\\n\\n
IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\\n\\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\\n\\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\\n\\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\\n\\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\\n\\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\\n\\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\\n\\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\\n\\nFeel free to share this news on social media and help us mark this memorable moment!
\\n\\n\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/237"}},components:[{type:"htmlEditorComponent",content:'
After years of being acknowledged as the world's leading publisher of Open Access books, today, we are proud to announce we’ve successfully launched a portfolio of Open Science journals covering rapidly expanding areas of interdisciplinary research.
\n\n\n\nIntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\n\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\n\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\n\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\n\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\n\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\n\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\n\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\n\nFeel free to share this news on social media and help us mark this memorable moment!
\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"9659",leadTitle:null,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",reviewType:"peer-reviewed",abstract:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer presents recent advances in understanding the roles of fibroblasts and mesenchymal stem cells in tissue homeostasis and the development of human disease. The book delves into general principles of fibroblast and mesenchymal stem cell biology and their diversity across the human body. It highlights these cells’ unique and shared characteristics across organs (e.g., vasculature, kidney, joints and exocrine glands) and specific pathologies (e.g., tissue damage, inflammation, fibrosis and cancer). A particular focus is set on the roles of fibroblasts in disease chronicity, recurrence, progression, therapeutic resistance and utilisation of the advancing knowledge for developing new therapeutic approaches within and beyond disease boundaries.",isbn:"978-1-78985-800-6",printIsbn:"978-1-78985-799-3",pdfIsbn:"978-1-83880-578-4",doi:"10.5772/intechopen.87462",price:119,priceEur:129,priceUsd:155,slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",numberOfPages:134,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"926fa6446f6befbd363fc74971a56de2",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",publishedDate:"December 22nd 2021",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",numberOfDownloads:1115,numberOfWosCitations:0,numberOfCrossrefCitations:3,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:5,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:8,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 14th 2020",dateEndSecondStepPublish:"October 12th 2020",dateEndThirdStepPublish:"April 1st 2021",dateEndFourthStepPublish:"June 22nd 2021",dateEndFifthStepPublish:"August 21st 2021",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",biography:"Mojca Frank Bertoncelj, MD, Ph.D., is a group leader of the research team Protective Tissue Factors in Autoimmune Diseases at BioMed X Institute, Heidelberg, Germany, developing 3-D models of human synovium and exploring molecular mechanisms of resolution of inflammation in chronic inflammatory diseases. She holds a doctorate in Biomedicine at the University of Ljubljana, Slovenia, serves as a guest lecturer at the University of Primorska, Slovenia and is a VTIS society mentor for young talents in life sciences. She is a winner of BioMed X’s innovation boot camp and a recipient of the Walter-Siegenthaler Medaille in Silber for arthritis research. Before joining BioMed X, she was a junior group leader of the Integrative biology of immune-mediated inflammatory diseases team at the University Hospital Zurich/the University of Zurich, Switzerland.",institutionString:"BioMed X Institute",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"47782",title:"Ms.",name:"Katja",middleName:null,surname:"Lakota",slug:"katja-lakota",fullName:"Katja Lakota",profilePictureURL:"https://mts.intechopen.com/storage/users/47782/images/system/47782.jpg",biography:"Assistant Professor Katja Lakota, MPharm, Ph.D., received her doctorate in Biomedicine in 2014 at the Faculty of Pharmacy, University of Ljubljana. She is a senior scientist at the Department of Rheumatology, University Medical Centre Ljubljana, Slovenia. As a Fulbright scholar, she spent a research year in the laboratory of Professor John Varga at the Northwestern University, Chicago, studying the role of adiponectin anti-fibrotic signalling in fibroblasts. She investigated mechanisms leading to fibrosis development in systemic sclerosis in a postdoctoral fellowship awarded in 2018 by Slovenian Research Agency. Dr. Lakota is an assistant professor at the University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Slovenia, holding courses on structures of biological molecules and systems biology in human diseases in the undergraduate study program bioinformatics.",institutionString:"Ljubljana University Medical Centre",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Ljubljana University Medical