Abstract
A development of new strategies against telomerase-associated disorders, such as dyskeratosis congenita, aplastic anemia or cancer, relies on a detailed understanding of telomerase life cycle and the multiple layers of its regulation. Saccharomyces cerevisiae is a prime model to study telomerase function and it has already revealed many conserved pathways for telomerase biology. In this chapter, we review the current knowledge of the regulatory pathways that control telomerase function in budding yeast. In particular, we discuss the cell cycle-dependent assembly of telomerase and its recruitment to telomeres. We also focus on the mechanisms that target telomerase to short telomeres. Finally, we discuss possible pathways that inhibit telomerase function at DNA double-strand breaks, thus limiting deleterious de novo telomere addition events.
Keywords
- telomerase
- cell cycle
- regulation
- RNP biogenesis
1. Introduction
Eukaryotic chromosomal DNA must be completely duplicated for both daughter cells to receive a full complement of DNA during cell division. Given the inherent properties of the conventional replication machinery, a newly replicated lagging-strand DNA is always slightly shorter than the template parental strand at the ends of chromosomes [1, 2]. As a result, the lagging-strand chromosome end acquires a short 3′-overhang—a conserved feature of ends of linear chromosomes crucial for genome stability. At the same time, the leading-strand ends are initially generated as blunt-ended, and will therefore need to be resected to restore the 3′-overhang [3, 4, 5]. This process is repeated during each replication cycle and will inevitably lead to a progressive shortening of the chromosome ends and loss of vital genetic information [6, 7].
In order to meet these end-replication challenges, chromosome ends are capped with a stretch of noncoding DNA repeats, called telomeres. The actual length of these repeat stretches within one cell is not uniform, and slight length variations can occur without any consequences for cell viability and fitness [8]. Moreover, shortened tracts that reach a lower limit of functionality can be restored to a longer form by a specialized reverse transcriptase, called telomerase [9, 10]. This ribonucleoprotein (RNP) enzyme synthesizes new telomeric repeats using its intrinsic protein catalytic subunit and a segment of its internal RNA as a template.
Given its essential task in maintaining genome stability, it is not surprising that telomerase function is tightly controlled at multiple levels. Disruption of this fine-tuned regulation leads to telomerase malfunction or its unregulated expression, which may contribute to serious genetic disorders such as dyskeratosis congenita, aplastic anemia and cancer [11].
Historically, budding yeast has been an extremely rich source of information on the biology of telomeres and telomerase. Therefore, in this review we discuss the intricate network of
2. Interactions between telomerase components within the RNP complex
In budding yeast, the telomerase holoenzyme consists of the noncoding TLC1 RNA that contains a template for telomere synthesis, and several protein subunits that are bound onto the RNA [8] (Figure 1A). The catalytic activity of telomerase relies on the Est2 protein, which together with TLC1 is sufficient for the enzymatic activity of telomerase
Several distinct elements have been mapped onto the two-dimensional structure of the TLC1 RNA that was defined by phylogenetic analyses [32] (Figure 1A). At the heart of TLC1 lies a group of conserved core elements associated with the reverse transcriptase activity: the single-stranded template, the template boundary element and the pseudo-knot structure, to which the catalytic subunit Est2 is attached [32, 33, 34]. The core of the RNA is branched into three stem-loops [32]. A conserved three-way junction brings TLC1 3′- and 5′-ends to the same vicinity and also contains the Sm7 binding motif. The second stem-loop structure holds the Yku complex [28]. The third arm contains the bulge-stem IVc, which supports Est1 binding at the base [35, 36] and the set of Pop proteins at the distal end [25, 37].
A complex hierarchy of the protein subunits defines telomerase composition. Est1 and Est2 bind to separate regions of TLC1 RNA and do not interact directly [33, 34, 38]. Accordingly, Est1 and Est2 do not co-immunoprecipitate in the absence of TLC1 [38]. In addition, Est1 and Est2 binding to TLC1 is not interdependent: disruption of Est1 association with TLC1 does not affect Est2 binding, and vice versa, when Est2-TLC1 interaction is abolished, Est1 still maintains association with TLC1 [34, 35].
In contrast to Est1 and Est2, Est3 does not bind to TLC1 directly. Instead, it associates with telomerase via simultaneous binding to Est1 and Est2, bridging them together. On one end, Est3 interacts with the N-terminus of Est1 (Figure 1B). The Est1-Est3 interaction site is distinct from the Est1-TLC1 binding surface, which was also partially mapped to the protein N-terminus [39, 40]. The
However, it was shown that Est3 cannot interact with Est1 if Est2 is not bound to TLC1, and vice versa, Est3 will not bind Est2 if Est1 is not present in the complex [39]. This suggests that Est3 association with the telomerase RNP absolutely requires both Est1 and Est2 bound to TLC1. Hence, Est3 might have additional interaction surfaces with Est1 and Est2 that are not abolished in
Interestingly, despite the relative abundance of Est3, only a small fraction of telomerase comprises Est3 during late S-phase, when telomeres are elongated [39, 45, 46]. This argues that Est3 association with the telomerase complex is restricted during the cell cycle. Indeed, an
In addition, Est3 contains a positive regulatory site (named TEL), which promotes Est3 association with Est2 [47]. In contrast to the TEL-I, mutating the TEL patch results in decreased association of Est3 with Est2 and telomere shortening. Notably, both patches are found in close proximity on the Est3 surface. Therefore, it was suggested that TEL and TEL-I might function as a toggle switch, mediating positive and negative regulation of Est3 binding, respectively [39]. Est3 association with the telomerase RNP occurs exclusively during late S-phase of the cell cycle [39, 48]. This is believed to be one of the mechanisms that restrict telomerase function during the cell cycle (discussed in detail in Section 3), thus, raising the possibility that the Est3 toggle switch might be designed to control its cell cycle-specific association with telomerase. Consistent with this idea, disruption of the TEL-I patch results in Est3 binding to telomerase in G1-phase of the cell cycle [39].
Notably, another Est3 regulatory element (the separation-of-function patch, TEL-R) was also identified in proximity to the TEL and TEL-I area [47] (Figure 1B). Although it does not affect Est3 interaction with the telomerase RNP, it is essential for telomere maintenance. It is still unknown what the role of Est3 binding to Est1 and Est2 is; whether it induces a conformational change in telomerase that favors telomere extension or acts as a bridge to attract other yet-to-be-identified telomerase subunits. The existence of the Est3 separation-of-function patch is consistent with both ideas. For instance, it can be a subject of a post-translational modification, which would induce a conformational change in Est3 and affect the rest of telomerase components. Alternatively, it could be the site of a protein-protein interaction with another telomerase component. In both cases, disrupting this patch would abrogate telomere maintenance without affecting Est3 interaction with Est2 or Est1.
Recently, a set of novel telomerase components called Pop1, Pop6 and Pop7 was shown to associate with TLC1 at the P3-like domain of the stem IVc, in the vicinity to the Est1 binding site [25] (Figure 1A). These Pop 1/6/7 subunits of telomerase are shared with RNAseP and RNaseMRP, conserved RNP complexes, required for processing of tRNA, rRNA and mRNAs [49]. Notably, within RNAseP and MRP, binding of Pop proteins is also supported by the P3 domain, structurally similar to the one of telomerase. The Pop proteins are essential for telomerase
The unexpected discovery of the novel Pop telomerase components raises the possibility that the complete telomerase RNP composition is not yet solved and other components are waiting to be uncovered. Interestingly, a distinct set of mutations in the Est1 C-terminus leads to a short telomere phenotype, although all the Est1 interactions known so far remain intact (Est1-TLC1, Est1-Est3, Est1-Cdc13 or Est1-Pop1) [40]. Therefore, Est1 might mediate a novel protein-protein interaction that is important for telomerase function.
3. Regulation of telomerase assembly and disassembly during the cell cycle
The Est2 catalytic subunit and the TLC1 RNA, in essence a minimal telomerase, can in principle associate with telomeres throughout the whole cell cycle [31, 51]. However, the modes of Est2-TLC1 recruitment to telomeres as well as its consequences vary during different stages. In G1, telomere-telomerase association requires the Yku-TLC1 binding, whereas in late S-phase, it mostly depends on the Cdc13-Est1 interaction. In line with the different mechanisms of telomerase recruitment, association of Est2-TLC1 with telomeres is transient in G1- and G2-phases of the cell cycle. However, during late S-phase it gets stabilized, allowing for productive telomere elongation (see Section 4 for more details) [52].
