model (SM) of particle physics that represented the best understanding of the subatomic world at that time. Unfortunately, the SM makes no mention of the gravitational force. However, by removing several dubious assumptions made during the development of the SM, an alternative model, the Generation Model (GM), was developed from 2002-to 2019. The GM proposes that the gravitational force is not a fundamental force, as believed for centuries, but is a universal attractive, very weak residual interaction of the strong nuclear force, acting between the three massive particles, the proton, the neutron, and the electron, which are the constituents of a body of ordinary matter: this residual force provides a quantum theory of gravity. The main aim of this book is to discuss both the flaws of the SM and the GTR and also the considerable successes of the GM.
",isbn:"978-1-83768-018-4",printIsbn:"978-1-83768-017-7",pdfIsbn:"978-1-83768-019-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"085d4f6e00016fdad598675f825d6775",bookSignature:"Prof. Brian Albert Robson",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11861.jpg",keywords:"Standard Model, Twelve Elementary Particles, Higgs Boson Research, Universal Weak Force, CP-Violating Research, Big Bang Theory, Dark Matter, Dark Energy, Modified Gravity, Massless Elementary Particles, Quarks in Hadrons, Mixed Parity States",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 10th 2022",dateEndSecondStepPublish:"June 7th 2022",dateEndThirdStepPublish:"August 6th 2022",dateEndFourthStepPublish:"October 25th 2022",dateEndFifthStepPublish:"December 24th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"13 days",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"A pioneering researcher in theoretical nuclear physics and the scattering of polarized particles, recognized by Marquis Who’s Who Top Scientists for achievements and leadership in education and research. More recently, developed the Generation Model as a successful alternative to the Standard Model of particle physics. This model led to a fully quantum theory of gravity. Dr. Robson is a member of the editorial board for the Scientific World Journal and the Open Nuclear and Particle Physics Journal.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"102886",title:"Prof.",name:"Brian Albert",middleName:null,surname:"Robson",slug:"brian-albert-robson",fullName:"Brian Albert Robson",profilePictureURL:"https://mts.intechopen.com/storage/users/102886/images/system/102886.jpeg",biography:"Professor Brian Albert Robson obtained MSc, PhD and DSc degrees in Physics from the University of Melbourne, Australia. He is a Fellow of both the Australian Institute of Physics and the UK Institute of Physics. Currently he is an Honorary Professor in the Research School of Physics, The Australian National University, Canberra. During his academic career, he served for four years as Officer-in-Charge of the Australian National University’s first computer, for nine years as Head of the Department of Theoretical Physics, and for two years as Associate Director of the Research School of Physics and Engineering. Professor Robson has published more than 150 scientific publications mainly in the areas of nuclear physics, particle physics, gravitation and cosmology.",institutionString:"The Australian National University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Australian National University",institutionURL:null,country:{name:"Australia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"20",title:"Physics",slug:"physics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"466998",firstName:"Dragan",lastName:"Miljak",middleName:"Anton",title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/466998/images/21564_n.jpg",email:"dragan@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. A unique name with a unique work ethic right at your service."}},relatedBooks:[{type:"book",id:"8356",title:"Metastable, Spintronics Materials and Mechanics of Deformable Bodies",subtitle:"Recent Progress",isOpenForSubmission:!1,hash:"1550f1986ce9bcc0db87d407a8b47078",slug:"solid-state-physics-metastable-spintronics-materials-and-mechanics-of-deformable-bodies-recent-progress",bookSignature:"Subbarayan Sivasankaran, Pramoda Kumar Nayak and Ezgi Günay",coverURL:"https://cdn.intechopen.com/books/images_new/8356.jpg",editedByType:"Edited by",editors:[{id:"190989",title:"Dr.",name:"Subbarayan",surname:"Sivasankaran",slug:"subbarayan-sivasankaran",fullName:"Subbarayan Sivasankaran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"70694",title:"Social Withdrawal and Mental Health: An Interdisciplinary Approach",doi:"10.5772/intechopen.90735",slug:"social-withdrawal-and-mental-health-an-interdisciplinary-approach",body:'\nSocial relationships represent a very important dimension during adolescence [1]; for this reason social withdrawal is an actual phenomenon that needs to be examined in detail. As very little is known about it, the risk that may contribute to the formation of a mental health disease may be ignored. Additionally, it is critical to remember that social withdrawal may also occur as a complication of an existing mental health disorder. Social withdrawal is defined as the lack of social relations with one’s family and friends. This situation may create very important damages in interpersonal relations and social relations at an individual level and that may affect the society in general. Barzeva et al. [2] in line with Rubin et al. [3] report that it is “an umbrella term referring to an individual’s voluntary self-isolation from familiar and/or unfamiliar others through the consistent display of solitary behaviors such as shyness, spending excessive time alone, and avoiding peer interaction.”
\nThe intensive use of the Internet or video games is also associated with social withdrawal. This may be indicative of a form of adaptation of social isolation, but it becomes a real addiction. The use of interactive media for games is very frequent among adolescents, and is increasingly on the rise [4, 5]. It is estimated that the number of teenagers using smartphones have rapidly increased in recent years, the percentage has gone from 73 to 95% in the last 4 years. In particular, the use is associated with video games and the use of social media such as YouTube (85%), Instagram (72%), and Snapchat (69%) [4, 5].
\nThe frequency of Internet addiction that has been estimated in various countries is very different in Western and Asian cultures with respect to social norms and the culture of using social media [6, 7], varying from 0.8% in Italy to 14% in China and from 12% and up to 26.7% in Hong Kong.
\nIn recent years, a new social phenomenon has been observed. Many adolescents voluntarily isolate themselves by withdrawing, and become recluses in their families, and in their social environment. Until 2008, this manifestation was considered as a symptom of other psychopathological situations in DSM-IV * (Statistical diagnostic manual of mental disorders) [8, 9] such as psychosis. Although this state of social withdrawal leads to such a serious consequence in adults, the adolescents who show a social withdrawal do not meet the criteria for a diagnosis.
\nThe phenomenon of well-known social withdrawal in Japan is called Hikikomori, a term coined by a psychiatrist, Saito. Saito [10, 11] described Hikikomori as withdrawing from contact with family, having almost no friends, and not attending school for adolescents. Beginning from late 1970s, Hikikomori has been a silent epidemic among teens and young adults in Japan. Currently, Japanese scholars differentiate the phenomenon of Hikikomori from social withdrawal as being as a consequence of a psychiatric psychopathology that occurs together with the diagnosis of depression, personality disorder, anxiety disorder etc. Social withdrawal and the difficulty in creating social relationships do not manifest themselves as a primary symptom but do not meet the criteria of diagnostic labels so far theorized by international psychiatry [12]. To overcome this diagnostic gap, the Japanese Ministry of Health created guidelines in 2003 to help identify the Hikikomori phenomenon, by establishing the presence of certain criteria:
home-confined lifestyle;
lack of motivation to attend school or work;
absence of criteria for the other psychiatric diagnoses such as agoraphobia, schizophrenia, etc.
duration of symptoms more than 6 months.
The phenomenon of social withdrawal in Italy has been handled from a different perspective than that of the Japanese Hikikomori. Initially, the attention to adolescent withdrawal was addressed as a consequence of the even more extensive phenomenon of Internet addiction. For example, in Italian literature [13], Internet users differ in their action: (a) those who use the Web to achieve economic, relational, or social success and are the socially overexposed and (b) Internet addicts who use the Web to escape from anxieties and depressive experiences. The latter are social retreats.
