Classification of joints with
Abstract
A compliant mechanism gains its mobility fully or partially from the compliance of its elastically deformable parts rather than from conventional joints. Due to many advantages, in particular the smooth and repeatable motion, monolithic mechanisms with notch flexure hinges are state of the art in numerous precision engineering applications with required positioning accuracies in the low micrometer range. However, the deformation and especially motion behavior are complex and depend on the notch geometry. This complicates both the accurate modeling and purposeful design. Therefore, the chapter provides a survey of different methods for the general and simplified modeling of the elastokinematic properties of flexure hinges and compliant mechanisms for four hinge contours. Based on nonlinear analytical calculations and FEM simulations, several guidelines like design graphs, design equations, design tools, or a geometric scaling approach are presented. The obtained results are analytically and simulatively verified and show a good correlation. Using the example of a pathgenerating mechanism, it will be demonstrated that the suggested anglebased method for synthesizing a compliant mechanism with individually shaped hinges can be used to design highprecise and largestroke compliant mechanisms. The approaches can be used for the accelerated synthesis of planar and spatial flexure hingebased compliant mechanisms.
Keywords
 compliant mechanism
 flexure hinge
 deformation behavior
 motion behavior
 modeling
 design
1. Introduction
A mechanism is generally understood as a constrained system of bodies designed to convert forces or motions. Fulfilling the function of power transmission (drive in the actuator system) or motion transmission (guidance in the positioning system), mechanisms are typical parts of a mechatronic motion system. For the realization of highprecise motion, increasingly compliant mechanisms are used instead of rigidbody mechanisms. A mechanism that gains its mobility fully or partially from the compliance of its elastically deformable parts rather than from rigidbody joints only is named as compliant mechanism [1, 2].
In precision engineering and micromechanics, there are increasingly high requirements for the motion system—especially regarding the smoothness, resolution, and repeatability of the motion. Therefore, compliant mechanisms with concentrated or distributed compliance have become established for special positioning [3], adjustment [4], manipulation [5], or metrology [6] tasks. In these monolithic mechanisms, flexure hinges are mostly used as materially coherent revolute joints [7], while a high motion accuracy in the micrometer range can especially be achieved by common notch flexure hinges [8].
Nevertheless, the output stroke or motion range of such compliant mechanisms is considerably limited by the material strength since identical circular notch shapes are used for all hinges in the mechanism in most cases, even if they achieve different rotation angles. For highstrength metals, which are typically used for precision engineering applications, the rotation of flexure hinges is limited to small angles of a few degrees [9]. The demand for a larger angular deflection and a lower shift of the rotational axis results in numerous possible notch shapes and in a variety of sometimes very complex types of a separate flexure hinge, like the butterfly hinge [10]. Alternatively, mechanisms with a significantly increased hinge number in the kinematic chain are proposed to increase the range of motion, for example [11]. To further increase the stroke, often complex combinations of several substructure mechanisms are used in planar or spatial compliant stages, for example, reported in [9].
The sequential procedure including structural type synthesis, dimensional synthesis, and embodiment design, often used for rigidbody mechanisms, cannot be applied to compliant mechanisms straightforward, since the force/displacement limits of the flexure hinges must be matched with the required motion task. Thus, kinematic and kinetic behavior must be considered simultaneously for synthesis. Furthermore, the complex deformation and motion behavior of compliant mechanisms complicates both their accurate modeling and purposeful design. Hence, the synthesis is iterative, nonintuitive, and often timeconsuming so far, and specific optimization approaches, for example [12], cannot be generalized. However, optimizing the shapes of easytomanufacture and mainly used notch flexure hinges may prove useful in the synthesis of compliant mechanisms. Among many possible notch shapes, power function flexure hinges, based on the higher order polynomial hinges suggested in [13], are especially suitable because they are highly variable and allow a simplified modeling, too [14].
In this chapter, a survey of different methods for the general and simplified modeling of the elastokinematic properties of flexure hinges and compliant mechanisms is provided for four certain hinge contours, the circular, the cornerfilleted, the elliptical, and the power functionbased contours, with different exponents. Based on nonlinear analytical calculations and FEM simulations, several approaches and guidelines like design graphs, design equations, design tools, or geometric scaling are presented which can be used for the flexure hinge design. The results are confirmed by means of analytical modeling and FEM simulation. The main approach with regard to the mechanism synthesis is to design each flexure hinge in a compliant mechanism individually in dependence of the known relative rotation angles in the rigidbody model. A fourbar pathgenerating mechanism is used as an example to show the benefits of the synthesis method regarding both a high precision and a large stroke in comparison to the use of identical notch geometries. Thus, the need for simulation is reduced.
