\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"6830",leadTitle:null,fullTitle:"Microemulsion - a Chemical Nanoreactor",title:"Microemulsion",subtitle:"a Chemical Nanoreactor",reviewType:"peer-reviewed",abstract:"This book aims to provide readers with some of the current trends in microemulsions as scalable chemical nanoreactors. The chapters include discussions on microemulsions as reaction media, taking advantage of both the special behavior of trapped water inside their microdroplets and their potential use as a template for nanomaterials. The information contained in this book covers topics that will be of interest to students and researchers in physical chemistry, chemical engineering, and material science. In addition, this book will serve as a tribute in memoriam to Prof. Julio Casado, Professor of Physical Chemistry at the Universities of Santiago de Compostela and Salamanca and Doctor Honoris Causa from the University of Vigo, who died on April 2, 2018. Sit tibi terra levis.",isbn:"978-1-78984-544-0",printIsbn:"978-1-78984-501-3",pdfIsbn:"978-1-78984-545-7",doi:"10.5772/intechopen.73338",price:119,priceEur:129,priceUsd:155,slug:"microemulsion-a-chemical-nanoreactor",numberOfPages:146,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"be035517764096e6f36178f12a16ab12",bookSignature:"Juan C. Mejuto",publishedDate:"September 18th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/6830.jpg",numberOfDownloads:7601,numberOfWosCitations:2,numberOfCrossrefCitations:6,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:23,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:31,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 30th 2018",dateEndSecondStepPublish:"July 31st 2018",dateEndThirdStepPublish:"September 29th 2018",dateEndFourthStepPublish:"December 18th 2018",dateEndFifthStepPublish:"February 16th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"192394",title:"Prof.",name:"Juan",middleName:"C.",surname:"Mejuto",slug:"juan-mejuto",fullName:"Juan Mejuto",profilePictureURL:"https://mts.intechopen.com/storage/users/192394/images/system/192394.jpg",biography:"Juan Carlos Mejuto is a Full Professor at the Physical Chemistry Department of the University of Vigo at the Ourense Campus. He is the head of the Colloids group at the Ourense Campus. His research interest comprises (i) physical organic and physical inorganic chemistry, (ii) reactivity mechanisms inhomogeneous and microheterogeneous media, (iii) stability of self-assembly aggregates and (iv) supramolecular chemistry.",institutionString:"University of Vigo",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"504",title:"Colloid Science",slug:"colloid-science"}],chapters:[{id:"65675",title:"Pseudophase Model in Microemulsions",doi:"10.5772/intechopen.84295",slug:"pseudophase-model-in-microemulsions",totalDownloads:1097,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"The kinetic behaviours in microemulsions can be easily modelled using an extension of the pseudophase model previously developed for micellar catalysis. This model considers that the microheterogeneous media can be considered as the sum of different conventional reaction media, where the reagents are distributed and in which the reaction can occur simultaneously. The reaction rate observed in the microheterogeneous system will be the sum of the velocities in each one of the pseudophases. This use can be considered as an extension of the pseudophase model, which has been developed for the quantitative analysis of nitrosation reactions in AOT/isooctane/water microemulsions and has been applied successfully in the literature in a large variety of chemical reactions.",signatures:"Antonio Cid, Aangel Acuña, Manuel Alonso-Ferrer, Gonzalo Astray, Luis García-Río, Jesus Simal-Gándara and Juan C. Mejuto",downloadPdfUrl:"/chapter/pdf-download/65675",previewPdfUrl:"/chapter/pdf-preview/65675",authors:[null],corrections:null},{id:"64042",title:"Nitrosation of Amines in AOT-Based Microemulsions",doi:"10.5772/intechopen.80947",slug:"nitrosation-of-amines-in-aot-based-microemulsions",totalDownloads:686,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"This chapter is a review of the kinetics of nitrosation of secondary amines by N-methyl-N-nitroso-p-toluenesulfonamide (MNTS) in AOT-based microemulsions. Three regions can be distinguished in these colloids: the internal aqueous nanocore, the micellar interface and the external organic phase. The amines were chosen on the basis of their degrees of solubility resulting in a different distribution. The MNTS has a very low degree of solubility in water and the nitrosation reactions take place at the interface of the aggregates. The polarity changes at the interface have very important effects on the chemical reactivity. This kinetic study compares the results obtained in AOT microemulsions where the polarity at the interface can be tuned by adding a cosurfactant or by changing the continuous medium.",signatures:"Pedro Rodríguez-Dafonte",downloadPdfUrl:"/chapter/pdf-download/64042",previewPdfUrl:"/chapter/pdf-preview/64042",authors:[null],corrections:null},{id:"63349",title:"Microemulsions as Nanotemplates: A Soft and Versatile Approach",doi:"10.5772/intechopen.80758",slug:"microemulsions-as-nanotemplates-a-soft-and-versatile-approach",totalDownloads:1650,totalCrossrefCites:2,totalDimensionsCites:7,hasAltmetrics:0,abstract:"Template efficacy of microemulsions in generating nanoparticles has garnered considerable attention in the world of colloidal science. A microemulsion is an optically isotropic and thermodynamically stable colloidal dispersion, which possess spherical droplets (either of W/O or O/W) of the size <50 nm. In microemulsions, the spontaneous formation of domains of nanometric dimensions significantly facilitates their exploitation as potential nanoreactors for the production of stable nanoparticles (due to their cost-effectiveness and ease of preparation). The present chapter provides an overview of microemulsions as efficient nanotemplates, with a detailed account of plausible nanomaterials, i.e., metallic nanoparticles, quantum dots, polymeric nanoparticles, mesoporous silica nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, etc. Based on the high surface area, good crystallinity, controllable particle size, outstanding catalytic, and magnetic properties, the exploitation of nanoparticles as efficient catalysts and drug delivery modules has also been highlighted.",signatures:"Rohini Kanwar, Jyoti Rathee, Madhuri Tanaji Patil and Surinder Kumar Mehta",downloadPdfUrl:"/chapter/pdf-download/63349",previewPdfUrl:"/chapter/pdf-preview/63349",authors:[null],corrections:null},{id:"63269",title:"Microemulsions as Nanoreactors to Obtain Bimetallic Nanoparticles",doi:"10.5772/intechopen.80549",slug:"microemulsions-as-nanoreactors-to-obtain-bimetallic-nanoparticles",totalDownloads:838,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Microemulsions are frequently used as nanoreactors for the synthesis of bimetallic nanoparticles. The ability to manipulate the metal distribution in bimetallic nanoparticles is essential for optimizing applications, and it requires a deeper understanding of how compartmentalization of reaction medium affects nanoparticle synthesis. A simulation model was developed to predict the atomic structure of bimetallic nanoparticles prepared via microemulsion in terms of metals employed and microemulsion composition. The model was successfully proved by comparing theoretical and experimental Au/Pt STEM profiles. On this basis, the model becomes a strong tool to further enhance our knowledge of the complex mechanisms governing reactions in microemulsions and its impact on final nanostructures. The purpose of this study is to perform a comprehensive kinetic analysis of coreduction of different couple of metals in the light of the interplay between three kinetic parameters: intermicellar exchange rate, chemical reduction rates of the two metals, and reactants concentration. The particular combination of these factors determines the reaction rate of each metal, which in turn determines the final metal arrangement.",signatures:"Concha Tojo, David Buceta and M. Arturo López-Quintela",downloadPdfUrl:"/chapter/pdf-download/63269",previewPdfUrl:"/chapter/pdf-preview/63269",authors:[null],corrections:null},{id:"63347",title:"Synthesis of NPs by Microemulsion Method",doi:"10.5772/intechopen.80633",slug:"synthesis-of-nps-by-microemulsion-method",totalDownloads:1193,totalCrossrefCites:1,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Microemulsions are self-aggregated colloidal systems that provide a controllable system with a promising application as nanoreactors: they can act as pools within which the properties of the nanoparticles can be controlled without difficulty. So in this chapter, I will deal with the metal NPs synthesized by the microemulsion method. This method allows in some cases to control the properties of size, shape, and crystal structure of the metallic NPs, thus generating with the same reagents a series of seeds of different shapes and sizes. The control of the reaction time, the temperature, and the reaction conditions will give us a production of different geometries that will find different applications in large range of research fields.",signatures:"Antonio Cid",downloadPdfUrl:"/chapter/pdf-download/63347",previewPdfUrl:"/chapter/pdf-preview/63347",authors:[null],corrections:null},{id:"64969",title:"CoMo/γ-Al2O3 Catalysts Prepared by Reverse Microemulsion: Synthesis and Characterization",doi:"10.5772/intechopen.82586",slug:"como-al-sub-2-sub-o-sub-3-sub-catalysts-prepared-by-reverse-microemulsion-synthesis-and-characteriza",totalDownloads:744,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"A series of CoMo/γ-Al2O3 catalysts was synthesized by a reverse microemulsion method using 1-butanol as organic agent and cetyltrimethylammonium bromide as surfactant. The aqueous phase was used to form the solution of three corresponding Co, Mo and Al precursor salts. The materials were prepared at different solution concentrations in order to obtain different metal contents. All samples were characterized by X-ray diffraction, Raman spectroscopy, nuclear