\nBerne [14] defines the script as: “A life plan bases on a decision taken during childhood, reinforced by parents, justified by subsequent events, and culminating in a final choice.” During childhood, each child creates a script of life that becomes the supporting structure of the identity with which the person gives form and meaning to himself and to the world [14]. In his life script, the child will insert the expectations, injunctions, and thrusts that come from the most important attachment figures. The injunctions are the limits that the person perceives in childhood from the attitudes of the parental figures who exercise restrictions in being able to freely express themselves. The pushes, also called orders, are prescriptive commands, insistent, that the parental figures send verbally to their children. Current families are often composed of a single child; it may happen that parents pour out numerous projections and expectations in the line of “being perfect” and they push the child to try desperately. Thus the child is required to be precise in everything he does; in school and in relationships, inaccuracies are not tolerated. These inducing attitudes may be accompanied by injunctive messages sent by parents during childhood. The cognitive structures of parents, often formed before the birth of the baby, are too full of fantasies and expectations that they unwittingly create a deep predisposition to make things go wrong. These parental messages may generate feelings of shame. Shame is an emotion of a relational nature in which the person oscillates between the desire to be admired by the other and the fear of failing, between the desire to be accepted and the feeling of being excluded [15]. Sometimes shame may become a process of protection to avoid feeling the emotions of humiliation and vulnerability linked to the loss of the relationship with the other. Shame may lead to a denial of anger to allow the child/adolescent to keep the relationship with the person who carried out the humiliating transactions. When anger is denied, an important need of the person is lost, that of being taken seriously, with respect, and being important to others. Self-esteem may remain extremely compromised. The emotions of sadness and fear are also hidden in the feeling of shame. Some examples may be the sadness of not being accepted, with one’s needs, desires and behaviors and the fear of being abandoned, of losing the relationship with the other because of what one is [16]. During puberty, the antiscript is experienced [14]; the exact opposite of the Life script that the child together with the parents and the environment was built during the first years. Experiencing the opposite is a healthy strategy to try and find the right balance between extremes. But it may happen that the boy in this attempt to experience his tolerance or his possibilities of decision arrives at extreme behaviors, such as solitude and isolation [17]. From the existential crisis, the boy can find new ideas about his identity or he may get stuck in the copycat decisions made in childhood. In scripts where parental injunctions have unwittingly created a strong feeling of shame, it may happen that the child considers his body and his abilities to face the world to be unsuitable. All the expectations that parents and the child had built in childhood collapse. This transactional analytical perspective agrees with other psychological theories in which therapeutic work with the child is considered necessary to help him in the long work of building an identity capable of tolerating confrontation with others.
\nIn recent years, a new social phenomenon has been observed in Italy. Unlike the first Japanese Hikikomori who adopted a lifestyle of social exclusion long before the arrival of the Internet, in Italy, social withdrawal has been studied as a consequence of Internet addiction because this condition is often accompanied by the use and abuse of the network. This is the obvious symptom that alarms parents and forces them to ask for help. Therefore, the abuse of the network was studied as a cause of social withdrawal initially. Currently, scholars claim that the abuse of the Internet is linked to social withdrawal as a strategy to survive an extreme lifestyle. The use of the Internet as well as allowing access to information allows the symbolization of the world through the construction of avatars and role-playing games and allows a protected relationship with others, in which it is not necessary to use the body, for example in online games [18].
\nLiving virtually allows being in relationships with others maintaining the considered right distance by secluded teenager, which allows them to keep away the feeling of anxiety and the sense of inadequacy that comes from inter-relational confrontation [19]. Two important components need to be considered: the age of onset of seclusion and gender. The debut usually takes place in two timelines that coincide with two important changes in the life of the students: the first is the passage in the secondary school between the first degree (middle school) and the second degree (high school); the second delicate passage occurs at the end of high school with a leap into the university world. Depending on the time of onset, the setting and the therapeutic work change. Dealing with the gender components, social withdrawal appears predominantly as a male symptomatology. It seems that the two disorders are complementary, even though in recent years the cases of male anorexia and female social withdrawal are increasingly widespread [19].
\nTaking charge of the withdrawn social adolescent requires special attention given the complexity of the phenomenon. Currently, there are no guidelines shared by the different theoretical approaches, as is the case for other clinical pictures such as attempted suicide and anorexia. The point on which the different approaches converge is that the treatment of social withdrawal consists in a global management of the adolescent’s life context and that it is necessary to work on the relational emptiness that the boy has created around him. If on the one hand, the secluded teenager tends to eliminate and abandon relationships and spaces of movement, the parents try to create, expand, and add both physical and mental space, respecting the boy’s timing and propensity to change [20].
\nIn Italy, there are public and private services such as associations, cooperatives, foundations, and various types of organizations that deal with socially isolated adolescents. The interventions for social withdrawal cases in Italy vary. Despite the diversity of approach, generally an open intervention is addressed both to the boy and the context. The family is invited, then the detailed anamnesis is taken including not only the parents but also other significant persons in the family environment. The sessions are carried out by psychotherapists, in some cases the collaboration with a neuropsychiatrist to foresee and to exclude possible psychopathologies or to place side by side, if necessary, a pharmacological cure. Professional educators within the multi-professional team are those who perform home interventions in the most extreme situations in which significant social isolation makes an intervention outside the family setting impossible.
\nDifferent kinds of interventions vary depending on the theoretical approach and the different tools available including public and private practices in Italy. One of the consolidated interventions is implemented in a private clinic in Milan, at the Minotauro Institute. The ultimate goal is to reactivate the evolutionary path where the adolescent resides. The first step is the alliance with the boy and his lifestyle, a symptom of anguish and unacceptable pain. The assumption of the Minotauro team is that the unconscious drive to live pushes these teenagers to find alternative, albeit virtual, ways to madness or death. In fact, in the most serious cases, withdrawal is the only way to manage the fragility, saving one’s own body. The escape of one’s body is the decision taken by the secluded boy to remain alive, both psychologically and physically. For this reason, the alliance with the symptom is fundamental for the Minotauro method. Only in this way is a therapeutic path possible in which the boy rediscovers the real self with the resources and the evolutionary capacities that allow him to imagine and therefore invest in a future perspective. The therapist explores the adolescent’s signals and communications, helps him to transform anguish and pain into words, to promote the transformation of family dynamics and to create alternatives for eliminating the voluntary withdrawal [19].
\nThe experience of the Minotaur indicates as a first step the taking in charge of the parents who usually turn to the center without being accompanied by the boy. Parental care provides with extreme attention the figure of the father who plays a fundamental role in the context of social withdrawal. The intervention method foresees that parents follow individual psychotherapy.
\nDuring puberty, the neurophysiological development of the prefrontal cortex occurs very quickly [1]. The prefrontal cortex deals with not only cognitive abilities such as planning and executive functions [21], but also the regulation and management of emotions. In particular, it deals with regulating behavior with respect to the emotions evoked by group dynamics such as the sense of belonging to one’s own group [22, 23]. In other words prefrontal cortex corresponds to a social brain. Spear [24] stresses that during this period there is a qualitative change in social relations with an increase in contacts with peers, in particular, in salience of social rewards. From the hormonal point of view, the adolescent’s brain responds differently to that of adults. According to the Walker et al. [25], an adolescent’s stress may interfere with the regulatory development of the brain system that includes the area associated with social rewards. In fact, a dysregulation of these involves an alteration of the functioning activated by addictive behaviors like that of electronic devices—Internet. The same structures are involved in substance abuse cases. Even if it has not been included in the DSM-5, “Internet addiction (IA)” is a global issue [26], a behavioral dependence derived from the human-machine interaction with serious consequences such as loss of control and feelings of anger. Internet addiction may favor a clinically severe condition.