In contrast to Est2, the total Est1 protein level fluctuates during the progression of the cell cycle (Figure 2). While in G1, Est1 abundance is quite low, it reaches its maximum in S-phase and is maintained at the same level for the rest of the cell cycle [48, 51, 53]. This cell cycle regulation of Est1 abundance results in its limited association with telomerase complex and telomeres in G1 [39, 48, 51, 54]. Indeed, Est2 immunoprecipitation experiments revealed that in G1, Est1 association with the telomerase RNP is 3-fold lower than that of Est2 [39, 54]. Only during S-phase does the Est1-Est2 ratio reach 1:1 and remain constant until the end of the cell cycle. Consistent with stable association of Est1 within the telomerase complex in S-phase, Est1 is robustly detected at telomeres at this point of the cell cycle and further on [48, 51]. Notably, by increasing Est1 protein level in G1, the 1:1 ratio of Est1 and Est2 can be achieved in the telomerase complex throughout the cell cycle [48, 54]. Therefore, Est1 is absent from the telomerase RNP during G1 due to its low abundance, and as of yet there is no evidence for an active exclusion of Est1.
Cell cycle-dependent regulation of Est1 abundance occurs both at the mRNA and protein levels. During G1, the Est1 mRNA level is at its lowest, whereas at the G1-S transition, it increases, reflecting the fact that
Several studies indicate that the low abundance of Est1 in G1-phase is not solely due to cell cycle-specific control of its mRNA level, but also due to the G1-specific proteasome-dependent degradation of Est1 [48, 53, 57]. Degradation by the proteasome requires prior protein poly-ubiquitination [58]. Ferguson et al. showed that Est1 degradation is mediated by the Anaphase Promoting Complex (APC) E3 ubiquitin-ligase, that acts in G1 and ensures a smooth progression of the cell cycle via timely degradation of key regulatory proteins [53]. Disruption of the APC function and APC recognition motifs identified in Est1 was shown to abrogate the cell cycle regulation of the Est1 protein abundance, such that Est1 becomes more stable in G1.
However, this result has been challenged recently, as no change in G1-specific Est1 protein level has been observed in cells bearing mutations in the APC motifs [40]. Ferguson et al. could not detect Est1 poly-ubiquitination
Yet, the idea of the G1-specific degradation of Est1 by the proteasome was supported by another study, which showed that Est1 physically interacts with the Cdc48 complex [57]. Cdc48 is a chaperone, which in complex with the E3 ubiquitin-ligases Npl4 and Ufd1, acts as a segregase to separate ubiquitinated proteins from multi-protein complexes [58]. In cells expressing the
Altogether, these conflicting results leave open the question about the role of the proteasome in cell-cycle regulation of Est1 abundance and require additional clarification [40, 48, 53, 57].
The Est3 protein level
Notably, overexpression of Est1 in G1 leads to its association with the telomerase RNP, as well as Est3 binding, resulting in the assembly of the active telomerase [48, 54]. Despite that, no productive telomere elongation was observed during G1-stage of the cell cycle [46, 48, 52, 54]. This observation strongly suggests that the cell cycle regulated telomerase assembly is not the limiting regulatory mechanism that prevents telomere elongation during G1 (see Section 4).
As outlined above, the assembly of the telomerase complex is a tightly regulated process that occurs via regulation of abundance and inclusion of the Est1 and Est3 accessory proteins in the complex in late S-phase [39, 48, 51, 54]. However, there is evidence that telomerase disassembly may also be an actively regulated process. It may occur via a mechanism different from telomerase assembly, as it requires the dissociation of the Est2 catalytic subunit, resulting in the formation of the Est1-Est3-TLC1 disassembly complex [39] (Figure 2D). It is not known what serves as a signal for Est2 dissociation and how this process occurs mechanistically. Since Est3 interacts with Est2 in the TEN domain, which is also responsible for Est2 binding to the telomeric DNA, it is possible that the G2-specific disassembly of telomerase complex might be signaled via the Est3 subunit [39, 44].
One of the intriguing questions is how Est3 remains within the Est1-Est3-TLC1 complex after Est2 dissociation, given that its binding to the complex requires a simultaneous presence of Est1 and Est2 on TLC1 [39]. It is possible that once bound to the telomerase complex, Est3 can be stabilized by other proteins and consequently no longer requires Est2 to keep its position. One of the candidates for such a function is the complex of the Pop1, Pop6 and Pop7 proteins, which might stabilize Est3 binding within the telomerase complex, as they do for Est1 and Est2 [25, 37]. In general, although constitutively present in the telomerase RNP, the role of the Pop proteins in telomerase regulation remains unexplored. Therefore, it would be of a great interest to assess whether their telomerase-related function is somehow regulated during cell cycle.
4. Regulation of telomerase recruitment to telomeres during the cell cycle
As mentioned above, telomerase assembly is highly regulated during the cell cycle. However, this control is insufficient to limit telomerase function to late S-phase. In this section, we discuss how the telomerase RNP is recruited to telomeres, and how regulation of this process makes an impact on cell-cycle restriction of telomerase function.
4.1 Sir4-Yku-TLC1 as the G1-specific telomerase recruitment mechanism
Telomerase is recruited to telomeres via two different mechanisms: (1) via the Sir4-Yku70/80-TLC1 interaction, which mostly operates in G1-phase of the cell cycle, and (2) via the Cdc13-Est1 interaction, which is the predominant recruitment pathway during late S-phase, when telomere elongation takes place (Figure 3).
The Yku complex is not a dedicated telomeric protein, and its main function is normally associated with DSB repair via non-homologous end joining (NHEJ) [59]. Yku is a heterodimer that consists of the Yku70 and Yku80 subunits. Together the two subunits form a ring structure, that binds a DSB end by encircling DNA strands [60]. Despite the fact that NHEJ must be avoided at all costs at telomeres, Yku is present at chromosome ends, where it plays multiple roles, such as inhibition of 5′-telomere processing [61, 62], maintenance of the telomere position effect [61, 63, 64], as well as telomere clustering and tethering to the nuclear envelope [65]. In addition, Yku is required for telomerase retention in the nucleus and its recruitment to telomeres in G1 [30, 31].
Yku70/80 associates with TLC1 via a 48 nt RNA stem-loop [30, 66] (Figure 1). Indeed, in
Structural studies indicate that Yku binds double-stranded DNA and the TLC1 stem-loop through the same aperture in the Yku70/80 heterodimer structure, indicating that Yku cannot simultaneously interact with DNA and RNA [67, 68]. This suggests that interaction of the Yku-TLC1 complex with telomeres might be mediated by a protein-protein interaction. Indeed, Yku80 directly interacts with Sir4, a component of telomeric chromatin that is recruited to telomeres via the Rap1 double-stranded telomere binding protein [69, 70]. The Sir4-Yku80 interaction site is not in conflict with the Yku70/80-TLC1 binding surface [67]. Accordingly, the Yku70/80 heterodimer, TLC1 and Sir4 can be co-immunoprecipitated as a complex, implying that telomerase could be recruited to DNA via Sir4-Yku80 interaction. Indeed, in
Interestingly, the telomere defect in the y
Certain evidence suggests that at telomeres, the Yku complex does not exist as a uniform population. Apart from the Sir4-bound fraction, Yku also binds to telomeres directly, as it does at DSBs [71, 72, 73]. In addition to having two different modes of telomere binding, Yku was also found at diverse telomeric loci, including the junction between telomere and subtelomere regions, as well as interstitial telomeric sequences between the subtelomeric repeats [73]. Both populations include Yku directly bound to DNA and Sir4-bound Yku. It is still unknown whether Yku binds to the very tips of telomeres, and if so, in what fashion. The position of Yku so far from the telomere end was attributed to its role in maintenance of stalled and broken replication forks. Here, Yku might load on one-ended breaks and protect them from end-resection, thus favoring telomere addition by telomerase. However, since the Sir4-bound Yku population is also present at the distal telomeric loci, it suggests that telomerase recruited to telomeres via the Sir4-Yku80 pathway might be kept far from the telomere end. By extension, since the Sir4-Yku80 pathway operates mainly in G1-phase, keeping telomerase at a larger distance from the chromosome end might be a novel regulatory step, which would ensure telomerase molecules are not engaged in productive telomere elongation in G1.
Disrupting the Sir4-Yku-TLC1 pathway of telomerase recruitment results only in mild telomere shortening [28, 66, 67]. This implies that the productive telomerase recruitment required for telomere elongation is predominantly mediated by a different mechanism. Indeed, the S-phase specific Cdc13-Est1 interaction underlies the main functional telomerase recruitment pathway, and is therefore absolutely essential for telomere maintenance [22, 26, 27].