2. Flexure hingebased compliant mechanisms
A structural part of a compliant mechanism with a greatly increased compliance can be seen as a compliant joint, which allows at least one relative motion due to deformation, but it is normally limited to a localized area. In dependence of the form of the relative motion, three types for a joint with one degree of freedom (
Conversely to rigidbody joints, in which two rigid links form either a formclosed or forceclosed pairing, neighboring links of a compliant mechanism are connected to each other in a materially coherent way. Thus, an increased compliance can be achieved through a variation of geometry and/or a variation in material, while the geometric design is in the focus of the following investigations. In this chapter, macroscopic compliant mechanisms with flexure hinges realizing a desired rotary motion are regarded, since they are used in most cases.
2.1 Analysis and synthesis of compliant mechanisms
For the synthesis of a compliant mechanism, three main approaches are suggested in literature: synthesis through the rigidbody replacement method (e.g., [15]), synthesis through the topology optimization method (e.g., [16]), and synthesis through constrainedbased methods (e.g., [17]). In order to realize a better guidance accuracy, the rigidbody replacement synthesis is more suitable than the topology optimization synthesis [18]. Therefore, here the purposeful design of a compliant mechanism based on the rigidbody model is meant by speaking of synthesis. The geometric design of the incorporated flexure hinges is a key point during the synthesis, because often multiobjective design criteria exist.
Regarding a fourbar Roberts mechanism realizing an approximated straightline path of a coupler point
In contrast to the synthesis, the analysis describes the modeling of the rotation axes and link lengths of the rigidbody model based on the compliant mechanism, for example [1, 2]. Additionally, the bending stiffness of all hinges has to be considered.
With a few exceptions (e.g., [5, 23]), almost identical flexure hinges are used in the same single compliant mechanism. However, the relative rigidbodybased rotation angles
Synthesis of a suitable rigidbody model
Replacement and design of the compliant mechanism
Goaloriented and anglebased geometric design of the flexure hinges
Verification of results and proof of requirements.
In literature, the specific geometric design of the flexure hinges during synthesis is only considered when using almost identical hinges in a compliant mechanism and standard contours with a limited variability like cornerfilleted hinges [26].
2.2 Classification of compliant mechanisms
In dependence of the existence of rigidbody joints, compliant mechanisms can be separated into the categories of fully compliant mechanisms or partially compliant mechanisms, while the presented design guidelines in this chapter are suitable for both. Additionally, fully and partially compliant mechanisms can be separated into mechanisms with concentrated or distributed compliance [2] (see Table 2), while mechanisms with concentrated compliance are regarded here.
Furthermore, the presented results in this chapter are focused on planar compliant mechanisms (see Figure 2). Nevertheless, the suggested methods and design approaches can be used for spherical and spatial compliant mechanisms, too.
2.3 Classification of flexure hinges
A flexure hinge is understood as a compliant joint which approximately acts as a hinge due to flexural bending. Thus, the form of relative motion can only be idealized as a rotation. Because of their monolithic arrangement, compliant joints provide numerous approaches for the design of a flexure hinge. Based on the welldescribed leaftype flexure hinge [28], many different flexure hinge types have been developed in the past decades or introduced in recent works in order to realize a larger angular deflection and/or a more precise rotation (see Figure 3) [10, 29, 30, 31]. Many more flexure hinge types are classified in [32].
The design guidelines in this chapter are focused on notch flexure hinges because different design goals can be met by selecting between comparable, simple notch hinge designs already, largely due to a great contour variety [32]. Due to their low complexity, they are easy to manufacture and therefore mainly used in compliant mechanisms, especially in kinematic chains with a higher link number.