\nThe aim of this chapter is to give some information on interdisciplinary interventions such as clinical psychology, educational approach, and social neuroscience practices in order to contribute a better understanding of the social withdrawal concept. This can help to better understand the potential risk for mental and physical health. In accordance with the information given in this chapter, working with secluded adolescents has revealed that their families should be included in the therapeutic relationship. It has been also detected that the characteristics found in the secluded adolescents can be traced back to relationships within the family. For example, there is often an intense mother/child relationship that promotes dependence and obstacle in the natural processes of separation and individuation, a distant or absent paternal figure who initially idealizes and places numerous expectations in the child and when that happens, when these expectations are not satisfied, it becomes debasing. Following the evolutionary theory, it is possible to observe a block in the growth process and in the realization of the evolutionary tasks accompanied by a narcissistic fragility in the boy, lacking not only the evolutionary task of separation-individuation necessary for the construction of identity but also a process in mentalization of the body and a block in the social birth outside the family nucleus [19]. In addition to the family aspect, environmental and cultural factors that may affect and support vulnerable adolescents on such important aspects should also be addressed. Considering interdisciplinary aspects may preserve the social exclusion processes [27]. In this regard, an interdisciplinary point of view can lay the foundations for opening new theoretical and intervention perspectives on the phenomenon.
\nVapor-phase techniques are powerful approaches for the deposition of functional thin films of different materials, including metals and compounds such as oxides, nitrides, and even organic materials and composites onto a substrate [1, 2, 3]. There are two types of vapor deposition methods, namely physical and chemical. Physical vapor deposition (PVD) methods involve a change of state (i.e., evaporation and recondensation) of a source, and include, among other, sputtering, pulsed laser deposition or different evaporation approaches [4]. While PVD methods yield materials of high quality with tunable properties, they are performed in high vacuum and often high temperatures, using sophisticated equipment. Finally, the low vacuum process results in a line-of-sight type of coating (i.e., only taking place on the directly exposed surfaces.
The possibility to pattern and 3D print materials at different scales has a tremendous impact on many technologies and applications. Over the years. Different 3D printing approaches have been developed allowing such patterning. This include, to name a few, aerosol jet printing (also known as Maskless Mesoscale Materials Deposition or M3D) [5], ink jet and screen printing [6], laser chemical vapor deposition (LCVD) [7], laser-induced forward transfer (LIFT) [8, 9] or micro stereo lithography and multiphoton lithography [10]. The interested readers are encouraged to the cited references for more details on these methods. In this chapter, we focus on 3D printing approaches based on ALD. A brief introduction to CVD and ALD is thus presented next.
Chemical vapor deposition (CVD) approaches on the other hand rely on chemical reactions between different precursors on and over a surface. In conventional CVD, the precursors are injected in the reactor at the same time and the reaction is activated by heat (hot substrate) or by other energy sources, such as plasma. A scheme representing the reaction chamber is shown in Figure 1a [11]. This technique allows the deposition of high-quality films [12], and is largely used by the industry. Nonetheless, CVD is governed by the diffusion of the different gas precursors, and therefore, the deposition of extremely thin films with a thickness control at the sub-nanometer level [13], and the uniform coating of large areas or high-aspect-ratio/porous features is extremely difficult [14].
(a) CVD mechanism where the precursor is adsorbed on the surface at relatively high-temperature followed by the film growth and a release of volatile byproducts, (b) ALD process: Schematic of one ALD cycle of monolayer growth. The first step consists in exposing the substrate to the precursor followed by a purge step to remove all the byproducts an excess precursor, then another step with a co-reactant agent and the final step in which the byproducts an excess precursors are purged again, (c) illustration of edge coverage for ALD, CVD, and PVD.
Such limitations prompted the development of an alternative method, namely, atomic layer deposition (ALD). ALD is indeed a CVD method but it is characterized by having the substrate exposed to the different precursors one at a time, and not simultaneously as in CVD. Thus, in typical ALD processes, a precursor is first injected in a deposition chamber where the substrate is located. The precursor can then react with active sites on the surface (i.e., undergoing a chemisorption) until the latter is saturated. A purge step is then applied to eliminate excess precursor and reaction byproducts. Then a second reactant is injected that will react with the preciously adsorbed layer. After the reaction is completed, again a purge step is necessary to eliminate excess reactant and reaction byproducts. Such an ALD cycle is shown in Figure 1b. As a result of this sequential exposure to the different reactants, the ALD process is surface-selective and self-terminating, which in turn offers unique control over film thickness at the angstrom level (i.e., a given growth per cycle, GPC, being obtained for each process as a function of the reactor geometry and precursors used) and allows the conformal coating of porous, complex and high-aspect-ratio substrates. The films are also compact and free of pinholes and can be obtained at low temperatures (even room temperature) due to the high reactivity of ALD precursors. The reader is referred to reviews and books dedicated to ALD for more information [1, 2, 3]. Figure 1c shows a sketch of the different types of coating obtained over the high-aspect-ratio features when using the different techniques discussed.
Over the years, the number of materials that can be deposited by ALD has grown enormously, including pure elements (e.g., metals), nitrides, sulfides, oxides, fluorides, etc. (see the atomic limits site, with includes an ALD materials database that is permanently being updated [15]). While at the origin the main motors of the ALD development were the deposition of homogeneous coatings over large areas or high aspect-ratio features, in the last years, there have been innovative developments in the ALD field that allow the localized and topological deposition of functional materials. This opens the door to its application as a new nano-to-macro 3D printing technology based on gas precursors. These recent developments, namely, area-selective deposition (ASD) and different spatial approaches, are presented in Sections 2 and 3, respectively. Finally, the unique assets of the ALD technique are ideal to tune the properties of pieces fabricated by conventional 3D printing approaches. Section 4 presents a brief overview of recent results on this line. The chapter finishes with some conclusive remarks.
For more than 50 years, the shrinking of microelectronic devices has involved successive steps of deposition, lithography and etching. Indeed, unlike building a house, it is not possible to directly draw the walls or pillars of a chip on a 300 mm substrate. It is therefore necessary to first cover the whole substrate with a thin layer, before removing part of it by the steps of lithography (to draw the object) and etching (to remove what should not remain on the surface). This is called a top-down approach. The reduction of the dimensions of microelectronic devices in the last 10 years to nanometric scales has greatly complicated these steps and increased their cost. Indeed, for many years, the wavelengths used to draw were greater than the desired line thickness. It was therefore necessary to make lithography more complex by integrating etching/deposition steps to achieve the desired dimensions, such as multi-patterning (Self Aligned Double or Quadrupole Patterning—SADP and SAQP). Thus, these steps allowing to obtain locally nanometric materials on the substrate are now complex, time-consuming and expensive. They must also be done with nanometric placement precision, which is already a real challenge.