4.2 Cdc13-Est1 as the major telomerase recruitment pathway in late S-phase
A significant feature of late S-phase telomeres that distinguishes them from G1 and G2 chromosome ends is the formation of detectable 3′-single-stranded telomeric overhangs, or G-tails [74, 75]. The formation of telomeric overhangs requires MRX-dependent 5′-end processing, but, as briefly mentioned in the introduction, this process seems to take place only on the leading-strand telomeres [4, 76, 77, 78]. This S-phase specific structure is bound by Cdc13 and facilitates telomerase recruitment to telomeres via a direct association between Cdc13 and Est1 [22] (Figure 3C). The Cdc13-Est1 interaction is also favored by an increased abundance of Est1 in late S-phase (see Section 3) [51].
The direct interaction between Cdc13 and Est1 was inferred from the fact that the C-terminal Cdc13 Glu252 residue forms a salt bridge with the Lys444 of Est1 (Figure 1B). Abrogation of either of these partners by the
However, the importance of the Cdc13Glu252-Est1Lys444 salt bridge in telomerase recruitment was challenged by several later studies. For example, no interaction defect between the Cdc13-2 mutant protein and Est1 has been detected in the yeast two-hybrid and co-immunoprecipitation analyses [79]. In addition, the
Recent studies shed some light on the
If the Cdc13Glu252-Est1Lys444 salt bridge area is important for telomerase stabilization, which Cdc13 interface supports the Est1 recruitment? Based on
Certain evidence suggests that Cdc13 is phosphorylated by the Tel1/Mec1 checkpoint kinases to promote the Cdc13-Est1 interaction [82, 83] (Figure 3C). Indeed, i
However, there are also conflicting data on this issue. In particular, cells expressing the Cdc13 protein in which all potential consensus Tel1 phosphorylation sites were mutated, did not display any telomere defect [84]. In addition, the mass-spectrometry analysis of the Cdc13 phosphorylation sites did not detect
Altogether, the data presented above demonstrates that in principle, telomerase can be recruited to telomeres via two separate mechanisms: Sir4-Yku-TLC1 which operates in G1 and Cdc13-Est1 available in late S-phase. However, live-cell imaging of TLC1 dynamics revealed that in G1 and G2 phases, telomerase-telomere interactions are very short-lived and transient [52]. Indeed, outside S-phase, TLC1 molecules move much more rapidly and diffusively as compared to telomeres. During late S-phase, however, TLC1 RNA molecules can assemble in a cluster of 6-15 molecules, named telomerase-recruitment cluster, or T-Rec, which stably associates with telomeres and follows their dynamics.
Consistent with the
4.3 The switch between the Cdc13-Est1 and Cdc13-Stn1-Ten1 complexes as a signal for telomerase dissociation
In addition to the Cdc13-Est1 interaction important for telomerase recruitment to telomeres, Cdc13 also forms a complex with the Stn1 and Ten1 proteins (CST) (Figure 3D). CST prevents degradation of the chromosome ends and their recognition by DSB repair mechanisms, collectively known as the capping function [8]. The CST complex also negatively regulates telomere maintenance, demonstrated by the fact that disrupting Cdc13-Stn1-Ten1 interactions leads to a long telomere phenotype [86]. The CST-dependent effect on telomere elongation is due to a direct inhibition of telomerase recruitment, as well as an indirect consequence of the CST function in the re-synthesis of the telomeric C-strand, which eliminates the G-tails as a substrate for telomerase recruitment [86, 87].
The idea of CST directly inhibiting telomerase recruitment stems from two-hybrid experiments, indicating that Stn1 and Est1 compete for binding to Cdc13 [87]. Indeed, the mutant allele
Telomerase-mediated elongation of the G-strand is followed by C-strand fill-in synthesis, which restores the double-stranded portion of the telomere (Figure 3D). CST plays an essential role in this process, as it is responsible for the recruitment of the DNA polymerase ɑ/primase complex to telomeres. For example, it has been shown that Cdc13 interacts with Pol1, the catalytic subunit of this complex [79], while Pol12, the B subunit of the complex, associates with Stn1 [86, 88]. As a consequence of C-strand synthesis, the single-stranded telomeric overhangs that serve as substrates for Cdc13 binding are eliminated. Hence, this effect contributes to the CST role as a negative regulator of telomerase recruitment. Consistently, cells deficient in the Cdc13-Pol1 interaction have elongated telomeres, and this phenotype is dependent on telomerase interaction with Cdc13 [87]. Surprisingly, cells expressing Cdc13 with an N-terminal truncation are proficient in Pol1 interaction, but still have a telomere elongation phenotype as well as longer telomeric overhangs. The latter phenotype was attributed to the defect in the C-strand fill-in, as it was telomerase-dependent, the overhangs were only visible during late S-phase, and the C-strand was also slightly elongated when compared to wild-type cells. Overexpression of Stn1 almost completely suppressed the long telomere and G-tail phenotype in these mutants. This suppression mechanism might be mediated by the Stn1-Pol12 interaction, which could stabilize DNA polymerase ɑ at telomeres. Consistently, certain
Altogether, the above results suggest that the CST complex can affect telomerase recruitment via two mechanisms: (1) directly, via competition between Stn1 and Est1 for Cdc13 binding; and (2) indirectly, via its role in the restoration of the double-stranded telomere structure and elimination of the G-tails. If the Cdc13-Est1 complex permits telomerase recruitment, and the CST complex prohibits it, the switch between these two complexes might serve as an additional regulatory mechanism, which determines the window of telomerase function at telomeres.
Indeed, the transition from the Cdc13-Est1 interaction to the CST complex formation seems to be regulated in part by sequential phosphorylation of Cdc13 and Stn1 by Cdk1 [89, 90] (Figure 3D). Cdk1-dependent phosphorylation of Cdc13 and Stn1 is mediated by S- and M-phase cyclins, respectively [90]. During S-phase, Cdc13 phosphorylation by Cdk1 leads to its association to telomeres, where Cdc13 can form a complex with Est1 and recruit telomerase. Moreover, S-phase cyclin-dependent Cdc13 phosphorylation also delays the phosphorylation of Stn1 by M-phase cyclins. In turn, Cdk1-dependent Stn1 phosphorylation promotes the formation of the CST complex.
In addition, Tel1/Mec1 checkpoint kinases also contribute to the balance between the Cdc13-containing telomeric complexes. As was mentioned above, Tel1/Mec1-mediated Cdc13 phosphorylation promotes the Cdc13-Est1 interaction [82, 83]. In turn, this effect is counteracted by the PP2A phosphatase and the Aurora kinase [83]. Pph22, the catalytic subunit of the PP2A phosphatase, dephosphorylates Cdc13 sites phosphorylated by Tel1 or Cdk1. This facilitates telomerase dissociation from telomeres in G2/M-phase, which is demonstrated by prolonged Est1 and Est2 telomere association in
Therefore, a tightly regulated sequence of Cdc13 and Stn1 phosphorylation events, first, promotes the formation of the Cdc13-Est1 complex, and next, mediates the shift to the Cdc13-Stn1-Ten1 complex. Such a precise order of events defines a narrow time frame, which permits telomerase function at telomeres, explaining how the cell-cycle regulated restriction of telomerase function is orchestrated.
5. Regulation of telomerase preference for short telomeres
5.1 Rif2-MRX-Tel1 mechanism
Telomerase function is restricted not only by the cell cycle, but also by telomere length, being preferentially targeted to short telomeres. Indeed, within a particular cell cycle, only 6–8% of wild-type length telomeres (~300 bp) get extended, whereas short telomeres of about 100 bp are elongated in almost 45% cases [91]. Such preference for short telomeres is mediated by the Rap1-interacting partners Rif1 and Rif2. Altogether, Rap1, Rif1, and Rif2 form a negative feedback loop, which regulates telomere elongation in a length-dependent manner [92, 93] (Figure 3). Therefore, telomeres become over-elongated in the absence of Rif1 or Rif2, due to the increased frequency of telomerase function at all telomeres [91, 94, 95, 96]. The Rap1-Rif1-Rif2 regulatory mechanism relies on the number of the telomere-associated Rif proteins as a readout of an individual telomere length [93]. As a result of such “protein counting,” only those telomeres that have the low number of Rif1 and Rif2, i.e., short ones, will be elongated. Once telomeres get extended and the sufficient amount of the Rif proteins is restored at telomeres, the negative feedback loop inhibits telomere extension.
The mechanism of the Rif protein counting, and hence, targeting telomerase to short telomeres, depends on the intricate network of physical and functional interactions between the Rif1 and Rif2 proteins, Tel1 and the MRX (Mre11-Rad50-Xrs2) complex.
