Variation in color values with respect to changing curcumin content in turmeric taken from difference sources.
\r\n\t
",isbn:"978-1-80356-420-3",printIsbn:"978-1-80356-419-7",pdfIsbn:"978-1-80356-421-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"f188555eee4211fc24b6cca361983149",bookSignature:"Dr. Kim Ho Yeap",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11509.jpg",keywords:"Inductive Coupling, Resonant Inductive Coupling, Magnetic Coupling, Magnetic Resonance, Transmitter, Receiver, Rectenna, Antenna, Induction Coil, Stationery Charging, Dynamic Charging, Rectifier",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 25th 2022",dateEndSecondStepPublish:"May 6th 2022",dateEndThirdStepPublish:"July 5th 2022",dateEndFourthStepPublish:"September 23rd 2022",dateEndFifthStepPublish:"November 22nd 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Kim Ho Yeap is a senior member of the IEEE, a Chartered Engineer registered with the UK Engineering Council, a Professional Engineer (PEng) registered with the Board of Engineers Malaysia, and an ASEAN Chartered Professional Engineer. In 2008 and 2015 he underwent research attachment at the University of Oxford (UK) and the Nippon Institute of Technology (Japan). Dr. Yeap has been given the university teaching excellence award and 21 research grants. He has published more than 100 research articles.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"126825",title:"Dr.",name:"Kim Ho",middleName:null,surname:"Yeap",slug:"kim-ho-yeap",fullName:"Kim Ho Yeap",profilePictureURL:"https://mts.intechopen.com/storage/users/126825/images/system/126825.jpeg",biography:"Kim Ho Yeap is an associate professor at Universiti Tunku Abdul Rahman, Malaysia. He is an Institute of Electrical and Electronics Engineers (IEEE) senior member, a professional engineer registered with the Board of Engineers, Malaysia, and a chartered engineer registered with the UK Engineering Council. He is the external examiner and external course assessor of Wawasan Open University. From 2017 to 2022, he was editor-in-chief of the Journal on Digital Signal Processing. He has also been a guest editor for the Journal of Applied Environmental and Biological Sciences and Journal of Fundamental and Applied Sciences. He has also been a recipient of the university teaching excellence award and twenty-too research grants. He has published more than 100 research articles in electromagnetics, including refereed journal papers, conference proceedings, books, and book chapters.",institutionString:"Universiti Tunku Abdul Rahman",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Universiti Tunku Abdul Rahman",institutionURL:null,country:{name:"Malaysia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444315",firstName:"Karla",lastName:"Skuliber",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/444315/images/20013_n.jpg",email:"karla@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7617",title:"Electromagnetic Fields and Waves",subtitle:null,isOpenForSubmission:!1,hash:"d87c09ddaa95c04479ffa2579e9f16d2",slug:"electromagnetic-fields-and-waves",bookSignature:"Kim Ho Yeap and Kazuhiro Hirasawa",coverURL:"https://cdn.intechopen.com/books/images_new/7617.jpg",editedByType:"Edited by",editors:[{id:"126825",title:"Dr.",name:"Kim Ho",surname:"Yeap",slug:"kim-ho-yeap",fullName:"Kim Ho Yeap"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"69960",title:"Biosafety Barrier to Xenotransplantation",doi:"10.5772/intechopen.89134",slug:"biosafety-barrier-to-xenotransplantation",body:'\nThe demand for a new source of organs and cells for clinical transplantation has been exacerbated for decades. And xenotransplantation (e.g., from pigs to human) could resolve this issue.
\nIn 2008, the WHO and International Xenotransplantation Association (IXA) released a consensus statement on xenotransplantation from pig to human for clinical trials. In this statement, it proposed the criterion for biosafety of source animals in clinical trials. The source animals should be bred in a closed herd for the purpose and kept under a well-controlled and pathogen-free environment with complete animal welfare. Even source animals are housed in appropriate biosecurity and under surveillance, extensive detection must be done to ensure freedom from known pathogens and infectious disease.
\nTherefore, this chapter will draw attention to the significant biosafety barriers need to be overcome before xenotransplantation from pig to human can become a clinical therapy.
\nThe term “DPF” (Designated Pathogen Free) is used to describe animals, animal herds, or animal facilities that have been rigorously documented to be free of specified infectious agents and that are maintained using well-defined routines of testing for designated pathogens and utilizing rigorous SOPs (Standard operating procedures) and practices of herd husbandry and veterinary care to assure the absence of the designated pathogens [1]. So far, there is no normative document specifying the pathogens specified in DPF pig. DPF standards are dynamic and need to be updated over time according to the geographical environment of the animal population and new pathogens emerging. Generally speaking, there are two types of pathogens that need to be excluded from DPF pig: (1) Pathogens that affect animal health; (2) Pathogens that can cause cross-species transmission.
\nExperts in this field met to agree on the most comprehensive list of bacteria, fungi, parasites and viruses that should not be present in DPF pig [2]. Endogenous viruses are not listed. PERV (Porcine endogenous retrovirus) is the only one endogenous virus we known in pigs [3]. PERV has three subgroups including PERV-A, PERV-B and PERV-C. In general, PERV-A and PERV-B can infect both pig and human cells, but PERV-C can only infect pig cells. It is noteworthy that PERV-A/C recombine were be found in vitro co-culture system using cells from miniature swine, which means PERV-C can also infect human cells in some condition [4]. To monitor the status of DPF pigs, the pigs’ samples including blood, serum, tissues and feces must be tested regularly.
\nThe DPF pigs must be raised in biosecure barrier environment. Biosecure barrier facility includes many aspects.
\n\n
The proposed DPF facility will be sited at a property to be confirmed.
The building will be on rural land where there are no other pig farms within a radius of 10 km. The grounds of the facility will be protected and planted with trees, and the grass mowed regularly. There are to be no other animals or livestock within the area boundary.
The building is to be fully protected by a secure fence and electric gate entry. The main entrance door is also to be a security door with key access and protected by security alarms 24 hours a day.
The facility is designed with two separate areas, outside the barrier (external) and within the barrier (termed “inside the barrier”).
The external area houses a delivery bay, storerooms for feed and bedding, staff lunchroom facilities, office, laundry area, external change rooms, and rooms to supply goods through the barrier.
Inside the barrier, the building is to have a HEPA (High efficiency particulate air) -filtered air supply and it will only contain goods that are sterile, staff who have showered and are wearing sterile clothes, and the pigs themselves which will be free of all specified diseases. There are to be two rooms holding the pig pens, internal gown-up areas, office, treatment room, reception room, and feed and bedding storerooms.
There will be two rooms of animal pens, a further unit for the sow farrowing, and a quarantine area, all with an air lock entry. The air pressure in all animal areas will be positive to the corridors (monitored by magnehelic gauges). Rooms will have controlled fluorescent lighting, temperature and humidity, and 15 to 20 air changes per hour of HEPA -filtered air.
Animal pens will have gates of the metal farm type, allowing pigs to see out and receive physical contact from other pigs and staff, with aisles between pens and a drain running in front of each row of pens. There will be windows in the walls between each pen to allow pigs to see each other.
Each pen will have a valve supplying filtered drinking water and individual stainless steel bowls for feed.
Music will be piped into the units by speakers set into the ceiling and serviced from the mezzanine level. Music will be controlled from the main office.
\n
The DPF facility will operate as a full sterile barrier facility. Therefore, all goods entering the facility must be sterile and all staff should go through a full shower procedure and gown-up in sterile suits, boots, hats and gloves. All original breeding stock in the facility will be cesarean-derived, colostrum-deprived, and hand-reared.
To enter the facility, staff must shower and don a complete clothing and footwear and wear gloves.
All activities that take place will be fully documented in the SOP Manual, including inwards receipt of goods through the facility barrier using such methods as an autoclave, dunk tank, and UV pass-through hatch.
There will be SOP-documented regular health screening of pigs and staff.
A comprehensive pest control system will be used inside and outside the building and managed by a contracted pest control company. Records of all inspections will be documented.
Pig care and welfare are a top priority, as described above for the Invercargill facility.
All pigs are uniquely identified and individual records should be maintained, including animal breeding and genetic records.
Regular veterinary should attendance at the pig facilities ensures that the staff is trained in disease recognition and that the veterinarian is called immediately in the event of signs and symptoms of disease in any animal. The veterinarian should report any such incident in writing.
The donor herd should continue to test the porcine pathogens and parasites.
All donor piglets should be necropsied by a veterinarian within 6 hours of cell harvesting. Any pathological changes must be noted and appropriate specimens taken. The veterinarians’ report should be documented.
Donor piglet tissue retention samples collected include brain, heart, kidney, liver, lung, pancreas, and spleen. Duplicate samples are stored at 80°C in two separate locations.
Duplicate donor piglet serum retention samples are also stored in two separate locations.
In addition, duplicate final product retention samples are stored at 80°C in two separate locations.
A positive result in any of the infection monitoring tests described in this section, will lead to the donor animal and the batch of isolated islets being discarded.
The pigs are conveyed to the DPF breeding center. They must be disinfected in buffer rooms before entering inspection and quarantine where they are isolated for a month. After isolation the pigs give cesarean birth to the first generation of purified pigs. Compared to vaginal births Cesarean section can eliminate or reduce the risk of infecting with pathogens from sow’s vajina. These newborns are fed in isolation under aseptic conditions and grow into adulthood. They are then impregnated and naturally deliver the second generation. After being tested for specified pathogens this second generation enters into a DPF area. The first generation of pigs should not be used as source pigs but the pigs in a second or higher generation can be used as DPF source pigs [1, 5].
\nDonor pigs are the basis for ensuring the biosafety of xenograft clinical trials. Other biosafety issues are also worthy of attention, including immunosuppression protocols, clinical treatment protocols, sample/data retention programs, and case-tracking programs.
\nThe principal challenges that must be faced to make xenotransplantation a clinical reality, which include determining a repeatable strategy for efficient preparation of xenogeneic tissues and organs and tracing the potential transmission of porcine pathogens to human. In addition, it is necessary to overcome the rejection barrier with clinically practicable immunosuppression and tolerance induction strategies. The application of xenotransplantation faces insurmountable immunological barriers, including: (1) hyperacute rejection (complement activation mediated by antibody) which is trigged by natural xenoreactive antibodies against Gal (1,3) and non-Gal antigens, (2) acute rejection of humoral xenograft which is mediated by antibodies that are dependent on T cells, (3) acute cellular xenograft rejection due to T cell mediated cellular responses.
\nContinuous administration of multiple immunosuppressive drugs has been required and attempts to minimize immunosuppression. Immunosuppression in preclinical models of xenotransplantation usually consists of B-cell and plasma cell therapeutics like Rituximab and Bortezomib in addition to the standard triple drug immunosuppression. One or more rounds of immuno-adsorption or plasmapheresis are essential to remove antibodies from the recipient’s circulation. These regimens are often associated with serious side effects such as pancytopenia and sepsis.
\nThe xenogeneic T cell response is supposed to be similar to that of typical allogenic responses, even larger. Consider this challenging barrier, most successful immunosuppressive therapy include a T cell depletion method like mono- or polyclonal anti-T cell antibodies, chemotherapeutic agents like cyclophosphamide, or whole body or thymic radiation therapy [6]. And anti-thymocyte globulin (ATG) is still the most commonly utilized option.