The alternative solution to this increasingly complex approach is to deposit the material directly and selectively on the desired surface without having to resort to lithography steps. This so-called selective growth on a surface is a bottom-up approach and is known as area-selective deposition (ASD) [16, 17]. In an ideal ASD process, a thin film should be uniformly deposited in the desired growth region while no deposition should be observed in the desired no-growth region. This requires the use of a surface selective deposition process, with controlled growth at the atomic scale, and thus ALD is the one that seems to be the most adapted. Indeed, a growing number of researchers working on the ALD process are now trying to establish strategies from this process to have a material deposited selectively on a surface. The three main strategies are: (i) to use an inherent selectivity of the precursor/substrate couple [18, 19]; (ii) to block the growth on the no-growth area by a pre-deposition treatment [20, 21]; (iii) to promote the growth on the growth area by a pre-deposition treatment [22]. Whatever the strategy, we observe growth on all surfaces after a certain number of cycles, or at best, a little defectivity with nuclei on the no-growth area, i.e., the selectivity fades out during the successive ALD cycles. It was then proposed to regularly add the surface treatment step (passivation step) in the ALD cycles changing a cycle from a (treatment + AB) process to an (ABC) cycle with the treatment reinjected regularly [23]. Another proposed solution is to use super-cycles with the injection of etching steps every
(a) Illustration of four different strategies for an area selective deposition where a is the growth area and B the no-growth area; (b–d) examples of ASD using deposition and etch: (b) TiO2 on TiN vs. Si/SiO2 (reprinted with permission) [
Although, ASD offers a huge potential for the 3D printing of functional materials at resolutions orders of magnitude below what can be achieved with conventional 3D printing approaches, the different steps it implies (i.e., surface pre-pattering, regeneration of the selectivity) make them harder to work with. It would thus be desirable to develop an ALD approach that could allow the direct deposition of patterned materials. This can indeed be achieved, as detailed in the next section, by using different
As explained in the introduction, the unique assets of ALD are the result of having a surface-limited, self-terminated reaction between gas reactants and the surface of a substrate. To limit the reaction to the surface, the ALD is based in alternate exposures of the precursors to the substrate. Traditionally, this has been done by sequential injection of the precursors in a deposition chamber followed by purging steps, thus in a temporal approach, as detailed in Figure 1b above and in the scheme below (Figure 3a). An alternative approach consists in having a continuous injection of the different reactants but in different locations of the reactor, keeping them separated by a region of inert gas. Then, by alternatively exposing the substrate to the different regions, the ALD cycle is reproduced (Figure 3b). This approach is known as Spatial ALD (SALD) [33, 34, 35, 36]. The first advantage of processing in the spatial mode is that the process can become much faster (up to two orders of magnitude) since no purging step is required.
(a) Schematic representation of the classical temporal ALD approach with the different characteristic steps of an ALD cycle: (1) injection of the first precursor, (2) purging step, (3) injection of the second precursor, (4) purging step, separated in time. (b) Schematic representation of the spatial ALD approach, where the precursors are injected continuously in the reaction chamber in different locations separated by an inert gas and the sample is exposed to the different regions to reproduce the ALD cycle. (c) Scheme of the close-proximity AP-SALD approach based on a manifold injection head: the precursors are carried out from the containers of the head where they are distributed in parallel alternative channels. (d) COMSOL simulation of the mass fraction of each precursor present in different areas of the substrate (left). In these cases the evacuation of the precursors is not efficient and thus cross-talk is observed, yielding a CVD reaction on the zones where the precursors meet (see COMSOL simulation in the center). If a deposition is made in static mode (i.e., without moving the substrate), 4 lines of oxide can be obtained, as shown in the optical image (right) where 4 lines of ZnO have been deposited on a Si wafer in this way (adapted from Ref. [
The SALD concept is very versatile and can indeed be applied in different ways [33, 37]. SALD can even be performed at atmospheric pressure (i.e., no vacuum processing) and even in the open air (i.e., no deposition chamber), and this is sometimes referred to as Atmospheric-Pressure SALD (AP-SALD). This is the case of the close-proximity approach based on a manifold injection head, originally presented by Kodak [38]. In this particular approach, the different reactants are carried to the injection head where they are distributed along alternate parallel channels (Figure 3c) [39]. By proper design of the head, the different flows can be kept separated provided the substrate is at close proximity of the head (i.e., 50–200 μm). Then by scanning the substrate back and forth under the head the ALD cycles are achieved. It is worth noting that since the size and area of the deposition depend on the head size and substrate scan distance, this SALD approach can already be seen as an ASD approach at the cm scale.
Close-proximity SALD approaches based on injection heads have several extra appealing advantages. The first one is that deposition can be also performed in spatial CVD (SCVD) mode. Then, crosstalk between the different reactants above the surface of the substrate is allowed. In this case, the deposition rate can be faster, but care must be taken since the properties of the materials deposited could change [32]. The impact of the change in the film properties when passing from the SALD to SCVD mode has to be evaluated depending on the intended application, but several works have demonstrated that the SCVD can be used to deposit components for functional devices [40]. In addition, the possibility of having SCVD opens the door to a new ASD approach. Indeed, the CVD reaction can be located in different areas above the substrate. Figure 3d presents a computational fluid dynamics (CFD) simulation that shows the areas over the substrate where the different reactants meet and thus react when the deposition is performed in certain SCVD conditions. Then, by performing a static deposition (i.e., without the substrate scan that is needed to perform the spatial ALD cycles) growth of the films can be localized to the regions where the reactants meet (see the four ZnO lines obtained by this approach in Figure 3d). This constitutes a new alternative approach of ASD at a higher scale and much faster deposition rate than the traditional ASD approaches based on ALD that have been described in the previous section [32].
The second advantage of using a close-proximity SALD approach based on an injection head is that the system can be customized by simply modifying the injection head. While this is so, the modification and fabrication of the head can result very difficult, if not impossible, thus limiting the potential of the approach (see Figure 4a where the scheme of a standard SALD head is shown. It comprises several parts that need to be fabricated separately and then soldered, and the distribution of the different gas flows to the head is quite complex involving many pipes). To overcome this limitation, D. Muñoz-Rojas’ group at the Laboratoire des Matériaux et du Génie Physique (LMGP, Grenoble, France) has introduced the utilization of 3D printing for the fabrication of customized SALD injection heads [41]. This allows having more freedom to design the head and, for example, the gas distribution can be incorporated in the body of the head (Figure 4b and c) [41, 42, 43]. Plastic heads can be printed for depositions taking place at low temperatures while metal 3D printing is also possible for higher temperatures [44]. Thanks to 3D printing, the design of the heads can be easily customized. This is very convenient to easily modify the area of deposition, and also to have free-form patterns when performing SCVD with custom heads (Figure 4d) [41].
(a) Scheme of a close-proximity SALD head made of several parts and fabricated by conventional approaches. (b) 3D scheme of a head design integrating the gas distribution for the different gases inside its body: metallic precursor in green, co-reactant in red, inert gas in blue and exhaust in black. (c) Head printed with clear resin where the distribution channels can be observed. (d) 3D scheme of a head designed for circular shape deposition in static SCVD mode. ZnO circles with different thicknesses are shown. (e) Picture of a printed SALD pen (left), bottom view of the concentric gas outlets in the SALD pen approach allowing deposition in any direction (right). (f) Scheme of the SALD pen installed in a 3D table. (g) Scheme of a SALD pen implemented in the XYZ table and drawing ZnO in a circular pattern. (h) LMGP initials on a Si wafer drawn with the 3D printed SALD pen (adapted with permission from Ref. [
The possibility to deposit free-form patterns without having to modify the head for each design would also be appealing. This can indeed be done if instead of using parallel channels, the head is designed so that concentric channels are used. In this way, no matter which direction the head moves, the substrate will be exposed to the different reactants, thus leading to ALD film growth (Figure 4e). Such a head can again be readily implemented by 3D printing. D. Muñoz-Rojas’ group demonstrated that such a SALD pen can be printed and used to deposit free-form patterns when installed in an XYZ table, in this case with a resolution going down to several mm (Figure 4f–h) [41]. This represents a new 3D printing approach that is based on gas precursors and that offers nanometric resolution in Z. Here again, the resolution of the obtained patterns in X-Y depends on the head design and the possibility to scale it down. Indeed, the latter work by Midani et al. presented a similar concept in which sub-millimiter resolution was achieved by inserting a capillary in the central metal precursor channel of the SALD pen [45].