The checkpoint kinase Tel1 preferentially localizes to short telomeres, and as a result, also mediates Est1 and Est2 preference to short telomeres [97, 98, 99, 100]. Tethering Rif1 and Rif2 to DSB ends leads to the reduction in Tel1 binding, suggesting that Rif proteins might out-compete or displace Tel1 from chromosome ends. Indeed, both Rif2 and Tel1 are recruited to telomeres via the Xrs2 subunit of the MRX complex, whereas Rif1 recruitment is partially mediated by Rif2 [96, 101].
As was mentioned above, timely generation of the single-stranded 3′-telomeric overhangs is crucial for telomerase function. This process largely relies on the MRX/Sae2 complex, which resects the telomeric 5′-strand and generates a short G-tail in late S-phase after the passage of the replication fork [50, 76, 77]. In addition, the Mre11-Sae2 complex is essential for opening the hairpin structures that might be formed at telomeres by G-strand foldbacks, followed by DNA synthesis and hairpin closure [102]. If not resolved, replication of such hairpins will result in the formation of dicentric chromosomes and initiation of a breakage-fusion-bridge cycle that is detrimental for genome stability.
It was shown, that a balance of the Tel1 and Rif2 activities defines the extent of telomere processing by MRX [103, 104, 105]. On one hand, Tel1 enhances MRX-dependent 5′-telomere processing [103]. Rif2, on the other hand, inhibits MRX activity [104, 105]. Tel1 also increases association of MRX at the breaks flanked with telomeric repeats, although it is unclear, if this effect also exists at native telomeres [96].
Based on these observations, the following model for the regulation of telomerase preference for short telomeres by the Rap1-Rif1-Rif2 counting mechanism can be proposed. At short telomeres, Rif2 levels are reduced [99], which relieves inhibition of MRX-mediated telomere processing and also allows unrestricted Tel1 interaction with MRX. In turn, Tel1 may stabilize MRX association with telomeres and enhance its resection activity. As a result, short telomeres acquire single-stranded G-overhangs that serve as a substrate for Cdc13 binding and subsequent Est1-mediated recruitment of telomerase [84, 103]. Once telomeres are extended, the double-stranded Rap1-binding sites are restored. As a result, more abundant Rif2 binding to telomeres decreases Tel1 association with MRX and inhibits MRX-dependent resection, thus blocking Cdc13 and telomerase access to telomeres. Hence, the availability of the G-tail as a substrate for telomerase binding is the main feature that distinguishes short telomeres from the long ones and allows their preferential elongation.
As an alternative to the Rap1-Rif1-Rif2 protein-counting mechanism described earlier, the telomerase preference for short telomeres could also be explained by a replication fork model, proposed recently by Carol Greider [106]. This model predicts that telomerase associates and progresses with the conventional replication fork, and telomere elongation can happen only if telomerase successfully reaches the chromosome end. The telomeric proteins (such as Rap1-Rif1-Rif2) may pose an obstacle for telomerase movement with the replication fork. Hence, the longer the telomere, the longer the distance telomerase must cover to reach the telomere, and the higher the chance for its premature dissociation. At short telomeres, the probability that telomerase will reach the chromosome end increases, explaining why short telomeres are preferentially extended in a given cell cycle. The late timing of telomere replication also justifies the cell cycle-restricted mode of the telomerase function, which also occurs in late S-phase.
However, in direct conflict to the replication fork model, Gallardo et al. showed that in the absence of Rif1 and Rif1 telomeric proteins, telomerase can elongate telomeres in G1-phase [52]. Since, replication does not take place in G1, these data show that a functional telomere-telomerase interaction as well as telomere elongation by telomerase do not depend on the replication fork. However, it is possible, that the replication fork might operate as an alternative pathway, which functions under specific circumstances.
5.2 TERRA-mediated pathway
Another mechanism promoting telomerase recruitment to short telomeres depends on the long noncoding RNA, TERRA (telomeric repeat-containing RNA), transcribed from telomeres [107, 108]. In yeast, TERRA is preferentially expressed from short telomeres and reaches its maximum level in S-phase [109, 110]. During late S-phase, TERRA may act as a scaffold to allow the formation of a cluster of telomerase molecules (T-Rec), and promote telomerase recruitment to the short telomere of the TERRA origin [52, 109] (Figure 3C). Indeed, FISH experiments revealed that TERRA interacts with TLC1 RNA, and the complex of TERRA and T-Rec co-localize with a short telomere, from which TERRA is expressed [109].
Interestingly, TERRA expression is inhibited by Rif1 and Rif2 [111]. Therefore, it is possible that at short telomeres, containing fewer Rap1-binding sites and less Rif proteins, TERRA expression might be de-repressed, in order to favor recruitment of telomerase to short telomeres [109, 111]. Hence, the Rif counting mechanism, which allows preferential extension of short telomeres, may operate not only via Tel1-MRX-dependent formation of G-tails, but also via TERRA expression from short telomeres [91, 96, 103, 109].
6. Why telomerase is not welcome in G1-phase
As was discussed in Section 3, Est1 and Est3 do not associate stably with the telomerase RNP in G1-phase [39, 48, 51, 54]. However, restoration of telomerase composition in G1, still did not result in telomere extension [48, 54]. This implies that lack of telomerase components is not the main factor that restricts telomerase function in G1. Instead, the Rif1 and Rif2 telomeric proteins might govern such a regulatory mechanism.
Indeed, in the absence of Rif1 or Rif2, telomerase clusters are no longer restricted to late S-phase of the cell cycle and also appear in G1 [52]. Moreover, these G1-born T-Recs are functional in
The most plausible explanation for this phenomenon lies in the role of Rif proteins in inhibition of telomere processing and formation of 3′-single-stranded overhangs [103, 104] (Figure 3A). Indeed, Rif2 was shown to inhibit processing in both G1 and G2 [104]. This means that in
Alternatively, telomere elongation may not take place in G1 due to unstable association of telomerase with telomeres outside S-phase [52]. Rif1 and Rif2 are recruited to telomeres via interaction with Rap1, and hence, compete with Sir3 and Sir4 which also bind to Rap1 [95, 112]. As a result of this competition, Sir4-Yku binding to telomeres might be unstable, providing an explanation for transient telomerase recruitment to telomeres in G1 (Figure 3A). Indeed, the role of Rif proteins as negative regulators of telomere length affects the Sir4-Yku pathway of telomere maintenance [70].
Therefore, it is possible that G1-specific inhibition of telomerase function is controlled by Rif1 and Rif2 proteins at two different levels: (1) by ensuring that G-tails are not produced in G1, and hence, the Cdc13-Est1 telomerase recruitment pathway is not available; and (2) by out-competing Sir4-Yku from telomeres, therefore destabilizing telomerase association with telomeres.
As we can see, Sir4-Yku interaction does not provide stable telomerase recruitment in G1 and is mostly dispensable for telomere maintenance. Then why having a specialized but unproductive telomerase recruitment pathway in G1? We suggest that via short-lived interactions, cells could ensure that telomerase does not localize to sites of DSB repair and engage in unsanctioned repair mechanisms. Indeed, sites of telomere elongation and DSB repair were shown to be spatially separated between different nuclear compartments [113, 114]. Although in this scenario, telomerase is kept at telomeres in G1, it does not engage in productive interactions with telomeres, possibly due to the competition between Rif and Sir proteins for Rap1 binding. Interestingly, the fact that Sir4-Yku80 complexes locate distally from telomere ends [73], might also ensure that telomerase recruitment to telomeres in G1 remains unproductive.
7. Inhibition of telomerase function at DSBs
Due to a similar structure of telomeres and DSBs, telomerase has a potential to add telomeres to broken DNA, a phenomenon called
To ensure that these accidents do not happen, telomeres and DNA DSBs are spatially separated in the nucleus. DSBs are mainly localized to the nuclear pores, whereas telomeres anchor at the nuclear envelope, although exceptions from this general rule can be observed [113, 114]. In addition, local mechanisms operate both at DSBs and telomeres to ensure that telomerase and DSB repair machinery do not mix up their substrates.
7.1 Telomere anchoring at the nuclear envelope
During G1- and S-phase, telomeres are clustered in approximately 8 foci, which are tethered to the nuclear envelope [113, 121]. Telomere tethering requires interaction between telomeric and nuclear envelope proteins. One telomere tethering pathway involves Sir4 interaction with Esc1 and Mps3 nuclear envelope proteins, whereas the other one depends on the Yku70/80 and Mps3 [122, 123, 124]. The two telomere tethering pathways are redundant to a certain extent, although the details of their exact functional interaction remain elusive [121].