magnetic resonance and nitrogen physisorption. A chemical species distribution study was performed to establish conditions of preparation and the preponderant species present in solution as a function of pH. The materials obtained present high surface areas which decrease as the metal content (Co + Mo) increases. All samples with the exception of that with the highest metal content were amorphous as shown by X-ray diffraction. By Raman spectroscopy, Mo-O-Mo and MoO2t species were observed in all calcined samples. Mo-O-Co, Al-O-Mo, monomers and heteropolymolybdates were observed for the lower metal content samples, and the formation of CoMoO4 and aluminum molybdate species for the higher metal contents. These results suggest that the materials with lower metal loading have species that are easily sulfidable and provide high activity in hydrodesulfurization reactions. A model for the interaction of the species in the aqueous phase of the micelle is presented.",signatures:"José Luis Munguía-Guillén, José Antonio de los Reyes-Heredia, Michel Picquart, Marco Antonio Vera-Ramírez and Tomás Viveros-García",downloadPdfUrl:"/chapter/pdf-download/64969",previewPdfUrl:"/chapter/pdf-preview/64969",authors:[null],corrections:null},{id:"66492",title:"Application of Emulsions and Microemulsions in Enhanced Oil Recovery and Well Stimulation",doi:"10.5772/intechopen.84538",slug:"application-of-emulsions-and-microemulsions-in-enhanced-oil-recovery-and-well-stimulation",totalDownloads:1396,totalCrossrefCites:3,totalDimensionsCites:11,hasAltmetrics:0,abstract:"Hydrocarbons are produced and transported in a form of mixtures containing oil, gas, and water plus organic and inorganic contaminants. The flow presence of these contaminants (emulsifiers) with the continuous agitation from reservoirs up to surface facilities leads to formation of tight emulsions that need to be dealt with carefully to treat and process them adequately. Emulsions, in the other hand, are sometimes intentionally formed for using in enhanced oil recovery (EOR) and well stimulation. In EOR, emulsions are formed and injected into the reservoirs for the objective of improving both the microscopic displacement efficiency and the macroscopic sweep efficiency, which leads to higher recovery factor. In well stimulation emulsified acids are used during matrix acidizing and acid fracturing to retard acid reaction with rocks, to generate deeper penetration inside the reservoir. Microemulsion is a form of emulsion with less droplet size, and hence higher stability, that occasionally used during EOR and hydraulic fracturing to further improve the reservoir recovery and well production rate. This chapter discusses the application of emulsions and microemulsions in petroleum industry. The chapter discusses emulsions, microemulsions, emulsification processes, application of emulsions and microemulsions in enhanced oil recovery and well stimulations, and ended with conclusions.",signatures:"Mysara E. Mohyaldinn, Anas M. Hassan and Mohammed A. Ayoub",downloadPdfUrl:"/chapter/pdf-download/66492",previewPdfUrl:"/chapter/pdf-preview/66492",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"5403",title:"Advances in Colloid Science",subtitle:null,isOpenForSubmission:!1,hash:"38413a6aefb978b024eac803fba6c354",slug:"advances-in-colloid-science",bookSignature:"Mohammed Muzibur Rahman and Abdullah Mohamed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/5403.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6519",title:"Science and Technology Behind Nanoemulsions",subtitle:null,isOpenForSubmission:!1,hash:"f4dd10764e9841064827609a62952748",slug:"science-and-technology-behind-nanoemulsions",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6519.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7735",title:"Surfactants and Detergents",subtitle:null,isOpenForSubmission:!1,hash:"bca8bb6e94e26599889ff5e1190b0ed7",slug:"surfactants-and-detergents",bookSignature:"Ashim Kumar Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/7735.jpg",editedByType:"Edited by",editors:[{id:"277477",title:"Dr.",name:"Ashim",surname:"Dutta",slug:"ashim-dutta",fullName:"Ashim Dutta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8111",title:"Foams",subtitle:"Emerging Technologies",isOpenForSubmission:!1,hash:"b0bd44cbe7220785e3fbbd1003364a82",slug:"foams-emerging-technologies",bookSignature:"Huijin Xu, Chen Yang and Dengwei Jing",coverURL:"https://cdn.intechopen.com/books/images_new/8111.jpg",editedByType:"Edited by",editors:[{id:"213843",title:"Dr.",name:"Huijin",surname:"Xu",slug:"huijin-xu",fullName:"Huijin Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"64729",slug:"erratum-toward-the-development-of-a-monitoring-and-feedback-system-for-predicting-poor-adjustment-to",title:"Erratum - Toward the Development of a Monitoring and Feedback System for Predicting Poor Adjustment to Grief",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/64729.pdf",downloadPdfUrl:"/chapter/pdf-download/64729",previewPdfUrl:"/chapter/pdf-preview/64729",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/64729",risUrl:"/chapter/ris/64729",chapter:{id:"57127",slug:"toward-the-development-of-a-monitoring-and-feedback-system-for-predicting-poor-adjustment-to-grief",signatures:"Wan Jou She, Laurie Burke, Robert A. Neimyer, Kailey Roberts,\nWendy Lichtenthal, Jun Hu and Matthias Rauterberg",dateSubmitted:"September 5th 2017",dateReviewed:null,datePrePublished:null,datePublished:"October 18th 2017",book:{id:"6456",title:"Proceedings of the Conference on Design and Semantics of Form and Movement",subtitle:"Sense and Sensitivity, DeSForM 2017",fullTitle:"Proceedings of the Conference on Design and Semantics of Form and Movement - Sense and Sensitivity, DeSForM 2017",slug:"proceedings-of-the-conference-on-design-and-semantics-of-form-and-movement-sense-and-sensitivity-desform-2017",publishedDate:"October 18th 2017",bookSignature:"Miguel Bruns Alonso and Elif Ozcan",coverURL:"https://cdn.intechopen.com/books/images_new/6456.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"156855",title:"Dr.",name:"Elif",middleName:null,surname:"Ozcan",slug:"elif-ozcan",fullName:"Elif Ozcan"}],productType:{id:"2",title:"Proceeding",chapterContentType:"conference paper",authoredCaption:"Edited by"}},authors:[{id:"221149",title:"Dr.",name:"Wan Jou",middleName:null,surname:"She",fullName:"Wan Jou She",slug:"wan-jou-she",email:"lave@lavendershe.com",position:null,institution:null}]}},chapter:{id:"57127",slug:"toward-the-development-of-a-monitoring-and-feedback-system-for-predicting-poor-adjustment-to-grief",signatures:"Wan Jou She, Laurie Burke, Robert A. Neimyer, Kailey Roberts,\nWendy Lichtenthal, Jun Hu and Matthias Rauterberg",dateSubmitted:"September 5th 2017",dateReviewed:null,datePrePublished:null,datePublished:"October 18th 2017",book:{id:"6456",title:"Proceedings of the Conference on Design and Semantics of Form and Movement",subtitle:"Sense and Sensitivity, DeSForM 2017",fullTitle:"Proceedings of the Conference on Design and Semantics of Form and Movement - Sense and Sensitivity, DeSForM 2017",slug:"proceedings-of-the-conference-on-design-and-semantics-of-form-and-movement-sense-and-sensitivity-desform-2017",publishedDate:"October 18th 2017",bookSignature:"Miguel Bruns Alonso and Elif Ozcan",coverURL:"https://cdn.intechopen.com/books/images_new/6456.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"156855",title:"Dr.",name:"Elif",middleName:null,surname:"Ozcan",slug:"elif-ozcan",fullName:"Elif Ozcan"}],productType:{id:"2",title:"Proceeding",chapterContentType:"conference paper",authoredCaption:"Edited by"}},authors:[{id:"221149",title:"Dr.",name:"Wan Jou",middleName:null,surname:"She",fullName:"Wan Jou She",slug:"wan-jou-she",email:"lave@lavendershe.com",position:null,institution:null}]},book:{id:"6456",title:"Proceedings of the Conference on Design and Semantics of Form and Movement",subtitle:"Sense and Sensitivity, DeSForM 2017",fullTitle:"Proceedings of the Conference on Design and Semantics of Form and Movement - Sense and Sensitivity, DeSForM 2017",slug:"proceedings-of-the-conference-on-design-and-semantics-of-form-and-movement-sense-and-sensitivity-desform-2017",publishedDate:"October 18th 2017",bookSignature:"Miguel Bruns Alonso and Elif Ozcan",coverURL:"https://cdn.intechopen.com/books/images_new/6456.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"156855",title:"Dr.",name:"Elif",middleName:null,surname:"Ozcan",slug:"elif-ozcan",fullName:"Elif Ozcan"}],productType:{id:"2",title:"Proceeding",chapterContentType:"conference paper",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11662",leadTitle:null,title:"Limnology - The Importance of Monitoring and Correlations of Lentic and Lotic Waters",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThe book aims to collect the state of the art of techniques and technologies for monitoring lentic and lotic environments so important for the ecological role they perform.
\r\n\r\n\tThe knowledge relating to the chemical, physical and biological characteristics of the still or slow-moving waters - the so-called "lentic environments": lakes, swamps, ponds - but also fresh and salty waters, are to be deepened. Contributions related to their interaction with lotic waters - streams, rivers - will also be well appreciated. All those elements useful to represent the quality of these environments will be considered and treated also in relation to the ecological role they play.
\r\n\r\n\tStudies based on observations made and aimed at forecasting transformations (understood as the evolution of environments over time) will be collected. We also want to collect contributions relating to the influence of the surrounding environment such as those due to human disturbance or even to causes of natural origin. In addition, also studies relating to the management of inland waters and related indicators to identify the more common problems of pollution. Finally, we also want to collect contributions relating to best practices (the most significant experiences, procedures, actions, or in any case those that have allowed the best results to be obtained in relation to the conservation of these environments) through intelligent, low-cost systems.