Notch flexure hinges have often geometrically been designed so that various cutout geometries are proposed to describe the variable contour height. There are mostly predefined basic geometries which lead to the typical precise hinge with a semicircular contour, the largedeflective hinge with a cornerfilleted contour, or the elliptical hinge as a compromise [33]. Furthermore, flexure hinges are designed with other elementary or complex geometries (e.g., [34]) to realize special properties. Higher order polynomial functions are not state of the art. But among the variety of geometries, especially these contours offer high optimization potential, while a comparatively simple modeling is possible [35]. Thus, the advantages of the polynomial contour are implemented and extended to a power function contour to offer a wider range of possible hinges due to a rational exponent
In the following, four certain flexure hinge contours are considered (see Figure 4): the semicircular contour, the cornerfilleted contour with a stressoptimal and hinge lengthrelated fillet radius
3. Modeling and design of notch flexure hinges
As a flexure hinge, a monolithic, smalllength, and elastically deformable segment of a compliant mechanism with the variable and symmetric contour height
In the following, three important rotational performance properties are considered. A flexure hinge provides a restoring force (a property called
Regarding the influence on the flexure hinge properties, two main groups of geometric design parameters are existing, the hinge dimensions (
For a separate flexure hinge, it is known that the properties depend on the basic geometric dimensions as follows [41, 42]: the bending stiffness and maximum stress increase in particular as the minimum hinge height
Other than that, the highstrength aluminum alloy AW 7075 with Young’s modulus
3.1 Nonlinear FEM simulation
For the quasistatic structural FEM simulation, performed with ANSYS Workbench 18.2, the hinge is modeled as a 3D structure with Solid186 hexahedral elements. The CAD model and FEM model are shown in Figure 6. The FEM model is considered with a fixed support on one side, and it is free on the opposite side. The free end is stepwise loaded with a bending moment or a directionally constant transverse force applied at an edge parallel to
For the determination of the rotational precision, an additional part is added onto the CAD model according to the often used and chosen fixed center approach [36]. Based on guiding the center point
3.2 Design graphs
Among the four investigated flexure hinge contours (cf. Figure 4), the power function contour allows the modeling of a wide spectrum of different notch hinges. Depending on the exponent
Based on a geometrically nonlinear FEM simulation using a given displacement at the free end, design graphs for power functionshaped flexure hinges with typical dimension have been created (see Figure 7) (cf. [24]). Thus, the bending moment
3.3 Nonlinear analytical calculation
As long as the dimensions of the cross section are small compared to the rod length, the nonlinear theory for large deflections of curved rodlike structures is sufficient to describe the deformation behavior of compliant systems [2]. Hence, the analytical investigations are based on the wellknown EulerBernoulli’s theorem for a static problem of a slender structure with an assumed axial inextensible line. The additional assumption is made that SaintVenant’s principle and Hooke’s law apply. If a flexure hinge is modeled together with adjacent deformable link segments as a bent rod with a variable height, this theory is assumed to be suitable, too. Further specific effects relevant for notch flexure hinges have to be expected especially for very thin hinges [43], but they are neglected here with regard to general design guidelines. Among them are shear deformation [44], stress concentration [45], anticlastic bending [46], or manufacturing imperfections [47].
For the analytical calculation, a stationary coordinate system
The initial curvature is zero here, because a fully symmetric flexure hinge is considered. A numerical solution is done for the system of differential equations with the subsequent boundary conditions for a bending moment at the loaded side:
and with the following conditions for a transverse force load.
The boundary value problem is solved numerically with MATLAB [14]. At the end of this procedure, all four parameters
3.4 Design equations
To provide closedform equations which can be used for the simplified flexure hinge synthesis regarding all three rotational properties, six design equations have been developed for both load cases based on the analytical characterization due to the described nonlinear theory (see Table 3). SI units must be used for all parameters. The load acts close to the hinge center at
Property  Bending moment  Transverse force 

Bending stiffness 


Maximum angular deflection 


Rotational precision/axis shift 


With regard to an accelerated and unified synthesis of compliant mechanisms, the general design equations are concise and thus advantageous. With only two coefficients, their structural form is simple, contourindependent, and, with respect to the maximum hinge height or link height
The further necessary contourspecific coefficients of all six design equations are given in Table 4 for the four regarded hinge contours and an appropriate parameter range of the hinge dimensions, the hinge length ratio
The relative discrepancy errors between the design equation results and the analytical results, a comparison with FEM results, as well as coefficients for further power function contours are mentioned in [48]. According to the theory, the accuracy of the results is nearly independent of the parameter range for the hinge width
3.5 Design tool detasFLEX
Moreover, computational design tools may prove useful for the comprehensive analysis and synthesis of various notch flexure hinges, such as the developed tool detasFLEX [14], which is also based on the described nonlinear modeling approach (cf. Section 3.3). The graphical user interface (GUI) is shown in Figure 8.
The design tool was created with MATLAB as a standalone software application which only requires the licensefree runtime environment. Four flexure hinge contours are considered, the circular, cornerfilleted, elliptical, and power functionbased contours (cf. Figure 4). Various geometric and material parameters may be realized to allow for a broad usability in different cases. The calculation is possible for a bending moment and a transverse force as well as both loads combined for different lengths of each hinge side. The computation of results is further possible for all three load cases with a given load or a given rotation angle up to 45°. A wide range of result parameters may be computed, and the most important hinge performance properties like the deformed neutral axis, the bending stiffness, the rotational precision, and the elastic strain distribution are illustrated in the form of diagrams. Additionally, a preview of the exact hinge geometry with the instant visualization of input changes is implemented. Also, values for the angle or load, axis shift, strain distribution, maximum strain, and maximum possible rotation angle are calculated. Using a cornerfilleted hinge, for example, the deviation of the bending stiffness between the FEM and design tool results is in the range of 0.1–9.4% for a given rotation angle of 10° [14].