Certainly, the advances in the different 3D printing technologies will allow de fabrication of SALD heads with smaller channels, which will extend the possibilities of SALD for depositing patterns of functional materials down to the micrometer scale in X-Y.
Additive manufacturing (AM), also known as 3D printing, is recognized as a revolutionary technology, which has primarily been used in the field of engineering to create customized prototypes [46, 47, 48]. 3D printing has now become a subject of great interest and is extensively applied in many areas, such as prototyping, medicine [49] or aerospace [50], since it allows new products with complex geometries and microarchitecture (multiple pore shape and size) to be imagined, designed and fabricated. However, the material from which the designed products are made is still limited by the 3D-printing material itself. Even if the number of available materials that can be printed is expanding [48], most of the manufactured objects are made of polymer or stainless steel. Thus, a post-treatment may be required to control the nature and chemistry of the product surface and offer it its desired functionality. As illustrated in Figure 5 and discussed below, ALD is a highly appealing technique to expand the potential of 3D printing through coating or infiltration of the printed parts.
Illustration of the combination of 3D printing and atomic layer processing. Depending on the 3D printed material, either a coating is obtained, allowing for the tuning of the surface properties (typical ALD); or inorganic components are introduced to the subsurface of the 3D objects (atomic layer infiltration, ALI [
As seen previously, ALD can be used as an innovative and novel 3D printing route, to prepare customized and complex 3D structures at the nano-to-cm scale. In addition, this technology can also be used to precisely tune the surfaces of 3D printed objects that were manufactured using more “conventional” additive manufacturing approaches such as fused deposition modeling, inkjet printing, stereolithography, selective laser sintering (SLS), powder bed fusion or even bioprinting [46, 47, 48]. ALD allows the preparation of thin films with a sub-nanometer thickness control, high uniformity and excellent conformality even on high aspect ratios substrates, a unique capability, as discussed in the first section of this chapter [3, 53, 54, 55, 56, 57, 58]. As ALD allows the conformal coating of complex substrates with nanolayers made of an expanding number of materials [2, 15], such as oxides [59, 60], metals [61], nitrides [62] and sulfides [63], the combination of this route with 3D printing can be beneficial to a myriad of applications.
A large number of 3D printed objects are made of polymers, the current mainstream materials being ABS (acrylonitrile butadiene styrene) and PLA (polylactic acid). However, when performing ALD on 3D printed objects based on such polymeric materials, some considerations must be taken. The first obvious consideration is related to the ALD process temperature, which has to be lower than the polymer melting point. 3D printing materials such as ABS and PLA will already be deformed when the temperature is higher than 200°C. The ALD processes must therefore be compatible with rather low temperatures. Furthermore, as depicted by the review of Parsons and co-workers [64], the ALD precursors often infiltrate and react with polymeric substrates, which can alter the eventual 3D printed products. As shown by numerous studies, the risk of reaction between the polymer and the precursors increases with temperature and long exposures times. In addition, the presence of functional groups in the polymer chains also increases the potential infiltration of the ALD precursors [51, 52, 59, 64, 65, 66, 67, 68]. Thus, even if most of the ALD processes are compatible with the coating of 3D printed objects, these considerations must be taken into account and the processes have to be tuned accordingly to coat certain 3D printed materials. When the processes developed are compatible, the unique capability of ALD to coat complex objects with such control over the layer deposited, makes this route particularly relevant and attractive. This innovative combinatorial approach has been used for different and various applications, such as aerospace, photoelectrocatalysis, filtration, biomedicine, or solid-state batteries.
Kestila et al. combined polymeric additive manufacturing and an ALD-coating to produce satellite propulsion components with improved structural integrity and thermal resistance [69]. The components were made of two different polymers, namely acrylonitrile butadiene styrene (ABS) and polyamide, and were coated with alumina by ALD. The Al2O3 layer allowed to enhance the structural integrity for the polymeric restrictors and progressively smoothed out the PA surface improving the argon flow through the restrictor, which might be due to increased surface smoothness [69]. Heikinen et al. have recently shown that ALD of alumina on porous 3D printed ABS plastics permits to considerably lower their vacuum degassing. Nyman et al. have also confirmed the low outgassing of ABS, but also polyether ether ketone (PEEK), polycarbonate (PC), and nanodiamond-doped polylactide (ND-PLA) 3D printed materials with an Al2O3 ALD coating [70]. Thus, the combination of plastic 3D printing with ALD opens prospects for the fabrication of laboratory vacuum tools, and is also suited for spacecraft tools and in-space manufacturing applications [70, 71]. Moll et al. also coupled powder bed additive manufacturing with CVD and ALD of nitrides, to prepare 3D Ti-6Al-4 V structures highly resistant to high-temperature oxidizing environments. Coupling CVD and ALD on the 3D printed objects permitted to obtain thick coating and roughness reduction by CVD, and filling of narrow defects and reactivity mitigation by ALD [72].
Browne et al. employed additive manufacturing and ALD for photoelectrocatalysis, by depositing TiO2 onto 3D-printed electrodes. These electrodes were initially printed in inert stainless steel, and gained their catalytic functionality thanks to the ALD coating. The conformality allowed by ALD successfully permitted these 3D-printed electrodes to be used as photoanodes for water oxidation. The results presented have shown that the 3D-printed stainless steel electrode coated with ALD of TiO2 were considerably more active towards the water oxidation, and that the catalytic activity was enhanced by increasing the number of ALD cycles applied [73]. The team of Pumera et al. recently applied ALD to 3D-printed nanocarbon/polylactic acid electrodes to coat them with metal dichalcogenide MoS2 nanolayers [74]. The MoS2 coated electrodes were then successfully applied for photoelectrocatalytic hydrogen evolution reaction (HER). Recently the group of M. Bechelany from the Institut Européen des Membranes (IEM, Montpellier, France) has developed in collaboration with the University of Zaragoza the functionalization of 3D printed ABS filters with MOF (Metal-Organic Framework) for toxic gas removal [75]. The fabrication approach at low temperature includes ALD of Zinc oxide on the ABS 3D printed filter followed by the hydrothermal conversion of ZnO to ZIF-8, Zeolitic Imidazolate Framework. The obtained filters show a good adsorption performance for dimethyl methylphosphonate, thus demonstrating their potential for toxic gas capture applications. Such types of 3D printed filters with an active MOF layer could have a wide range of applications in environmental fields such as adsorption systems for removing toxic gases or water pollutants.
In the biomedical field, the combinatorial approach has been applied to prepare silver-coated titanium orthopedic implants. [76] Using the selective laser melting (SLM) 3D-printing technique, titanium orthopedic implants have been fabricated with intricate geometries. The surface chemistry of the prepared implants has then been modified by coating them with a silver nanolayer by ALD. The inhibition of bacterial colonization obtained thanks to the silver coating resulted in the drastic reduction of the pathogenic biofilm. This result, combined with the increase of the vascularization and the osseointegration observed, opens a new path to this combinatorial approach for clinical orthopedic applications [76]. The “pure marriage” between 3D printing and ALD has also been exploited by Xue et al., who tailored the surface of 3D printed plastic earplugs using plasma-assisted ALD [75]. By combining 3D printing, plasma-assisted ALD and hydrothermal process, they loaded a layer of ZnO nanoarrays on the surface of the earplugs and thus improved the antibacterial properties of the earplugs, which enhanced the safety of the ear devices. In addition, they have shown that the sound insulation performances were higher than those of traditional earplugs. Finally, the field of solid-state batteries benefited as well from the combination of 3D printing and ALD. For example, thanks to an innovative 3D-printing ink formulation, a cell-based on a 3D-printed stacked array of LLZ (Li7La3Zr2O12, a solid lithium conductor) and lithium electrodes was fabricated, and ALD of alumina has been performed at the surface of the LLZ to allow the wetting of lithium [77, 78]. The ability to 3D-print solid electrolytes enables the manufacturing of unique ordered structures, and ALD permits their efficient functionalization, improving the overall efficiency of the battery device.