\nThe engagement of TCR (T cell receptor) with foreign antigen without co-stimulatory signal will lead to T cells unresponsive to the antigen (known as T-cell anergy), thereby suppressing antigen induced response. The possible mechanism was that the CTLA4Ig fusion protein blocked CD28/B7 co-stimulatory signaling of the primary pathway, which eventually induced differentiation bias of T helper cells (Th cells [7]). Anti-CD154 antibodies, known to be effective in blocking indirect pathway of allorecognition [6], is also a critical component of effective immunosuppressive strategies in preventing cellular rejection in pig-to-NHPs (Non-human primates) xenotransplantation [8] yet its clinical application is restricted due to high risk of thromboembolic complications [9]. However, in pig-to-NHPs models, immune tolerance achievement approached by utilizing co-stimulatory blocking agents and other immunosuppressants in long-term treatments.
\nThe transgenic pigs expressing graft-protecting factors has been shown to require a less toxic immunosuppressive protocol [10] which gives another path to explore. Using advanced gene editing technologies, xenotransplantation from multitransgenic alpha-1,3-galactosyltransferase knockout pigs (GTKO pigs) has demonstrated marked prolongation of xenograft survival. In addition, the incidence of hyperacute rejection was further reduced with organs from the GTKO pigs expressing one or more human complement-regulatory proteins (GTKO/hCRPs pigs), such as CD46, CD55, or CD59.
\nA better but much more complex approach is to try to achieve immunological tolerance to the xenograft. Three successful tolerance induction approaches have been explored in large animal models: the use of mixed hematopoietic chimerism [11, 12], T regulatory cells [13, 14] and thymic transplantation [15] . It has been demonstrated that tolerance is possible in humans by successful clinical application of the mixed chimerism approach to renal transplantation [16] and by the T regulatory cell approach to liver allografts [17]. Despite the greater immunologic differences between species than within species, both mixed chimerism and thymic transplantation approaches have been shown to be capable of tolerizing human T cells to porcine xenografts in humanized mouse models [18]. Moreover, treatment with in vitro expanded regulatory T cells (Treg) prevents porcine xenograft rejection in humanized NOD-SCID IL-2 receptor gamma null (NSG) mice by the suppression of the T cell-mediated graft destruction, which suggesting the feasibility of pig-to-primate xenograft tolerance.
\nFor xenografts, the level of immunosuppressive agents needed to fully suppress immune responses is greater than for allografts, which would likely lead to greater side effects. Thus, adoption of tolerance strategies is inevitable. Even though current immunosuppression seems to be controlling T cell responses in long-term acceptors [19, 20], it appears likely that low levels of T cell-dependent antibodies [21] and activation of innate responses still develop [22], potentially leading to xenograft loss. Tolerance induction has the potential to avoid such persistent immune reactivity and therefore overcome the antibody-mediated response as well. Although tolerance induction in vivo has not yet been achieved in pig-to-baboon models, recent results are encouraging that this goal will be attainable through genetic engineering of porcine donors. It may be that current and future suppressive regimens that fully suppress the immune system will function sufficiently to benefit rejection of xenograft. Regardless of application, the study of tolerance continues to provide an excellent way to explore the functioning and control the immune system.
\nA database of clinical trials for pig islet xenotransplantation should be established, including specimens, paper documents, and electronic documents.
\nThe information of xenotransplantation donors, including the number of animals, test reports, will be preserved for long time. All the samples will be prepared in duplicate and one for long-period preservation in −80° C refrigerator or liquid nitrogen tank. The information of transplant recipients and his/her spouses, such as name, hospital number, clinical data and patient records, will be recorded and maintained for long. When the patient comes to the hospital for review, the sample should be kept, including the following [23]: (1) all serum and plasma of the recipient and his/her spouse will be prepared in duplicate [24]; (2) storage of all samples at −80°C or liquid nitrogen tank for long time; (3) preservation of samples for post-transplant cytokine detection, pathogen detection, etc.; and (4) development of standard operating procedures.
\nThe purpose of follow-up after xenotransplantation is to monitor the occurrence of rejection and adverse events. The goal of patient management is to improve their understanding of the disease, actively participate in and achieve partial self-management, improve compliance and achieve long-term survival and higher quality of life.
\nPostoperative follow-up of biosafety of clinical trials of recipients and spouses include: time-point, biosafety assays and treatment plan. (1) The patient and their spouses was reviewed 1 month before surgery, 1 month, 3 months, 6 months, 12 months, 2 years, 3 years, 4 years, and 5 years after xenotransplantation, and the sample in duplicate was kept. (2) Biosafety assays include fungal, bacterial, parasitic, viral, nucleic acid, cytokine and lymphocyte population detection. (3) If the biosafety assays are negative, the patient continues the symptomatic treatment, but if positive, then quarantine and treatment, personal protection and report to CDC (Centers for Disease Control and Prevention).
\nThe medical record about postoperative follow-up of a xenograft recipient must contain the following information including the recipient’s health status, all xenograft-related information, such as: (1) the contact information system of xenograft recipients. (2) If there is an infection related to xenotransplantation, or the pathogen from xenogeneic origin is identified, the health department of local government and the NHFPC(National health and family planning commission) shall be notified promptly. (3) The institution must have a reliable specimen and data preservation system and a complete information reporting system with the competent department. (4) The protocol must clearly address how patients are monitored for efficacy, biosafety, and period, including the draft clinical follow-up plan of xenotransplantation recipients.
\nSource donor pigs fulfilling the Designated Pathogen-Free (DPF) status have been available from a closed colony by GMP(Good Manufacturing Practice) rigorous routines, operational SOPs and rigorous data retention. Above all are very important for the operation of GMP barrier facility for biosafety of DPF source pig. A list of designated pathogens has been excluded from the DPF donor pig by long-term monitoring program of microbiological surveillance and pathological diagnosis. In addition, the consistently known DPF animals should be bred, grown and developed normally in the closed colony.
\nThe authors would like to thank Pengfei Rong, Xiaoqian Ma, Cejun Yang, Qiong Dong, Shengwang Zhang, Qian Fang, and Chang Xu for their assistance with this chapter.
\nThe authors declare no conflict of interest.
From the application in textiles, uses of natural dyes also extend to colouration of food and in other areas like medicines, cosmetics, and procession of leather products. Several sources of natural colorants used in the past have been re-identified today. Many are common and play a dual role in colouration of textiles as well as food products and drinks. Some dye-yielding plants contain compounds like curcumin, crocin, bixin, carthamin, punicalagin, nimbin that are known to have therapeutic properties and are used in various traditional medicinal therapies. Their inherent functional properties like antimicrobial, antifungal, deodorizing, UV protection, moth/insect-repellent, and others allow them to enhance the value of the dyed textiles, or the colored food products. This chapter deals with some selected natural colorants widely used in the textiles and food sectors and documents their chemistry, extraction process, application, usage and properties, separately, in relation to textiles and food. Few case studies on colourimetric measurements and analysis of functional properties of natural dyes on textiles and food are also discussed.
Natural dyes for textiles are dyes or colorants derived from plants, invertebrates, or minerals. From the plant source, colors are extracted from seeds, roots, stems, barks, leaves, flowers, berries, and fruits. In addition to the natural vegetable coloring matter, animal/insect coloring matter like tyrian purple, cochineal, lac and kermes, and mineral coloring matter derived from ocher, limestone, manganese, cinnabar, azurite, and malachite are also used to produce natural effects on the fabrics. With the advent of synthetic dyes, natural dyes faded into oblivion. But now with several advantages like fast and durable colors coupled with replaceable, biodegradable, and fairly non-polluting nature over the synthetic ones, natural dyes are making a comeback.
Different natural dyes yield different colors–yellow (kamala seed pods, myrobolan fruit); mustard yellow (latex from the gamboge tree); yellow to orange (pomegranate rind, turmeric, and lichens); peach to brown (chestnut hulls); orange (gold lichen, carrot and onion skin); pink (berries, rose and beets); crimson to maroon (teak leaves and cochineal); orange, pink and red (madder root); red to brown (bamboo and hibiscus flower); brown (catechu bark and coffee beans); red to purple (red sumac berries, basil leaves, hibiscus flower, logwood, lac); purple (red cabbage and murex snails), blue (indigo leaves), green (sorrel roots, spinach, and peppermint leaves); yellow, gray to black (black berries, iris root, and walnut hulls) and sepia brown (octopus/cuttlefish).
Different compounds are present in natural dye sources that impart a variety of colors on textiles; indigotin (blue and purple), anthraquinones (shades of red), carthamin from safflower (red and yellow shades), naphthoquinone (orange, red, or reddish-brown shades), flavonoid dyes (yellow to greenish-yellow and brown colors), carotenoid (orange), tannins (different colors with different mordants) and curcumin (yellow shades).
Color is the prime sensory attribute of foods and is often used by consumers as an indicator of food quality in terms of flavor, safety, and nutritional value. Food colors are dyes, pigments, or other substances that impart color when added to a food product or a drink. Such additives make the food more attractive, appealing, and appetizing; provide color to colorless foods or enhance their natural color; offset color that is lost on exposure to air, moisture, high temperature, light, and unfavorable storage conditions; and allows the consumers to identify products on sight. Thus, one of the main applications of food colorants is the modification or preservation of its visible appearance.
Food colors can be obtained naturally as extracts from natural sources, or they can be synthesized. Natural food colors are usually extracted from seeds, fruits, vegetables, leaves, insects, algae, etc., and are used both in domestic cooking and commercial food production and are available in many forms such as liquids, powders, gels, and pastes.
Among the natural food colorants, Asian spices like turmeric and saffron are used in everyday cooking; they lend an appeasing color to the food. Saffron, as a spice finds its use in biryanis and as colorants in dairy products. Caramel is mostly used to enhance flavor in deserts. Hibiscus is a commonly used bakery product and tea-based beverage to enhance the brown tint. Marigold does not have extensive use but the petals are sometimes used to enhance colors in salads. Beet juice has several applications in many beverages, dairy products, yoghurt ice cream, sauces, jams, jellies, and candies.
Different sources of natural colorants yield different colors; dark yellow is obtained from turmeric; yellow-orange from saffron; orange from carrots, red pepper/paprika, and sweet potato; pink from strawberries and raspberries; red from carrot, beets, and tomato; deep red from beetroot and red sandalwood; green from matcha and spinach; blue from red cabbage mixed with baking soda; purple from blueberries and purple sweet potato; brown from coffee, tea, and cocoa; and black from activated charcoal and squid ink.
A variety of compounds present in natural dye sources are responsible for different colors. Anthocyanins (flavonoids) found in fruits and vegetables are responsible for blue, purple, red, and orange colors. Carotenoids in fruits and vegetables are known for imparting red, orange, and yellow colors. Betalains present in most caryophyllales plants give a pink to red color. Curcumin is responsible for the yellow color of turmeric. Safflower gives an attractive yellow color. Chlorophylls from alfalfa (
The appearance of a textile or food material is ascertained through its surface color and is the first sensation perceived by the consumer to judge its acceptability. The color of an opaque object is described by the reflectance of light as a function of its wavelength. The human eye is versatile and can detect light and light modification by the colorant and this is interpreted by the brain as color. For any color to be perceived by a human eye, a source of light, an object, and an observer is required.
Color measurement of products can be carried out in two ways; by visual evaluation or through instrumental analysis. The chromatic attributes and different geometric factors like texture, shape, etc. of foodstuffs can be assessed qualitatively by the human eye. In this process, the observer assesses the color of the sample under standard conditions of illumination, and after comparison with defined color standards; the assessment is defined in terms of some scores generally on a 9-point scale. One of the most popular scales is the 9-point Hedonic scale in which the products can be marked from 1 to 9 depending on the appearance and acceptability rate of the food product. A lower score indicates low and least acceptable color intensity; while a high score denotes high color intensity or acceptable appearance. Such visual assessment is subjective, relative, and is dependent on the observer and environmental conditions. On the other hand, the presence of color pigments can be also be quantitatively assessed using different types of equipment. But each instrument measures only one attribute at a time and so several instruments may be needed to measure various aspects of visual perception. Basically, there are three types of instruments that measure color or its attributes, colourimeter, spectrophotometer, and spectroradiometer.