Centre",institutionURL:null,country:{name:"Slovenia"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"980",title:"Tissue Engineering and Regenerative Medicine",slug:"tissue-engineering-and-regenerative-medicine"}],chapters:[{id:"78927",title:"Organ- and Site-Specific HOX Gene Expression in Stromal Cells",doi:"10.5772/intechopen.100298",slug:"organ-and-site-specific-hox-gene-expression-in-stromal-cells",totalDownloads:114,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"HOX genes are a group of evolutionarily conserved genes that encode a family of transcription factors that regulate early developmental morphogenetic processes and continue to be expressed into adulthood. These highly conserved HOX factors play an unquestioned crucial role as master regulators during embryonic vertebrate development and morphogenesis by controlling the three dimensional body plan organization. HOX genes specify regions of the body plan of an embryo along the head-tail axis. They encode proteins that specify the characteristics of ‘position’, ensuring that the correct structures form in the correct places of the body. Expression of HOX is known to persist in many tissues in the postnatal period suggesting the role of these genes not only during development but also for the functioning of tissues throughout life. The tissue-specific pattern of HOX gene expression is inherent in stromal/stem cells of mesenchymal origin, such as mesenchymal stromal cells, fibroblasts, smooth muscle cells, and preadipocytes, enabling them to memorize their topographic location in the form of their HOX code and to fulfill their location-specific functions. In this chapter, we focus on the expression and potential role of HOX genes in adult tissues. We review evidence that site-specific expression of HOX genes is connected to location-specific disease susceptibility and review studies showing that dysregulated expression of HOX genes can be associated with various diseases. By recognizing the importance of site-specific molecular mechanisms in the organ stroma, we gain new insights into the processes underlying the site-specific manifestation of disease.",signatures:"Masoumeh Mirrahimi and Caroline Ospelt",downloadPdfUrl:"/chapter/pdf-download/78927",previewPdfUrl:"/chapter/pdf-preview/78927",authors:[{id:"337231",title:"Prof.",name:"Caroline",surname:"Ospelt",slug:"caroline-ospelt",fullName:"Caroline Ospelt"},{id:"337235",title:"MSc.",name:"Masoumeh",surname:"Mirrahimi",slug:"masoumeh-mirrahimi",fullName:"Masoumeh Mirrahimi"}],corrections:null},{id:"79086",title:"Mesenchymal Stem/Stromal Cells and Fibroblasts: Their Roles in Tissue Injury and Regeneration, and Age-Related Degeneration",doi:"10.5772/intechopen.100556",slug:"mesenchymal-stem-stromal-cells-and-fibroblasts-their-roles-in-tissue-injury-and-regeneration-and-age",totalDownloads:135,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Mesenchymal stem/stromal cells (MSCs) and fibroblasts are present in normal tissues to support tissue homeostasis. Both share common pathways and have a number of common features, such as a spindle-shaped morphology, connective tissue localization, and multipotency. In inflammation, a nonspecific response to injury, fibroblasts and MSC are the main players. Two mechanisms of their mode of action have been defined: immunomodulation and regeneration. Following tissue injury, MSCs are activated, and they multiply and differentiate, to mitigate the damage. With aging and, in particular, in degenerative disorders of the musculoskeletal system (i.e., joint and bone disorders), the regenerative capacity of MSCs appears to be lost or diverted into the production of other nonfunctional cell types, such as adipocytes and fibroblasts. Fibroblasts are stromal cells that provide the majority of the structural framework of almost all types of tissues; i.e., the stroma. As such, fibroblasts also have significant roles in tissue development, maintenance, and repair. In their immunosuppressive role, MSCs and fibroblasts contribute to the normal resolution of inflammation that is a prerequisite for successful tissue repair. In this chapter, we review the common and opposing properties of different tissue-derived MSCs and fibroblasts under physiological and pathophysiological conditions. We consider injury and age-related degeneration of various tissues, and also some immunological disorders. Specifically, we address the distinct and common features of both cell types in health and disease, with a focus on human synovial joints. Finally, we also discuss the possible approaches to boost the complementary roles of MSCs and fibroblasts, to promote successful tissue regeneration.",signatures:"Janja Zupan",downloadPdfUrl:"/chapter/pdf-download/79086",previewPdfUrl:"/chapter/pdf-preview/79086",authors:[{id:"336273",title:"Assistant Prof.",name:"Janja",surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan"}],corrections:null},{id:"77138",title:"The Role of Fibroblasts in Atherosclerosis Progression",doi:"10.5772/intechopen.98546",slug:"the-role-of-fibroblasts-in-atherosclerosis-progression",totalDownloads:211,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:1,abstract:"The following chapter addresses vascular fibroblasts in a healthy, quiescent state, as well during vascular inflammation, focusing on atherosclerosis. The development of atherosclerosis, an inflammatory disease of medium- and large-sized arteries, has traditionally been viewed as an “inside-out” mechanism, with prominent roles of the innermost layer of the artery, consisting of endothelial