These few selected studies demonstrate the great potential of combining additive manufacturing and ALD. The combinatorial approach allows the fast prototyping of functional products with the additional precise control over their surface chemistry. As depicted in the presented examples, the benefits of combining 3D printing and ALD nanocoatings can be applied to many complex surfaces, and the lack of materials that can be 3D printed is at least partially solved by the use of ALD coatings. Thus, this novel approach allows synthesizing precisely integrated and customized architectures with tailored surface performance, and/or eventually the bulk properties of the materials thanks to ALI, paving the way towards innovative and functional products, and opening prospects for many potential applications.
Although ALD was initially developed to exploit the possibility it offered to obtain continuous, pin-hole-free thin films even over large areas, in the last years there have been different approaches to perform ALD in a localized fashion, giving rise to the ASD field. As it has been discussed, these methods are based on different approaches allowing either a high spatial resolution in XY (at the nanometer) or simpler more direct approaches that provide direct patterning at the millimeter and micrometer level in XY. In any case, and given these approaches are based on the ALD method, the control in Z is nanometric. The possibility to have spatial control over the ALD process can be exploited as a new gas-based technique for the 3D printing of functional materials at different scales, providing a unique approach to the fabrication of functional materials with complex shapes. Beyond using ALD as a 3D printing technique in itself, the possibility it offers to coat (even infiltrate) complex shapes in a highly controlled way and with a large amount of different materials is ideal to nanoengineer the properties of pieces obtained by standard 3D printing approaches, thus expanding the range of applications that can be achieved. ALD should thus experience an important penetration in the 3D printing field in the coming years.
D.M.-R. acknowledges support from the European Union’s Horizon 2020 FETOPEN-1-2016-2017 research and innovation program under Grant Agreement 801464, and through the Marie Curie Actions (FP7/2007-2013, Grant Agreement No. 63111). The Agence Nationale de la Recherche (ANR, France) is also acknowledged for funding via the programs ANR-16-CE05-0021 (DESPATCH) and ANR-20-CE09-0008 (ALD4MEM). The French National Research Agency (in the framework of the “Investissements d’avenir” program (No. ANR-15-IDEX-02) through the project Eco-SESA) is acknowledged for a PhD Grant.
Our business values are based on those any scientist applies to their research. The values of our business are based on the same ones that all good scientists apply to their research. We have created a culture of respect and collaboration within a relaxed, friendly, and progressive atmosphere, while maintaining academic rigour.
\n\nPlease check out our job board for open positions.
',metaTitle:"Careers at IntechOpen",metaDescription:"Employee quote to be added",metaKeywords:null,canonicalURL:"/page/careers-at-intechopen",contentRaw:'[{"type":"htmlEditorComponent","content":"Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\\n\\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\\n\\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\\n\\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\\n\\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:"
Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\n\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\n\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\n\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\n\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\n\n\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6602},{group:"region",caption:"Middle and South America",value:2,count:5908},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12542},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132766},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"56121318 FILLER ads"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:61},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:124},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[],latestBooks:[]},subject:{topic:{id:"100",title:"Climatology",slug:"earth-and-planetary-sciences-climatology",parent:{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"},numberOfBooks:21,numberOfSeries:0,numberOfAuthorsAndEditors:692,numberOfWosCitations:1130,numberOfCrossrefCitations:630,numberOfDimensionsCitations:1488,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"100",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9389",title:"Global Warming and Climate Change",subtitle:null,isOpenForSubmission:!1,hash:"435d35b33ec04fe921640a514feb19e4",slug:"global-warming-and-climate-change",bookSignature:"John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/9389.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7299",title:"Climate Change and Global Warming",subtitle:null,isOpenForSubmission:!1,hash:"4ae62fab8fc16c47936a1ac234a405d3",slug:"climate-change-and-global-warming",bookSignature:"Ata Amini",coverURL:"https://cdn.intechopen.com/books/images_new/7299.jpg",editedByType:"Edited by",editors:[{id:"179844",title:"Associate Prof.",name:"Ata",middleName:null,surname:"Amini",slug:"ata-amini",fullName:"Ata Amini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5876",title:"Glacier Evolution in a Changing World",subtitle:null,isOpenForSubmission:!1,hash:"807ab415fef80eae5053189b154da8aa",slug:"glacier-evolution-in-a-changing-world",bookSignature:"Danilo Godone",coverURL:"https://cdn.intechopen.com/books/images_new/5876.jpg",editedByType:"Edited by",editors:[{id:"313983",title:"Dr.",name:"Danilo",middleName:null,surname:"Godone",slug:"danilo-godone",fullName:"Danilo Godone"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5221",title:"Topics in Climate Modeling",subtitle:null,isOpenForSubmission:!1,hash:"f3205fd51558e7d62187cbdf47e979c6",slug:"topics-in-climate-modeling",bookSignature:"Theodore Hromadka and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/5221.jpg",editedByType:"Edited by",editors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4495",title:"Global Warming",subtitle:"Causes, Impacts and Remedies",isOpenForSubmission:!1,hash:"2d99bd0d03471f9871f0fcadd967ba53",slug:"global-warming-causes-impacts-and-remedies",bookSignature:"Bharat Raj Singh",coverURL:"https://cdn.intechopen.com/books/images_new/4495.jpg",editedByType:"Edited by",editors:[{id:"26093",title:"Dr.",name:"Bharat Raj",middleName:null,surname:"Singh",slug:"bharat-raj-singh",fullName:"Bharat Raj Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3380",title:"Climate Variability",subtitle:"Regional and Thematic Patterns",isOpenForSubmission:!1,hash:"28cb775691751f6829c82e78d725e4e8",slug:"climate-variability-regional-and-thematic-patterns",bookSignature:"Aondover Tarhule",coverURL:"https://cdn.intechopen.com/books/images_new/3380.jpg",editedByType:"Edited