Liquid chromatography is a method for separating, identifying, and quantifying the constituents of a mixture. The interaction of the sample with the mobile and stationary phases causes this separation. Because there are so many distinct stationary/mobile phase combinations that can be used to separate a mixture, chromatography is divided into various categories based on the physical states of those phases, liquid, and gas. Liquid–solid column chromatography is the most common chromatography technique that uses a liquid phase (mobile) that filters down through the solid stationary phase, bringing the separated components with it. To separate the components that make up a sample, high-pressure liquid chromatography (HPLC) uses pumps to push a pressurized liquid solvent containing the sample mixture through a chromatography column loaded with solid absorbent materials. Each component in the sample interacts with the adsorbent material in a slightly different way, resulting in varying flow rates and separation of the components as they flow out of the column. The type of chromatography column employed determines how different chemicals are separated. Several different types of columns (size exclusion, ion exchange, normal phase, reverse phase) are used. Once the molecules make it through the column, they will be detected by a detector, which is typically a UV detector, but other detectors such as refractive index detectors, laser light scattering detectors, fluorescence detectors, and thermal conductivity detectors are also used. High-performance liquid chromatography (HPLC) is considered the ‘gold standard’ for measuring pigment concentrations in plant samples. A major drawback of this process is its high cost both in terms of time required for assessment, and the high cost of the testing equipment itself. Liquid chromatography can be combined with mass spectrometers (LC–MS) to analyze organic and inorganic compounds of biological origin. While liquid chromatography may separate mixtures with several components, mass spectrometry can identify the individual components’ structural identity with high molecular specificity and detection sensitivity.
Colorimetric or spectrophotometric analysis is another technique to evaluate color in textiles or food. Because the amount and color of light absorbed or transmitted through a solution is dependent on the concentration of pigment particles present in it, such measurements rely on detecting the concentration of material (color/pigment) in a solution. Such color evaluation measures the change in the intensity of electromagnetic radiation in the visible wavelength area of the light spectrum after it is transmitted or reflected by the object or solution through which it passes. A colorimeter or spectrophotometer thus assesses the color in various sample solutions (dyes in textiles, or colorants in food) by absorbing a particular wavelength of light and denotes the assessment in the form of some values using the Beer–Lambert law. Under Beer’s law of photometry, the amount of light absorbed is proportional to the solute concentration present in the solution. According to Lambert’s law, the amount of light absorbed is proportional to the length as well as thickness of the solution taken for analysis or in other words, when light passes through a medium, its absorption is proportional to the intermediate convergence. Beer’s law and Lambert’s law are usually taken in combination as Beer–Lambert law which indicates the relationship of absorbance with both the path length of light inside the sample and the concentration of the sample.
Thus, the principle of operation of a colorimeter is outlined as follows—in a colorimeter a beam of light of a given wavelength is directed toward a liquid sample (of the dyes in textiles, or colorants in food). While passing through a solution in the colorimeter, the beam of light travels through a series of lenses, and the photocell is able to detect the amount of light passing. The current produced by the photocell depends on the quantity of light striking on it; higher the concentration of the colorant/pigment in the solution, the higher is the absorption of light and consequently less transmission. Thus, less light passing through the solution would indicate the creation of less current by the photocell [1]. The colorimeter can qualitatively detect the presence of color pigment in a sample when the wavelength peak detected in the experimental sample matches with the peak (λmax) of the standard pigment.
The colorimeter can also measure the amount of pigment present in the sample. In this case, calibration curves can be made using the different concentrations of the standard solution of the pigment. With the help of a calibration curve, the amount of pigment present in the sample can be estimated. In case standard solutions are not present, then various equations can be formulated using extinction coefficients, molecular weight, etc. to ascertain the amount of dye pigment in the sample.
When items are viewed under different sources of light and illuminations, their colors are frequently diverse. The discrepancy is due to differences in the spectral power distribution of the illuminations as well as changes in the lighting. An illuminant is a specific spectral power distribution incident on the object viewed by the observer, whereas a source is a physical emitter of radiant energy, such as a lamp or the sun and sky. As a result, a single source of light can provide several illuminants. Illuminants can also have a variety of spectrum power distributions. Numerical specification of color was earlier visualized by chromaticity diagram and the three chromaticity coordinates (x, y, and z) were calculated by the use of the three tristimulus values that represent the amount of standard lights (red, green, and blue) required to reproduce a color.
Over time, a slew of alternative color appearance models have arisen, as well as a numerous new color measurement related terms. To represent the color of an item, several color coordinate systems can be employed, including RGB (red, green, and blue), Hunter Lab, Commission Internationale de l’Eclairage’s (CIE) L*a*b*, CIE XYZ, CIE L*u*v*, CIE Yxy, and CIE LCH. Almost of modern color measurement is based on experimental observations in accordance with the CIE (International Commission on Illumination) color specification system. The human eye has three color receptors: red, green, and blue, according to CIE principles, and all colors are combinations of these.
Color evaluation methods such as the Hunter Lab L*,a*,b* and the modified CIE system known as CIELAB are widely used in the food and textile industries. They were created as a result of investigations that correlated tristimulus values with visual perceptions of color in order to convert the X, Y, Z system (tristimulus values) to a visually uniform color-system. Each color can be considered equivalent to a member of the greyscale lying between black and white, according to L*, which is an approximate measurement of brightness. As a result, the L value for each scale reflects the level of lightness or darkness, whereas the a and b values indicate redness or greenness, respectively. Hunter L, a, b is a color scale based on the opponent-color theory which states that color receptors in the human eye see color as pairs of opposites: light–dark, red-green, and yellow-blue. To fully define the color of an object, all three values are required. The scale consists of two color coordinates, a* and b*, as well as a psychometric index of lightness i.e. L*. The parameter a* is positive for reddish colors and negative for greenish colors, whereas the parameter b* is positive for yellowish colors and negative for bluish colors. L* is an approximate measurement of luminosity according to which each color can be considered as equivalent to a member of the greyscale lying between black and white. Thus, the L value for each scale, therefore, indicates the level of lightness or darkness; the values indicate redness or greenness, and the b values yellowness or blueness. The CIE 1976 L*a*b* color or modified CIE system called CIELAB was recommended by the CIE in 1976 to improve on the 1966 version of the Hunter L, a, b. The CIELAB color scale, like the Hunter, expresses color as three values: L* for perceived brightness, a* and b* for the four distinct hues of human vision: red, green, blue, and yellow. Under the two color scales, however, three values of L, a, and b are determined differently; the formulas for Hunter L, a, and b are square roots using CIE XYZ, whereas CIELAB uses cube roots of XYZ. The CIELAB color scales were designed to be a perceptually uniform space in which a given numerical change correlates to a corresponding perceived change in color, and so provides a better approximation to the visual judgment of color difference for very dark hues. Despite the fact that the LAB space is not genuinely perceptually uniform, it is valuable in the industry for detecting minute color changes. Because the CIE L*a*b* scale, which was released in 1976, has gained popularity, the Hunter color scale is no longer as widely used as it once was. Although CIE measured the single color space, it was not truly uniform visually throughout the color space and could not define color-difference in a singular term i.e. two colors cannot be red and green at the same time or yellow and blue at the same time. It meant that equal color difference magnitude appear of different visual magnitudes in different regions of the color space. For this reason, the CMC equation (Color Measurement Committee) or color difference (ΔE* or DE*) formula which takes the non-uniformity of the color space into account is used to assess the difference between two colors and is more preferred in textiles color assessment today. The CMC equation corrects the CIELAB color scale’s most significant flaw, which is chroma location dependency.
The total color difference, ∆E, may also be calculated. A comparison of two colors is used to determine this color difference (ΔE* or DE*). One is designated as the standard (or target), and the other as the sample. ∆E is a single value that takes into account the differences between the L, a, and b of the sample and standard. The delta values (∆L, ∆a, and ∆b) show how far a standard and sample differ in terms of L, a, and b. Different color difference formulae are used to calculate the numerical color difference between two colors.
ΔL* (L* sample - L* standard) = difference in lightness & darkness (+ve = lighter, −ve = darker)
Δa* (a* sample - a* standard) = difference in red & green (+ve = redder, −ve = greener)
Δb* (b* sample - b* standard) = difference in yellow & blue (+ve = yellower, −ve = bluer)
Deltas for L* (ΔL*), a* (Δa*) and b* (Δb*) may be positive (+) or negative (−). Whether the sample is redder or greener than the standard is indicated by the sign of the delta value. For example, a sample will be redder than the standard if ∆a is positive. The total difference, Delta E (ΔE*) is always positive. For the delta values, tolerances can be established. Out-of-tolerance delta values indicate that the discrepancy between the standard and the sample is too great. If ∆E is out of tolerance, it is difficult to know the parameter that is out of tolerance. It can also be deceiving in situations when L, a, or b are out of tolerance but E is still within it.
Color values of textiles are also assessed in terms of K/S (Kubelka-Munk) values where higher values represent darker and more saturated colors. K/S values are usually calculated at the wavelength of maximum absorption of the color (λmax); however, a calculation over the visible region may also be employed. The Kubelka-Munk equation is as follows:
Where K: is the constant related to light absorption of the dyed fabric; S: is the constant related to light scattering of the dyed fabric; R: is the reflectance of the colored fabric that is expressed in fractional form.
The objective measurement of color is thus dependent on the quantification of the light source (E), the object’s reflectance (percent R), and the observer’s color response functions r-g-b. In food products, color quality is either measured on a spectrophotometer and expressed in terms of the chromatic attributes (L*, a*, b*) as proposed by CIE, or in terms of tint values measured using a tinctometer and interpreted as color ratio between yellow and red pigments (R and Y values). Colors on textiles can be characterized by hue (dominant shade); the amount of color present or saturation; and by the degree of lightness or darkness of the particular color. Thus in textiles color values are generally expressed in terms of the color strength (K/S values), color difference (ΔE), chromatic attributes (L*, a*, b*), as proposed by CIE and Metamerism Index (MI). Based on the respective magnitudes of ΔE, ΔC, ΔH, MI, a newer empirical index CDI (Color difference index) of assessing color for a binary mixture of dyes has also been postulated [2].
Turmeric is derived from the tuberous rhizome of the Zingiberaceae family.
Turmeric has a volatile oil that contains turmerone, as well as other coloring compounds called curcuminoids mainly concentrated in the rhizome. Curcuminoids (1,7-bis 4-hydroxy-3-methoxyphenyl-1,6-heptadiene-3,5-dione) are natural antioxidants and curcumin is the principal curcuminoid present in turmeric. The other two curcuminoids are desmethoxycurcumin and bis-desmethoxycurcumin. Curcumin is a polyphenol and the principal coloring component of this yellow dye which has been also been classified as CI Natural Yellow 3 and considered a direct type of dye. Curcumin can be found in two different tautomeric forms: keto and enol. In the solid-state and in solution, the enol form is more energetically stable [4]. The chemical structure of curcumin is different under different pH and hence it can be used as an indicator. It remains yellow in an acidic medium, while when added to an alkaline medium above pH 8, the shift of the hydrogen atom causes the compound to change color giving a red hue. It is not soluble in water (acidic and neutral pH) at room temperature but is soluble in oil and alcohol. Curcumin also has fluorescence qualities, which extends the active life of these molecules and increases the chances of contact with oxygen in the air, making them more susceptible to photochemical oxidation. [5]. A relationship exists between the curcumin content and the L*a*b* values [6] and high curcumin content is associated with high L* (lighter) and b* (yellower) values, but with lower a* (less red) value. Where a* and b* values are high, the resultant shades are red and yellow respectively, while when both a* and b*values are similar, the resultant shade is orange (Table 1).