DetasFLEX enables a wide variety of different geometry, material and contour selections, as well as multiple analysis criteria and settings so that numerous notch flexure hinges for diverse tasks may be accurately analyzed within a few seconds. Thus, each hinge in a compliant mechanism can be designed purposefully and individually. Based on this, the PCbased synthesis is generally possible, too.
3.6 Comparison of results and usability
The different methods for modeling the elastokinematic flexure hinge properties described above are compared in Table 5 using the example of a power functionshaped hinge of the fourth order. The design tool results and analytical modeling are mentioned together due to the equality of the values. It is obvious that the suggested design guidelines and tools allow the accurate and simplified determination or calculation of the deformation, stress/strain, and motion behavior with respect to the assumptions and geometric restrictions.
Method  Bending moment  Transverse force  

FEM  0.0294  2.190  0.414  6.039  2.946  9.980  0.439  5.695 
Design graph  0.029  —  0.43  5.3  2.9  —  0.43  5.3 
Design equation  0.0284  2.107  0.438  5.707  2.842  8.490  0.459  5.403 
Design tool/analytic  0.0277  2.226  0.428  5.839  2.785  9.459  0.450  5.562 
Regarding the usability, the design tool provides the most comprehensive support for the modeling and design of various notch flexure hinges (see Table 6).
Method, related reference  Hinge contours  Domain and value of 
Hinge dimensions 
Range of 
Result criteria  Modeling effort/computation time  

Circular  Cornerfilleted  Elliptical  Power function  
FEM, nonlinear, e.g., [24]  x  x  x  x  Arbitrary  Arbitrary  Arbitrary  Arbitrary  Great/ high 
Analytical, nonlinear, e.g., [2]  x  x  x  x  Arbitrary  Arbitrary  Arbitrary  Arbitrary  Great/ low 
Design graph [24]  x  2 ≤ 
Predefined (three cases for 
≤ 10°  None  
Design Eq. [33, 48]  x  x  x  x  2, 3, 4, 8, 16  Constrained  ≤ 5°  None  
Design tool [14]  x  x  x  x  1.1 ≤ 
Slightly constrained  ≤ 45°  Little/low 
Additionally, the design equations are also easy to use for the four regarded hinge contours. Furthermore, it becomes obvious that the determination method influences the possible values for the hinge dimensions and the power function exponent
In conclusion, all three design aids can be used for the accelerated contourspecific quasistatic analysis of the elastokinematic properties of notch flexure hinges with no need for further iterative and timeconsuming simulations. Moreover, the guidelines and tools may be used for the systematic angledependent synthesis of compliant mechanisms with differently optimized flexure hinges (cf. Section 4).
3.7 Influence of the contour on the elastokinematic hinge properties
Independent of the selected method, the influence of the flexure hinge contour on the elastokinematic hinge properties can be generalized, especially for thin hinges. In Figure 9, the analytical results are exemplarily presented for a force load.
The loadangle behavior is almost linear for the regarded angular deflection up to 5°. The following order can be concluded from the lowest to the highest stiffness: the cornerfilleted, power function, elliptical, and circular contour (Figure 9a).
Because the maximum strain value limits the deflection, the maximum rotation angle of a flexure hinge is always possible with a cornerfilleted contour, while a circular contour leads to the lowest possible angles (Figure 9c). Furthermore, the asymmetric strain distribution due to the transverse force load is obvious, especially for a cornerfilleted contour (Figure 9d). Due to the notch effect, the strain is concentrated in the hinge center for a circular and elliptical contour, while the other contours lead to a more even strain distribution along the hinge length.
Furthermore, the hinge contour has a strong influence on the axis shift, which can be in the range of some micrometers up to submillimeters in dependence of
Thus, the power function contour of the fourth order simultaneously provides a large angular deflection and a high rotational precision. The influence of the basic hinge dimensions is further investigated in [33]. An influence of
4. Modeling and design of compliant mechanisms
In this section, the synthesis method presented in Section 2.1 is applied to a pathgenerating mechanism to explore the anglebased approach of the optimal design with individually shaped flexure hinges in one single compliant mechanism using power functions. Therefore, a symmetric fourbar Roberts mechanism with four hinges, realizing the guidance of the coupler point
The link lengths are suitably chosen as
4.1 Synthesis method based on individually shaped flexure hinges
A compliant mechanism with individually shaped power function flexure hinges is synthesized according to the synthesis method based on the relative rotation angles in the rigidbody model (cf. Section 2.1) exemplarily using the design graph approach (cf. Section 3.2). The resulting compliant mechanism is shown in Figure 10d. Furthermore, the mechanism properties are compared with three compliant mechanisms using identical hinges designed with circular, cornerfilleted, or power function contours of the fourth order (see Figure 10a–c).