",isbn:"978-1-80356-537-8",printIsbn:"978-1-80356-536-1",pdfIsbn:"978-1-80356-538-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"f1043cf6b1daae7a7b527e1d162ca4a8",bookSignature:"Dr. Carmine Massarelli and Dr. Claudia Campanale",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11662.jpg",keywords:"Sampling Techniques, Water, Soil, Sediments, Ecological Networks, Ecosystem Health, Remote Sensing, Remote Environments, Temporary Environments, Geodatabase, Sensors and Cameras, Open-Source",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 10th 2022",dateEndSecondStepPublish:"May 10th 2022",dateEndThirdStepPublish:"July 9th 2022",dateEndFourthStepPublish:"September 27th 2022",dateEndFifthStepPublish:"November 26th 2022",remainingDaysToSecondStep:"9 days",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"With a Ph.D. from the University of Foggia in Italy, Dr. Massarelli is an environmental technologist and expert in the development of Smart Technologies for water management, environmental monitoring, and integration of spatial data.",coeditorOneBiosketch:"A pioneering researcher in monitoring emerging pollutants in environmental matrices and extreme environments, Dr. Camapanale received her Ph.D. degree at the University of Bari, Italy. Her multidisciplinary approach is based on analytical evidence integrated by a biological and ecological vision.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"315689",title:"Dr.",name:"Carmine",middleName:null,surname:"Massarelli",slug:"carmine-massarelli",fullName:"Carmine Massarelli",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002qpfU1QAI/Profile_Picture_1640002411379",biography:"Dr. Carmine Massarelli (Environmental technologist at Italian National Council of Research, Water Research Institute)is an expert in the development of Smart Technologies for water management and environmental monitoring, characterization and monitoring of contaminated and degraded sites, integration of spatial data such as standard methodologies, interoperability and data infrastructures.\r\nHe is also an expert in Geographic Information Systems, database administration, programming and IT-related roles, maintenance and creation of geographic data (accuracy and quality), use of scripting, and building cartographic output applying the principles of cartography using open-source IT systems for the processing, analysis, and integration of remote sensing data with airborne and satellite sensors for thematic purposes.",institutionString:"National Research Council",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Research Council",institutionURL:null,country:{name:"Italy"}}}],coeditorOne:{id:"315745",title:"Dr.",name:"Claudia",middleName:null,surname:"Campanale",slug:"claudia-campanale",fullName:"Claudia Campanale",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002qpiKlQAI/Profile_Picture_1640002388093",biography:"Dr. Claudia Campanale is a pioneering researcher in monitoring emerging pollutants in environmental matrices and extreme environments through a multidisciplinary approach and based on analytical evidence integrated by a biological and ecological vision. \r\nShe uses Py-GC-MS and micro FTIR techniques for purification and characterization methods. Her microplastic research is focused on identifying and quantifying persistent organic pollutants sorbed on microplastics to investigate the role of these contaminants of emerging concern as carriers of hazardous chemicals to marine environments.\r\nShe is an expert in analytical chemistry techniques such as HPLC-MS, GC-MS, ICP-MS to characterize and quantify pollutants (inorganic and organic) in environmental matrices (water, soil, sediment).\r\nHard work, dedication, and passion are the basis of research.",institutionString:"National Research Council",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Research Council",institutionURL:null,country:{name:"Italy"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"278926",firstName:"Ivana",lastName:"Barac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/278926/images/8058_n.jpg",email:"ivana.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5962",title:"Estuary",subtitle:null,isOpenForSubmission:!1,hash:"43058846a64b270e9167d478e966161a",slug:"estuary",bookSignature:"William Froneman",coverURL:"https://cdn.intechopen.com/books/images_new/5962.jpg",editedByType:"Edited by",editors:[{id:"109336",title:"Prof.",name:"William",surname:"Froneman",slug:"william-froneman",fullName:"William Froneman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"68474",title:"Industrial Applications of Intelligent Adaptive Sampling Methods for Multi-Objective Optimization",doi:"10.5772/intechopen.88213",slug:"industrial-applications-of-intelligent-adaptive-sampling-methods-for-multi-objective-optimization",body:'Through better engineering design we can build superior aircraft engines with higher efficiency and lower weight, wind turbines that can produce more energy at a reduced cost, and steam turbines that can reach higher efficiencies, to mention a few examples. The importance of a fast design process which produces global optima with the fewest amount of resources is obviously fundamentally crucial. This process, for the purpose of this chapter, can be thought of as a multi-objective optimization problem. Consider as an example the design of aerodynamic airfoil shapes. First, the performance is produced, followed by a mechanical and aeromechanics assessment. Aeromechanical feedback and reactive aerodynamic redesign rely heavily on the domain expertise of the design engineers. It is not atypical to cycle through 50 of these iterations to obtain a design that satisfies mechanical (stress, creep, fatigue to mention a few) and aeromechanical (say, clean Campbell and flutter resistant) requirements. During these cycles, data from expensive computational codes and/or real-world experiments are collected and the design cycle continues in a direction suggested by this information. Generally speaking, as some examples of the key contributions toward high resource requirements are expensive computer simulations such as computational fluid dynamics (CFD) and ANSYS. In some cases, real-world experiments need to be performed, e.g., when it comes to passing FAA certification.
With this, it should also be clear that engineering design is performed under very strict budgets. Each datum obtained whether from a simulation, physical experiment, or an expert needs to be as informative toward the goals we are trying to accomplish as possible. In some cases, it can take weeks or months to evaluate a single datum. In this case, a meta-model is built on a small representative set of data. This can be Gaussian processes (GPs) [1, 2, 3, 4, 5], Bayesian hybrid modeling as used at GE [6, 7], or polynomial chaos expansions (PCEs) [8, 9].
One of the key goals of this chapter is to present the state-of-the-art industrial tools toward achieving the best possible optima under strict budget constraints. Specifically at GE we are regularly seeing a reduction in cost needed to obtain the same level of information on the order of 30–90%. This leaves more room in the budget for finding even better, more competitive, designs as hitherto possible. As a consequence of the technologies covered in this chapter, we are building better aircraft engines, improving our steam turbines, and harvesting more wind energy because of this. There is still a lot more to be invented and improved, but the following sections will give an idea of where we currently stand.
In order to introduce some nomenclature and to lay the foundation for surrogate modeling, and adaptive sampling, consider a concrete example of an engineering design task.
Before diving into the details of the setup it is worth briefly discussing how the data is collected. We obtain data in this design task either from real-world experiments or from computer experiments the latter defined in Ref. [10]. A computer experiment consists of running an expensive complex computer code for a set of different inputs. One of the main motivations of using computer codes is to approximate and thereby speed up costly real-world experiments in order to reduce the engineering design cycle time.
Continuing the example, imagine designing a wing blade described by a set of
In this section, we provide an overview of the mathematical framework of the GEBHM and GE-IDACE technologies introduced in Section 1. Further theoretical details and application coverage can be found in Refs. [7, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].
In industry applications, it is not uncommon for the data to be multi-dimensional, noisy, highly non-linear, and expensive to collect. On a day-to-day basis, we address the challenge of enabling a robust and uncertainty certified design utilizing both limited expansive simulations data and noisy field measurements. GE Research has an in-house software framework for advanced Bayesian modeling and machine learning named GEBHM, sometimes we shall refer to this as simply BHM, which enables the combination of multiple numerical simulations and experimental sources of data in one unified workflow. As shown in Figure 1, GEBHM capabilities are: uncertainty propagation and quantification, sensitivity analysis, full Bayesian model calibration, meta-modeling, multi-fidelity analysis, and adaptive design of numerical experiments. The theoretical framework of the GEBHM is based on Kennedy O’Hagans approach to modeling and fusing simulation and experimental data with associated uncertainties using GPs [6]. The noisy high-fidelity model is represented as Gaussian process aggregated from a linear combination of a low-fidelity model and a model discrepancy function
where
A diagram of GE’s Bayesian hybrid modeling (GEBHM/BHM). From left to right, varying-fidelity-level data (e.g., simulation vs. experimental) can be input to GEBHM. GE research has added a large range of capabilities over the years listed to the right which include parameter tuning, building discrepancy models between low and high fidelity data, informing the designer about which inputs mostly impact the outputs via a global sensitivity analysis, performing probabilistic predictions including tail probabilities, and building high-accuracy predictive surrogate models.
The GP hyperparameters are learned using a Markov Chain Monte Carlo (MCMC) technique based on an Metropolis-Hastings-within-Gibbs algorithm [27, 28] with univariate proposal distributions for the posterior distribution updates. MCMC generally converges toward the most probable values for the parameters which best explain the data [29] from which representative samples can be obtained. To avoid overfitting the high-fidelity data, the initial values of the hyperparameters of covariance matrices are updated with the current realizations at every MCMC step, and realizations from the posterior distributions of the model parameters are produced.
While meta-models offer very low query times for response surface values they are still only approximate, especially when built on small datasets. Thus, having the meta-model does not generally mean that we can use this entirely in place of the response surface. However, we can use it as a guide to seek out new locations in the design space that are promising toward our goal which could, e.g., be optimization or to produce the most accurate surrogate model possible. The focus in this chapter is on the prior goal of global optimization.
GE-IDACE, also sometimes referred to as simply IDACE, uses the expected improvement (EI) [30] method to explore and exploit the design space for obtaining the global optimum with the fewest possible resources, see Figure 2. Without loss of generality, EI defines the
Diagram of intelligent design and analysis of computer experiments as used by GE research (GE-IDACE/IDACE). Starting with an initial design, e.g., from LHS, a stochastic model, such as BHM, is built on this. Via the stochastic predictive distribution, the desirability and uncertainty are quantified which combines into an acquisition strategy (such as: Pick points to optimize an objective—that is expected improvement (EI)). Then, we check for convergence and rank a new set of points to be run and then re-build the stochastic model completing one iteration of GE-IDACE. We iterate until convergence defined as either budget exhaustion, the EI, e.g., reaching a specific value, or something else.
In each iteration of GE-IDACE, the point with maximum EI is added to the design.
In what follows, we review some GE-IDACE multi-objective optimization EI methods that we have found to work well in practice but emphasize that more research is needed toward getting faster at locating the global optimum in multiple dimensions under increasingly stricter budgets [15].
Many approaches exist for running IDACE with multiple objectives [31, 32, 33, 34, 35, 36, 37, 38, 39]. Here, consider the two-dimensional case and the so-called centroid method which shares a similar intuition as its one-dimensional counterpart Eq. (3). In this methodology, each candidate point from the design space is imagined to create a centroid point, the equations for computing this point are given below. This centroid point, which is located in output space, is then compared to its closest Pareto point on the current frontier [40, 41]. For simplicity, consider now two different candidate/design points where we compute the associated centroid point for each. Then, for the
The probability that a new design point at
The two-dimensional EI then becomes:
where
The hypervolume EI method is presented to handle high-dimensional objective spaces beyond two [15, 42]. Drawing an analogy with the one-dimensional case, in multi-dimensional objective space, the hypervolume is considered a measure of the current known minimum point (the Pareto front). The difference in the hypervolume between the current Pareto front and the new Pareto front resulting from adding a candidate point is used to define the EI. Accordingly, the EI in multi-dimensional objective-space,
where
The physical programming technique can help the engineer to guide the design algorithm toward the desirable regions of the Pareto front [46]. For example, let the
An example of how the objective space, here one-dimensional, is split into regions (here (−10, −4), (−4, 4), and (4, 10)) and separate independent desirability functions with user-defined parameters (not directly shown) are defined. In this case, candidate points with predicted objective values from the surrogate model in the range (−4, 4) are primarily favored since the
Next, we extend the hyperrectangle approach to account for desirability as follows. Specifically, the designer chooses, for each objective, ranges of the objective which are considered highly desirable, acceptable, undesirable, and unacceptable. Closely following the ideas in Ref. [47], consider the following quantity called expected desirability of improvement (EDI):
Given the predictive distribution
Having covered the theoretical framework for both GEBHM and GE-IDACE this section turns to demonstrate their application to real-world engineering applications. We consider first additive manufacturing (AM) which is a vital process for many engineering design applications and is bound to further transform manufacturing. In essence, AM can be defined as the process of overlying layers to create a three-dimensional objects [42, 48]. We will show how GE-IDACE reduces the design cycle time from 6 months to a few weeks.
As a second application, we consider combustion testing where the goal in this case is to maximize load while keeping exhaust and temperature within specific limits. We demonstrate that GE-IDACE can help guide the test into regions with 20% more points from critical areas compared to status quo.