Curcumin content in different types of turmeric | L | a* | b* |
---|---|---|---|
3.5 | 32.6 | 39.1 | 31.5 |
3.8 | 36.6 | 28.4 | 36.1 |
4.3 | 46.3 | 22.1 | 42.0 |
5.1 | 54.7 | 17.5 | 46.1 |
Variation in color values with respect to changing curcumin content in turmeric taken from difference sources.
Very few studies have been reported on dyeing of textiles with turmeric. Cotton was dyed with purified ethalonic extract of turmeric by the exhaust technique [7]. Enhancement of dye uptake and wash fastness of cotton was achieved through modification with enzymes and chitosan [8], irradiation with gamma rays [9], and microwaves [10] before dyeing. Silk was dyed with
Turmeric yields a warm gold color on undyed natural cotton fabrics, silk, and wool. It gives a wide range of yellows without mordants. With mordants (metal salts), it gives colors like golden yellow (tin), mustard yellow (copper and chromium), and olive green (iron). Its wavelength of maximum absorption (λmax) is 420 nm [14] or 450 nm [15] indicating that the dye can absorb color in the blue end of the spectrum. The wavelength of maximum absorption for turmeric is.
Maximum yield (highest absorbance) of color from turmeric was obtained at pH - 6 at 100°C [16] indicating that the dye can be extracted under very mild acidic or neutral conditions. Also, maximum extraction occurs at high (boiling) temperatures [5]. The solvent extraction process gave maximum yield followed by aqueous extraction, but the purest form was obtained by spray drying [14].
Color strength (K/S) value of the dyed fabric was maximum in pH 7 [7]. Good color strength was observed by dyeing fabric irradiated at 65°C for 40 min in dyeing bath having pH 6 [10]. Glauber’s salt tends to neutralize or reduce the negative electric charge (zeta potential) of cotton fabric, thus facilitating the approach of the dye anions to the fabric within the range of formation of hydrogen and other bonds between the dye molecules and fabric and thus the color strength of cotton dyed with turmeric extract increases with increase in salt concentrations [5].
In general, turmeric is a fugitive dye and bleeds easily. Turmeric exhibits poor washing fastness due to the phenolic groups present in curcumin which reacts with soda ash (in washing liquor) forming curcumin salt that is soluble in water and hence can be easily washed out from the dyed fabric. The poor light fastness of turmeric is attributed to the inherent susceptibility of its chromophore to photochemical oxidation. However, both the wash and light fastness of textiles dyed with turmeric can be improved through mordanting. The improvement in light fastness can be attributed to the reduced susceptibility of the turmeric dye chromophore to photochemical oxidation in the presence of mordant. Though dyeing with turmeric exhibits good fastness to rubbing, a decrease is noted both in the dry and wet rubbing fastness in the presence of the mordant.
Turmeric also has antibacterial and anti-inflammatory effects. Natural colorants extracted from turmeric exhibited excellent antimicrobial activities and related wound healing properties [17]. Silk fabrics dyed with an extract from
Turmeric (
Treatments | Mordanting time | ||
---|---|---|---|
1 hour | 3 hours | 5 hours | |
Unmordanted sample | 4.0 | ||
Cotton pre-mordanted with Colocasia | 4.1 | 4.5 | 5.1 |
Cotton pre-mordanted with Lemon | 7.0 | 7.3 | 8.6 |
Cotton pre-mordanted with potassium dichromate | 7.5* | — | |
Cotton pre-mordanted with potash alum | 4.0* | — | — |
Surface color strength of cotton dyed with turmeric pre-mordanted with different mordants for different time duration.
for 1 hr. 50 min
Aqueous extract of turmeric was used to dye cotton fabric using aluminum sulphate as a mordant [15]. The effect of different mordanting techniques (per, post, and simultaneous) on the surface color strength of the fabric was evaluated (Table 3). Simultaneous dyeing and mordanting sequence gave maximum dye uptake probably due to the mordanting of cotton with aluminum sulphate mordant and formation of a complex between the color component of the dye curcumin and the metal mordant. Also, turmeric being a direct type of dye exhausted well in the presence of a salt-like alumnium sulphate (mordant) and hence simultaneous mordanting sequences gives better results (K/S).
Mordanting Technique | K/S at λmax (450 nm) |
---|---|
Pre | 0.4 |
Post | 0.3 |
Simultaneous | 1.5 |
Surface color strength (K/S) of cotton dyed with aqueous extract of turmeric using aluminum sulphate as a mordant by the different mordanting sequences.
New and uncommon compound shades were developed through combination dyeing of the cotton combination of turmeric (yellow dye) with using madder (red dye), and turmeric (yellow dye) with red sandalwood (red dye) in different proportions by the different mordanting and dyeing process. A synergistic effect in the color interaction between the observed and calculated K/S values (calculated values were derived by adding the individual K/S value of the respective proportion of the two dye components on the fabric) was observed; the observed K/S values of the dyed cotton samples were always higher than the calculated or expected K/S values indicating the color value of the mixed dye system to be always higher. Also, an increased amount of turmeric in the mixture increased the dye uptake (K/S) values (Table 4).
Dye | Amount of dye when used singly | Proportional ratio of the dye in the mixture | Calculated value for the combined shade | Observed value for the combined shade | ||||
---|---|---|---|---|---|---|---|---|
100 | 75 | 50 | 25 | 0 | ||||
Turmeric | — | 0.7 | 0.3 | 0.2 | — | 100:0 | — | 1.5 |
Madder | — | 0.3 | 0.3 | 0.4 | — | 75:25 | 0.7 + 0.2 = 0.9 | 1.0 |
50:50 | 0.3 + 0.3 = 0.6 | 0.9 | ||||||
25:75 | 0.2 + 0.4 = 0.6 | 0.8 | ||||||
0:100 | — | 0.6 | ||||||
Turmeric | — | 0.7 | 0.3 | 0.2 | — | 100:0 | — | 1.5 |
Red sandalwood | — | 0.3 | 0.3 | 0.2 | — | 75:25 | 0.7 + 0.2 = 0.9 | 0.9 |
50:50 | 0.3 + 0.3 = 0.6 | 0.7 | ||||||
25:75 | 0.2 + 0.3 = 0.5 | 0.6 | ||||||
0:100 | — | 0.4 |
Surface color strength (K/S) of cotton dyed with a mixture of dyes (turmeric with madder and turmeric with red sandalwood) in different proportion by the simultaneous mordanting and dyeing sequence using aluminum sulphate as a mordant.
Curcumin is a polyphenol found naturally in turmeric rhizome that has antiinflammatory, antioxidant, anticancer, and immunosuppressive activities. It is used mainly in the development of dairy products as the presence of fat (triglycerides) enhances the solubility of curcumin [21]. While few studies have been carried out on colouration of food using turmeric, most of them focus on its functional aspects. Improvement in the sensory attribute and antioxidant potential of ghee has been reported by the addition of 160–350 ppm of curcumin [22]. The turmeric powder improved the oxidative stability and microbiological quality of soft cheese [23]. Turmeric extract rich in curcumin reduced the aging of fresh lamb sausages during modified atmospheric packaging by causing less generation of related volatile compounds due to its antioxidant capacity [24]. The addition of turmeric to the dough of biscuits and breads greatly improved the antioxidant potential and organoleptic properties of breads and biscuits [25].
Turmeric when applied to food yields a bright orangish-yellow shade.
Curcumin is mainly dissolves in oils and alcohols. It is not stable at alkaline conditions especially at pH above 7.5 though it is quite stable in temperatures generally used for processing foods. Curcumin is complexed with aluminum ions as it is light sensitive.
Curcuminoids present in turmeric possesses anti analgesic, anticarcinogenic, antiinflammatory antioxidant, antiseptic properties. It also helps in the prevention, palliation, or treatment of various disorders such as diabetes, cholelithiasis, diabetes mellitus, foodborne illnesses, and circulatory disorders [26, 27, 28]. Moreover, it also acts as a potent food preservative as it slows down lipid oxidation and possesses antimicrobial activity.
The effect of heat treatment and conventional sun drying on the color of fresh turmeric rhizome was evaluated in terms of its hue, yellowness, and brightness (L*, a*, and b* color coordinates) [29]. Turmeric rhizomes were subjected to heat treatment at varying temperatures (50–100°C) for different time periods (10–60 minutes). The rhizomes were cooked at 100°C and then sun-dried for 15 days. The rhizomes were brightened (L*) and yellowed (b*) after being heated at 60-80°C. Heat treatment from 60 to 80°C increased the brightness (L*) and yellowness (b*) of the rhizomes; the values remained the same and did not change with further increase in temperature. The phenolic activity of oxidases in turmeric decreased with an increase in temperature and this led to a decrease in browning of the sample while inversely increasing its hue to a yellower shade and brightness. Though the heat treatment did not significantly decrease the concentration of curcuminoids, sun drying caused a significant reduction in curcuminoids (4–5%). Heat treatment thus enhanced the color of turmeric and maximum brightness was observed at 80°C for 30 minutes.
The impact of irradiation on the color stability of curcuminoids was examined and curcumin reagent (curcumin, DMC, and BMC; 79.4, 16.8, and 3.8% - w/w) was irradiated with fluorescent light (27 watt) for 24 hours using a household fluorescent lamp [30]. The color intensity was analyzed by measuring absorbance at 435 nm and curcuminoids before and after treatment were quantified using HPLC. Turmeric pigments (oleoresin and curcumin) were not stable under light, and their photo-degradation was lower when present in higher concentrations. An increase in concentrations of the sample (20–1000 μg/mL) resulted in a loss in color intensity of both oleoresin and curcuminoids in turmeric (Table 5).
Concentration (μg/mL) of the sample | Color intensity | |
---|---|---|
Turmeric oleoresin | Curcuminoids | |
20 | 65.4% | 63.0% |
200 | 38.9% | 46.2% |
1000 | 28.6% | 27.0% |
Loss in color intensity of different pigments (i.e. oleoresin and curcuminoids) in turmeric due to light irradiation.
Of the total carotenoid pigments present in annatto, 80% consists of the red pigment, bixin, and a yellow pigment, norbixin or orelline. Bixin is a yellowish-orange-red dye that is high in carotenoid pigments and is derived from the thin seed coat of
Concentration of bixin in mg/L extracted by the patented method | Hunter | Lovibond | ||
---|---|---|---|---|
L* | b*/a* | Y | R | |
10 | 15.2 | 2.3 | 40 | 6.0 |
20 | 14.1 | 1.9 | 40 | 8.0 |
30 | 12.9 | 1.5 | 40 | 9.0 |
40 | 12.4 | 1.3 | 40 | 10.0 |
50 | 12.2 | 1.2 | 40 | 11.0 |
100 | 9.7 | 0.8 | 40 | 17.0 |
Effect of bixin concentration on color values (hunter and Lovibond) [35].