cells. However, emerging evidence suggests a new paradigm of “outside-in” mechanism, including an earlier role for fibroblasts, constituents of the outermost adventitial layer of the artery. Phenotypic and functional changes of fibroblasts in adventitia may even occur prior to, or alongside endothelial activation. Activated adventitial fibroblasts, implicated in atherosclerosis progression, begin to transform into myofibroblasts, upregulate production of different proinflammatory cytokines, chemokines, growth factors, proteolytic enzymes, extracellular matrix proteins and reactive oxygen species, leading to extensive matrix remodeling, chemotaxis and recruitment of immune cells. Due to their suitable location for drug delivery systems, preventing fibroblast activation, modulating their activity or inducing myofibroblast dedifferentiation could represent a promising therapeutic approach for atherosclerosis regression.",signatures:"Tadeja Kuret and Snežna Sodin-Šemrl",downloadPdfUrl:"/chapter/pdf-download/77138",previewPdfUrl:"/chapter/pdf-preview/77138",authors:[{id:"31224",title:"Prof.",name:"Snežna",surname:"Sodin-Šemrl",slug:"snezna-sodin-semrl",fullName:"Snežna Sodin-Šemrl"},{id:"335775",title:"Dr.",name:"Tadeja",surname:"Kuret",slug:"tadeja-kuret",fullName:"Tadeja Kuret"}],corrections:null},{id:"77932",title:"Heterogeneity of Fibroblasts in Healthy and Diseased Kidneys",doi:"10.5772/intechopen.99492",slug:"heterogeneity-of-fibroblasts-in-healthy-and-diseased-kidneys",totalDownloads:137,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"Chronic kidney disease (CKD) is a worldwide health problem affecting 9.1% of the world’s population. The treatments to prevent the progression of CKD remain limited, however. Resident fibroblasts in the kidneys play crucial roles in the pathological conditions commonly recognized in CKD, such as renal fibrosis, renal anemia, and peritubular capillary loss. Fibroblasts in the kidney provide structural backbone by producing extracellular matrix proteins and produce erythropoietin for normal hematopoiesis under physiological conditions. In the diseased condition, however, fibroblasts differentiate into myofibroblasts that produce excessive extracellular matrix proteins at the cost of the inherent erythropoietin-producing abilities, resulting in renal fibrosis and renal anemia. Pericytes, which are mesenchymal cells that enwrap peritubular capillaries and highly overlap with resident fibroblasts, detach from peritubular capillary walls in response to kidney injury, resulting in peritubular capillary loss and tissue hypoxia. Several reports have demonstrated the beneficial roles of fibroblasts in the regeneration of renal tubules Renal fibroblasts also have the potential to differentiate into a proinflammatory state, producing various cytokines and chemokines and prolonging inflammation by forming tertiary lymphoid tissues, functional lymphoid aggregates, in some pathological conditions. In this article, we describe the heterogenous functions of renal fibroblasts under healthy and diseased conditions.",signatures:"Takahisa Yoshikawa, Yuki Sato and Motoko Yanagita",downloadPdfUrl:"/chapter/pdf-download/77932",previewPdfUrl:"/chapter/pdf-preview/77932",authors:[{id:"338243",title:"Prof.",name:"Motoko",surname:"Yanagita",slug:"motoko-yanagita",fullName:"Motoko Yanagita"},{id:"339769",title:"Dr.",name:"Takahisa",surname:"Yoshikawa",slug:"takahisa-yoshikawa",fullName:"Takahisa Yoshikawa"},{id:"339770",title:"Dr.",name:"Yuki",surname:"Sato",slug:"yuki-sato",fullName:"Yuki Sato"}],corrections:null},{id:"77818",title:"Fibroblast-Like Synovial Cell Subsets in Rheumatoid Arthritis",doi:"10.5772/intechopen.99240",slug:"fibroblast-like-synovial-cell-subsets-in-rheumatoid-arthritis",totalDownloads:391,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:1,abstract:"Fibroblasts like synoviocytes (FLS) play several significant roles in rheumatoid arthritis (RA) pathophysiology. This chapter will describe known roles of FLS in disease initiation, joint inflammation, disease persistence and joint destruction. It will describe the newly characterized subsets of FLS based on single cell RNA sequencing studies, and their association to specific aspects of the disease. Finally, we will discuss the future of targeting FLS in the treatment of RA. The FLS in the synovial lining layer are identified by surface complement decay-accelerating factor (CD55) along with lubricin and metallopeptidase expression. Pathological activation of this lining layer subset result in bone and cartilage damage in mice. FLS of the sublining layer are often characterized by THY1 expression, but recent studies have highlighted a heterogeneity where several distinct subsets are identified by additional markers. Sublining FLS expressing human leukocyte antigen-DRA (HLA-DRA) produce C-X-C motif chemokine 12 (CXCL12) and receptor activator of nuclear factor-κB ligand (RANKL) and seems to constitute a pro-inflammatory subset that is associated with inflammation and tertiary lymphoid structures. Another subset of FLS characterized by CD34 expression may discriminate a common progenitor fibroblast subset. Taken together, studies isolating and characterizing gene expression in synovial FLS report both associations of unknown importance and markers that may impose protective or destructive features. This supports evidence of FLS as active players in RA pathology capable of cellular recruitment, local cellular crosstalk and promotion of joint destruction. These discoveries may serve as an atlas for synovial