Finally, we demonstrate how well GE-IDACE does for expensive complex computer codes such as CFD modeling. We show that GEBHM/GE-IDACE helps reduce the number of test points by a factor of three when compared with neural network modeling and optimization.
As a main example of AM applications utilizing GE-IDACE we consider Direct Metal Laser Melting (DMLM) but mention that GE-IDACE is also used for feature-based qualification methods for Directed Energy Deposition having a big positive impact.
DMLM is a key modality of additive manufacturing that focuses on 3D printing of metallic materials. Printing metals is in itself a complicated task due to the microstructural instabilities from melting of the metallic powder. It is especially complicated for superalloys since as-built parts from DMLM are highly prone to microcracking and other microstructural deficiencies. So it is of primary importance to identify what the processing parameters are for the hard-to-process Nickel-based superalloys, and that process has been proven to be non-trivial. The lead times for processing parameter development for these types of alloys are typically on the order of several weeks to months, which means increased cost and the inability to introduce new materials in the additive marketplace. In order to reduce the cycle time when developing the processing parameters for DMLM for hard-to-process alloys, we have extensively utilized GEBHM and GE-IDACE to collect data in an intelligent manner [49]. Typically the key parameters that dictate the processing of additive parts are the laser power, the laser speed, etc. GE-IDACE automated the process toward obtaining design points, i.e., processing parameter combinations, which were most informative to the model and which would guide us in the direction of the optimal solution(s). We used quantified characteristics of the microstructural deficiencies as our outputs/objectives. Parts were built in the additive machine and then characterized by sectioning the parts, imaging the sections, and performing automated image analysis. This enabled us to analyze a large number of images extracting specific defect information such as porosity, keyholes due to unmelted powder, etc. We are interested in porosity because it affects the mechanical properties like yield strength and fatigue life adversely. The GE-IDACE process then constructed a model of the output microstructural defects as function of the input process parameters. We utilized both variance minimization (uncertainty sampling) and EI-based optimization to exploit and explore the design space to identify the optimal solutions faster. Using GE-IDACE with GEBHM, we were able to reduce the cycle time in identifying the optimal process parameter window for a superalloy from 6 months to a few weeks.
Figure 4 shows the progression of the collection of data (only two dimensions shown in a multi-dimensional problem). We can clearly see that the GE-IDACE methodology helps us explore the design space initially and then start to exploit the optimal solutions in the later iterations to quickly converge on an optimal processing window. This shows that by the third iterations GE-IDACE suggested to us almost 65% of points that satisfy our objectives in defects, while also bringing the overall model uncertainty down. Currently, we are working on expanding this methodology into more complicated structures and additional quantities of interest (QoIs) such as mechanical properties, durability, surface finish etc.
An example of GE Bayesian hybrid model (BHM/GEBHM)/GE intelligent design and analysis computer experiment (IDACE/GE-IDACE)-based process parameter optimization for a hard-to-process superalloy. The plot on the left shows an initial design from a space-filling and uninformed design of experiment (DoE/DOE). Defects in an as-built part was measured after each DoE. The red triangles in the middle plot are suggested by GE-IDACE based on a GEBHM model built on the blue-circle dataset. As noted in the text box below the plot, DoE 2 reduced the model uncertainty by 5% but did not suggest any datapoints that meet the target defect criteria (not specified here). In DoE 3 on the far right, the green points are suggested by GE-IDACE based on a GEBHM model built on the blue circles and red triangles. By adding informative data, we have added more information to GE-IDACE through the underlying GEBHM models. As a result, at DoE 3 we saw further reduction in model uncertainty (close to 25%) and also excitingly identified a parameter space window where we obtained more than 65% of datapoints satisfying the defect criteria. The figure overall aims to demonstrate the power of the GE-IDACE methodology for performing experimental design.
During manufacturing of turbine or jet engines, combustion testing is required at different stages of development, manufacturing, installation, and deployment to ensure that the engine is working as designed and within desired tolerances. Multiple of such experiments are required for different operating points making this process very time consuming and expensive. Traditionally, test plans are created prior to actual experiments which consists of heuristics test blocks or groups of tests. These test blocks are generally created from expert judgment based on prior operational experience. However, these test plans may not be optimal as they are heuristically designed without rigorous statistical analysis of legacy and existing data. The obvious results is that traditional heuristic test plans may lead to inefficient and redundant allocation of resources.
Therefore, GE-IDACE can be employed to improve the test schedule. This happens by adaptively learning the system characteristics and performance with the underlying advanced surrogate model GEBHM as the function of input conditions using real-time data or even leverage historical experiments while also incorporating expert judgment. The test plan is hereby dynamically learned, compiled, ranked, and updated.
Ideally, historical data is available. The first step is to build GEBHM on this dataset. The input variables in this application are gas splits, loads, speed, firing temperature, etc., and the outputs are NOx emission, combustor instability, system dynamics, etc. The process followed with GE-IDACE is as shown in Figure 2. The steps are repeated as more data is added until necessary goals in the form of certification approval, optimum operating conditions, and/or constraints in the shape of time and budget are all met as an example.
The user typically possess desirability ratings for experimental outcomes. This desirability may include a factor, threshold, constraint, goal, or objective that is important to the user for testing such as emissions thresholds, maximum and minimum loads, efficiency ratings, among others. For example, the user would like to know the operating conditions at which the load is maximum while NOx exhaust and temperature are within some limits. The desirability is provided by the user as target values, target ranges, or by a custom function over the quantity of interest; please see Section 2.2.3 for a review.
With this introduction, in the following we demonstrate the impact of using GE-IDACE on combustion testing. A design space of four operating conditions
First, for later comparison, the traditional approach with one-factor-at-a-time designs are shown in Figure 5. Grey points indicate experiments out-of-bounds from a threshold perspective. Blue points met the conditions, i.e., they are within the blue delineated region of objective space. Out of a total of 69 experiments performed, 10 (14.5%) satisfied the desirability of
(A) Results from the testing approach which does not utilize GE-IDACE. The plot shows the two-dimensional output space and the desirable region is delineated with a blue line and identifying text in the top right corner. Blue dots indicate experiments that met the desirability. Grey points did not meet desirabilities. (B) Results from the testing approach which utilizes GE-IDACE. The plot shows the two-dimensional output space and the desirable region is delineated with a blue line and identifying text in the top right corner. Blue dots indicate experiments that met the desirability. Grey points did not meet desirabilities. Comparing to (A), a higher fraction of points are blue and thus located in the desirable region.
Then, as an aim to improve this process, GE-IDACE was used to carry out a dynamic test plan. After each experiment, GEBHM was updated on the new data and the next point was picked based on the desirability with regards to the output responses. The corresponding output performance of these experiments and desirable regions is shown in Figure 5B to be compared with Figure 5A. Out of a total of 69 experiment performed, 25 (36.2%) satisfied the desirability of
In summary, the impact of GE-IDACE is clear to combustion testing. In fact, the application has now extending beyond just combustion testing: we are performing full-scale engine testing as well with this new strategy and it is being rolled out to multiple GE’s businesses thus achieving severe cost reductions and better engineering designs.
Next, we consider the application of GE-IDACE to turbine design with CFD. So far in this chapter, we have covered real-world engineering applications. In the following, we demonstrate how GE-IDACE is positively impacting expensive computer simulations as well.
Aerodynamic optimization of a turbine involves dozens of variables, impacting everything from system level features through detailed airfoil properties. Two primary top-level considerations for the aerodynamic design of a turbine include vortexing and airfoil stack. Vortexing involves custom tailoring of the vane and rotor exit angle distributions. This establishes the radial distribution of work within the turbine stage. Vortexing affects local acceleration and mass flow distributions, and thus is a strong driver of secondary loss generation (endwall vortices). Airfoil stacking aerodynamically imposes body forces on the flow, further affecting the radial mass flow and work distributions. Stacking also strongly influences the generation of secondary loss. The general objective of a vortexing and stack optimization is to maximize turbine performance, usually through management of secondary loss growth, while also adhering to numerous constraints that ensure proper downstream performance and acceptable component life.
Before covering how GE-IDACE improved the optimization, consider the traditional approach as shown in Figure 6. The first stage vane is optimized using a component-specific space-filling DOE on which CFD is evaluated. These results are then used to build a surrogate model that characterizes a row-specific loss metric (relative total pressure loss or secondary kinetic energy, for example). A genetic algorithm (GA) is used to optimize a set of X’s (defining a design point) describing the geometry for minimal loss (maximum efficiency) based on the surrogate model. This process is repeated for each subsequent row, with downstream components reacting to the results of the upstream row’s optimized exit flow conditions.
Traditional approach to turbine blade optimization.
Compared to the traditional approach, GE-IDACE can help automate the geometry generation process to ensure efficient throughput. To accelerate build time from an X-specification to a CFD-ready geometry, a mesh morphing approach is implemented. Leveraging the block structured hexahedral mesh from the baseline geometry’s CFD analysis, new cases re-stretch the inlet, exit, and passage blocks to produce a topologically identical mesh that conforms to the new 3D airfoil surface. The O block surrounding airfoil remains largely unchanged and translates with the new geometry. The baseline mesh is similar in fidelity to a typical “production” CFD analysis for turbine design. Surface y + is ∼1 for all airfoil metal surfaces, and in total, the high pressure turbine (HPT) domain consists of ∼9 million nodes. Figure 7 shows a representative example of the baseline grid and how it is morphed to an updated geometry.
Baseline and representative morphed mesh for an HPT vane.
All processes required to translate X’s to CFD geometries are batch enabled, and each new CFD case requires ∼15 min of wall clock time to generate. The CFD analysis is performed using GE’s in-house CFD solver, TACOMA. TACOMA is a 2nd order accurate (in time and space), finite-volume, block-structured, compressible flow solver, implemented in Fortran 90. Stability is achieved via the JST scheme, and convergence is accelerated using pseudo-time marching and multi-grid techniques. The Reynolds Averaged Navier-Stokes (RANS) equations are closed via the k-
The objective of the blade design task will be group efficiency. This metric is evaluated for each candidate point as a delta from a known baseline, which for this case is a modern two-stage Aviation HPT that already leverages results from prior optimization using the traditional techniques described earlier. All four HPT airfoils are considered in this optimization. To establish an entitlement performance, no constraints are imposed at this time to account for mechanical requirements or downstream component performance. Traditional space-filling DOEs for high dimensional problems require a large number of data points, and for a CFD-based study, an out-of-budget amount of computational resources. To manage these requirements, and to maintain design-cycle-relevant optimization times, advanced machine learning techniques are employed to intelligently guide the optimization process.