Natural fibres like cotton [34, 36], silk [37] and wool [32] and also synthetic fibers like nylon and polyester [38] have been dyed with
Yellow and orange can be produced from
Commercial preparations consist of solutions or suspensions of the pigment in vegetable oil or as a water-soluble form in dilute alkaline solution. Content of total phenols (TP) increases with an increase in pH and higher TP contents were obtained at an extraction time of 60 h and a solvent/seed ratio of 4 ml/g of the extract [42]. The primary pigment
Extraction condition | Dye yield (g/100 g) | Bixin (g/100 g) | Norbixin (g/100 g) |
---|---|---|---|
Bixin/norbixin dye from Indian seeds by CFTRI method | 2.3 | 21.9 | 18.5 |
Low bixin/norbixin dye from Indian seeds by the special patented method | 2.0 | 13.9 | 12.4 |
High bixin/norbixin dye from Indian seeds by special patented method CFTRI method | 1.0 | 60.2 | 55.4 |
Total yield of dye with bixin and norbixin content in Indian seeds of annatto extracted by different processes [35].
Extract of annatto has remarkable antimicrobial and antioxidant properties and a study revealed that the annatto dye had a bactericidal effect and could reduce
Cotton, wool, and silk were dyed with an aqueous extract of the
Effect of enzyme treatment on the color related properties (L*, a* and b*) of cotton, wool, and silk were dyed with an aqueous extract of the
Eco-friendly bamboo fiber was dyed with
Varying Parameters | K/S at λmax | L* | a* | b* | |
---|---|---|---|---|---|
Control (desized and potash alum pre-mordanted bamboo) | 0.1 | 89.3 | −0.2 | 6.6 | |
Variation in time (in min) | 15 | 4.4 | −23.6 | 30.7 | 1.2 |
30 | 4.5 | −24.3 | 29.8 | 1.2 | |
60 | 4.7 | −24.2 | 30.0 | 39.6 | |
Variation in temperature (°C) | Ambient | 3.9 | −19.9 | 28.2 | 42.5 |
60 | 4.7 | −23.3 | 29.8 | 42.2 | |
80 | 5.6 | −25.8 | 30.8 | 42.5 | |
Variation in pH | 2 | 1.4 | −15.3 | 17.3 | 25.8 |
7 | 3.8 | −23.0 | 28.0 | 37.0 | |
10 | 6.5 | −26.5 | 33.0 | 45.8 |
K/S (color strength) and other color related parameters of bamboo fabric pre-mordanted with potash alum and dyed with aqueous extract of annatto seeds (
L* – lightness/darkness; a* – greenness/redness difference; b* – blueness/yellowness; and CDI – color difference index
Annatto (E-160B) is a natural yellow-orange dye obtained from
Annatto gives a yellow to orange-red shade on food.
Annatto is water-soluble and can be mixed with sugar powder or potassium carbonate. The pigment is not heated stable. Moreover, there is a considerable loss of pigment due to deep-fat frying at high temperatures (> 200°C). It is stable at a pH 5.0–10.
Extract of annatto seed possess antimicrobial properties and decrease the growth and activity of
Color from annatto seeds is safe for human consumption compared to the synthetic colorants commonly used in sweetmeats.
Sample | Red values | Yellow values |
---|---|---|
Commercial | 1.7–4.1 | 9.0–20.0 |
2.5 mg/kg of nor-bixin (in sugar based formulation) | 2.0 | 20.0 |
5 mg/kg of nor-bixin (in sugar based formulation) | 3.0 | 20.0 |
5 mg/kg of nor-bixin (in potassium carbonate based formulation) | 3.1 | 40.0 |
Commercial | 9.1–10.8 | 20.0–20.7 |
40 mg/kg of nor-bixin (in sugar based formulation) | 10.0 | 30.0 |
40 mg/kg of nor-bixin (in potassium carbonate based formulation) | 10.0 | 40.0 |
Tinctometer color values of commercial
The solubility of bixin in oil and norbixin in water determines its usage. Annatto dye formulations suitable for dairy products like cheese and butter were developed and compared to their commercially available counterparts [55]. Three formulations were prepared; water-soluble solution using K2CO3, oil-soluble formulation using vegetable oil, and oil/water-soluble formulation using propylene glycol solution. The formulations were applied at different concentrations in cheese and butter. Lovibond Tintometer was used to measure the color of the commercial and experimental samples. Annatto dye oil/water soluble propylene glycol formulation was found to be the most effective formulation for imparting yellow color with good brightness to various dairy products (Table 10). Butter containing 3.75 mg/kg and 5 mg/kg of oil/water propylene glycol formulation closely resembled the commercial butter samples made using synthetic dyes. In the case of cheese, creamy yellow shade imparted by oil/water propylene glycol formulation at a concentration of 3.75 mg/kg looked very similar to the color of the commercial cheese sample.
Sample | Concentration (mg/kg) | R values | Y values |
---|---|---|---|
1.2 ± 0.26 | 4.0 ± 0.36 | ||
Butter with oil soluble annatto extract formulation | 3.8 | 0.8 ± 0.17 | 2.0 ± 0.26 |
5.0 | 1.0 ± 0.17 | 3.0 ± 0.26 | |
Butter with water soluble annatto extract formulation | 3.8 | 0.9 ± 0.10 | 2.5 ± 0.26 |
5.0 | 1.0 ± 0.10 | 3.3 ± 0.20 | |
Butter with oil/water annatto extract formulation | 3.8 | 1.1 ± 0.17 | 4.0 ± 0.46 |
5.0 | 1.5 ± 0.26 | 6.0 ± 0.36 | |
1.6 ± 0.26 | 4.6 ± 0.26 | ||
Cheese with oil soluble annatto extract formulation | 3.8 | 1.1 ± 0.10 | 4.0 ± 0.17 |
5.0 | 1.3 ± 0.26 | 3.3 ± 0.20 | |
Cheese with water soluble annatto extract formulation | 3.8 | 1.2 ± 0.18 | 2.5 ± 0.26 |
5.0 | 1.2 ± 0.20 | 3.0 ± 0.30 | |
Cheese with oil/water annatto extract formulation | 3.8 | 1.4 ± 0.12 | 4.6 ± 0.21 |
5.0 | 1.8 ± 0.10 | 5.0 ± 0.21 |
Lovibond tintometer readings of commercial and experimental test samples of butter and cheese.
Cochineal is a natural dye made from the pulverized and dried corpses of a female sessile parasite found in tropical and subtropical South America and North America. Dyeing of cochineal extract is mainly practiced in Mexico and Peru. Cochineal extracts have been used over ages as colorant for food, textiles, cosmetics, pharmaceuticals, and plastic applications.
The dye has mostly been used in the dyeing of silk, wool, cotton, and natural pigments (lakes) obtained from cochineal insects were used for paintings, frescoes, and restoration processes [56]. It’s the only natural red color that’s been allowed by the FDA for use in food and cosmetics, and it’s frequently used as a substitute for the infamous Red Dye #2.
The important color producing components in cochineal extract are carminic acid, kermesic acid and flavokermesic acid [57, 58, 59]. Cochineal’s coloring ability is due to cochinealin, or carminic acid (80–86%) with anthraquinone as the chromophore and –COOH, –OH,
Carminic acid content (percent) in different types of turmeric | L | a* | Tint (A420/A500) (ratio between yellow and red pigment) |
---|---|---|---|
12.8 | 19.5 | 3.9 | 0.44 |
15.8 | 19.4 | 3.8 | 0.44 |
16.0 | 19.1 | 3.7 | 0.45 |
17.9 | 19.4 | 3.6 | 0.46 |
19.7 | 19.4 | 3.3 | 0.44 |
Variation in color values with respect to changing carminic acid n content in turmeric taken from difference different geographical origin.
Cochineal was considered as one of the great treasures of the New World in the 16th–18th centuries, and along with alkanet, madder, kermes, and lac it formed a source of natural red dye for textiles. Cochineal dyed textile fibers in intense red colors with excellent fastness and was the dyed textiles were highly prized. There are several studies on the use of cochineal for dyeing different fibers; cotton has been dyed with cochineal [62, 63] as also wool [4] and silk [64]. Cochineal extract was used to dye silk and wool by the simultaneous dyeing and mordanting process using 1 gpl and 5 gpl of the dye and 1.5 gpl potash alum and copper sulphate as mordants at pH 4 and 80°C for 90 minutes using liquor ratio 1:40 [65]. Polyamide fabric has been successfully dyed in a range of shades with cochineal using different mordants and mordanting methods [66].
Cochineal produces scarlet, crimson, orange, and other range of fuchsias, reds, and purples on textiles. Different mordants produce different shades; blue-red/reddish-purple color with alum, maroon-red with copper, purple with iron. The addition of cream of tartar into the dye bath during the dye process will shift the color from a reddish-purple to a vivid flag red color. A combination of mordants also produces different colors like rich red when tin and alum are combined, purple-red when alum and iron are combined, and fuchsia to red shades with a combination of alum and cream of tartar. Over dyeing of cochineal with madder gives a good red, whilst cochineal over-dyed with indigo yields a range of light-fast violets and purples. Cochineal carmin has a maximum absorption wavelength (max) of 520 nm [67]. When carmin is esterified, the hydroxyl groups transform to carbonyl groups, lowering the electron cloud density and resulting in light shading effects [68].
The bodies of the insect,
pH of dye-bath has a great influence on shades obtained with cochineal though they do not impact the fastness properties of the dyed textiles.
Since the phenolic groups in cochineal are acidic, carminic acid is pale orange in low pH, but it changes to red in slightly acidic and neutral pH, and finally turns violet in alkaline solution [69]. Alkaline medium is favorable for dyeing cotton fabrics with cochineal extract and pre-mordanting cotton with alum and tannic acid mordant mixture improves the color yield [63]. Carminic acid also forms complexes with several metals ions, which act as acceptors to electron donors to form co-ordinate bonds with water-insoluble dye molecules. This complex formation between the dye and the mordant shifts the maximum absorption in the visible range to higher wavelengths with an apparent increase in color intensity. Tin-based mordanting gives a brighter, but higher lightness (L*) value on wool dyed with cochineal than other mordants [70]. The pre-mordanting method is preferred for aluminum and chromium salts, while the post-mordanting method is preferred for copper, tin, and iron salts in order to improve the color yield of wool dyed with cochineal extracts [71]. Catonization of cotton fabric [72] or its treatment with chitosan [70, 73] increases the color value of the cochineal dyed fabric. The optimum dyeing conditions for dyeing cotton with cochineal has been identified as temperature −60°C, time −60 min, MLR–1:40 liquor ratio [74].
Cochineal generally dyes textiles with excellent light and wash fastness. It gave moderate to good fastness properties on cotton [74] and moderate (grade 3) to very good (grade 4–5) washing fastness, and moderate (grade 5) to excellent (grade 7–8) light fastness on wool yarns [75]. Excellent fastness properties have also been reported on wool dyed with cochineal under the influence of microwave treatment and bio-mordants like heena and pomegranate [4].
Cochineal imparted antibacterial property to wool, silk, nylon, cotton, and viscose rayon fabrics [71, 76, 77]. Nylon yarn dyed with cochineal dye showed limited antibacterial activity, which increased on mordanting with copper and tin [76]. Excellent UV protection properties (UPF > 100) were observed on wool dyed with cochineal and this was higher for copper sulpate mordant compared to alum and also improved with the increase in dye concentration [65]. UPF values for silk dyed with cochineal was less than 50 at lower concentrations of the dye, but it was very good and in the acceptable range (UPF > 50) with a higher concentration of the dye and in the presence of copper sulphate mordant [65].