Following the rigidbody replacement approach, the flexure hinge centers are designed identical to the revolute joints. Next, suitable flexure hinge orientations are chosen with respect to the link orientations of the crank and the coupler (cf. Section 4.3). The main link parameters are specified as
Based on the relative rigidbodybased rotation angles
4.2 Nonlinear FEM simulation
For the quasistatic structural and geometrically nonlinear FEM simulation of the compliant Roberts mechanisms, the same settings as for a separate hinge are used (cf. Section 3.1). The results for the motion path of the coupler point
The results for the path deviation compared with the rigidbody model confirm the impact of the synthesis approach for the mechanism with different power function contours regarding a higher path precision (compared to identical cornerfilleted contours) and the possible required large stroke (compared to identical semicircular and power function contours with
4.3 Nonlinear analytical calculation
The analytical modeling of the compliant mechanisms is also based on the nonlinear theory for large deflections of rodlike structures described in Section 3.3. To consider the coupler point
From investigations on separate hinges [49] and flexure hingebased compliant mechanisms [50, 51], it is known that the flexure hinge orientation strongly influences the elastokinematic properties of compliant mechanisms. Therefore, a study of the Roberts mechanism is done, while the hinges
4.4 Comparison of results
The FEM results and analytical results for the four investigated compliant Roberts mechanisms are in a very good correlation (see Table 7).
Hinge contours  Method  Straightline deviation 
Path deviation  
Input force 
Maximum strain 

Identical circular, 
FEM  −13.20  11.53  4.93  1.84 
Analytical  −13.72  11.02  4.61  1.88  
Identical cornerfilleted, 
FEM  13.20  37.93  0.80  0.36 
Analytical  13.65  38.38  0.78  0.33  
Identical power function, 
FEM  −8.99  15.74  2.13  0.85 
Analytical  −9.23  15.50  2.16  0.89  
Different power function (Figure 10d)  FEM  1.29  26.02  1.30  0.46 
Analytical  0.86  25.59  1.25  0.47 
Generally, all four compliant mechanisms exhibit a very small straightline deviation in the low micrometer range. With respect to the path deviation compared to rigidbody model, the values differ from the straightline deviations. However, as for the separate hinge (cf. Figure 9b), the mechanism with circular contours provides the smallest path deviation. With regard to the maximum admissible strain, the desired stroke cannot be realized when using identical circular or power function hinges of the fourth order (cf. Figure 11b). In contrast, the full stroke is possible when using the cornerfilleted hinges and, as expected, also with the synthesized mechanism with individually shaped hinges. Furthermore, the input force varies considerably, and, thus, a required stiffness can be achieved, too.
Hence, the result method independently confirms the practicability and impact of the anglebased synthesis method for different hinges in one mechanism. Moreover, the presented nonlinear analytical approach is suitable to accurately model the elastokinematic properties of planar flexure hingebased compliant mechanisms under consideration of the specific hinge contour without simulations.
4.5 Geometric scaling approach
The influence of the scale on the deformation and motion behavior is a further relevant aspect regarding the similitude of mechanisms [52]. Based on investigations of a separate flexure hinge and a compliant parallel linkage [53], the uniform geometric scaling may also be a suitable synthesis approach for compliant mechanisms if the change ratios of the elastokinematic properties are known.
Here, uniform geometric scaling is understood as a linear variation of all geometric length parameters with the scale factor of the value
Scaling factor  Stroke 
Straightline deviat. 
Straightline deviat. 
Path deviation  
Input force 
Max. strain 
Angle 

5  −10.78  0.431  11.21  0.123  0.468  10.33  
10  −24.73  0.862  25.59  1.249  0.468  10.33  
20  −49.74  1.725  51.46  4.997  0.468  10.33  
100  −249.91  8.623  258.53  124.930  0.468  10.33 
Based on the results, geometric scaling is an appropriate approach for the accelerated synthesis through the adjustment of an initially designed or used compliant mechanism with known elastokinematic properties to each required scale of the new application through the use of the property change ratios concluded in Table 9. The ratio is defined as property value for
Property  Property change ratio 

Maximum strain  1 
Angular deflection  1 
Input displacement, motion path coordinates, path deviations  
Input/deflection force 
5. Conclusions
Flexure hingebased compliant mechanisms offer a highprecise and largestroke guidance motion with straightline or path deviations in the singlemicrometer range if they are purposefully designed. It is shown that the synthesis of a compliant mechanism with individually shaped flexure hinges based on the relative rotation angles in the rigidbody model is a suitable and general synthesis method which is easy to use without the need of numerical calculations, FEM simulations, or a multicriterial optimization (cf. [25, 35]). Therefore, this chapter provides a survey of several approaches, guidelines, and aids for the accurate and comprehensive design of notch flexure hinges using various hinge contours, while power function contours are particularly suitable. The use of design graphs, design equations, a computational design tool, or a geometric scaling approach is briefly presented. The results are verified by analytical calculations and FEM simulations, and also, not mentioned, by experimental investigations (e.g., [3, 24, 33]). Moreover, especially the used nonlinear analytical approach has a great potential for the future work, for example, the implementation of a GUI for the compliant mechanism synthesis.