activation in RA and have identified several potential fibroblast markers for the development of targeted treatment.",signatures:"Søren Lomholt, Morten A. Nielsen, Maithri P. Aspari, Peter B. Jørgensen, Adam P. Croft, Christopher Buckley and Tue W. Kragstrup",downloadPdfUrl:"/chapter/pdf-download/77818",previewPdfUrl:"/chapter/pdf-preview/77818",authors:[{id:"333808",title:"Associate Prof.",name:"Tue",surname:"Kragstrup",slug:"tue-kragstrup",fullName:"Tue Kragstrup"},{id:"357327",title:"Dr.",name:"Søren",surname:"Lomholt",slug:"soren-lomholt",fullName:"Søren Lomholt"},{id:"357328",title:"Dr.",name:"Morten Aagaard",surname:"Nielsen",slug:"morten-aagaard-nielsen",fullName:"Morten Aagaard Nielsen"},{id:"357329",title:"Dr.",name:"Maithri",surname:"Aspari",slug:"maithri-aspari",fullName:"Maithri Aspari"},{id:"357330",title:"MSc.",name:"Peter Bjørnlund",surname:"Jørgensen",slug:"peter-bjornlund-jorgensen",fullName:"Peter Bjørnlund Jørgensen"},{id:"357331",title:"Prof.",name:"Christopher",surname:"Buckley",slug:"christopher-buckley",fullName:"Christopher Buckley"},{id:"357332",title:"Dr.",name:"Adam",surname:"Croft",slug:"adam-croft",fullName:"Adam Croft"}],corrections:null},{id:"77572",title:"Fibroblasts in Sjögren’s Syndrome",doi:"10.5772/intechopen.98946",slug:"fibroblasts-in-sj-gren-s-syndrome",totalDownloads:129,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The Sjögren’s syndrome is an autoimmune disease characterized by chronic inflammation of the exocrine glands, leading to dryness of mucosal surfaces, and often to severe systemic manifestations. Here, the immunomodulatory function of fibroblasts derived from salivary glands, a primary site affected by the Sjögren’s syndrome, is discussed. Specific subsets of these fibroblasts drive the formation of tertiary lymphoid structures, which are associated with severe disease and which constitute a risk factor for the development of lymphoma in Sjögren’s syndrome. Single cell RNA-sequencing has provided new insights into subsets of fibroblasts in inflamed salivary glands and has provided evidence for the existence of shared inflammation-associated fibroblasts across chronically inflamed tissues. These findings support the concept of targeting the fibroblast compartment in Sjögren’s syndrome and other chronic inflammatory diseases. In addition to the immunomodulatory role of fibroblasts, the interaction of the epithelium with fibroblasts is essential for salivary gland homeostasis. Fibroblasts provide essential signals for the regeneration of salivary gland epithelial cells, which is disturbed in Sjögren’s syndrome, and leading to the loss of saliva secreting cells and subsequent hyposalivation.",signatures:"Kerstin Klein",downloadPdfUrl:"/chapter/pdf-download/77572",previewPdfUrl:"/chapter/pdf-preview/77572",authors:[{id:"335786",title:"Dr.",name:"Kerstin",surname:"Klein",slug:"kerstin-klein",fullName:"Kerstin Klein"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:{id:"14",series:{id:"11",title:"Biochemistry",issn:"2632-0983",editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}}},tags:null},relatedBooks:[{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3348",title:"Tissue Engineering",subtitle:null,isOpenForSubmission:!1,hash:"39bb39271df3b373edb7d5e2cdeffb18",slug:"tissue-engineering",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/3348.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3361",title:"Regenerative Medicine and Tissue Engineering",subtitle:null,isOpenForSubmission:!1,hash:"fe914d49a96b3dcd00d27292ae23536e",slug:"regenerative-medicine-and-tissue-engineering",bookSignature:"Jose A. Andrades",coverURL:"https://cdn.intechopen.com/books/images_new/3361.jpg",editedByType:"Edited by",editors:[{id:"40914",title:"Prof.",name:"Jose A.",surname:"Andrades",slug:"jose-a.-andrades",fullName:"Jose A. Andrades"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"786",title:"Advances in Regenerative Medicine",subtitle:null,isOpenForSubmission:!1,hash:"06d8a9addc021349418ffcc670142467",slug:"advances-in-regenerative-medicine",bookSignature:"Sabine Wislet-Gendebien",coverURL:"https://cdn.intechopen.com/books/images_new/786.jpg",editedByType:"Edited by",editors:[{id:"65329",title:"Dr.",name:"Sabine",surname:"Wislet",slug:"sabine-wislet",fullName:"Sabine Wislet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"560",title:"Bone Regeneration",subtitle:null,isOpenForSubmission:!1,hash:"293cde681a800f168d0b3ceb13bac38a",slug:"bone-regeneration",bookSignature:"Haim Tal",coverURL:"https://cdn.intechopen.com/books/images_new/560.jpg",editedByType:"Edited by",editors:[{id:"97351",title:"Prof.",name:"Haim",surname:"Tal",slug:"haim-tal",fullName:"Haim Tal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"637",title:"Tissue Engineering for Tissue and Organ Regeneration",subtitle:null,isOpenForSubmission:!1,hash:"5bef0b1c31f0555294c7d49580c8d241",slug:"tissue-engineering-for-tissue-and-organ-regeneration",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/637.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2631",title:"Current Basic and Pathological Approaches to the Function of Muscle Cells and Tissues",subtitle:"From Molecules to Humans",isOpenForSubmission:!1,hash:"34fa138dc948d7121e2915ac84ea30cf",slug:"current-basic-and-pathological-approaches-to-the-function-of-muscle-cells-and-tissues-from-molecules-to-humans",bookSignature:"Haruo Sugi",coverURL:"https://cdn.intechopen.com/books/images_new/2631.jpg",editedByType:"Edited by",editors:[{id:"140827",title:"Emeritus Prof.",name:"Haruo",surname:"Sugi",slug:"haruo-sugi",fullName:"Haruo Sugi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4486",title:"Cells and Biomaterials in Regenerative Medicine",subtitle:null,isOpenForSubmission:!1,hash:"1c333e655d47208db36f2a886b49c160",slug:"cells-and-biomaterials-in-regenerative-medicine",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/4486.