Woolen yarns were dyed with an aqueous extract of cochineal in presence of five different mordants (aluminum sulphate, stannous chloride, ferrous sulphate, citric acid, and cream of tartar i.e. potassium hydrogen tartarate), singly and in combination, using the pre-mordanting method as well as simultaneous mordanting methods [75]. During dyeing, the carbonyl group (>C=O) and alpha hydroxyl groups (–OH) in the anthraquinone moiety of carminic acid/kermesic acid of cochineal forms a coordinate complex with the metal cation of the mordant. The carboxylic acid group of the cochineal dye can also tautomerize and easily ionize into carboxylate anion (–COO−) forming ionic bonding with –NH3+ group of the wool fiber. In this way, metal-dye-fiber coordination complexes are formed between the mordant, dye, and the fiber. The anthraquinone-metal combination formed by cochineal and the metal mordant causes a red and blue shift in the visible region, i.e. between 460 and 570 nm, resulting in scarlet-red to purple colors [78]. Due to the H-substitution of the hydroxyl group bonded to C5 of the dye molecule by each metallic ligand, carminic acid present in the cochineal dye induces a bathochromic shift of the main hue to red when it interacts with metal cations during mordanting [79]. This happens when the bonding occurs between the 2-hydroxy group of dye molecule and metal cation [80]. But if bonding between dye and metal ion occurs in 7-hydroxy group, the complex could induce a small blue shift [80]. The bluish-purple color was obtained on unmordanted wool and a range of colors from scarlet-red to black on mordanting with the various mordants. In the case when mordants were used in combination, the final color depended on the chelating property of the dominant mordant, which forms more coordination complexes with the cochineal dye than the other mordants. Thus, ferrous mordant combinations gave grayish chrome; stannous mordant combinations gave reddish chrome and aluminum mordant combinations gave purple chrome. The redness/greenness (a* values) values of dyed samples from both the pre-mordanting method and simultaneous mordanting procedures were positive, indicating that all colors obtained using cochineal dye were in the red-purplish range. All dyed samples irrespective of the mordanting procedures showed an increase in yellowness (b* values) after mordanting and consequently, the color of dyed samples shifted from bluish (higher negative b* values) to yellowish (lower negative or positive b* values). In the pre-mordanting method, the metal cation of the mordant probably diffused well inside the fiber matrix-forming ionic bonding with functional groups of wool fiber before dyeing. During this dyeing process, this metal cation fixed on the fiber probably formed coordinate bonding with the cochineal dye molecule resulting in more aggregation of the dye molecules with the metal cation and formation of dye-fiber-metal complex inside the fiber. Contrarily in the simultaneous dyeing and mordanting method, the coordinate complex between the metal cation and the cochineal dye molecule was probably formed both in the dye-bath as well as inside the fiber matrix leading to lesser aggregation of dye-metal complex inside the wool fiber. Thus darker shades were obtained by the pre-mordanting process and the lightness (L*) of dyed was found to be higher in the case of simultaneous dyeing and mordanting process.
Wool was dyed in purple shades with cochineal and metal mordant (aluminum sulphate) and bio-mordant (chitosan) using the pre-mordanting process [81]. Results show that K/S value of wool mordanted with chitosan was higher than when mordanted with aluminum sulphate. Dye uptake increased with an increase in the concentration of the bio-mordant but beyond 1000 mg/L concentration, the K/S decreased. The decrease in dye absorption at higher bio-mordant concentrations may be due to the aggregation of bio-mordant on the wool surface reducing the area for dye adsorption as some dye sites already occupied by the bio-mordant become inaccessible to dye molecules. Thus, by using chitosan as mordant for dyeing wool with cochineal, not only the ill effects of a metal mordant is eliminated, but appreciable depth of color is obtained with lower amounts of dye. Low dye absorption was observed for unmordanted wool at pH 7 which increases at pH 4 indicating acidic pH to be favorable for dyeing wool with this dye. Dye absorption for wool fiber is primarily controlled by ion-exchange reactions between the carboxyl group of dye and amino groups of wool. Below its isoelectric point (pH 4.2), wool, is positively charged, whereas above that point the carboxyl groups present in it render a net negative charge. As a result, at pH 6, the amino groups in wool will always be protonated (carboxylate anions). The pKa value for the carboxyl group of carminic acid in cochineal dye is 2.81, indicating that carminic acid will exist in carboxylate anion form at pH 4. As a result of its increased affinity, the weak carboxylate anion of dye substitutes that of the acid at pH 4. The anion of dye has a complicated character, and when it is bound on wool, it undergoes additional interactions with ionic forces, increasing wool’s dyeability. However, dye absorption in wool pre-treated with chitosan followed an unanticipated pattern and showed higher dye absorption at pH 7. Generally, at pH 4, bio-mordant like chitosan acts as a cationic polyelectrolyte due to protonation of its amine groups thereby significantly increasing the dye absorption capacity of treated wool and at pH 7 it has a very low positive charge. However, the reaction between cochineal and chitosan treated wool was contrary to this indicating that the contact forces them are not solely electrostatic. Hydrogen bonding formation of carminic acid with several hydroxyl and carbonyl groups reduced in the acidic media due to protonation and loss of pair electrons of amine groups of the bio-mordant, resulting in better dye absorption in neutral medium. L* (lightness/darkness) decreased on mordanting indicating darker shades on chitosn pre-mordanted wool dyed with cochineal extract. The a* values were positive indicating redder shades, which decreases on mordanting with chitosan. The b* value of wool dyed with cochineal without any mordant was negative indicating bluer tone. These values were positive and the yellowness of the shades increased (decrease in blueness) when wool was pre-mordanted with chitosan before dyeing with cochineal extract.
Carmine has a color that is similar to cured pork [82]. Cochineal-derived colors are commonly found in alcoholic beverages, yoghurts, juices, ice creams, and confectionary, but they can also be found in jams and some processed meat items [83]. Typical applications of carmine dye in food are sausages and salami displaying an intense red color [84].
Cochineal produces intense purple color and the scarlet red color is obtained on complexing with aluminum.
For foodstuffs, extraction conditions for cochineal/carminic acid generally involve acid and/or enzymatic hydrolysis with or without solid-phase extraction (SPE). Carminic acid from cochineal is precipitated onto an alumina hydrate substrate. The precipitated complex called carmine is dried, grounded, and used as a food colorant. Though insoluble in water, carmine can be rendered water-soluble by reaction with a strong alkali. The color of carmine is dependent on the pH; at pH–4 and below, it is orange in color; as pH increases, it becomes redder and bluer until it becomes purplish-red above pH–6.5. The color pigment shows excellent heat and light stability.
Although carminic acid does not produce any genotoxic or cytotoxic effects, it has been related to cause anaphylactic reactions, asthma, urticaria, and angioedema in many individuals.
Surimi, minced beef, and milk were colored with naturally occurring carminic acid to change their color. Color modulation of carminic acid and carminic aluminum lake colored surimi, minced meat, and milk through the addition of different food additives, proteins, and metal ions was assessed [85]. Carminic acid rendered a light purple color to surimi while carminic aluminum lake rendered a magenta color. Minced meat and milk turned red and gray-green respectively with carminic acid. Iron and copper changed the color of the samples significantly. Changes were also observed in the case of the presence of food additives. The presence of myofibrillar protein, whey protein isolates, and soy protein isolate changed the pH of the medium resulting in a red color. Sodium nitrite is used as a preservative in the meat industry and as a chromogenic agent as well. Carminic acid changed to yellow with the addition of sodium nitrite though no change was observed in the case of the carminic aluminum lake. Also, no change in color was observed for ascorbic acid. Due to the chelation of the dye in presence of calcium ions, the color of the foodstuff changed. Hence, this dye was not found suitable for food samples rich in calcium and iron.
Pulse polarography was used to quantify carmine food dye in strawberry-flavored milk and candies and the results were compared with the UV–visible spectrophotometric analysis [77]. A pH 2.0 Britton-Robinson (B-R) buffer solution was used to perform differential pulse polarography on a falling mercury electrode (peak at 489 mV). Strawberry flavored milk and candy samples were added into the polarographic cell containing B-R buffer (pH 2.0) and polarograms were taken. The concentrations were measured using the standard addition method. To compare the validity of this electroanalytical method, the samples were analyzed using UV–visible spectrophotometry (Figure 2). The relationship between the peak current and carminic acid concentration was linear in the range of 1 μM to 90 μM with a detection limit of 0.16 μM. The results of both methods showed similar accuracy and precision. The pulse polarographic method was advantageous as it showcased high sensitivity, low limit of determination, simple instrumentation, and easy operation (Table 12). The UV-vis curves with the peak of maximum absorbance of turmeric [7], annatto [41] and cochineal [75] along with chemical structures of the main coloring component present in turmeric [9], annatto [50] and cochineal [58] are given in Figure 2.
UV–vis curves in the visible range with λmax values of aqueous extracts, and chemical structures of the coloring pigments present in the source of different natural colors.
Sample | Concentration of carminic acid | |
---|---|---|
Differential Pulse Polarography | UV- visible spectrophotometry | |
Milk (μg carminic acid /mL milk) | 121 ± 4 | — |
Candy (mg carminic acid/g candy) | 28.4 ± 1.5 | 27.1 ± 2.5 |
Determination of carminic acid in strawberry-flavored milk and candy using differential pulse polarography and UV–visible spectrophotometry.
With the introduction of synthetic dyes like aniline, alizarin, and indigo in the mid-1800, natural dyes lost their economic and commercial significance. Synthetic dyes now dominate the market due to their wide range of colors, ease of production, and excellent fastness features. Existing limitations and technical problems in the procurement of natural dyes have further compelled the shifting of focus from natural dyes to synthetic dyes. However, within a period of 150 years, some serious drawbacks associated with synthetic dyes have come to light; synthetic dyes are suspected to release harmful chemicals that are allergic, carcinogenic, and detrimental to human health. The use of eco-friendly natural dyes that are fairly non-polluting, automatically harmonizing, more challenging, and have rare color ideas in textile and food applications is now becoming increasingly popular due to the strict environmental requirements set on the harmful chemicals used in synthetic dye production. Renewability and eco-friendliness are the two major reasons that have led to the revival of these dyes and their gradual replacement with synthetic colorants.
IntechOpen - where academia and industry create content with global impact
",metaTitle:"Team",metaDescription:"Advancing discovery in Open Access for the scientists by the scientist",metaKeywords:null,canonicalURL:"page/team",contentRaw:'[{"type":"htmlEditorComponent","content":"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\\n\\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\\n\\nBut, one thing we have in common is -- we are all scientists at heart!
\\n\\nSara Uhac, COO
\\n\\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\\n\\nAdrian Assad De Marco
\\n\\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\\n\\nDr Alex Lazinica
\\n\\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\n\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\n\nBut, one thing we have in common is -- we are all scientists at heart!