Unlike Sir4, Yku70 cannot directly bind Mps3
An elegant single-telomere extension experiment revealed that telomeres detach from the nuclear envelope during extension [127]. In this assay, a telomerase-deficient recipient mutant with short telomeres was mated with a wild-type donor cell. In the zygote, short recipient telomeres can be efficiently elongated by the donor telomerase. To track short recipient telomeres, Tel5R was tagged with
Deletion of
Altogether, these observations suggest that telomere anchoring may not only separate telomere-extension and DSB repair activities in space, but also act as an additional regulatory mechanism, which ensures cell-cycle restriction of telomere elongation.
Although normally clustered at the nuclear envelope, some telomeres can occasionally localize to nuclear pores, the sites of DSB repair. For instance, when a DSB occurs in a subtelomeric region, it must re-localize to the nuclear pore for efficient DSB repair [128]. In addition, eroded telomeres in telomerase-negative cells were also shown to re-localize to nuclear pores [129]. As a result, such critically short telomeres can undergo recombination-dependent elongation that allows cell survival in the absence of telomerase [130].
7.2 Local mechanisms restricting telomerase access to DSBs
Chromosome healing via
Another mechanism inhibiting telomerase at DSBs relies on Pif1, a multifunctional 5′-3′ helicase, expressed both in the nucleus and mitochondria [139]. The nuclear Pif1 isoform contributes to DNA replication and repair by promoting Okazaki fragment processing, resolution of G-quadruplex DNA structures, ribosomal DNA replication and DSB repair via Rad51-dependent break-induced replication. In addition, Pif1 inhibits telomere addition both at telomeres and DSBs. Accordingly, cells expressing the
Similar to Cdc13, Pif1 function can be modulated by specific phosphorylation events. It was shown that Mec1-dependent phosphorylation specifically regulates Pif1 activity at DSBs [141]. Cells expressing Pif1-4A, which cannot be phosphorylated by Mec1, have the same level of
Replication forks can frequently stall at TG-rich sequences, resulting in formation of DSBs flanked with short TG-sequences. At the same time, native telomeres can also reach a critically short length. Despite this structural resemblance, the first type of substrate must be channeled into proper DSB repair mechanisms, whereas telomerase must be inhibited. In turn, short telomeres must not be recognized by DNA repair mechanisms, and instead, must be elongated by telomerase.
How does a cell distinguish between these very similar structures? Recent evidence suggests that cooperation between Cdc13 and Pif1 might channel particular substrates into proper repair pathways [145]. It was shown, that if either a natural telomere or a TG-seed flanking a DSB is shorter than 35-40 bp, it is recognized as a break and is protected from telomerase activity by Pif1. As a result, such a substrate will be processed by DSB repair mechanisms. In turn, when the length of the TG-tract exceeds the 35-40 bp threshold, it is considered as a short telomere, irrespective of whether it is at a break or at the natural chromosome end. Pif1 will not protect such a substrate from telomerase function, thus making it available for telomerase-mediated elongation.
Mec1-dependent Pif1 phosphorylation, which specifically modulates its function at the breaks, does not make Pif1 selectively sensitive to shorter TG-sequences and insensitive to the longer ones [141, 145]. Instead, it was shown that Pif1 selectivity for different TG-substrates is mediated by Cdc13 [145]. If Cdc13 binding to DSBs is attenuated, longer telomeres become sensitive to Pif1. This implies that Cdc13 protects longer TG-sequences from the inhibitory Pif1 activity, thus allowing telomere addition. Interestingly, this effect of Cdc13 is not linked to its role in telomerase recruitment. The Cdc13-Est1 or Cdc13-Est2 fusions did not result in more frequent telomere addition at short TG-sequences when Pif1 was present. It suggests that the role of Cdc13 at the threshold DSB TG-sequences is not due to telomerase recruitment, but could possibly be explained by other Cdc13 functions, such as telomere capping or promoting the C-strand synthesis.
Pif1 was previously implicated in promoting resection in
We suggest an alternative explanation that may explain the Pif1 and Cdc13 effect on telomere addition to threshold substrates by their role in Okazaki fragment synthesis. When the replicative helicase runs off telomeric DNA ends ahead of the replisome, single-stranded DNA stretches may become exposed. The CA-rich strand will be rapidly converted into double-stranded DNA by leading-strand synthesis, whereas the TG-rich strand must be filled-in by the lagging-strand replication. It is possible, that if the TG-tract is shorter than 35–40 bp, lagging-strand initiation will be inefficient. In this scenario, the TG-tract, as well as the upstream non-TG sequence, will remain single-stranded. RPA bound to the non-TG sequence will signal for the DNA damage response activation, resulting in the engagement of the 3′-overhang in homology search and DSB repair. However, when the TG-sequence is longer than the threshold, priming for lagging-strand synthesis may be efficient. As a result, single-stranded DNA will get converted into a double-stranded DNA tract, and RPA displaced from the non-TG sequence will no longer signal for the DNA damage response activation. Finally, Cdc13 bound to the leftover single-stranded TG-sequence will recruit telomerase.
Why would the initiation of the lagging-strand synthesis be inefficient at short TG-tracts? In mammals, the CST complex cannot bind single-stranded DNA tracts that are shorter than 32 bp [148]. This suggests that at shorter TG-tracts, the CST complex might not be stable, and hence, cannot efficiently recruit/stabilize DNA polymerase ɑ/primase complex. Consequently, Okazaki fragment synthesis will be inefficient, and the RNA primer could be displaced from DNA via the Pif1 helicase activity. Therefore, the RPA-bound 3′-overhang containing non-TG and TG-sequences will persist and signal for DNA damage response activation. Long TG-tracts, on the other hand, will efficiently accommodate the CST complex, resulting in stable recruitment of the lagging-strand synthesis machinery. The RNA primer would be quickly extended into a full Okazaki fragment, making it inaccessible for Pif1. This can explain, why at longer TG-tracts, telomere addition is not under Pif1 control. According to this scenario, abolishing lagging-strand DNA synthesis, but not RNA priming, should render long TG-tracts sensitive to Pif1, leading to inhibition of telomere addition.
Therefore, at telomeres and DSBs, Pif1 might act at two consecutive steps. First, Pif1 may decide the fate of the telomeric end, and either channel it to the DSB repair pathway or leave it accessible for telomere elongation. As discussed above, this could be due to the Pif1 role in Okazaki fragment synthesis, rather than direct telomerase displacement. At the next step, Pif1 might regulate the extent of telomere elongation by telomerase. Accordingly, Pif1 was shown to inhibit telomerase preferentially at long telomeres [149]. Unlike its function at the threshold TG-tracts, this effect could be due to Pif1 stripping telomerase from telomeric 3′-overhangs.
Although most DSBs are localized to nuclear pores to be repaired, some persistent breaks are brought to the same regions as telomeres [114]. If such a break is deemed “nontelomeric,” it will subsequently re-localize to the nuclear pore. Why are these “questionable” DSBs brought so dangerously close to the telomeric sites? Such behavior can be nicely explained by the role of Pif1 in sorting DSBs from telomeres based on their threshold TG-sequence [145]. By extension, this Pif1-mediated process should co-localize with telomeric clusters tethered to the nuclear envelope.
8. Conclusions and future perspectives
In this review, we have outlined the main regulatory mechanisms that tightly cooperate in order to control telomerase function at telomere and at the breaks. Although our knowledge on this subject is quite extensive, many questions remain. Do the Pop1, Pop6 and Pop7 proteins functionally interact with any other telomerase subunits or telomeric proteins, in addition to Est1 and Est2 (e.g., Est3, Cdc13, Yku). How do the Pop proteins affect telomerase composition and function during cell cycle? Are there any unknown telomerase subunits that are yet to be discovered, and if so, what are their roles? What is the functional significance of the Sir4-Yku-TLC1 telomerase recruitment pathway? Is it related to the sequestration of telomerase from the DSB repair sites, as we proposed above, or does it play another role? Telomere anchoring at the nuclear periphery seems to affect their elongation. How is this process mediated, and what is the significance of telomerase in telomere anchoring at the nuclear envelope? What is the mechanism that allows Pif1 to distinguish DSBs from short telomeres and inhibit telomerase only at DSBs? All these questions and many more wait for answers, which will help to understand better the intricate network of telomerase regulatory pathways.
Acknowledgments
We thank Emeline Pasquier and Erin Bonnell for input on this manuscript. Research in our lab is supported by the grant from the Canadian Institutes of Health Research (FDN 154315), the Canadian Research Chair in Telomere Biology (to R.J.W.), the postdoctoral fellowship of Fonds de la recherche en santé du Québec (to Y.V.) and the Abdenour-Nabid scholarship from the Faculty of Medicine and Health Sciences, Université de Sherbrooke (to A.K.).