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"824",title:"Tissue Regeneration",subtitle:"From Basic Biology to Clinical Application",isOpenForSubmission:!1,hash:"a7b540e4a2d901e0b3c940f69d0fc058",slug:"tissue-regeneration-from-basic-biology-to-clinical-application",bookSignature:"Jamie Davies",coverURL:"https://cdn.intechopen.com/books/images_new/824.jpg",editedByType:"Edited by",editors:[{id:"63994",title:"Prof.",name:"Jamie",surname:"Davies",slug:"jamie-davies",fullName:"Jamie Davies"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4610",title:"Muscle Cell and Tissue",subtitle:null,isOpenForSubmission:!1,hash:"f2719cb06d2a1327298528772eacec55",slug:"muscle-cell-and-tissue",bookSignature:"Kunihiro Sakuma",coverURL:"https://cdn.intechopen.com/books/images_new/4610.jpg",editedByType:"Edited by",editors:[{id:"173502",title:"Dr.",name:"Kunihiro",surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"73132",slug:"corrigendum-to-soil-erosion-influencing-factors-in-the-semiarid-area-of-northern-shaanxi-province-ch",title:"Corrigendum to: Soil Erosion Influencing Factors in the Semiarid Area of Northern Shaanxi Province, China",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/73132.pdf",downloadPdfUrl:"/chapter/pdf-download/73132",previewPdfUrl:"/chapter/pdf-preview/73132",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/73132",risUrl:"/chapter/ris/73132",chapter:{id:"72647",slug:"soil-erosion-influencing-factors-in-the-semiarid-area-of-northern-shaanxi-province-china",signatures:"Ning Ai, Qingke Zhu, Guangquan Liu and Tianxing Wei",dateSubmitted:"February 25th 2020",dateReviewed:"May 22nd 2020",datePrePublished:"June 29th 2020",datePublished:"March 24th 2021",book:{id:"8937",title:"Soil Moisture Importance",subtitle:null,fullTitle:"Soil Moisture Importance",slug:"soil-moisture-importance",publishedDate:"March 24th 2021",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"315343",title:"Dr.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"319114",title:"Ph.D.",name:"Ning",middleName:null,surname:"Ai",fullName:"Ning Ai",slug:"ning-ai",email:"aining_office@126.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},{id:"319299",title:"Prof.",name:"Tianxing",middleName:null,surname:"Wei",fullName:"Tianxing Wei",slug:"tianxing-wei",email:"weitianxing925@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319300",title:"Prof.",name:"Qingke",middleName:null,surname:"Zhu",fullName:"Qingke Zhu",slug:"qingke-zhu",email:"xiangmub@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319301",title:"Prof.",name:"Guangquan",middleName:null,surname:"Liu",fullName:"Guangquan Liu",slug:"guangquan-liu",email:"gqliu@iwhr.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}}]}},chapter:{id:"72647",slug:"soil-erosion-influencing-factors-in-the-semiarid-area-of-northern-shaanxi-province-china",signatures:"Ning Ai, Qingke Zhu, Guangquan Liu and Tianxing Wei",dateSubmitted:"February 25th 2020",dateReviewed:"May 22nd 2020",datePrePublished:"June 29th 2020",datePublished:"March 24th 2021",book:{id:"8937",title:"Soil Moisture Importance",subtitle:null,fullTitle:"Soil Moisture Importance",slug:"soil-moisture-importance",publishedDate:"March 24th 2021",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"315343",title:"Dr.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"319114",title:"Ph.D.",name:"Ning",middleName:null,surname:"Ai",fullName:"Ning Ai",slug:"ning-ai",email:"aining_office@126.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},{id:"319299",title:"Prof.",name:"Tianxing",middleName:null,surname:"Wei",fullName:"Tianxing Wei",slug:"tianxing-wei",email:"weitianxing925@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319300",title:"Prof.",name:"Qingke",middleName:null,surname:"Zhu",fullName:"Qingke Zhu",slug:"qingke-zhu",email:"xiangmub@126.com",position:null,institution:{name:"Beijing Forestry University",institutionURL:null,country:{name:"China"}}},{id:"319301",title:"Prof.",name:"Guangquan",middleName:null,surname:"Liu",fullName:"Guangquan Liu",slug:"guangquan-liu",email:"gqliu@iwhr.com",position:null,institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}}]},book:{id:"8937",title:"Soil Moisture Importance",subtitle:null,fullTitle:"Soil Moisture Importance",slug:"soil-moisture-importance",publishedDate:"March 24th 2021",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"315343",title:"Dr.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"7643",leadTitle:null,title:"Heavy Metal Ions Removal",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tSince the issue related to an overload of heavy metals in the environment is one of the crucial aspects of sustainable development, the aim of this book will be to describe state of the art techniques used for efficient removal of heavy metals from the environment. Special attention will be paid to methods of waters treatment (industrial and natural) and soil remediation to improve its state.
\r\n\tThe description of possible chemical or physical techniques available nowadays will be enriched by biological methods. Methods with a high potential for commercialization are of particular importance, that is why some of the material presented in this book will relate to this aspect.