Acknowledgments
We acknowledge support for the research by the DFG (Grant no. ZE 714/102). We further acknowledge support for the Publishing Process Charge by the Thuringian Ministry for Economic Affairs, Science and Digital Society and the Open Access Publication Fund of the Technische Universität Ilmenau.
References
 1.
Howell LL, Magleby SP, Olsen BM. Handbook of Compliant Mechanisms. Chichester: Wiley; 2013. 324 p  2.
Zentner L. Nachgiebige Mechanismen. München: De Gruyter Oldenbourg; 2014. 133 p  3.
Gräser P, Linß S, Harfensteller F, Zentner L, Theska R. Large stroke ultraprecision planar stage based on compliant mechanisms with polynomial flexure hinge design. In: Proceedings of the 17th Euspen; Hannover, Germany. 2017. pp. 207208  4.
Teo TJ, Yang G, Chen IM. A large deflection and high payload flexurebased parallel manipulator for UV nanoimprint lithography: Part I. Modeling and analyses. Precision Engineering. 2014; 38 (4):861871. DOI: 10.1016/j.precisioneng.2014.05.003  5.
Beroz J, Awtar S, Bedewy M, Tawfick S, Hart AJ. Compliant microgripper with parallel straightline jaw trajectory for nanostructure manipulation. In: Proceedings of the 26th Annual Meeting of the ASPE; Denver, USA. 2011  6.
Darnieder M, Pabst M, Wenig R, Zentner L, Theska R, Fröhlich T. Static behavior of weighing cells. Journal of Sensors and Sensor Systems. 2018; 7 (2):587600. DOI: 10.5194/jsss75872018  7.
Lobontiu N. Compliant Mechanisms: Design of Flexure Hinges. Boca Raton, Fla: CRC Press; 2003. 447 p  8.
Pavlovic NT, Pavlovic ND. Compliant mechanism design for realizing of axial link translation. Mechanism and Machine Theory. 2009; 44 (5):10821091. DOI: 10.1016/j.mechmachtheory.2008.05.005  9.
Xu Q. Design and Implementation of LargeRange Compliant Micropositioning Systems. Singapore: John Wiley & Sons Singapore Pte. Ltd; 2016. 273 p  10.
Henein S, Spanoudakis P, Droz S, Myklebust LI, Onillon E. Flexure pivot for aerospace mechanisms. In: Proceedings of the 10th European Space Mechanisms and Tribology Symposium; San Sebastian, Spain. 2003  11.
Cosandier F, Eichenberger A, Baumann H, Jeckelmann B, Bonny M, Chatagny V, et al. Development and integration of high straightness flexure guiding mechanisms dedicated to the METAS watt balance mark II. Metrologia. 2014; 51 (2):8895. DOI: 10.1088/00261394/51/2/S88  12.
Lin CF, Shih CJ. Multiobjective design optimization of flexure hinges for enhancing the performance of microcompliant mechanisms. Journal of the Chinese Institute of Engineers. 2005; 28 (6):9991003. DOI: 10.1080/02533839.2005.9671075  13.
Linß S, Erbe T, Zentner L. On polynomial flexure hinges for increased deflection and an approach for simplified manufacturing. In: Proceedings of the 13th World Congress in Mechanism and Machine Science; Guanajuato, Mexico. 2011. A11_512  14.
Henning S, Linß S, Zentner L. detasFLEX—A computational design tool for the analysis of various notch flexure hinges based on nonlinear modeling. Mechanical Sciences. 2018; 9 (2):389404. DOI: 10.5194/ms93892018  15.
Howell LL, Midha A. A method for the design of compliant mechanisms with smalllength flexural pivots. Journal of Mechanical Design. 1994; 116 (1):280290. DOI: 10.1115/1.2919359  16.