by",editors:[{id:"78083",title:"Dr.",name:"Aondover",middleName:null,surname:"Tarhule",slug:"aondover-tarhule",fullName:"Aondover Tarhule"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3492",title:"Climate Change and Regional/Local Responses",subtitle:null,isOpenForSubmission:!1,hash:"60ca2b9d2e89a90cee7df35b5ae1289a",slug:"climate-change-and-regional-local-responses",bookSignature:"Yuanzhi Zhang and Pallav Ray",coverURL:"https://cdn.intechopen.com/books/images_new/3492.jpg",editedByType:"Edited by",editors:[{id:"87977",title:"Dr.",name:"Pallav",middleName:"Kumar",surname:"Ray",slug:"pallav-ray",fullName:"Pallav Ray"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3162",title:"Climate Change",subtitle:"Realities, Impacts Over Ice Cap, Sea Level and Risks",isOpenForSubmission:!1,hash:"6ed24c01a5b46c314f59ea98100f0965",slug:"climate-change-realities-impacts-over-ice-cap-sea-level-and-risks",bookSignature:"Bharat Raj Singh",coverURL:"https://cdn.intechopen.com/books/images_new/3162.jpg",editedByType:"Edited by",editors:[{id:"26093",title:"Dr.",name:"Bharat Raj",middleName:null,surname:"Singh",slug:"bharat-raj-singh",fullName:"Bharat Raj Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3102",title:"Advances in Hurricane Research",subtitle:"Modelling, Meteorology, Preparedness and Impacts",isOpenForSubmission:!1,hash:"92a1a44953085414828e5969e9ac3434",slug:"advances-in-hurricane-research-modelling-meteorology-preparedness-and-impacts",bookSignature:"Kieran Hickey",coverURL:"https://cdn.intechopen.com/books/images_new/3102.jpg",editedByType:"Edited by",editors:[{id:"17924",title:"Dr.",name:"Kieran",middleName:"Richard",surname:"Hickey",slug:"kieran-hickey",fullName:"Kieran Hickey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2312",title:"Atmospheric Aerosols",subtitle:"Regional Characteristics - Chemistry and Physics",isOpenForSubmission:!1,hash:"5f0c63a1d9340befc07046080cd39569",slug:"atmospheric-aerosols-regional-characteristics-chemistry-and-physics",bookSignature:"Hayder Abdul-Razzak",coverURL:"https://cdn.intechopen.com/books/images_new/2312.jpg",editedByType:"Edited by",editors:[{id:"135965",title:"Dr.",name:"Hayder",middleName:null,surname:"Abdul-Razzak",slug:"hayder-abdul-razzak",fullName:"Hayder Abdul-Razzak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1571",title:"Doppler Radar Observations",subtitle:"Weather Radar, Wind Profiler, Ionospheric Radar, and Other Advanced Applications",isOpenForSubmission:!1,hash:"f6614a3df0bad532ed06d41891fe9c96",slug:"doppler-radar-observations-weather-radar-wind-profiler-ionospheric-radar-and-other-advanced-applications",bookSignature:"Joan Bech and Jorge Luis Chau",coverURL:"https://cdn.intechopen.com/books/images_new/1571.jpg",editedByType:"Edited by",editors:[{id:"113007",title:"Dr.",name:"Joan",middleName:null,surname:"Bech",slug:"joan-bech",fullName:"Joan Bech"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1546",title:"Atmospheric Model Applications",subtitle:null,isOpenForSubmission:!1,hash:"30315ea16bedb67eebd4fb0e9f38f968",slug:"atmospheric-model-applications",bookSignature:"Ismail Yucel",coverURL:"https://cdn.intechopen.com/books/images_new/1546.jpg",editedByType:"Edited by",editors:[{id:"100229",title:"Dr.",name:"Ismail",middleName:null,surname:"Yucel",slug:"ismail-yucel",fullName:"Ismail Yucel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:21,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"34744",doi:"10.5772/35368",title:"The JMA Nonhydrostatic Model and Its Applications to Operation and Research",slug:"the-jma-nonhydrostatic-model-and-its-applications-to-operation-and-research",totalDownloads:3126,totalCrossrefCites:41,totalDimensionsCites:55,abstract:null,book:{id:"1546",slug:"atmospheric-model-applications",title:"Atmospheric Model Applications",fullTitle:"Atmospheric Model Applications"},signatures:"Kazuo Saito",authors:[{id:"104090",title:"Dr.",name:"Kazuo",middleName:null,surname:"Saito",slug:"kazuo-saito",fullName:"Kazuo Saito"}]},{id:"44055",doi:"10.5772/55140",title:"West African Monsoon in State-of-the-Science Regional Climate Models",slug:"west-african-monsoon-in-state-of-the-science-regional-climate-models",totalDownloads:4502,totalCrossrefCites:27,totalDimensionsCites:52,abstract:null,book:{id:"3380",slug:"climate-variability-regional-and-thematic-patterns",title:"Climate Variability",fullTitle:"Climate Variability - Regional and Thematic Patterns"},signatures:"M. B. Sylla, I. Diallo and J. S. Pal",authors:[{id:"158387",title:"Dr.",name:"Mouhamadou",middleName:"Bamba",surname:"Sylla",slug:"mouhamadou-sylla",fullName:"Mouhamadou Sylla"},{id:"166845",title:"MSc.",name:"Ismaila",middleName:null,surname:"Diallo",slug:"ismaila-diallo",fullName:"Ismaila Diallo"},{id:"166846",title:"Dr.",name:"Jeremy",middleName:null,surname:"Pal",slug:"jeremy-pal",fullName:"Jeremy Pal"}]},{id:"21327",doi:"10.5772/24467",title:"Crop Production and Global Warming",slug:"crop-production-and-global-warming",totalDownloads:4187,totalCrossrefCites:13,totalDimensionsCites:39,abstract:null,book:{id:"1479",slug:"global-warming-impacts-case-studies-on-the-economy-human-health-and-on-urban-and-natural-environments",title:"Global Warming Impacts",fullTitle:"Global Warming Impacts - Case Studies on the Economy, Human Health, and on Urban and Natural Environments"},signatures:"Masahumi Johkan, Masayuki Oda, Toru Maruo and Yutaka Shinohara",authors:[{id:"57569",title:"Prof.",name:"Johkan",middleName:null,surname:"Masahumi",slug:"johkan-masahumi",fullName:"Johkan Masahumi"},{id:"62171",title:"Prof.",name:"Oda",middleName:null,surname:"Masayuki",slug:"oda-masayuki",fullName:"Oda Masayuki"},{id:"62172",title:"Prof.",name:"Toru",middleName:null,surname:"Maruo",slug:"toru-maruo",fullName:"Toru Maruo"},{id:"62173",title:"Prof.",name:"Shinohara",middleName:null,surname:"Yutaka",slug:"shinohara-yutaka",fullName:"Shinohara Yutaka"}]},{id:"28853",doi:"10.5772/38565",title:"The South American Monsoon System: Climatology and Variability",slug:"the-south-american-monsoon-system-climatology-and-variability",totalDownloads:3168,totalCrossrefCites:16,totalDimensionsCites:34,abstract:null,book:{id:"1548",slug:"modern-climatology",title:"Modern Climatology",fullTitle:"Modern Climatology"},signatures:"Viviane B. S. Silva and Vernon E. Kousky",authors:[{id:"118065",title:"Ms.",name:"Viviane",middleName:"B. S.",surname:"Silva",slug:"viviane-silva",fullName:"Viviane Silva"},{id:"134347",title:"Dr.",name:"Vernon",middleName:null,surname:"Kousky",slug:"vernon-kousky",fullName:"Vernon Kousky"}]},{id:"19840",doi:"10.5772/23920",title:"Holocene Vegetation Responses to East Asian Monsoonal Changes in South Korea",slug:"holocene-vegetation-responses-to-east-asian-monsoonal-changes-in-south-korea",totalDownloads:6791,totalCrossrefCites:8,totalDimensionsCites:31,abstract:null,book:{id:"396",slug:"climate-change-geophysical-foundations-and-ecological-effects",title:"Climate Change",fullTitle:"Climate Change - Geophysical Foundations and Ecological Effects"},signatures:"Sangheon Yi",authors:[{id:"54436",title:"Dr.",name:"Sangheon",middleName:null,surname:"Yi",slug:"sangheon-yi",fullName:"Sangheon Yi"}]}],mostDownloadedChaptersLast30Days:[{id:"27601",title:"Mud Volcano and Its