Arachidonic acid (ARA) is a 20-carbon chain fatty acid with four methylene-interrupted
Central dogma of arachidonic acid metabolism. AA cascade and its destination following three major oxidative pathways: (1) cyclooxygenase (COX), producing prostaglandins and related eicosanoids; (2) lipoxygenase (LOX), forming leukotrienes and related compounds; and (3) CYP450, forming arachidonic acid epoxides.
Phospholipase A2 (EC 3.1.1.4, PLA2) belongs to the group of enzymes, which catalyze the hydrolysis of the ester bond at the sn-2 position of glycerophospholipids and, consequently, are capable of generating free fatty acids, including arachidonic acid (AA). Under physiological conditions, PLA2s are crucial for membrane phospholipid homeostasis, ensuring membrane stability, fluidity, and permeability, and they are involved in the regulation of transport processes through the cell membrane. Phospholipases A2 are enzymes widely diffused in bacteria, plants, venom (of various animals), and mammal cells. Several studies suggest that these enzymes can be classified into 19 groups, which have been identified in mammalian tissues. Besides, many of these groups exhibit significant A2 phospholipase enzymatic activity. At a high level, PLA2s can be classified into two groups: cytosolic PLA2 (cPLA2), and a large and diverse group of secretory PLA2s (sPLA2). Cytosolic PLA2 comprises calcium-dependent cPLA2 (cPLA2), calcium-independent cytosolic PLA2 (iPLA2), lysosomal PLA2 (lPLA2), mitochondrial PLA2 (mPLA2), and, more recently, PAF-acetyl hydrolases (PAF-AHs), which display a small family of phospholipases A2 with high specificity for hydrolysis of the unsaturated fatty acid residue located at the sn-2 position [7, 8, 10]. Several studies suggest that the proinflammatory action induced by mammalian sPLA2 and even snake venom sPLA2 involve a significant increase of both oxidative activity and reactive oxygen species (ROS) in the cell. ROS are involved in processes such as lipid peroxidation and protein carbonylation, which, at certain levels, can lead to pathological events [15]. Studies conducted by Chiricozzi et al. (2010) [16] reveal that there is a relationship between the increased enzymatic activity of sPLA2, which belongs to the IIA family, and a significant cellular production of free radicals, which contribute strongly to the development of neurodegenerative diseases. Snake venom sPLA2 shares similar mechanisms of action and the same pathways of action with mammalian sPLA2. Experimental evidence in the literature demonstrates that both sPLA2 isoforms are able to induce inflammation and other similar biological activities [10, 17, 18, 19]. It is noteworthy that literature data demonstrate sPLA2 can activate signaling events that cannot be explained simply by its catalytic activity, and this fact emphasizes that sPLA2 could act essentially as a ligand of a receptor, rather than as an enzyme [20]. In contrast, studies suggest that products generated by sPLA2 may act as second intracellular messengers, and its enzymatic activity provides a crucial point in the biosynthesis pathways of several classes of inflammatory mediators [21]. In addition, studies performed with other sPLA2s suggest that, during the inflammatory process, leukocytes are recruited to the damaged site (via chemotaxis), where there are conditions necessary to produce a “respiratory explosion.” This condition is characterized by high oxygen consumption and the production of reactive oxygen species (ROS), such as the superoxide anion radical (O2−•) and hydrogen peroxide (H2O2), which can generate the hydroxyl radical (•OH) directly or indirectly through chemical reactions, such as Fenton and Harber Weiss [22].
Nucleic acids, proteins, and lipids are important targets of ROS, and their attack may lead to an increased risk of mutagenesis due to the modification of these molecules. Moreover, during the inflammatory process, they synthesize soluble mediators, such as arachidonic acid metabolites, cytokines, and chemokines, which lead to the recruitment of more cells that are involved in the inflammatory process to the injured site, thus increasing ROS production. These key mediators may activate signal transduction cascades and induce changes in transcription factors, such as nuclear transcription factor κ-β (NFκ-β) and signal transducer/transcriptional activator 3 (STAT 3), which mediate the response to cellular stress. In addition, induction of cyclooxygenase-2 (COX2) was reported to contribute to nitric oxide synthesis by the enzyme inducible nitric oxide synthetase (iNOS), besides the increased expression of tumor necrosis factor (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), and alterations in the expression of specific microRNAs [23, 24]. It should be noted that nitric oxide can form reactive nitrogen species (RNS) that are highly damaging to cells [25, 26]. Signaling of inflammation is recognized globally by IL-1, IL-6, and TNF-α through Toll-like receptors (TLRs), which belong to the IL-1R family. IL-1 and TNF-α represent the proinflammatory cytokine archetypes that are readily released in response to tissue injury or infection, and they represent a programmed recognition system to trigger inflammation [27, 28, 29]. It is important to note that although nitric oxide (NO−•), generated by iNOS, has been revealed to have an essential role as a cellular marker, in an environment with oxidative stress, it can react with O2−• to generate peroxynitrite (NOO−) and other harmful RNS species [26, 30]. Some authors suggest that preventing the formation of NOO- or inducing its efficient decomposition in inflammatory processes may result in a new therapeutic strategy for the treatment of inflammatory processes [30]. In this context, enzymes such as glutathione peroxidase (Gpx) and peroxiredoxin (Prx) appear to have great importance, since they respond to NOO− decomposition with high efficiency [30, 31, 32, 33].