References
- 1.
Olovnikov A. Principle of marginotomy in the synthesis of polynucleotides at a template. Doklady. Biochemistry and Biophysics. 1971; 201 :394-397 - 2.
Watson JD. Origin of concatemeric T7 DNA. Nature: New Biology. 1972; 239 :197 - 3.
Wellinger RJ, Ethier K, Labrecque P, et al. Evidence for a new step in telomere maintenance. Cell. 1996; 85 :423-433 - 4.
Soudet J, Jolivet P, Teixeira MT. Elucidation of the DNA end-replication problem in Saccharomyces cerevisiae . Molecular Cell. 2014;53 :954-964 - 5.
Wellinger RJ. In the end, what’s the problem? Molecular Cell. 2014; 53 :855-856 - 6.
Hayflick L. The limited in vitro lifetime of human diploid cell strains. Experimental Cell Research. 1965;37 :614-636 - 7.
Harley C, Futcher A, Greider C. Telomeres shorten during ageing of human fibroblasts. Nature. 1990; 345 :458-460 - 8.
Wellinger RJ, Zakian VA. Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: Beginning to end. Genetics. 2012;191 :1073-1105 - 9.
Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985;43 :405-413 - 10.
Greider CW, Blackburn EH. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell. 1987;51 :887-898 - 11.
Savage SA, Bertuch AA. The genetics and clinical manifestations of telomere biology disorders. Genetics in Medicine. 2010; 12 :753-764 - 12.
Lingner J, Hughes TR, Shevchenko A, et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science. 1997; 276 :561-567 - 13.
Lingner J, Cech TR, Hughes TR, et al. Three ever shorter telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proceedings of the National Academy of Sciences. 1997;94 :11190-11195 - 14.
Lingner J, Cech TR. Purification of telomerase from Euplotes aediculatus : Requirement of a primer 3′ overhang. Proceedings of the National Academy of Sciences of the United States of America. 1996;93 :10712-10717 - 15.
Harrington L, Zhou W, McPhail T, et al. Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes & Development. 1997; 11 :3109-3115 - 16.
Kilian A, Bowtell DDL, Abud HE, et al. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Human Molecular Genetics. 1997; 6 :2011-2019 - 17.
Meyerson M, Counter CM, Ng Eaton E, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell. 1997; 90 :785-795 - 18.
Nakamura TM, Morin GB, Chapman KB, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science. 1997; 277 :955-959 - 19.
Bryan TM, Sperger JM, Chapman KB, et al. Telomerase reverse transcriptase genes identified in Tetrahymena thermophila and Oxytricha trifallax. Biochemistry. 1998;95 :8479-8484 - 20.
Collins K, Gandhi L. The reverse transcriptase component of the Tetrahymena telomerase ribonucleoprotein complex. Proceedings of the National Academy of Sciences. 1998;95 :8485-8490 - 21.
Greenberg RA, Allsopp RC, Chin L, et al. Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. Oncogene. 1998; 16 :1723-1730 - 22.
Evans SK, Lundblad V. Est1 and Cdc13 as comediators of telomerase access. Science. 1999; 286 :117-120 - 23.
Hughes TR, Evans SK, Weilbaecher RG, et al. The Est3 protein is a subunit of yeast telomerase. Current Biology. 2000; 10 :809-812 - 24.
Lee J, Mandell EK, Rao T, et al. Investigating the role of the Est3 protein in yeast telomere replication. Nucleic Acids Research. 2010; 38 :2279-2290 - 25.
Lemieux B, Laterreur N, Perederina A, et al. Active yeast telomerase shares subunits with ribonucleoproteins RNase P and RNase MRP. Cell. 2016; 165 :1171-1181 - 26.
Nugent CI, Hughes TR, Lue NF, et al. Cdc13p: A single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science. 1996; 274 :249-252 - 27.
Pennock E, Buckley K, Lundblad V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell. 2001; 104 :387-396 - 28.
Peterson SE, Stellwagen AE, Diede SJ, et al. The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku. Nature Genetics. 2001; 27 :64-67 - 29.
Seto AG, Zaug AJ, Sobel SG, et al. Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle. Nature. 1999;401 :177-180 - 30.
Fisher TS, Taggart AKP, Zakian VA. Cell cycle-dependent regulation of yeast telomerase by Ku. Nature Structural & Molecular Biology. 2004; 11 :1198-1205 - 31.
Gallardo F, Olivier C, Dandjinou AT, et al. TLC1 RNA nucleo-cytoplasmic trafficking links telomerase biogenesis to its recruitment to telomeres. The EMBO Journal. 2008; 27 :748-757 - 32.
Dandjinou AT, Lévesque N, Larose S, et al. A phylogenetically based secondary structure for the yeast telomerase RNA. Current Biology. 2004; 14 :1148-1158 - 33.
Livengood AJ, Zaug AJ, Cech TR. Essential regions of Saccharomyces cerevisiae telomerase RNA: Separate elements for Est1p and Est2p interaction. Molecular and Cellular Biology. 2002;22 :2366-2374 - 34.
Chappell AS, Lundblad V. Structural elements required for association of the Saccharomyces cerevisiae telomerase RNA with the Est2 reverse transcriptase. Molecular and Cellular Biology. 2004;24 :7720-7736 - 35.
Seto AG, Livengood AJ, Tzfati Y, et al. A bulged stem tethers Est1p to telomerase RNA in budding yeast. Genes & Development. 2002; 16 :2800-2812 - 36.
Lubin JW, Tucey TM, Lundblad V. The interaction between the yeast telomerase RNA and the Est1 protein requires three structural elements. RNA. 2012; 18 :1597-1604 - 37.
Laterreur N, Lemieux B, Neumann H, et al. The yeast telomerase module for telomere recruitment requires a specific RNA architecture. RNA. 2018; 24 :1067-1079 - 38.
Evans SK, Lundblad V. The Est1 subunit of Saccharomyces cerevisiae telomerase makes multiple contributions to telomere length maintenance. Genetics. 2002;162 :1101-1115 - 39.
Tucey TM, Lundblad V. Regulated assembly and disassembly of the yeast telomerase quaternary complex. Genes & Development. 2014; 28 :2077-2089 - 40.
Lubin JW, Tucey TM, Lundblad V. Using separation-of-function mutagenesis to define the full spectrum of activities performed by the Est1 telomerase subunit in vivo . Genetics. 2018;208 :97-110 - 41.
Friedman KL, Heit JJ, Long DM, et al. N-terminal domain of yeast telomerase reverse transcriptase: Recruitment of Est3p to the telomerase complex. Molecular Biology of the Cell. 2003; 14 :1-13 - 42.
Talley JM, DeZwaan DC, Maness LD, et al. Stimulation of yeast telomerase activity by the ever shorter telomere 3 (Est3) subunit is dependent on direct interaction with the catalytic protein Est2. The Journal of Biological Chemistry. 2011; 286 :26431-26439 - 43.
Yen W-F, Chico L, Lei M, et al. Telomerase regulatory subunit Est3 in two Candida species physically interacts with the TEN domain of TERT and telomeric DNA. Proceedings of the National Academy of Sciences. 2011;108 :20370-20375 - 44.
Jacobs SA, Podell ER, Cech TR. Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nature Structural & Molecular Biology. 2006; 13 :218-225 - 45.
Diede SJ, Gottschling DE. Telomerase-mediated telomere addition in vivo requires DNA primase and DNA polymerases alpha and delta. Cell. 1999;99 :723-733 - 46.
Marcand S, Brevet V, Mann C, et al. Cell cycle restriction of telomere elongation. Current Biology. 2000; 10 :487-490 - 47.
Rao T, Lubin JW, Armstrong GS, et al. Structure of Est3 reveals a bimodal surface with differential roles in telomere replication. Proceedings of the National Academy of Sciences. 2014; 111 :214-218 - 48.
Osterhage JL, Talley JM, Friedman KL. Proteasome-dependent degradation of Est1p regulates the cell cycle-restricted assembly of telomerase in Saccharomyces cerevisiae. Nature Structural & Molecular Biology. 2006; 13 :720-728 - 49.
Esakova O, Krasilnikov AS. Of proteins and RNA: The RNase P/MRP family. RNA. 2010; 16 :1725-1747 - 50.
Dionne I, Wellinger RJ. Processing of telomeric DNA ends requires the passage of a replication fork. Nucleic Acids Research. 1998; 26 :5365-5371 - 51.