Evolution",slug:"mud-volcano-and-its-evolution",totalDownloads:7096,totalCrossrefCites:1,totalDimensionsCites:23,abstract:null,book:{id:"621",slug:"earth-sciences",title:"Earth Sciences",fullTitle:"Earth Sciences"},signatures:"Bambang P. Istadi, Handoko T. Wibowo, Edy Sunardi, Soffian Hadi and Nurrochmat Sawolo",authors:[{id:"60519",title:"Mr",name:"Bambang",middleName:null,surname:"Istadi",slug:"bambang-istadi",fullName:"Bambang Istadi"},{id:"60529",title:"Mr.",name:"Nurrochmat",middleName:null,surname:"Sawolo",slug:"nurrochmat-sawolo",fullName:"Nurrochmat Sawolo"},{id:"127917",title:"MSc.",name:"Handoko",middleName:"Teguh",surname:"Wibowo",slug:"handoko-wibowo",fullName:"Handoko Wibowo"},{id:"127918",title:"Dr.",name:"Edy",middleName:null,surname:"Sunardi",slug:"edy-sunardi",fullName:"Edy Sunardi"},{id:"127919",title:"Mr.",name:"Soffian",middleName:null,surname:"Hadi",slug:"soffian-hadi",fullName:"Soffian Hadi"}]},{id:"68928",title:"Mathematical Model for CO2 Emissions Reduction to Slow and Reverse Global Warming",slug:"mathematical-model-for-co-sub-2-sub-emissions-reduction-to-slow-and-reverse-global-warming",totalDownloads:1264,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter aims to provide climate policy makers with smooth patterns of global carbon dioxide (CO2) emissions consistent with the UN climate targets. An accessible mathematical approach is used to design such models. First, the global warming is quantified with time to determine when the climate targets will be hit in case of no climate mitigation. Then, the remaining budget for CO2 emissions is derived based on recent data. Considering this for future emissions, first proposed is an exponential model for their rapid reduction and long-term stabilization slightly above zero. Then, suitable interpolations are performed to ensure a smooth and flexible transition to the exponential decline. Compared to UN climate simulation models, the designed smooth pathways would, in the short term, overcome a global lack of no-carbon energy and, in the long term, tolerate low emissions that will almost disappear as soon as desired from the 2040s with no need for direct removal of CO2.",book:{id:"9389",slug:"global-warming-and-climate-change",title:"Global Warming and Climate Change",fullTitle:"Global Warming and Climate Change"},signatures:"Nizar Jaoua",authors:[{id:"308371",title:"Dr.",name:"Nizar",middleName:null,surname:"Jaoua",slug:"nizar-jaoua",fullName:"Nizar Jaoua"}]},{id:"38770",title:"Review of Aerosol Observations by Lidar and Chemical Analysis in the State of São Paulo, Brazil",slug:"review-of-aerosol-observations-by-lidar-and-chemical-analysis-in-the-state-of-s-o-paulo-brazil",totalDownloads:2192,totalCrossrefCites:1,totalDimensionsCites:3,abstract:null,book:{id:"2312",slug:"atmospheric-aerosols-regional-characteristics-chemistry-and-physics",title:"Atmospheric Aerosols",fullTitle:"Atmospheric Aerosols - Regional Characteristics - Chemistry and Physics"},signatures:"Gerhard Held, Andrew G. Allen, Fabio J.S. Lopes, Ana Maria Gomes, Arnaldo A. Cardoso, Eduardo Landulfo",authors:[{id:"39885",title:"Dr.",name:"Arnaldo",middleName:"Alves",surname:"Cardoso",slug:"arnaldo-cardoso",fullName:"Arnaldo Cardoso"},{id:"47252",title:"Dr.",name:"Andrew",middleName:null,surname:"Allen",slug:"andrew-allen",fullName:"Andrew Allen"},{id:"143677",title:"Dr.",name:"Fábio",middleName:null,surname:"Lopes",slug:"fabio-lopes",fullName:"Fábio Lopes"},{id:"144558",title:"Dr.",name:"Gerhard",middleName:null,surname:"Held",slug:"gerhard-held",fullName:"Gerhard Held"},{id:"144711",title:"Dr.",name:"Eduardo",middleName:null,surname:"Landulfo",slug:"eduardo-landulfo",fullName:"Eduardo Landulfo"},{id:"144714",title:"Dr.",name:"Ana Maria",middleName:null,surname:"Gomes",slug:"ana-maria-gomes",fullName:"Ana Maria Gomes"}]},{id:"52209",title:"The Eta Model: Design, Use, and Added Value",slug:"the-eta-model-design-use-and-added-value",totalDownloads:1929,totalCrossrefCites:3,totalDimensionsCites:6,abstract:"The design of the Eta model goes back to early 1970s, when its original dynamical core was designed following the philosophy of Akio Arakawa of emulating important properties of the atmospheric governing equations. The core’s later major features were invented and implemented in the mid-1980s. Once a comprehensive physics package was added, the model became operational as a regional NWP model in the United States in 1993. Its use for regional climate projections followed later, for the South American region and then for a regional reanalysis over the North American region. Summary of the model’s dynamical core is given, followed by that of its physics package. Results of experiments revealing the model’s ability to generate added value even at large scales when run as a regional climate model (RCM) are summarized. The Eta model is applied on various climate scales seamlessly, from subseasonal, seasonal to multidecadal, from coarse 40 km up to high 5 km resolution. Examples of applications to various socioeconomic sectors, such as for hydropower management, crop yield forecasts, environmental and forest conservation, urban areas management, assessment of natural disaster risks, etc., are given. The Eta RCM capability to reproduce extreme climatic values is pointed out.",book:{id:"5221",slug:"topics-in-climate-modeling",title:"Topics in Climate Modeling",fullTitle:"Topics in Climate Modeling"},signatures:"Fedor Mesinger, Katarina Veljovic, Sin Chan Chou, Jorge Gomes and\nAndré Lyra",authors:[{id:"181065",title:"Prof.",name:"Fedor",middleName:null,surname:"Mesinger",slug:"fedor-mesinger",fullName:"Fedor Mesinger"},{id:"186378",title:"Dr.",name:"Katarina",middleName:null,surname:"Veljovic",slug:"katarina-veljovic",fullName:"Katarina Veljovic"},{id:"186379",title:"Dr.",name:"Sin Chan",middleName:null,surname:"Chou",slug:"sin-chan-chou",fullName:"Sin Chan Chou"},{id:"186381",title:"Dr.",name:"Jorge",middleName:"Luis",surname:"Gomes",slug:"jorge-gomes",fullName:"Jorge Gomes"},{id:"186382",title:"Dr.",name:"Andre",middleName:null,surname:"Lyra",slug:"andre-lyra",fullName:"Andre Lyra"}]},{id:"38762",title:"Natural vs Anthropogenic Background Aerosol Contribution to the Radiation Budget over Indian Thar Desert",slug:"natural-vs-anthropogenic-background-aerosol-contribution-to-the-radiation-budget-over-indian-thar-de",totalDownloads:2361,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2312",slug:"atmospheric-aerosols-regional-characteristics-chemistry-and-physics",title:"Atmospheric Aerosols",fullTitle:"Atmospheric Aerosols - Regional Characteristics - Chemistry and Physics"},signatures:"Sanat Kumar Das",authors:[{id:"148389",title:"Dr.",name:"Sanat",middleName:"Kumar",surname:"Das",slug:"sanat-das",fullName:"Sanat Das"}]}],onlineFirstChaptersFilter:{topicId:"100",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{},subseries:{},overviewPageOFChapters:[],overviewPagePublishedBooks:[],openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{},onlineFirstChapters:{},publishedBooks:{},testimonialsList:[]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/70694",hash:"",query:{},params:{id:"70694"},fullPath:"/chapters/70694",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()