Frecker MI, Ananthasuresh GK, Nishiwaki S, Kota S. Topological synthesis of compliant mechanisms using multicriteria optimization. Journal of Mechanical Design. 1997; 119 (2):238245. DOI: 10.1115/1.2826242  17.
Hopkins JB, Culpepper ML. Synthesis of multidegree of freedom, parallel flexure system concepts via freedom and constraint topology (FACT)—Part I: Principles. Precision Engineering. 2010; 34 (2):259270. DOI: 10.1016/j.precisioneng.2009.06.008  18.
Pavlovic ND, Petkovic D, Pavlovic NT. Optimal selection of the compliant mechanism synthesis method. In: Proceedings of the International Conference Mechanical Engineering in XXI Century; Niš, Serbia. 2010. pp. 247250  19.
Pavlovic NT, Pavlovic ND. Motion characteristics of the compliant fourbar linkages for rectilinear guiding. Journal of Mechanical Engineering Design. 2003; 6 (1):2027  20.
Hricko J. Straightline mechanisms as one building element of small precise robotic devices. Applied Mechanics and Materials. 2014; 613 :96101. DOI: 10.4028/www.scientific.net/AMM.613.96  21.
Wan S, Xu Q. Design and analysis of a new compliant XY micropositioning stage based on Roberts mechanism. Mechanism and Machine Theory. 2016; 95 :125139. DOI: 10.1016/j.mechmachtheory.2015.09.003  22.
Li J, Chen G. A general approach for generating kinetostatic models for planar flexurebased compliant mechanisms using matrix representation. Mechanism and Machine Theory. 2018; 129 :131147. DOI: 10.1016/j.mechmachtheory.2018.07.015  23.
Clark L, Shirinzadeh B, Zhong Y, Tian Y, Zhang D. Design and analysis of a compact flexurebased precision pure rotation stage without actuator redundancy. Mechanism and Machine Theory. 2016; 105 :129144. DOI: 10.1016/j.mechmachtheory.2016.06.017  24.
Linß S. Ein Beitrag zur geometrischen Gestaltung und Optimierung prismatischer Festkörpergelenke in nachgiebigen Koppelmechanismen [doctoral thesis]. Ilmenau: TU Ilmenau; 2015. URN: urn:nbn:de:gbv:ilm12015000283  25.
Linß S, Milojevic A, Pavlovic ND, Zentner L. Synthesis of compliant mechanisms based on goaloriented design guidelines for prismatic flexure hinges with polynomial contours. In: Proceedings of the 14th World Congress in Mechanism and Machine Science; Taipei, Taiwan. 2015. DOI: 10.6567/IFToMM.14TH.WC.PS10.008  26.
Meng Q. A design method for flexurebased compliant mechanisms on the basis of stiffness and stress characteristics [doctoral thesis]. Bologna: Universität Bologna; 2012. DOI: 10.6092/unibo/amsdottorato/4734  27.
Carbone G, Liang C, Ceccarelli M, Burisch A, Raatz A. Design and simulation of a binary actuated parallel micromanipulator. In: Proceedings of the 13th World Congress in Mechanism and Machine Science; Guanajuato, Mexico. 2011. A12_332  28.
Wuest W. Blattfedergelenke für Meßgeräte. Feinwerktechnik. 1950; 54 (7):167170  29.
Jensen BD, Howell LL. The modeling of crossaxis flexural pivots. Mechanism and Machine Theory. 2002; 37 (5):461476. DOI: 10.1016/S0094114X(02)000071  30.
Bi S, Zhao S, Zhu X. Dimensionless design graphs for three types of annulusshaped flexure hinges. Precision Engineering. 2010; 34 (3):659667. DOI: 10.1016/j.precisioneng.2010.01.002  31.
Paros JM, Weisbord L. How to design flexure hinges. Machine Design. 1965; 25 (11):151156  32.
Zentner L, Linß S. Compliant Systems – Mechanics of Elastically Deformable Mechanisms, Actuators and Sensors. München: De Gruyter Oldenbourg; 2019. 166 p  33.
Linß S, Schorr P, Zentner L. General design equations for the rotational stiffness, maximal angular deflection and rotational precision of various notch flexure hinges. Mechanical Sciences. 2017; 8 (1):2949. DOI: 10.5194/ms8292017  34.
Zhu BL, Zhang XM, Fatikow S. Design of singleaxis flexure hinges using continuum topology optimization method. Science in China/E. 2014; 57 (3):560567. DOI: 10.1007/s1143101354464  35.
Gräser P, Linß S, Zentner L, Theska R. Optimization of compliant mechanisms by use of different polynomial flexure hinge contours. In: Proceedings of the 3rd IAK, Interdisciplinary Applications of Kinematics; Lima, Peru. 2018. DOI: 10.1007/9783030164232_25  36.