\n\nSara Uhac, COO
\n\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\n\nAdrian Assad De Marco
\n\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\n\nDr Alex Lazinica
\n\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"-totalCites"},profiles:[{id:"131328",title:"Prof.",name:"Abdennasser",middleName:null,surname:"Chebira",slug:"abdennasser-chebira",fullName:"Abdennasser Chebira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131328/images/system/131328.jpg",biography:"Dr. Abdennasser Chebira received his Ph.D. degree in Electrical Engineering and Computer Sciences from PARIS XI University, Orsay, France, in 1994. Since September 1994 he works as Professor Assistant at Sénart Institute of Technology of PARIS XII – Val de Marne University. He is a staff researcher at Images, Signal and Intelligent Systems Laboratory (LISSI / EA 3956) of this University. His current research works concern selforganizing neural network based multi-modeling, hybrid neural based information processing systems; Neural based data fusion and complexity estimation.",institutionString:null,institution:null},{id:"262400",title:"Dr.",name:"Thiago Lopes",middleName:null,surname:"Rocha",slug:"thiago-lopes-rocha",fullName:"Thiago Lopes Rocha",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"327936",title:"Dr.",name:"Mohamed",middleName:null,surname:"Anli",slug:"mohamed-anli",fullName:"Mohamed Anli",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"197120",title:"Mr.",name:"Habib Ur",middleName:null,surname:"Rehman",slug:"habib-ur-rehman",fullName:"Habib Ur Rehman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"328192",title:"Dr.",name:"Sameer",middleName:null,surname:"Kumar",slug:"sameer-kumar",fullName:"Sameer Kumar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"1024",title:"Dr.",name:"Keinosuke",middleName:null,surname:"Matsumoto",slug:"keinosuke-matsumoto",fullName:"Keinosuke Matsumoto",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Osaka Prefecture University",country:{name:"Japan"}}},{id:"66560",title:"Dr.",name:"Nicole",middleName:null,surname:"Verrills",slug:"nicole-verrills",fullName:"Nicole Verrills",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Newcastle Australia",country:{name:"Australia"}}},{id:"197632",title:"Ph.D.",name:"Karolína",middleName:null,surname:"Barinková",slug:"karolina-barinkova",fullName:"Karolína Barinková",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Pavol Jozef Šafárik",country:{name:"Slovakia"}}},{id:"328704",title:"Dr.",name:"Esther",middleName:null,surname:"Carrillo-Pérez",slug:"esther-carrillo-perez",fullName:"Esther Carrillo-Pérez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidad de Sonora",country:{name:"Mexico"}}},{id:"66816",title:"Dr.",name:"Iwao",middleName:null,surname:"Emura",slug:"iwao-emura",fullName:"Iwao Emura",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"67072",title:"Mr.",name:"Matthew",middleName:null,surname:"Lorenzi",slug:"matthew-lorenzi",fullName:"Matthew Lorenzi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"The Bristol-Myers Squibb Children's Hospital",country:{name:"United States of America"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6674},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2461},{group:"region",caption:"Asia",value:4,count:12719},{group:"region",caption:"Australia and Oceania",value:5,count:1018},{group:"region",caption:"Europe",value:6,count:17724}],offset:12,limit:12,total:134203},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11843",title:"Abortion Access",subtitle:null,isOpenForSubmission:!0,hash:"e07ed1706ed2bf6ad56aa7399d9edf1a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11843.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11809",title:"Lagomorpha",subtitle:null,isOpenForSubmission:!0,hash:"1e8fd5779205c16e5797b05455dc5be0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11809.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11773",title:"Archaeology - Challenges and Updates",subtitle:null,isOpenForSubmission:!0,hash:"17d91462fa926279f65164ac0d5641cd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11773.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11850",title:"Systemic Sclerosis",subtitle:null,isOpenForSubmission:!0,hash:"df3f380c5949c8d8c977631cac330f67",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11850.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:61},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:108},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:672},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4433},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1375",title:"Fabric Engineering",slug:"fabric-engineering",parent:{id:"296",title:"Textile Engineering",slug:"textile-engineering"},numberOfBooks:6,numberOfSeries:0,numberOfAuthorsAndEditors:106,numberOfWosCitations:629,numberOfCrossrefCitations:249,numberOfDimensionsCitations:684,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1375",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7242",title:"Engineered Fabrics",subtitle:null,isOpenForSubmission:!1,hash:"757cc326df7bcca72c8c850d9f4f71d1",slug:"engineered-fabrics",bookSignature:"Mukesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/7242.jpg",editedByType:"Edited by",editors:[{id:"36895",title:"Dr.",name:"Mukesh Kumar",middleName:null,surname:"Singh",slug:"mukesh-kumar-singh",fullName:"Mukesh Kumar Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2201",title:"Woven Fabrics",subtitle:null,isOpenForSubmission:!1,hash:"ddd72a2f1d7d44072bbedcf459e4e940",slug:"woven-fabrics",bookSignature:"Han-Yong Jeon",coverURL:"https://cdn.intechopen.com/books/images_new/2201.jpg",editedByType:"Edited by",editors:[{id:"114618",title:"Prof.",name:"Han-Yong",middleName:null,surname:"Jeon",slug:"han-yong-jeon",fullName:"Han-Yong Jeon"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"276",title:"Textile Dyeing",subtitle:null,isOpenForSubmission:!1,hash:"f8f404dbb188c5b04e3f1f3a72ba0c11",slug:"textile-dyeing",bookSignature:"Peter J. Hauser",coverURL:"https://cdn.intechopen.com/books/images_new/276.jpg",editedByType:"Edited by",editors:[{id:"32094",title:"Prof.",name:"Peter",middleName:null,surname:"Hauser",slug:"peter-hauser",fullName:"Peter Hauser"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1351",title:"Natural Dyes",subtitle:null,isOpenForSubmission:!1,hash:"7d629f6f80b8b30b6e437ee998c78bf5",slug:"natural-dyes",bookSignature:"E. Perrin Akçakoca Kumbasar",coverURL:"https://cdn.intechopen.com/books/images_new/1351.jpg",editedByType:"Edited by",editors:[{id:"10485",title:"Dr.",name:"Emriye",middleName:"Perrin",surname:"Akcakoca Kumbasar",slug:"emriye-akcakoca-kumbasar",fullName:"Emriye Akcakoca Kumbasar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"153",title:"Advances in Modern Woven Fabrics Technology",subtitle:null,isOpenForSubmission:!1,hash:"08f1023c560c716d157efb931e957f52",slug:"advances-in-modern-woven-fabrics-technology",bookSignature:"Savvas Vassiliadis",coverURL:"https://cdn.intechopen.com/books/images_new/153.jpg",editedByType:"Edited by",editors:[{id:"11871",title:"Dr.",name:"Savvas G.",middleName:null,surname:"Vassiliadis",slug:"savvas-g.-vassiliadis",fullName:"Savvas G. Vassiliadis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3682",title:"Woven Fabric Engineering",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"woven-fabric-engineering",bookSignature:"Polona Dobnik Dubrovski",coverURL:"https://cdn.intechopen.com/books/images_new/3682.jpg",editedByType:"Edited by",editors:[{id:"10107",title:"Dr.",name:"Polona Dobnik",middleName:null,surname:"Dubrovski",slug:"polona-dobnik-dubrovski",fullName:"Polona Dobnik Dubrovski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"23051",doi:"10.5772/21341",title:"Dyeing of Textiles with Natural Dyes",slug:"dyeing-of-textiles-with-natural-dyes",totalDownloads:48135,totalCrossrefCites:16,totalDimensionsCites:91,abstract:null,book:{id:"1351",slug:"natural-dyes",title:"Natural Dyes",fullTitle:"Natural Dyes"},signatures:"Ashis Kumar Samanta and Adwaita Konar",authors:[{id:"42763",title:"Prof.",name:"Ashis Kumar",middleName:null,surname:"Samanta",slug:"ashis-kumar-samanta",fullName:"Ashis Kumar Samanta"},{id:"50085",title:"Mr.",name:"Adwaita",middleName:null,surname:"Konar",slug:"adwaita-konar",fullName:"Adwaita Konar"}]},{id:"12253",doi:"10.5772/10465",title:"Composites Based on Natural Fibre Fabrics",slug:"composites-based-on-natural-fibre-fabrics",totalDownloads:27493,totalCrossrefCites:25,totalDimensionsCites:76,abstract:null,book:{id:"3682",slug:"woven-fabric-engineering",title:"Woven Fabric Engineering",fullTitle:"Woven Fabric Engineering"},signatures:"Gianluca Cicala, Giuseppe Cristaldi, Giuseppe Recca and Alberta Latteri",authors:null},{id:"25015",doi:"10.5772/18706",title:"Surface and Bulk Modification of Synthetic Textiles to Improve Dyeability",slug:"surface-and-bulk-modification-of-synthetic-textiles-to-improve-dyeability",totalDownloads:6721,totalCrossrefCites:9,totalDimensionsCites:36,abstract:null,book:{id:"276",slug:"textile-dyeing",title:"Textile Dyeing",fullTitle:"Textile Dyeing"},signatures:"Mazeyar Parvinzadeh Gashti, Julie Willoughby and Pramod Agrawal",authors:[{id:"32307",title:"Dr.",name:"Mazeyar",middleName:null,surname:"Parvinzadeh Gashti",slug:"mazeyar-parvinzadeh-gashti",fullName:"Mazeyar Parvinzadeh Gashti"}]},{id:"36909",doi:"10.5772/38412",title:"Microbial Degradation of Woven Fabrics and Protection Against Biodegradation",slug:"microbial-degradation-of-the-woven-fabrics-and-protection-against-biodegradation",totalDownloads:6567,totalCrossrefCites:11,totalDimensionsCites:32,abstract:null,book:{id:"2201",slug:"woven-fabrics",title:"Woven Fabrics",fullTitle:"Woven Fabrics"},signatures:"Beata Gutarowska and Andrzej Michalski",authors:[{id:"117133",title:"Dr.",name:"Andrzej",middleName:null,surname:"Michalski",slug:"andrzej-michalski",fullName:"Andrzej Michalski"},{id:"119013",title:"Dr.",name:"Beata",middleName:null,surname:"Gutarowska",slug:"beata-gutarowska",fullName:"Beata Gutarowska"}]},{id:"25012",doi:"10.5772/20458",title:"Dyeing with Disperse Dyes",slug:"dyeing-with-disperse-dyes",totalDownloads:40824,totalCrossrefCites:10,totalDimensionsCites:28,abstract:null,book:{id:"276",slug:"textile-dyeing",title:"Textile Dyeing",fullTitle:"Textile Dyeing"},signatures:"Joonseok Koh",authors:[{id:"39042",title:"Prof.",name:"Joonseok",middleName:null,surname:"Koh",slug:"joonseok-koh",fullName:"Joonseok Koh"}]}],mostDownloadedChaptersLast30Days:[{id:"23051",title:"Dyeing of Textiles with Natural Dyes",slug:"dyeing-of-textiles-with-natural-dyes",totalDownloads:48129,totalCrossrefCites:16,totalDimensionsCites:91,abstract:null,book:{id:"1351",slug:"natural-dyes",title:"Natural Dyes",fullTitle:"Natural Dyes"},signatures:"Ashis Kumar Samanta and Adwaita Konar",authors:[{id:"42763",title:"Prof.",name:"Ashis Kumar",middleName:null,surname:"Samanta",slug:"ashis-kumar-samanta",fullName:"Ashis Kumar Samanta"},{id:"50085",title:"Mr.",name:"Adwaita",middleName:null,surname:"Konar",slug:"adwaita-konar",fullName:"Adwaita Konar"}]},{id:"65122",title:"Polymeric Synthetic Fabrics to Improve Stability of Ground Structure in Civil Engineering Circumstance",slug:"polymeric-synthetic-fabrics-to-improve-stability-of-ground-structure-in-civil-engineering-circumstan",totalDownloads:1376,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Polymeric synthetic fabrics are continuous sheets of woven, nonwoven, knitted, or stitch-bonded fibers and yarns. The sheets are flexible and permeable and generally have the appearance of a fabric. Among polymeric synthetic fabrics, geosynthetics including geotextiles have special functions of separation, filtration, drainage, reinforcement, and erosion control in civil engineering applications. Also, geosynthetics such as geotextiles and geogrids are used in asphalt pavement reinforcement. An important function of these geotextiles is as cushion layers to prevent puncture of geomembranes (by reducing point contact stresses) from stones in the adjacent soil, waste, or drainage aggregate. Geotextiles, however, are made from a combination of two or more polymeric synthetic fabrics. In this chapter, geotextiles as polymeric synthetic fabrics are introduced not only for improvement but also maintaining stability of ground structure in civil engineering circumstance with their related technologies.",book:{id:"7242",slug:"engineered-fabrics",title:"Engineered Fabrics",fullTitle:"Engineered Fabrics"},signatures:"Han-Yong Jeon",authors:[{id:"114618",title:"Prof.",name:"Han-Yong",middleName:null,surname:"Jeon",slug:"han-yong-jeon",fullName:"Han-Yong Jeon"}]},{id:"23049",title:"Eco-Friendly Pretreatment of Cellulosic Fabrics with Chitosan and Its Influence on Dyeing