As a benchmark for the new process a 320-point space-filling OLH DOE was first created to cover all 32 HPT variables. Consistent with current practice, a radial basis function (RBF) surrogate model was fit to this data set, and GA optimization was performed on the RBF model. Modest gains over baseline were achieved from this approach.
For GE-IDACE, a more sparsely populated OLH DOE of 50 points was generated to seed the optimization. Leveraging GEBHM capabilities, additional DOE points were added only in areas of high error where the GEBHM model predicted high likelihood of progressing toward the objective—maximum delta group efficiency over the baseline. Through several rounds of intelligent incremental point addition, where each round included a refinement to the GEBHM fit, a new final optimal was established that exceeded the previous delta by roughly three times. Additionally, as shown in Figure 8, this much more favorable outcome was achieved with roughly a third of the computational resources.
Results of using GE-IDACE for turbine fan blade optimization. The traditional best shown with a green dashed line identifies the optimal design previously obtained using a mix of strategic designs and expert insights. GE-IDACE is the red full line and automates the design process and is clearly seen to outperform status quo. The initial design from which GEBHM is built from is shown as blue circles.
It has been demonstrated how advanced engineering tools centered around adaptive sampling in multi-objective space help achieve better engineering designs at highly-reduced cost. The underlying technologies are GEBHM and GE-IDACE which were covered first from a theoretical perspective. Then, applications in the areas of additive manufacturing, combustion testing, and computational fluid dynamics were considered. The impact of using GEBHM/GE-IDACE was clear and far surpassed status quo. At GE we consistently find a 30–90% resource cost reduction.
Before discussing future work, we first cover some of the main limitations of the GE-IDACE tool. Fundamentally, GE-IDACE treats the computer experiment as a black box function, i.e., it only sees inputs to the code and the corresponding outputs. In some cases, this information is all we are able to leverage, but in other situations we may have additional insights which, if taken advantage of, could speed up the optimization. For example, gradient information could be available from the experiments too. Furthermore, the GE-IDACE approach is “greedy,” i.e., it selects the next input point from the design space which is predicted to give the best immediate outcome with the current state of knowledge. This approach might not be the optimum strategy in the long-term. Worded differently, under a budget, there could exist a possibility that one can reach a better overall solution with fewer experiments without selecting the highest EI point in each intermediate step. Finally, it is difficult to thoroughly parallelize experiments with GE-IDACE as it is a sequential process which requires data acquisition and model-updating as the experimental results are available, although some approximate schemes exist [50].
In terms of future work and further improvements, we demonstrate in Ref. [51] that Particle Swarm Optimization performs very well for EI computation. A lot of exciting opportunities exist for GEBHM and GE-IDACE to further improve the engineering design process and remain to be discovered. In recent work, we demonstrate how to use GE-IDACE with multi-fidelity data sources (simulation vs. experiments, e.g.,) [52] and how to leverage legacy data from other designs into the GEBHM modeling process [11], to reduce the cost of running tests for new engine designs. In terms of future work, GEBHM can be extended to operate fluently across any type of data in terms of dimensionality and number of points. This way, all the benefits of GEBHM and GE-IDACE can be leveraged at any scale. Toward this, an initial exploration of a parallelizable way to fit the GEBHM is found in Ref. [53]. This extends the size of datasets which GEBHM can fit by a factor of 5–10.
The authors acknowledge support from GE Research and are grateful to Tom Vandeputte at GE Research for details on the CFD modeling.
The prevalence of diabetes has increased rapidly over the past few years, mainly in low to middle-income countries, and became one of the major causes of premature death worldwide. According to the WHO statistics, 422 million people were estimated as diabetes in 2014, and 1.6 million deaths were reported [1]. The International Diabetes Federation estimated that the world’s diabetic population has increased to 592 million by 2035. The largest number of diabetes cases was reported in the Western Pacific region (132 million), while 71.4 million diabetes cases were reported in the South Asian area [2].
Diabetes mellitus is a chronic metabolic disease characterized by hyperglycemia due to defects in insulin secretion, insulin action, or both. It is mainly classified as insulin-dependent diabetes mellitus (Type 1 DM) and non-insulin-dependent diabetes mellitus (type 2 DM). Type 1 DM is associated with deficiency of insulin, which occurs due to the destruction of pancreatic ß-cells via an autoimmune process. In contrast, type 2 DM is linked with insulin resistance, which reduces insulin utilization by peripheral tissues and results in hyperglycemia and obesity [3]. Type 2 DM became a major health problem worldwide associated with microvascular and macrovascular health complications. Microvascular and microvascular complications include diabetic retinopathy, neuropathy, nephropathy, and cerebrovascular diseases, peripheral arterial diseases, respectively [4]. Therefore, natural therapeutic approaches [5] should be developed to maintain the blood glucose level and long-term complications in patients with type 2 DM.
As currently available treatment regimens for type 2 DM have adverse side effects, it is necessary to search for an effective drug that helps maintain the blood glucose level and complications in patients with type 2 DM. Even though most of the researchers focused on herbal medicine, none have a full beneficial effect on curing patients with type 2 DM [6]. Hence, it is worth emphasizing marine seaweeds as they have been identified as a rich source of promising bioactive compounds synthesized from their biochemical and physiological mechanisms. Besides, most marine seaweeds are survived in extremely harsh environments, which provide enormous potential to produce complex bioactive compounds to withstand extreme conditions. As a result, the composition of the bioactive compounds in marine seaweeds can vary depending on the geographic area and seasonal changes [7]. As most marine seaweeds are a potential source of bioactive compounds with various therapeutic effects, this chapter mainly emphasizes the pharmacological uses of marine algae as an anti-diabetic therapy.
As type 2 DM is a progressive disorder, the search for effective treatments is essential to maintain hyperglycemia and its associated diabetic complication. Insulin resistance and impaired beta-cell function lead to hyperglycemia due to alteration in glucose homeostasis, which in turn cause loss of postprandial glucose control. Therefore, postprandial blood glucose maintenance is essential to manage the hyperglycemic condition and associated complications in type 2 diabetes patients [8]. Postprandial hyperglycemia in type 2 DM patients can be controlled by inhibiting metabolic enzymes such as α-amylase, α-glucosidase, dipeptide peptidase-IV, gut-derived peptide hormones (incretins), and glucagon-like peptide-1 hormone. The glucose-dependent insulinotropic peptide, aldose reductase, angiotensin-converting enzyme, and protein tyrosine phosphatase 1B are involved with diabetic complications [9].
Alpha-amylase and alpha-glucosidase are exo-acting glycoside hydrolase enzymes involved in carbohydrate digestion. Alpha-amylase is involved in the digestion of long-chain carbohydrates, while alpha-glucosidase catalyzes the end step hydrolysis of starch or disaccharides into simple glucose units. Therefore, inhibitors of these enzymes delay glucose absorption, reducing the postprandial blood glucose level [10].
Dipeptide peptidase-IV is a protease enzyme involved in the degradation of incretins, a group of metabolic hormones that stimulate ß cells of Langerhans’ islet to release insulin. Incretins are released after nutrient intake, and they delayed gastric emptying and decrease glucagon secretion in addition to stimulation of insulin secretion [11]. Contrarily, the incretin effect on insulin secretion gradually decreases once the patient becomes euglycaemic [12]. Hence, inhibitors of dipeptide peptidase IV are efficient therapeutic means to reduce the degradation of incretins, which help maintain hyperglycemic conditions in type 2 DM.
Similarly, aldose reductase is a rate-limiting enzyme involved in the polyol pathway, which catalyzes glucose reduction into sorbitol in an NADPH-dependent pathway. As the aldose reductase has broad substrate specificity, it binds with glucose and converts it into sorbitol once the hexokinase is saturated and the blood glucose level is high. As a result, produced sorbitol is accumulated within the cells and creates an osmotic effect, leading to cataracts and diabetic neuropathy [13, 14]. Thus, aldose reductase inhibitors prevent secondary diabetes complications.
Similarly, the angiotensin-converting enzyme plays a vital role in the renvital angiotensin-aldosterone system, a hormone system responsible for maintaining the blood pressure and fluid balance in the body. Angiotensin-converting enzymes convert angiotensin I into angiotensin II, a potent vasoconstrictor that mainly acts on arterioles that stimulate the release of aldosterone from the renal cortex and improve sodium reabsorption from the kidney. Therefore, activation of the renin-angiotensin-aldosterone system leads to increased blood pressure, resulting in microvascular and macro-vascular complications in patients with type 2 DM. Thus, inhibitors of the angiotensin-converting enzyme reduce the long-term microvascular and macrovascular complications by lowering the arterial and venous blood pressure [15]. A study reported by Ustundag et al. [16] confirms that angiotensin-converting enzyme activity is increased in diabetic patients compared to normal individuals.
Correspondingly, protein tyrosine phosphatase IB (PTP IB) is a negative regulator of the insulin signaling pathway that dephosphorylate tyrosine residues in insulin receptor and insulin receptor substrate-1. Which in turn reduces insulin sensitivity [17]. Hence, inhibition of the PTP IB enzyme leads to lower blood glucose levels by enhancing insulin sensitivity. The stable hyperglycemic condition in type 2DM patients leads to the accumulation of advanced glycated end products in various tissues resulting in diabetic complications such as neuropathy, nephropathy, retinopathy, and other chronic diseases [18]. Therefore, the natural compounds, which inhibit the formation of advanced glycation end products, would be a promising therapeutic target to suppress the diabetic complications associated with glycated products.
Marine seaweeds are categorized into three algal classes; red (
Recently, marine seaweeds have been identified as a rich source of bioactive secondary metabolites with human health benefits. In particular, polyphenols, sterols, alkaloids, flavonoids, tannins, proteins, peptides, essential fatty acids, enzymes, vitamins, and pigments are extensively synthesized by marine seaweeds. These compounds exhibit significant chemical and biological properties such as anti-diabetic, antioxidant, cytotoxic, anti-fungal, anti-bacterial, anti-coagulant, anti-inflammatory, and antiproliferative activities, etc., [19, 20]. The marine seaweeds are a rich source of sulfated polysaccharides (Figure 1), which have been reported to possess beneficial human effects. Fucoidan, alginates, and laminarans are sulfated polysaccharide found in brown seaweeds and reported to exhibit anti-diabetic, antioxidant, and anti-inflammatory activities [21]. Carrageenans and agarans are sulfated polysaccharides found in red seaweeds. Similarly, ulvan is the sulfated polysaccharide found in green seaweeds [22]. The sulfated polysaccharides are known to possess anti-viral, anti-tumor, and anti-coagulant activities [23].