Taggart AKP, Teng S-C, Zakian VA. Est1p as a cell cycle-regulated activator of telomere-bound telomerase. Science. 2002; 297 :1023-1026 - 52.
Gallardo F, Laterreur N, Cusanelli E, et al. Live cell imaging of telomerase RNA dynamics reveals cell cycle-dependent clustering of telomerase at elongating telomeres. Molecular Cell. 2011; 44 :819-827 - 53.
Ferguson JL, Chao WCH, Lee E, et al. The anaphase promoting complex contributes to the degradation of the S. cerevisiae telomerase recruitment subunit Est1p. PLoS One. 2013;8 (1):e55055 - 54.
Tucey TM, Lundblad V. A yeast telomerase complex containing the Est1 recruitment protein is assembled early in the cell cycle. Biochemistry. 2013; 52 :1131-1133 - 55.
Spellman PT, Sherlock G, Zhang MQ , et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular and Cellular Biology. 1998;9 :3273-3297 - 56.
Larose S, Laterreur N, Ghazal G, et al. RNase III-dependent regulation of yeast telomerase. The Journal of Biological Chemistry. 2007; 282 :4373-4381 - 57.
Lin KW, McDonald KR, Guise AJ, et al. Proteomics of yeast telomerase identified Cdc48-Npl4-Ufd1 and Ufd4 as regulators of Est1 and telomere length. Nature Communications. 2015; 6 :1-14 - 58.
Finley D, Ulrich HD, Sommer T, et al. The ubiquitin-proteasome system of Saccharomyces cerevisiae . Genetics. 2012;192 :319-360 - 59.
Fell VL, Schild-Poulter C. The Ku heterodimer: Function in DNA repair and beyond. Mutation Research. 2015; 763 :15-29 - 60.
Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature. 2001; 412 :607-614 - 61.
Gravel S, Larrivée M, Labrecque P, et al. Yeast Ku as a regulator of chromosomal DNA end structure. Science. 1998; 280 :741-744 - 62.
Polotnianka RM, Li J, Lustig AJ. The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Current Biology. 1998; 8 :831-835 - 63.
Boulton SJ, Jackson SP. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. The EMBO Journal. 1998; 17 :1819-1828 - 64.
Mishra K, Shore D. Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by Rif proteins. Current Biology. 1999; 9 :1123-1126 - 65.
Laroche T, Martin SG, Gotta M, et al. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Current Biology. 1998; 8 :653-657 - 66.
Stellwagen AE, Haimberger ZW, Veatch JR, et al. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes & Development. 2003; 17 :2384-2395 - 67.
Chen H, Xue J, Churikov D, et al. Structural insights into yeast telomerase recruitment to telomeres. Cell. 2018; 172 :331-343 - 68.
Pfingsten JS, Goodrich KJ, Taabazuing C, et al. Mutually exclusive binding of telomerase RNA and DNA by Ku alters telomerase recruitment model. Cell. 2012; 148 :922-932 - 69.
Roy R, Meier B, McAinsh AD, et al. Separation-of-function mutants of yeast Ku80 reveal a Yku80p-Sir4p interaction involved in telomeric silencing. The Journal of Biological Chemistry. 2004; 279 :86-94 - 70.
Hass EP, Zappulla DC. The Ku subunit of telomerase binds Sir4 to recruit telomerase to lengthen telomeres in S. cerevisiae . eLife. 2015;4 :1-19 - 71.
Lopez CR, Ribes-Zamora A, Indiviglio SM, et al. Ku must load directly onto the chromosome end in order to mediate its telomeric functions. PLoS Genetics. 2011; 7 (8):e1002233 - 72.
Ribes-Zamora A, Mihalek I, Lichtarge O, et al. Distinct faces of the Ku heterodimer mediate DNA repair and telomeric functions. Nature Structural & Molecular Biology. 2007; 14 :301-307 - 73.
Larcher MV, Pasquier E, MacDonald RS, et al. Ku binding on telomeres occurs at sites distal from the physical chromosome ends. PLoS Genetics. 2016; 12 :1-29 - 74.
Wellinger RJ, Wolf AJ, Zakian VA. Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. Cell. 1993;72 :51-60 - 75.
Wellinger RJ, Wolf AJ, Zakian VA. Origin activation and formation of single-strand TG1-3 tails occur sequentially in late S phase on a yeast linear plasmid. Molecular and Cellular Biology. 1993; 13 :4057-4065 - 76.
Larrivée M, LeBel C, Wellinger RJ. The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. Genes & Development. 2004; 18 :1391-1396 - 77.
Bonetti D, Martina M, Clerici M, et al. Multiple pathways regulate 3′ overhang generation at S. cerevisiae telomeres. Molecular Cell. 2009;35 :70-81 - 78.
Faure V, Coulon S, Hardy J, et al. Cdc13 and telomerase bind through different mechanisms at the lagging- and leading-strand telomeres. Molecular Cell. 2010; 38 :842-852 - 79.
Qi H, Zakian VA. The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase alpha and the telomerase-associated Est1 protein. Genes & Development. 2000;14 :1777-1788 - 80.
Wu Y, Zakian VA. The telomeric Cdc13 protein interacts directly with the telomerase subunit Est1 to bring it to telomeric DNA ends in vitro . Proceedings of the National Academy of Sciences. 2011;108 :20362-20369 - 81.
Chan A, Boulé J-B, Zakian VA. Two pathways recruit telomerase to Saccharomyces cerevisiae telomeres. PLoS Genetics. 2008;4 :1-11 - 82.
Tseng SF, Lin JJ, Teng SC. The telomerase-recruitment domain of the telomere binding protein Cdc13 is regulated by Mec1p/Tel1p-dependent phosphorylation. Nucleic Acids Research. 2006; 34 :6327-6336 - 83.
Shen Z-J, Hsu P-H, Su Y-T, et al. PP2A and Aurora differentially modify Cdc13 to promote telomerase release from telomeres at G2/M phase. Nature Communications. 2014; 5 :5312 - 84.
Gao H, Toro TB, Paschini M, et al. Telomerase recruitment in Saccharomyces cerevisiae is not dependent on Tel1-mediated phosphorylation of Cdc13. Genetics. 2010;186 :1147-1159 - 85.
Wu Y, DiMaggio PA, Perlman DH, et al. Novel phosphorylation sites in the S. cerevisiae Cdc13 protein reveal new targets for telomere length regulation. Journal of Proteome Research. 2013;12 :316-327 - 86.
Puglisi A, Bianchi A, Lemmens L, et al. Distinct roles for yeast Stn1 in telomere capping and telomerase inhibition. The EMBO Journal. 2008; 27 :2328-2339 - 87.
Chandra A, Hughes TR, Nugent CI, et al. Cdc13 both positively and negatively regulates telomere replication. Genes & Development. 2001; 15 :404-414 - 88.
Grossi S, Puglisi A, Dmitriev PV, et al. Pol12, the B subunit of DNA polymerase α, functions in both telomere capping and length regulation. Genes & Development. 2004; 18 :992-1006 - 89.
Liu C-C, Gopalakrishnan V, Poon L-F, et al. Cdk1 regulates the temporal recruitment of telomerase and Cdc13-Stn1-Ten1 complex for telomere replication. Molecular and Cellular Biology. 2014; 34 :57-70 - 90.
Gopalakrishnan V, Tan CR, Li S. Sequential phosphorylation of CST subunits by different cyclin-Cdk1 complexes orchestrate telomere replication. Cell Cycle. 2017; 16 :1271-1287 - 91.
Teixeira MT, Arneric M, Sperisen P, et al. Telomere length homeostasis is achieved via a switch between telomerase-extendible and -nonextendible states. Cell. 2004; 117 :323-335 - 92.
Marcand S. A protein-counting mechanism for telomere length regulation in yeast. Science. 1997; 275 :986-990 - 93.
Levy DL, Blackburn EH. Counting of Rif1p and Rif2p on Saccharomyces cerevisiae telomeres regulates telomere length. Molecular and Cellular Biology. 2004;24 :10857-10867 - 94.
Hardy CFJ, Sussel L, Shore D. A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes & Development. 1992; 6 :801-814 - 95.
Wotton D, Shore D. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes & Development. 1997; 11 :748-760 - 96.
Hirano Y, Fukunaga K, Sugimoto K. Rif1 and Rif2 inhibit localization of Tel1 to DNA ends. Molecular Cell. 2009; 33 :312-322 - 97.
Bianchi A, Shore D. Increased association of telomerase with short telomeres in yeast. Genes & Development. 2007; 21 :1726-1730 - 98.
Hector RE, Shtofman RL, Ray A, et al. Tel1p preferentially associates with short telomeres to stimulate their elongation. Molecular Cell. 2007; 27 :851-858 - 99.