There is no significant evidence that enzymatic toxins from snake venom are able to increase cellular oxidative stress during inflammation [34]; there has been neither a molecular nor a physiological connection shown between edema and other pharmacological activities induced by secretory phospholipase A2 from
The edema values plotted in Figure 2A were obtained by subtracting the edema values induced by saline (negative control). In this work, we evaluated the activity of COX2 and quantified PEG2 and MDA in blood and tissue samples collected at two different time points—30 and 90 min after sPLA2 administration. Figure 2A shows that the amount of COX2 present in swollen tissue after a 5 μg/site Cdt sPLA2 injection was 18.7 ± 1.23 ng/mL (n = 5), compared to values resulting from saline injection that were close to zero. In Figure 2B, quantification of PGE2 in the blood of animals collected after Cdt sPLA2 injection (5 μg/site) reveals a concentration of 783 ± 32.4 pg./mL (n = 5), while the saline treatment resulted in 65 ± 18.6 pg./mL (n = 5). Thus, the amount of PGE2 was 12-fold higher than the control values. MDA, produced during lipid peroxidation, is widely used for determining oxidative stress, and the results (shown in Figure 2C) indicate that the amount of MDA in plasma was 17.82 ± 8.65 nmol, whereas the amount of MDA released after the saline injection was 0.58 ± 0.22 nmol (n = 5). The results presented in Figure 2A–C were obtained before the edema peak, and they show that COX2, PGE2, and MDA levels were extremely high in comparison with the control. However, the samples from the material collected at 90 min or after the peak of edema showed that the COX2, PGE2, and MDA levels did not significantly vary from the control (saline), as shown in Figure 2D–F.
Edema values induced by Cdt sPLA2 at the adjusted concentration of 10 μg/site (n = 5). Blood and tissue samples were collected from the animals in two phases: at 30 min (B–D) and 90 min (E–F). Measurements of COX2, PGE2, and MDA levels are representative of the analysis of five animals.
The metabolism of AA is a crucial point in the course of proinflammatory secretory phospholipase A2 (sPLA2). These enzymes basically have two distinct molecular domains, one involved in catalysis and the other responsible for receptor interaction, which allows sPLA2 to mobilize other enzymes involved in the production of proinflammatory mediators. In addition, studies indicate that sPLA2 receptors can mediate their activity through G-protein, and therefore, they can trigger the activation of phospholipase C (PLC), activating the phosphokinase C (PKC) signaling pathway and leading to potentialization of cytoplasmic PLA2 (cPLA2) and COX2. In Figure 2A, we show the effect of the different treatments on edema induced by sPLA2 of
The Figures 1 and 2 show that sPLA2 triggers proinflammatory activity by a signaling pathway involving PKC and PLC. In the case of PLC, two products are generated, diacylglycerol (DAG) and inositol triphosphate (IP3), which can induce the phosphorylation of several proteins [14, 39, 40, 41, 42, 43]. Thus, the sPLA2 of
Values of edema induced by sPLA2 of Cdt at the adjusted concentration of 10 μg/site (n = 5). (A) The effect of the inhibitor of PKC (PKC inhibitor 30′) and inhibitor of PLC (PLC inhibitor 30′). In (B), we evaluated the edema induced by sPLA2 in the presence of a specific inhibitor of cPLA2 (AACOCF3) and inhibitor of COX2 (NS-398).
A great question that arises for characterizing the pharmacological and biological activity of Cdt sPLA2 is the importance of the enzymatic activity of sPLA2. For many years, several studies concluded that all biological, physiological, pharmacological, and pathological activity depended on the enzymatic activity of sPLA2, and this remained unanimous until the 1990s. In 1984, the structure and function of the basic sPLA2 of
In Figure 3A, we show the effect of 5CQA on edema induced by purified sPLA2 from Cdt. When incubated with sPLA2, 5CQA forms a stable molecular complex and may interact with the catalytic site of the protein and strongly decrease its enzymatic activity, changing the secondary structure and leading to the virtual abolishment of sPLA2 enzymatic activity. The edematogenic assay performed with native sPLA2 and 5CQA incubated with sPLA2 clearly showed that edema induced by sPLA2:5CQA was not abolished, but significantly diminished (Figure 4A). Thus, in part, the anti-inflammatory effect of 5CQA probably involves the downregulation of pharmacological and enzymatic activity of sPLA2 [57, 58]. In Figure 3B, we show the effect of p-bromophenacyl bromide (p-BPB) and umbelliferone (7-HOC) on edema induced by sPLA2. These data reveal that previous treatment with sPLA2/7-HOC highly decreased the proinflammatory effect induced by sPLA2 purified from Cdt, whereas previous treatment with p-BPB abolished this effect.