Chemical structures of sulfated polysaccharides present in marine seaweeds.
Marine seaweeds are rich in polyphenolic compounds, including flavonoids, bromophenols, phlorotannins, mycosprine-like amino acids, and phenolic terpenoids (Figure 2). The mycosprine-like amino acid is a small molecule with hydroxylated aromatic rings. Phlorotannins are polyphenolic metabolites found in brown seaweeds. They can be classified into six subgroups; fuhalols, phlorethols, fucophlorethols, and fucols, eckols, and carmalols based on their linkage between phloroglucinol units and hydroxyl groups. Flavonoids, bromophenol, phenolic terpenoids, phenolic acids, and mycosporine-like compounds are reported to possess antioxidant, anti-diabetic, anti-inflammatory, anti-allergic, and anticancer properties [24, 25, 26].
Organic structures of phlorotannins and bromophenols.
Among the bioactive compounds present in marine seaweeds, marine algae-derived accessory pigments are important as they possess beneficial biological activities [27]. Fucoxanthin is the most abundant accessory pigment found in brown seaweeds and reported to have potent biological activities such as anticancer, antioxidant, anti-diabetic activities due to the presence of unusual allenic bond and a 5, 6-monoepoxide in its structure [21]. Phycobiliproteins, a water-soluble accessory pigment found in red seaweeds, can be divided into three main categories; phycocyanins, allophycocyanins, and phycoerythrin. Phycoerythrins are abundantly found in red seaweeds and reported to possess immuno-modulating and anticancer activities. Similarly, chlorophylls are found in green seaweeds and are said to have antioxidant activity [27].
Similarly, marine algae-derived peptides have been identified to possess a wide range of biological activities such as antioxidant, anti-diabetic, anti-microbial, antihypertensive properties, etc. Hence, most algal-derived proteins have been widely used in food and pharmaceutical industries [28]. The protein content of the marine seaweeds differs depending on the seasonal period and type of species. The brown seaweeds usually contain low protein content compared to the red and green seaweeds. Despite this, some brown algal species such as
Marine seaweeds have been widely studied for their anti-diabetic potential through different mechanisms due to bioactive secondary metabolites. Several
Brown seaweeds
Among the brown seaweeds, “Ecklonia” and “Eisenia” genera have been reported to exert hypoglycemic effects through α-amylase and α-glucosidase inhibitory activities [30]. The observed hypoglycemic activity can be attributed to the presence of phlorotannins; eckol, dieckol, 6,6′-bieckol, phlorofucofuroeckol-A, and phloroglucinol, and 7-phloroeckol [31]. According to the reported studies, methanol extract of
A brown seaweed
Green seaweeds
Green seaweeds belong to the genus “Ulva.” They have been reported to possess hypoglycemic activity, and they have been used for various food dishes in Asians due to the presence of high soluble fiber content. The aqueous extract of green seaweeds
The methanol extract of a green seaweed
Red seaweeds
Among the marine red seaweeds, the genus “Gracillaria” was reported to possess the hypoglycemic effect through the inhibitory effect on α-amylase and α-glucosidase enzymes. Gunathilaka
Dipeptidyl peptidase-IV (DPP-IV) is an enzyme involved in the degradation of incretin hormones, maintaining postprandial blood glucose levels. Among three types of seaweeds, brown seaweeds have been extensively reported to possess a dipeptidyl peptidase-IV (DPP-IV) inhibitory effect compared to red and green seaweeds [42].
Brown seaweeds
The brown seaweeds
Green seaweeds
The previous study conducted by Chin
Red seaweeds
The sulfated polygalactans isolated from red seaweeds
Brown seaweeds
The ethyl acetate fraction of brown seaweed,
Green seaweeds
The chloroform and ethanol fractions of green seaweed,
Red seaweeds
Regarding red seaweeds, the bromophenol compounds present in red seaweeds have been identified as effective therapeutic agents. The bromophenols such as bis (2,3,6-tribromo-4,5 -dihydroxy phenyl) methane, 2,2′,3,6,6′-pentabromo- 3′,4,4′,5-tetrahydroxydibenzyl ether, and 2,2′,3,5′,6-pentabromo- 3′,4,4′,5-tetrahydroxydiphenylmethane isolated from red seaweed,
Brown seaweed
The brown seaweeds belonged to the genus “Sargassum” as reported to exhibit the potent inhibitory activity of PTP 1B enzyme due to the presence of secondary bioactive compounds. Ali
Green seaweeds
Several studies have been reported to elucidate the anti-diabetic potential of green seaweeds by enhancing insulin sensitivity through the mechanism of PTP 1B inhibition. Among the marine green seaweeds, Crude chloroform and methanol extract of a green seaweed
Red seaweeds
Most of the red seaweeds belonged to the genus “Chondus” exhibited anti-diabetic activity via PTP 1B enzyme inhibition. According to the recorded studies, chloroform extract of
Brown seaweeds
Phlorotannins eckol, phlorofucofuroeckol-A, and dieckol isolated from brown seaweed,
Green seaweeds
Among the green seaweeds, few studies have been reported regarding the inhibitory effect on the angiotensin-converting enzyme. Crude and saponified extracts of
Red seaweeds
The red seaweeds have been widely studied to elucidate the inhibitory effect on angiotthe ensin-converting enzyme, as it plays a crucial role in regulating blood pressure. According to the recorded studies, the aqueous extract at 20 °C of red seaweeds
Brown seaweeds
Among the brown seaweeds,
Green seaweeds
So far, minimal studies have been reported to demonstrate the inhibitory effect of green seaweeds on the formation of advanced glycation end products. The chloroform, ethanol, and butanol fractions of a green seaweed
Red seaweeds
Regarding the red seaweeds, the ethyl acetate fraction (IC50: 586.54 μg/ml) of
Recently, marine seaweeds have been extensively studied for their therapeutic effects due to promising bioactive compounds. Among the non-communicable diseases, diabetes mellitus is the third leading cause of death associated with vascular complications. As it is a progressive disorder, it is necessary to search for an adequate drug for natural resources with minimum side effects. Therefore, this chapter illustrates the different anti-diabetic mechanisms of marine seaweed extracts and their bioactive compounds.
The University of Sri Jayewardenepura, Sri Lanka (ASP/01/RE/SCI/2017/50).
The authors declare no conflict of interest.
IntechOpen implements a robust policy to minimize and deal with instances of fraud or misconduct. As part of our general commitment to transparency and openness, and in order to maintain high scientific standards, we have a well-defined editorial policy regarding Retractions and Corrections.
",metaTitle:"Retraction and Correction Policy",metaDescription:"Retraction and Correction Policy",metaKeywords:null,canonicalURL:"/page/retraction-and-correction-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\\n\\n1. RETRACTIONS
\\n\\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\\n\\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\\n\\nPublishing of a Retraction Notice will adhere to the following guidelines:
\\n\\n1.2. REMOVALS AND CANCELLATIONS
\\n\\n2. STATEMENTS OF CONCERN
\\n\\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\\n\\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\\n\\n3. CORRECTIONS
\\n\\nA Correction will be issued by the Academic Editor when:
\\n\\n3.1. ERRATUM
\\n\\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\\n\\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n3.2. CORRIGENDUM
\\n\\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n4. FINAL REMARKS
\\n\\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\\n\\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\\n\\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\\n\\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\n\n1. RETRACTIONS
\n\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\n\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\n\nPublishing of a Retraction Notice will adhere to the following guidelines:
\n\n1.2. REMOVALS AND CANCELLATIONS
\n\n2. STATEMENTS OF CONCERN
\n\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\n\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\n\n3. CORRECTIONS
\n\nA Correction will be issued by the Academic Editor when:
\n\n3.1. ERRATUM
\n\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\n\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n3.2. CORRIGENDUM
\n\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n4. FINAL REMARKS
\n\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\n\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\n\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\n\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\n\nPolicy last updated: 2017-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"7,10,15,24,5,6,8,9,11,23,14,16,17,12,18,19,20,21,22,13,25"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11472",title:"21st Century Slavery",subtitle:null,isOpenForSubmission:!0,hash:"b341f3fc3411ced881e43ce007a892b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11472.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11473",title:"Social Inequality",subtitle:null,isOpenForSubmission:!0,hash:"20307129f7fb39aa443d5449acb6a784",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11546",title:"Smart and Sustainable Transportation",subtitle:null,isOpenForSubmission:!0,hash:"e8ea27a1ff85cde00efcb6f6968c20f8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11546.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11554",title:"Information Systems Management",subtitle:null,isOpenForSubmission:!0,hash:"3134452ff2fdec020663f241c7a9a748",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11554.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty",subtitle:null,isOpenForSubmission:!0,hash:"0e15ba86bab1a64f950318f3ab2584ed",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Pandemics",subtitle:null,isOpenForSubmission:!0,hash:"bc9e4cab86c76f35cd70b39086d9b69e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11588",title:"Autism",subtitle:null,isOpenForSubmission:!0,hash:"0c5043c6174db167599cb3f762e8bba8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11588.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11605",title:"Bamboo",subtitle:null,isOpenForSubmission:!0,hash:"378d957561b27c86b750a9c7841a5d18",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11605.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11612",title:"Landraces",subtitle:null,isOpenForSubmission:!0,hash:"06316c41a6f6317ad2bee244dc98c6a4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11612.