Sabourin M, Tuzon CT, Zakian VA. Telomerase and Tel1p preferentially associate with short telomeres in S. cerevisiae . Molecular Cell. 2007;27 :550-561 - 100.
Goudsouzian LK, Tuzon CT, Zakian VA. S. cerevisiae Tel1p and Mre11p are required for normal levels of Est1p and Est2p telomere association. Molecular Cell. 2006;24 :603-610 - 101.
Nakada D, Matsumoto K, Sugimoto K. ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Genes & Development. 2003; 17 :1957-1962 - 102.
Deng SK, Yin Y, Petes TD, et al. Mre11-Sae2 and RPA collaborate to prevent palindromic gene amplification. Molecular Cell. 2015; 60 :500-508 - 103.
Martina M, Clerici M, Baldo V, et al. A balance between Tel1 and Rif2 activities regulates nucleolytic processing and elongation at telomeres. Molecular and Cellular Biology. 2012; 32 :1604-1617 - 104.
Bonetti D, Clerici M, Anbalagan S, et al. Shelterin-like proteins and Yku inhibit nucleolytic processing of Saccharomyces cerevisiae telomeres. PLoS Genetics. 2010;6 :1-14 - 105.
Bonetti D, Clerici M, Manfrini N, et al. The MRX complex plays multiple functions in resection of Yku- and Rif2-protected DNA ends. PLoS One. 2010; 5 (11):e14142 - 106.
Greider CW. Regulating telomere length from the inside out: The replication fork model. Genes & Development. 2016; 30 :1483-1491 - 107.
Azzalin CM, Reichenbach P, Khoriauli L, et al. Telomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome ends. Science. 2007; 318 :798-801 - 108.
Schoeftner S, Blasco MA. Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nature Cell Biology. 2008; 10 :228-236 - 109.
Cusanelli E, Romero CAP, Chartrand P. Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres. Molecular Cell. 2013; 51 :780-791 - 110.
Graf M, Bonetti D, Lockhart A, et al. Telomere length determines TERRA and R-loop regulation through the cell cycle. Cell. 2017; 170 :72-85.e14 - 111.
Iglesias N, Redon S, Pfeiffer V, et al. Subtelomeric repetitive elements determine TERRA regulation by Rap1/Rif and Rap1/Sir complexes in yeast. EMBO Reports. 2011; 12 :587-593 - 112.
Moretti P, Freeman K, Coodly L, et al. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes & Development. 1994; 8 :2257-2269 - 113.
Gotta M, Laroche T, Formenton A, et al. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. The Journal of Cell Biology. 1996; 134 :1349-1363 - 114.
Gartenberg MR. Life on the edge: Telomeres and persistent DNA breaks converge at the nuclear periphery. Genes & Development. 2009; 13 :1027-1031 - 115.
Kramer KM, Haber JE. New telomeres in yeast are initiated with a highly selected subset of TG1-3 repeats. Genes & Development. 1993; 7 :2345-2356 - 116.
Yu GL, Blackburn EH. Developmentally programmed healing of chromosomes by telomerase in Tetrahymena . Cell. 1991;67 :823-832 - 117.
McClintock B. The stability of broken ends of chromosomes in Zea mays . Genetics. 1941;26 :234-282 - 118.
Muller HJ. The remaking of chromosomes. The Collecting Net. 1938; 13 :1181-1198 - 119.
Sandell LL, Zakian VA. Loss of a yeast telomere: Arrest, recovery, and chromosome loss. Cell. 1993; 75 :729-739 - 120.
Longhese MP. DNA damage response at functional and dysfunctional telomeres. Genes & Development. 2008; 22 :125-140 - 121.
Hediger F, Neumann FR, Van Houwe G, et al. Live imaging of telomeres. Current Biology. 2002; 12 :2076-2089 - 122.
Taddei A, Hediger F, Neumaan FR, et al. Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. The EMBO Journal. 2004; 23 :1301-1312 - 123.
Bupp JM, Martin AE, Stensrud ES, et al. Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3. The Journal of Cell Biology. 2007; 179 :845-854 - 124.
Andrulis E, Zappulla D. Esc1, a nuclear periphery protein required for Sir4-based plasmid anchoring and partitioning. Molecular and Cellular Biology. 2002; 22 :8292-8301 - 125.
Antoniacci LM, Kenna MA, Skibbens RV. The nuclear envelope and spindle pole body-associated Mps3 protein bind telomere regulators and function in telomere clustering. Cell Cycle. 2007; 6 :75-79 - 126.
Schober H, Ferreira H, Kalck V, et al. Yeast telomerase and the SUN domain protein Mps3 anchor telomeres and repress subtelomeric recombination. Genes & Development. 2009; 23 :928-938 - 127.
Ferreira HC, Luke B, Schober H, et al. The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast. Nature Cell Biology. 2011; 13 :867-874 - 128.
Therizols P, Fairhead C, Cabal GG, et al. Telomere tethering at the nuclear periphery is essential for efficient DNA double strand break repair in subtelomeric region. The Journal of Cell Biology. 2006; 172 :189-199 - 129.
Khadaroo B, Teixeira MT, Luciano P, et al. The DNA damage response at eroded telomeres and tethering to the nuclear pore complex. Nature Cell Biology. 2009; 11 :980 - 130.
Churikov D, Charifi F, Eckert-Boulet N, et al. SUMO-dependent relocalization of eroded telomeres to nuclear pore complexes controls telomere recombination. Cell Reports. 2016; 15 :1242-1253 - 131.
Mangahas JL, Alexander MK, Sandell LL, et al. Repair of chromosome ends after telomere loss in Saccharomyces . Molecular Biology of the Cell. 2001;12 :4078-4089 - 132.
Myung K, Chen C, Kolodner RD. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae . Nature. 2001;411 :1073-1076 - 133.
Myung K, Datta A, Kolodner RD. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae . Cell. 2001;104 :397-408 - 134.
Schulz VP, Zakian VA. The saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell. 1994;76 :145-155 - 135.
Ribaud V, Ribeyre C, Damay P, et al. DNA-end capping by the budding yeast transcription factor and subtelomeric binding protein Tbf1. The EMBO Journal. 2012; 31 :138-149 - 136.
Luciano P, Coulon S, Faure V, et al. RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts. The EMBO Journal. 2012; 31 :2034-2046 - 137.
Schramke V, Luciano P, Brevet V, et al. RPA regulates telomerase action by providing Est1p access to chromosome ends. Nature Genetics. 2004; 36 :46-54 - 138.
Zhang W, Durocher D. De novo telomere formation is suppressed by the Mec1-dependent inhibition of Cdc13 accumulation at DNA breaks. Genes & Development. 2010;24 :502-515 - 139.
Bochman ML, Sabouri N, Zakian VA. Unwinding the functions of the Pif1 family helicases. DNA Repair (Amst). 2010; 9 :237-249 - 140.
Zhou J-Q , Monson EK, Teng S-C, et al. Pif1p helicase, a catalytic inhibitor of telomerase in yeast. Science. 2000; 289 :771-774 - 141.
Makovets S, Blackburn EH. DNA damage signalling prevents deleterious telomere addition at DNA breaks. Nature Cell Biology. 2009; 11 :1383-1386 - 142.
Boulé JB, Zakian VA. The yeast Pif1p DNA helicase preferentially unwinds RNA-DNA substrates. Nucleic Acids Research. 2007; 35 :5809-5818 - 143.
Vega LR, Phillips JA, Thornton BR, et al. Sensitivity of yeast strains with long G-tails to levels of telomere-bound telomerase. PLoS Genetics. 2007; 3 :1065-1075 - 144.
Boulé JB, Vega LR, Zakian VA. The yeast Pif1p helicase removes telomerase from telomeric DNA. Nature. 2005; 438 :57-61 - 145.
Strecker J, Stinus S, Caballero MP, et al. A sharp Pif1-dependent threshold separates DNA double-strand breaks from critically short telomeres. eLife. 2017; 6 :1-25 - 146.
Dewar JM, Lydall D. Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping. The EMBO Journal. 2010; 29 :4020-4034 - 147.
Garvik B, Carson M, Hartwell L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Molecular and Cellular Biology. 1995;15 :6128-6138 - 148.
Miyake Y, Nakamura M, Nabetani A, et al. RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Molecular Cell. 2009; 36 :193-206 - 149.
Phillips JA, Chan A, Paeschke K, et al. The Pif1 helicase, a negative regulator of telomerase, acts preferentially at long telomeres. PLoS Genetics. 2015; 11 :1-19