Efficiency",slug:"eco-friendly-pretreatment-of-cellulosic-fabrics-with-chitosan-and-its-influence-on-dyeing-efficiency",totalDownloads:6393,totalCrossrefCites:2,totalDimensionsCites:3,abstract:null,book:{id:"1351",slug:"natural-dyes",title:"Natural Dyes",fullTitle:"Natural Dyes"},signatures:"Mohamed Abd el-moneim Ramadan, Samar Samy, Marwa abdulhady and Ali Ali Hebeish",authors:[{id:"37404",title:"Distinguished Prof.",name:"Mohamed",middleName:"El-Moneim",surname:"Ramadan",slug:"mohamed-ramadan",fullName:"Mohamed Ramadan"}]},{id:"23052",title:"Natural Dye from Eucalyptus Leaves and Application for Wool Fabric Dyeing by Using Padding Techniques",slug:"natural-dye-from-eucalyptus-leaves-and-application-for-wool-fabric-dyeing-by-using-padding-technique",totalDownloads:8593,totalCrossrefCites:11,totalDimensionsCites:18,abstract:null,book:{id:"1351",slug:"natural-dyes",title:"Natural Dyes",fullTitle:"Natural Dyes"},signatures:"Rattanaphol Mongkholrattanasit, Jiří Kryštůfek, Jakub Wiener and Jarmila Studničkova",authors:[{id:"40315",title:"Dr.",name:"Rattanaphol",middleName:null,surname:"Mongkholrattanasit",slug:"rattanaphol-mongkholrattanasit",fullName:"Rattanaphol Mongkholrattanasit"},{id:"87912",title:"Prof.",name:"Jiří",middleName:null,surname:"Kryštůfek",slug:"jiri-krystufek",fullName:"Jiří Kryštůfek"},{id:"87913",title:"Prof.",name:"Jakub",middleName:null,surname:"Wiener",slug:"jakub-wiener",fullName:"Jakub Wiener"},{id:"87915",title:"Dr.",name:"Jarmila",middleName:null,surname:"Studničková",slug:"jarmila-studnickova",fullName:"Jarmila Studničková"}]},{id:"25012",title:"Dyeing with Disperse Dyes",slug:"dyeing-with-disperse-dyes",totalDownloads:40823,totalCrossrefCites:10,totalDimensionsCites:28,abstract:null,book:{id:"276",slug:"textile-dyeing",title:"Textile Dyeing",fullTitle:"Textile Dyeing"},signatures:"Joonseok Koh",authors:[{id:"39042",title:"Prof.",name:"Joonseok",middleName:null,surname:"Koh",slug:"joonseok-koh",fullName:"Joonseok Koh"}]}],onlineFirstChaptersFilter:{topicId:"1375",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:320,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:16,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:23,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:8,paginationItems:[{id:"11662",title:"Limnology - The Importance of Monitoring and Correlations of Lentic and Lotic Waters",coverURL:"https://cdn.intechopen.com/books/images_new/11662.jpg",hash:"f1043cf6b1daae7a7b527e1d162ca4a8",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"315689",title:"Dr.",name:"Carmine",surname:"Massarelli",slug:"carmine-massarelli",fullName:"Carmine Massarelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11665",title:"Recent Advances in Wildlife Management",coverURL:"https://cdn.intechopen.com/books/images_new/11665.jpg",hash:"73da0df494a1a56ab9c4faf2ee811899",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 25th 2022",isOpenForSubmission:!0,editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11666",title:"Soil Contamination - Recent Advances and Future Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11666.jpg",hash:"c8890038b86fb6e5af16ea3c22669ae9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 9th 2022",isOpenForSubmission:!0,editors:[{id:"299110",title:"Dr.",name:"Adnan",surname:"Mustafa",slug:"adnan-mustafa",fullName:"Adnan Mustafa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",hash:"727e7eb3d4ba529ec5eb4f150e078523",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 22nd 2022",isOpenForSubmission:!0,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12222",title:"Advances and Challenges in Microplastics",coverURL:"https://cdn.intechopen.com/books/images_new/12222.jpg",hash:"a36734a551e0997d2255f6ce99eff818",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"347657",title:"Prof.",name:"El-Sayed",surname:"Salama",slug:"el-sayed-salama",fullName:"El-Sayed Salama"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11650",title:"Aquifers - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",hash:"27c1a2a053cb1d83de903c5b969bc3a2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 12th 2022",isOpenForSubmission:!0,editors:[{id:"271093",title:"Dr.",name:"Abhay",surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12223",title:"Sustainable Management of Natural Resources",coverURL:"https://cdn.intechopen.com/books/images_new/12223.jpg",hash:"1881a08bbd8f5dc1102c5cb7c635bc35",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 19th 2022",isOpenForSubmission:!0,editors:[{id:"144417",title:"Dr.",name:"Mohd Nazip",surname:"Suratman",slug:"mohd-nazip-suratman",fullName:"Mohd Nazip Suratman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11668",title:"Mercury Pollution",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",hash:"0bd111f57835089cad4a9741326dbab7",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 22nd 2022",isOpenForSubmission:!0,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"81996",title:"Perspective Chapter: New Active Learning Models in Africa",doi:"10.5772/intechopen.105217",signatures:"Fred Awaah, Cosmas Lambini Kombat and Emmanuel Okyere Ekwam",slug:"perspective-chapter-new-active-learning-models-in-africa",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},subseriesFiltersForOFChapters:[{caption:"Human Development",value:90,count:1,group:"subseries"},{caption:"Education",value:89,count:4,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:250,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University. His research interests include computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, intelligent systems, information technology, and information systems. Prof. Sarfraz has been a keynote/invited speaker on various platforms around the globe. He has advised various students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He is a member of various professional societies and a chair and member of the International Advisory Committees and Organizing Committees of various international conferences. Prof. Sarfraz is also an editor-in-chief and editor of various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/267434/images/system/267434.jpg",biography:"Dr. Rohit Raja received Ph.D. in Computer Science and Engineering from Dr. CVRAMAN University in 2016. His main research interest includes Face recognition and Identification, Digital Image Processing, Signal Processing, and Networking. Presently he is working as Associate Professor in IT Department, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (CG), India. He has authored several Journal and Conference Papers. He has good Academics & Research experience in various areas of CSE and IT. He has filed and successfully published 27 Patents. He has received many time invitations to be a Guest at IEEE Conferences. He has published 100 research papers in various International/National Journals (including IEEE, Springer, etc.) and Proceedings of the reputed International/ National Conferences (including Springer and IEEE). He has been nominated to the board of editors/reviewers of many peer-reviewed and refereed Journals (including IEEE, Springer).",institutionString:"Guru Ghasidas Vishwavidyalaya",institution:{name:"Guru Ghasidas Vishwavidyalaya",country:{name:"India"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:null,institution:{name:"Beijing University of Technology",country:{name:"China"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Igor Victorovich Lakhno was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPh.D. – 1999, Kharkiv National Medical Univesity.\nDSC – 2019, PL Shupik National Academy of Postgraduate Education \nProfessor – 2021, Department of Obstetrics and Gynecology of VN Karazin Kharkiv National University\nHead of Department – 2021, Department of Perinatology, Obstetrics and gynecology of Kharkiv Medical Academy of Postgraduate Education\nIgor Lakhno has been graduated from international training courses on reproductive medicine and family planning held at Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor in the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics, and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s been a professor in the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics, and gynecology department. He’s affiliated with Kharkiv Medical Academy of Postgraduate Education as a Head of Department from November 2021. Igor Lakhno has participated in several international projects on fetal non-invasive electrocardiography (with Dr. J. A. Behar (Technion), Prof. D. Hoyer (Jena University), and José Alejandro Díaz Méndez (National Institute of Astrophysics, Optics, and Electronics, Mexico). He’s an author of about 200 printed works and there are 31 of them in Scopus or Web of Science databases. Igor Lakhno is a member of the Editorial Board of Reproductive Health of Woman, Emergency Medicine, and Technology Transfer Innovative Solutions in Medicine (Estonia). He is a medical Editor of “Z turbotoyu pro zhinku”. Igor Lakhno is a reviewer of the Journal of Obstetrics and Gynaecology (Taylor and Francis), British Journal of Obstetrics and Gynecology (Wiley), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for a DSc degree “Pre-eclampsia: prediction, prevention, and treatment”. Three years ago Igor Lakhno has participated in a training course on innovative technologies in medical education at Lublin Medical University (Poland). Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: are obstetrics, women’s health, fetal medicine, and cardiovascular medicine. \nIgor Lakhno is a consultant at Kharkiv municipal perinatal center. He’s graduated from training courses on endoscopy in gynecology. He has 28 years of practical experience in the field.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"243698",title:"Dr.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:null,institution:null},{id:"7227",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Matsui",slug:"hiroaki-matsui",fullName:"Hiroaki Matsui",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tokyo",country:{name:"Japan"}}},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"27",type:"subseries",title:"Multi-Agent Systems",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",hasOnlineFirst:!0,hasPublishedBooks:!1,annualVolume:11423,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"275140",title:"Dr.",name:"Dinh Hoa",middleName:null,surname:"Nguyen",slug:"dinh-hoa-nguyen",fullName:"Dinh Hoa Nguyen",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRbnKQAS/Profile_Picture_1622204093453",institutionString:null,institution:{name:"Kyushu University",institutionURL:null,country:{name:"Japan"}}},{id:"20259",title:"Dr.",name:"Hongbin",middleName:null,surname:"Ma",slug:"hongbin-ma",fullName:"Hongbin Ma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRhDJQA0/Profile_Picture_2022-05-02T08:25:21.jpg",institutionString:null,institution:{name:"Beijing Institute of Technology",institutionURL:null,country:{name:"China"}}},{id:"28640",title:"Prof.",name:"Yasushi",middleName:null,surname:"Kambayashi",slug:"yasushi-kambayashi",fullName:"Yasushi Kambayashi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOQxQAO/Profile_Picture_1625660525470",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"82526",title:"Deep Multiagent Reinforcement Learning Methods Addressing the Scalability Challenge",doi:"10.5772/intechopen.105627",signatures:"Theocharis Kravaris and George A. Vouros",slug:"deep-multiagent-reinforcement-learning-methods-addressing-the-scalability-challenge",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",subseries:{id:"27",title:"Multi-Agent Systems"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",slug:"brain-computer-interface",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Vahid Asadpour",hash:"a5308884068cc53ed31c6baba756857f",volumeInSeries:9,fullTitle:"Brain-Computer Interface",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",institutionString:"Kaiser Permanente Southern California",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:319,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:16,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"14",title:"Cell and Molecular Biology",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression"},{id:"15",title:"Chemical Biology",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors"},{id:"17",title:"Metabolism",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation"},{id:"18",title:"Proteomics",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"July 5th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:320,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/69960",hash:"",query:{},params:{id:"69960"},fullPath:"/chapters/69960",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()