Linß S, Erbe T, Theska R, Zentner L. The influence of asymmetric flexure hinges on the axis of rotation. In: Proceedings of the 56th International Scientific Colloquium; Ilmenau, Germany. 2011. URN: urn:nbn:de:gbv:ilm12011iwk006:6  37.
Zettl B, Szyszkowski W, Zhang WJ. On systematic errors of twodimensional finite element modeling of right circular planar flexure hinges. Journal of Mechanical Design. 2005; 127 (4):782787. DOI: 10.1115/1.1898341  38.
Yong YK, Lu TF, Handley DC. Review of circular flexure hinge design equations and derivation of empirical formulations. Precision Engineering. 2008; 32 (2):6370. DOI: 10.1016/j.precisioneng.2007.05.002  39.
Valentini PP, Pennestrì E. Elastokinematic comparison of flexure hinges undergoing large displacement. Mechanism and Machine Theory. 2017; 110 :5060. DOI: 10.1016/j.mechmachtheory.2016.12.006  40.
Venanzi S, Giesen P, ParentiCastelli V. A novel technique for position analysis of planar compliant mechanisms. Mechanism and Machine Theory. 2005; 40 (11):12241239. DOI: 10.1016/j.mechmachtheory.2005.01.009  41.
Raatz A. Stoffschlüssige Gelenke aus pseudoelastischen Formgedächtnislegierungen in Pararellrobotern [doctoral thesis]. Braunschweig: TU Braunschweig; 2006  42.
Zelenika S, Munteanu MG, De Bona F. Optimized flexural hinge shapes for microsystems and highprecision applications. Mechanism and Machine Theory. 2009; 44 (10):18261839. DOI: 10.1016/j.mechmachtheory.2009.03.007  43.
Torres Melgarejo MA, Darnieder M, Linß S, Zentner L, Fröhlich T, Theska R. On Modeling the bending stiffness of thin semicircular flexure hinges for precision applications. Actuators. 2018; 7 (4):86. DOI: 10.3390/act7040086  44.
Tseytlin YM. Notch flexure hinges: An effective theory. The Review of Scientific Instruments. 2002; 73 (9):33633368. DOI: 10.1063/1.1499761  45.
Dirksen F, Lammering R. On mechanical properties of planar flexure hinges of compliant mechanisms. Mechanical Sciences. 2011; 2 :109117. DOI: 10.5194/ms21092011  46.
Campanile LF, Hasse A. A simple and effective solution of the elastica problem. The Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2008; 222 (12):25132516. DOI: 10.1243/09544062JMES1244  47.
Ryu JW, Gweon DG. Error analysis of a flexure hinge mechanism induced by machining imperfection. Precision Engineering. 1997; 21 (2/3):8389. DOI: 10.1016/S01416359(97)000597  48.
Linß S, Schorr P, Henning S, Zentner L. Contourindependent design equations for the calculation of the rotational properties of commonly used and polynomial flexure hinges. In: Proceedings of the 59th International Scientific Colloquium; Ilmenau, Germany. 2017. URN: urn:nbn:de:gbv:ilm12017iwk001:5  49.
Schorr P, Linß S, Zentner L, Zimmermann K. Influence of the orientation of flexure hinges on the elastokinematic properties. In: Tagungsband Vierte IFToMM DACH Konferenz 2018; Lausanne, Switzerland. 2018. DOI: 10.17185/duepublico/45330  50.
Gräser P, Linß S, Zentner L, Theska R. On the influence of the flexure hinge orientation in planar compliant mechanisms for ultraprecision applications. In: Proceedings of the 59th International Scientific Colloquium; Ilmenau, Germany. 2017. URN: urn:nbn:de:gbv:ilm12017iwk090:9  51.
Hao G, Yu J, Liu Y. Compliance synthesis of a class of planar compliant parallelogram mechanisms using the position space concept. In: Proceedings of the 4th ReMAR Conference; Delft, The Netherlends. 2018. DOI: 10.1109/REMAR.2018.8449882  52.
Laudahn S, Sviberg M, Wiesenfeld L, Haberl F, Haidl J, AbdulSater K, et al. Similitude of scaled and full scale linkages. In: Proceedings of the 7th European Conference on Mechanism Science: EuCoMeS; Aachen, Germany. 2018. pp. 256264. DOI: 10.1007/9783319980201_30  53.
Linß S, Gräser P, Räder T, Henning S, Theska R, Zentner L. Influence of geometric scaling on the elastokinematic properties of flexure hinges and compliant mechanisms. Mechanism and Machine Theory. 2018; 125 (C):220239. DOI: 10.1016/j.mechmachtheory.2018.03.008