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:8},{group:"topic",caption:"Chemistry",value:8,count:19},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:18},{group:"topic",caption:"Engineering",value:11,count:47},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:12},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:7},{group:"topic",caption:"Medicine",value:16,count:109},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:8},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:385},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[],latestBooks:[]},subject:{topic:{id:"1405",title:"Waste Management",slug:"engineering-environmental-engineering-waste-management",parent:{id:"118",title:"Environmental Engineering",slug:"engineering-environmental-engineering"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:61,numberOfWosCitations:15,numberOfCrossrefCitations:16,numberOfDimensionsCitations:37,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1405",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10491",title:"Anaerobic Digestion in Built Environments",subtitle:null,isOpenForSubmission:!1,hash:"082ec753a05d6c7ed8cc5559e7dac432",slug:"anaerobic-digestion-in-built-environments",bookSignature:"Anna Sikora",coverURL:"https://cdn.intechopen.com/books/images_new/10491.jpg",editedByType:"Edited by",editors:[{id:"146985",title:"Dr.",name:"Anna",middleName:null,surname:"Sikora",slug:"anna-sikora",fullName:"Anna Sikora"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8453",title:"Lean Manufacturing and Six Sigma",subtitle:"Behind the Mask",isOpenForSubmission:!1,hash:"9342a056651f34acc565b467a71e1e27",slug:"lean-manufacturing-and-six-sigma-behind-the-mask",bookSignature:"Fausto Pedro García Márquez, Isaac Segovia Ramirez, Tamás Bányai and Péter Tamás",coverURL:"https://cdn.intechopen.com/books/images_new/8453.jpg",editedByType:"Edited by",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5718",title:"Coal Fly Ash Beneficiation",subtitle:"Treatment of Acid Mine Drainage with Coal Fly Ash",isOpenForSubmission:!1,hash:"7862b773bc74f187c6a6b5abee7f278d",slug:"coal-fly-ash-beneficiation-treatment-of-acid-mine-drainage-with-coal-fly-ash",bookSignature:"Segun A. Akinyemi and Mugera W. Gitari",coverURL:"https://cdn.intechopen.com/books/images_new/5718.jpg",editedByType:"Edited by",editors:[{id:"147114",title:"Dr.",name:"Segun",middleName:null,surname:"Akinyemi",slug:"segun-akinyemi",fullName:"Segun Akinyemi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"55912",doi:"10.5772/intechopen.69469",title:"Challenges in Recovery of Valuable and Hazardous Elements from Bulk Fly Ash and Options for Increasing Fly Ash Utilization",slug:"challenges-in-recovery-of-valuable-and-hazardous-elements-from-bulk-fly-ash-and-options-for-increasi",totalDownloads:1429,totalCrossrefCites:3,totalDimensionsCites:5,abstract:"Beneficiation of fly ash should require for ensuring the removal of reactive elements to reduce the effect of hazardous impact on our atmosphere and can fill the demand for resources such as metals and rare earths. In this chapter, we concentrate to describe the responsible factors involve in fly ash beneficiation that has a great contribution to our environment. The purpose of the current study is to know the recovery of different minerals; maximum removal of the contaminant, reactivity and neutralization capacity of acid mine drainage (AMD) with fly ash and development of the cost‐effective method of disposal of fly ash are achieved. Different beneficiation techniques of fly ash and utilization of fly ash are explained.",book:{id:"5718",slug:"coal-fly-ash-beneficiation-treatment-of-acid-mine-drainage-with-coal-fly-ash",title:"Coal Fly Ash Beneficiation",fullTitle:"Coal Fly Ash Beneficiation - Treatment of Acid Mine Drainage with Coal Fly Ash"},signatures:"Ajit Behera and Soumya Sanjeeb Mohapatra",authors:[{id:"199852",title:"Dr.",name:"Ajit",middleName:null,surname:"Behera",slug:"ajit-behera",fullName:"Ajit Behera"},{id:"200867",title:"Prof.",name:"Soumya",middleName:null,surname:"Mohapatra",slug:"soumya-mohapatra",fullName:"Soumya Mohapatra"}]},{id:"55928",doi:"10.5772/intechopen.69527",title:"Phytoreclamation of Abandoned Acid Mine Drainage Site After Treatment with Fly Ash",slug:"phytoreclamation-of-abandoned-acid-mine-drainage-site-after-treatment-with-fly-ash",totalDownloads:1319,totalCrossrefCites:3,totalDimensionsCites:5,abstract:"Acid mine drainage and coal fly ash both are the sibling products from man’s increasing demand for power. Mining of coal from coal mines generates acid mine drainage (AMD), and burning of coal for thermal power generation produces fly ash (FA). Although both are hazardous to the ecosystem and human health, reunion of them into one would reduce their toxic effect on nature. Mining causes exposure of hidden rock materials containing an abundance of sulphide to the atmosphere. Oxidation of the metal sulphides (pyrite, as iron sulphide) within the surrounding rock and overburden generates acidity. Subsurface mining that pumps out water to prevent flooding releases acidic water to nearby areas, known as acid mine drainage. Tailings piles, mine waste rock dumps, and coal spoils contribute in AMD. Improper disposal of the fly ash contaminates the soil, water and air by leaching of the pollutants or air borne particulate matters. However filler properties and presence of macronutrients makes fly ash an excellent filler material for mine sites, and its soil-like properties help in plant growth if provided with organic carbon and nitrogen. This chapter proposes development of a green cover into AMD site after treatment of the AMD site with FA.",book:{id:"5718",slug:"coal-fly-ash-beneficiation-treatment-of-acid-mine-drainage-with-coal-fly-ash",title:"Coal Fly Ash Beneficiation",fullTitle:"Coal Fly Ash Beneficiation - Treatment of Acid Mine Drainage with Coal Fly Ash"},signatures:"Madhumita Roy, Roopali Roychowdhury, Pritam Mukherjee, Atanu\nRoy, Bulti Nayak and Satarupa Roy",authors:[{id:"195433",title:"Dr.",name:"Madhumita",middleName:null,surname:"Roy",slug:"madhumita-roy",fullName:"Madhumita Roy"},{id:"196021",title:"MSc.",name:"Roopali",middleName:null,surname:"Roychowdhury",slug:"roopali-roychowdhury",fullName:"Roopali Roychowdhury"},{id:"204902",title:"Mr.",name:"Pritam",middleName:null,surname:"Mukherjee",slug:"pritam-mukherjee",fullName:"Pritam Mukherjee"}]},{id:"56022",doi:"10.5772/intechopen.69741",title:"Treatment of Acid Mine Drainage with Coal Fly Ash: Exploring the Solution Chemistry and Product Water Quality",slug:"treatment-of-acid-mine-drainage-with-coal-fly-ash-exploring-the-solution-chemistry-and-product-water",totalDownloads:1326,totalCrossrefCites:1,totalDimensionsCites:5,abstract:"A treatment process for Acid mine drainage (AMD) using coal fly ash (CFA) was developed. AMD was treated with CFA as the alkaline agent at different CFA: AMD ratios and pH, electrical conductivity (EC) evolution monitored over time. In a separate experiment two AMD sources with differing chemistry were treated with the same CFA to evaluate the impact of AMD chemistry on the treatment process and product water quality. Various CFA: AMD ratios were stirred in a beaker for a pre-set time and the process water chemistry determined. pH was observed to increase in a stepwise manner with buffer zones observed at 4-4.5, 4.5-7 and 6-8. AMD with low concentration of Al3+, Fe2+, Fe3+ and Mn2+ didn’t exhibit these buffer zones. Two competing processes were observed to control the evolving pH of process water: dissolution of basic oxides (CaO, MgO) from CFA led to pH increase and hydrolysis of AMD species such as Al3+, Fe2+, Fe3+ and Mn2+ led to pH decrease. These processes initiated mechanisms such as precipitation, adsorption and ion exchange that led to decrease in inorganic contaminants as the treatment progressed. Inorganic contaminants removal was directly related to amount of CFA in reaction media. Precipitation of insoluble hydroxides and Al, Fe-oxyhydroxysulphates contributed to removal of major and minor chemical species. Precipitation of gypsum contributed to removal of sulphate. Na, K and Mg remained largely in solution after initial decrease. Significant leaching of B, Sr, Ba, and Mo from CFA was observed and was directly linked to amount of CFA in the reaction media. This will be a shortcoming of the treatment process since other processes may be required to polish up the product water. The treatment of AMD with CFA was observed to depend on CFA, AMD chemistry, treatment time and might therefore be site specific.",book:{id:"5718",slug:"coal-fly-ash-beneficiation-treatment-of-acid-mine-drainage-with-coal-fly-ash",title:"Coal Fly Ash Beneficiation",fullTitle:"Coal Fly Ash Beneficiation - Treatment of Acid Mine Drainage with Coal Fly Ash"},signatures:"Wilson Mugera Gitari, Leslie F. Petrik and Segun A. Akinyemi",authors:[{id:"147114",title:"Dr.",name:"Segun",middleName:null,surname:"Akinyemi",slug:"segun-akinyemi",fullName:"Segun Akinyemi"},{id:"172220",title:"Prof.",name:"Leslie",middleName:null,surname:"Petrik",slug:"leslie-petrik",fullName:"Leslie Petrik"},{id:"185380",title:"Prof.",name:"Mugera",middleName:null,surname:"Gitari",slug:"mugera-gitari",fullName:"Mugera Gitari"}]},{id:"76942",doi:"10.5772/intechopen.98314",title:"Techno Economic Studies on the Effective Utilization of Non-Uniform Biowaste Generation for Biogas Production",slug:"techno-economic-studies-on-the-effective-utilization-of-non-uniform-biowaste-generation-for-biogas-p",totalDownloads:284,totalCrossrefCites:1,totalDimensionsCites:4,abstract:"Environmental effects from traditional energy sources and government regulations, necessitate the use of alternative energies like biogas for many uses including drying and refrigeration. Biowaste produced in educational institutions will not be uniform over the year. The non-uniform supply of biowastes, the absence of studies on bio digestion of likelihood biomass, the unreliability of energy from such conversion and the profitability of its usage in most applications are some of the factors to be considered while implementing this technology. In this regard, theoretical and experimental evaluations were carried out to accurately forecast biogas generation capabilities in educational campuses for obtaining biofuels with quantity and efficiency. It is observed that biogas generation with 52 to 58% methane content can be possible during an academic year. The quality of biogas shows that it is appropriate for almost any application. A broader analysis on different types of biogas digesters was conducted for their suitability in academic institutions. The economic benefits are analyzed for incorporating three biogas digesters namely KVIC, Fiber Reinforced Plastic (FRP) type and JANATA. There are some encouraging results to confirm the economic feasibility of biogas plants including positive net present value. Biogas generation with digesters of capacities varying between 25 and 450 cubic meter shows payback periods varies from 3.18 to 7.59 years, which confirms that it is profitable to use digesters in this range of capacities.",book:{id:"10491",slug:"anaerobic-digestion-in-built-environments",title:"Anaerobic Digestion in Built Environments",fullTitle:"Anaerobic Digestion in Built Environments"},signatures:"Godwin Glivin, Mariappan Vairavan, Premalatha Manickam and Joseph Sekhar Santhappan",authors:[{id:"259377",title:"Dr.",name:"Premalatha",middleName:null,surname:"Manickam",slug:"premalatha-manickam",fullName:"Premalatha Manickam"},{id:"269103",title:"Dr.",name:"Mariappan",middleName:null,surname:"Vairavan",slug:"mariappan-vairavan",fullName:"Mariappan Vairavan"},{id:"339136",title:"Dr.",name:"Godwin",middleName:null,surname:"Glivin",slug:"godwin-glivin",fullName:"Godwin Glivin"},{id:"415183",title:"Dr.",name:"Joseph",middleName:null,surname:"Sekhar Santhappan",slug:"joseph-sekhar-santhappan",fullName:"Joseph Sekhar Santhappan"}]},{id:"56885",doi:"10.5772/intechopen.70711",title:"Introductory Chapter: Coal Fly Ash and Its Application for Remediation of Acid Mine Drainage",slug:"introductory-chapter-coal-fly-ash-and-its-application-for-remediation-of-acid-mine-drainage",totalDownloads:1195,totalCrossrefCites:0,totalDimensionsCites:4,abstract:null,book:{id:"5718",slug:"coal-fly-ash-beneficiation-treatment-of-acid-mine-drainage-with-coal-fly-ash",title:"Coal Fly Ash Beneficiation",fullTitle:"Coal Fly Ash Beneficiation - Treatment of Acid Mine Drainage with Coal Fly Ash"},signatures:"Mugera Wilson Gitari and Segun Ajayi Akinyemi",authors:[{id:"147114",title:"Dr.",name:"Segun",middleName:null,surname:"Akinyemi",slug:"segun-akinyemi",fullName:"Segun Akinyemi"}]}],mostDownloadedChaptersLast30Days:[{id:"70163",title:"Lean Six Sigma in Manufacturing: A Comprehensive Review",slug:"lean-six-sigma-in-manufacturing-a-comprehensive-review",totalDownloads:2224,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Lean Six Sigma is a systematic approach to reduce or eliminate activities that do not add value to the process. It highlights removing wasteful steps in a process and taking the only value added steps. The lean six sigma method ensures high quality and customer satisfaction in the manufacturing. The main purpose of this chapter is to explore the Lean Six Sigma (LSS) in the manufacturing sector. This chapter focuses on the different critical aspects of LSS. The core sections of this chapter are Introduction; Key lean six sigma principles; Tools and techniques; Lean six sigma methodologies; Critical success factors; Lean six sigma framework; Lean six sigma strategy; Implementation of Lean Six Sigma in SMEs; significant benefits; Significant barriers to implement lean; Assessment of Lean Six Sigma Readiness; Emerging trends in Lean Six Sigma; and Successful examples/stories in the manufacturing industry. The final section of the chapter contains the conclusions and suggestions. It is important for practitioners to be aware of Lean six sigma benefits, impeding factors, Tools and techniques, methodologies etc. before starting the Lean six sigma implementation process. Hence, this chapter could provide valuable insights to practitioners. It also gives an opportunity to Lean six sigma researchers to understand some common themes within this chapter in depth.",book:{id:"8453",slug:"lean-manufacturing-and-six-sigma-behind-the-mask",title:"Lean Manufacturing and Six Sigma",fullTitle:"Lean Manufacturing and Six Sigma - Behind the Mask"},signatures:"Hari Lal Bhaskar",authors:[{id:"295700",title:"Dr.",name:"Hari Lal",middleName:null,surname:"Bhaskar",slug:"hari-lal-bhaskar",fullName:"Hari Lal Bhaskar"}]},{id:"57818",title:"Chemical Stabilization of Coal Fly Ash for Simultaneous Suppressing of As, B, and Se Leaching",slug:"chemical-stabilization-of-coal-fly-ash-for-simultaneous-suppressing-of-as-b-and-se-leaching",totalDownloads:1644,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The discard of coal fly ash produced from the combustion of pulverized coal in a coal-fired boiler of thermal power plants has led to environmental concerns. Due to the interaction of fly ash particles with weathering and hydrological processes, the rainfall leaches out toxic elements in coal fly ash from the ash heaps. This situation has been pointed out as a potential contamination of soil, surface, and groundwater. In this chapter, the available fly ash treatment techniques to minimize future release of toxic trace elements (arsenic, boron, and selenium) have been documented, and the recent investigations dealing with leaching suppression effect of arsenic, boron, and selenium from coal fly ash have been reviewed. The leaching characteristics of arsenic, boron, and selenium are discussed, and a simple and low-cost leaching control method is presented in the context of treating the fly ash through chemical stabilization technique using additives containing high levels of calcium. Experimental results described in this chapter show the chemical stabilization technique utilizing Ca-containing additives is an effective technique for simultaneous suppressing of As, B, and Se leaching from coal fly ash.",book:{id:"5718",slug:"coal-fly-ash-beneficiation-treatment-of-acid-mine-drainage-with-coal-fly-ash",title:"Coal Fly Ash Beneficiation",fullTitle:"Coal Fly Ash Beneficiation - Treatment of Acid Mine Drainage with Coal Fly Ash"},signatures:"Sri Hartuti, Shinji Kambara, Akihiro Takeyama, Farrah Fadhillah\nHanum and Erda Rahmilaila Desfitri",authors:[{id:"219583",title:"Ph.D.",name:"Sri",middleName:null,surname:"Hartuti",slug:"sri-hartuti",fullName:"Sri Hartuti"},{id:"219715",title:"Prof.",name:"Shinji",middleName:null,surname:"Kambara",slug:"shinji-kambara",fullName:"Shinji Kambara"},{id:"221447",title:"Dr.",name:"Akihiro",middleName:null,surname:"Takeyama",slug:"akihiro-takeyama",fullName:"Akihiro Takeyama"},{id:"221448",title:"MSc.",name:"Farrah",middleName:null,surname:"Fadhillah Hanum",slug:"farrah-fadhillah-hanum",fullName:"Farrah Fadhillah Hanum"},{id:"221449",title:"BSc.",name:"Erda",middleName:null,surname:"Rahmilaila Desfitri",slug:"erda-rahmilaila-desfitri",fullName:"Erda Rahmilaila Desfitri"}]},{id:"66217",title:"Value Stream Mapping: A Method That Makes the Waste in the Process Visible",slug:"value-stream-mapping-a-method-that-makes-the-waste-in-the-process-visible",totalDownloads:1579,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Defining customer and value in lean thinking is crucial. All wastes that do not add value to the customer in business processes should be eliminated. In the real world and related literature, there are various methods used to eliminate waste and improve processes. One of the methods frequently used is the value stream mapping (VSM). VSM is preferred since it enables to take the picture of a process. Moreover, VSM is the identification of all activities that create and/or do not create value in the processes, from the supplier of the product or service to the customer. This chapter deals with lean philosophy, lean techniques and specifically the VSM method. In addition, some examples of VSM applications in the service and production sectors are discussed and the findings obtained from these applications are evaluated. Finally, the chapter concludes with some managerial implications as well as potential future research areas.",book:{id:"8453",slug:"lean-manufacturing-and-six-sigma-behind-the-mask",title:"Lean Manufacturing and Six Sigma",fullTitle:"Lean Manufacturing and Six Sigma - Behind the Mask"},signatures:"Nuri Ozgur Dogan and Burcu Simsek Yagli",authors:[{id:"280961",title:"Ph.D. Student",name:"Burcu",middleName:null,surname:"Simsek Yagli",slug:"burcu-simsek-yagli",fullName:"Burcu Simsek Yagli"},{id:"280963",title:"Dr.",name:"Nuri Ozgur",middleName:null,surname:"Dogan",slug:"nuri-ozgur-dogan",fullName:"Nuri Ozgur Dogan"}]},{id:"68289",title:"The Integration of Six Sigma and Lean Manufacturing",slug:"the-integration-of-six-sigma-and-lean-manufacturing",totalDownloads:1144,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The Lean Manufacturing and Six Sigma methodologies are increasingly being executed together and what we have today is the united work of both, and companies have come to understand that their integration makes it possible to take advantage of the strengths of both strategies, becoming a comprehensive and effective, suitable for solving various types of problems related to the improvement of processes and products. Routine management, process standardization and the study of times and movements to eliminate waste are key features of Lean Manufacturing, while finding the root cause for problem solving requires further deepening and analysis in Six Sigma. The Lean and Six Sigma can be viewed as useful tools for the operation of the systems of improvement, innovation and routine management that integrate the system of business management. The companies have implemented Lean Manufacturing with the aim of improving the elimination of waste in the processes. Companies using Six Sigma have found that by selecting projects and assigning them to teams, after a monitoring, the results would appear. Companies that implement Lean Six Sigma often awareness of the teams, seeking projects from different scopes with the focus of improving the structure of processes and achieve the results.",book:{id:"8453",slug:"lean-manufacturing-and-six-sigma-behind-the-mask",title:"Lean Manufacturing and Six Sigma",fullTitle:"Lean Manufacturing and Six Sigma - Behind the Mask"},signatures:"Marcio B. Santos",authors:[{id:"295132",title:"Dr.",name:"Marcio",middleName:"Bambirra",surname:"Santos",slug:"marcio-santos",fullName:"Marcio Santos"}]},{id:"67554",title:"Lean Six Sigma and Performance Metrics",slug:"lean-six-sigma-and-performance-metrics",totalDownloads:1182,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"The intensification of competitiveness and the fluctuation of industrial market were pushing the companies to ameliorate their product’s quality and services in order to maintain their place in the market. They have a tendency to integrate various methods such as total quality management (TQM), Six Sigma (6-σ), and Lean Six Sigma (LSS). The Lean Six Sigma method became the focus of academic researches. Hence, huge empirical studies have been raised in this field which enhances the visibility of this quality method. Some focused to identify its particular aspects, tools, and concepts. Others reveal its positive repercussions on reducing the defects, waste of time, and reworks. Others attempt to develop specific model related to Lean Six Sigma to facilitate its implementation. Regarding the literature gap reviewing and highlighting the specific features of Lean Six Sigma, the requirement of recognizing its particular aspects is needed. The focus of this chapter firstly is to identify the performance metrics then to underline the Lean Six Sigma metrics in order to seek its link with business performance. Also a guideline for the best integration of Lean Six Sigma is also offered.",book:{id:"8453",slug:"lean-manufacturing-and-six-sigma-behind-the-mask",title:"Lean Manufacturing and Six Sigma",fullTitle:"Lean Manufacturing and Six Sigma - Behind the Mask"},signatures:"Kaouthar Lamine",authors:[{id:"292334",title:"Dr.",name:"Kaouthar",middleName:null,surname:"Lamine",slug:"kaouthar-lamine",fullName:"Kaouthar Lamine"}]}],onlineFirstChaptersFilter:{topicId:"1405",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:49,paginationItems:[{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:null,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"95",type:"subseries",title:"Urban Planning and Environmental Management",keywords:"Circular economy, Contingency planning and response to disasters, Ecosystem services, Integrated urban water management, Nature-based solutions, Sustainable urban development, Urban green spaces",scope:"