In (A), we show paw edema induced after the injection of sPLA2 and sPLA2:5CQA (10 μg/paw) into the right paw of Swiss mice. Measurements were performed after 30, 60, 120, 180, and 240 min, and statistical differences were observed with sPLA2 incubated with 5CQA. In (B), we show enzymatic activity analyzed using 4N3OBA as a substrate, then monitored at a wavelength of 425 nm. In this condition, we examined the effect of the substrate on the enzymatic activity of the native and 5CQA-pretreated sPLA2 (sPLA2:5CQA). Chemical treatment of sPLA2 with 5CQA shifts both the Km and Vmax of the native sPLA2. In (C), we show the mouse paw edema induced by untreated sPLA2 and sPLA2 treated with umbelliferone (sPLA2:7-HOC) or with p-bromophenacyl bromide (sPLA2:p-BPB). Doses of 10 μg/paw were used. Observations were conducted at intervals of 30, 60, 90, 120, and 180 min. (D) Results of enzymatic kinetic analysis of untreated (sPLA2) and 7-HOC- or p-BPB-treated sPLA2 (sPLAs:7-HOC) using 4N3OBA as substrate. sPLA2 Vmax; sPLA2:7-HOC Vmax. For the enzymatic assay results in (B) and (D), each point represents the mean ± SEM of n = 12 and *p < 0.05, and in (A) and (C), each point represents the mean ± SEM of five experiments and *p < 0.05.
Unlike flavonoids, both compounds 7-HOC and p-BPB chemically react with the structure of sPLA2 and form highly stable molecular complexes, both inducing large structural modifications that lead to the virtual abolishment of the enzymatic activity of sPLA2. However, the edematogenic experiments conducted with both compounds incubated with sPLA2 did not abolish the proinflammatory effect induced by the protein, as shown in Figure 3B. Thus, in this case, comparison between the results from pharmacological assays suggests that the abolishment of enzymatic activity did not suppress or inhibit the pharmacological effect of sPLA2. This paradox between enzymatic activity and pharmacological effect suggests that at least one more complex pharmacological mechanism is involved in the enzymatic activity, which is independent of the enzymatic activity only. These facts suggest the existence of a distinct pharmacological site, as already proposed by [10, 20].
The authors performed several mutagenesis experiments besides those analyzing its catalytic site; there is another pharmacological site located in the calcium binding loop, and the presence of a second pharmacological site has also been considered by [8, 59, 60]. Thus, the enzymatic activity of sPLA2 from Cdt is not crucial for its pharmacological effect and involves other molecular regions, which are collectively designated as pharmacological sites [51, 61]. Some studies performed with sPLA2 from
Oxidative stress is implicated in numerous proinflammatory responses in mammalian cells. H2O2 is known to trigger the release and metabolism of AA in various cell types, but the mechanisms involved appear to diverge profoundly from one cell to another. Thus, mobilization of AA in response to oxidative stress appears to be a very complex process involving potentially multiple enzymes and pathways. Studies reveal that the pathological actions induced by sPLA2 from snake venom involve the induction of significant increases in proinflammatory mediators that may also induce a significant rise in reactive oxygen species levels, which can effectively lead to the establishment of numerous events. Thus, the decrease or control of the concentration of these reactive oxygen species may contribute to the decrease of several pathological actions induced by the A2 secretory phospholipase venom. This is evidenced in some studies, such as those that used plant extracts with antioxidant action. The increase in the cellular oxidative process resulting from the mobilization of AA is, in short, associated with the mobilization of H2O2 [62, 63, 64]; however, this event is not known to be the case for the sPLA2 found in several snake venoms. Some studies show that there is a direct cause and effect relationship between the increased expression of several calcium-dependent PLA2 isoforms and the increased concentration of hydrogen peroxide. Besides, this mechanism involves the presence of G-protein-bound cellular receptors and the consequent protein kinase activation. In addition, much data support the possible existence of cross talk between cPLA2 and sPLA2 while eliciting a full AA release response [63, 65, 66]. During the action of secretory and cytosolic A2 phospholipases, a large amount of AA is produced, which can be considered one of the major components that may be reduced via enzymatic peroxidation to prostaglandins, leukotrienes, thromboxanes, and other cyclooxygenase-, lipoxygenase-, or cytochrome P-450-derived products. Thus, during the process of oxidative stress, AA and other bioactive lipids can be converted into lipid hydroperoxide (LOOH). LOOHs are the primary products of lipid peroxidation, which are relatively stable and long lasting compared to other ROS. Among the many different aldehydes, which can be formed as secondary products during lipid peroxidation, MDA appears to be the most mutagenic [36, 56, 67].
The most accepted paradigm is that oxidative stress initiates a chain reaction of lipid peroxidation, which can be reduced by the presence of tocopherol (e.g., vitamin E) or some other chain-breaking antioxidant. However, several studies have shown that these antioxidants do not neutralize the oxidized phospholipids that were formed prior to the application of these compounds. Thus, lipid peroxidation is not spontaneously reversible, and enzymatic pathways that return lipids to their reduced states have been described. On the other hand, several authors showed that peroxiredoxins (Prxs), particularly Prx 6, play an essential role in the reduction of H2O2 and short hydroperoxides; besides, they can directly reduce phospholipid hydroperoxides. Prxs are thiol-dependent peroxidases that catalyze the reduction of a wide variety of hydroperoxides, and the catalytic activity is provided by the presence of a highly conserved catalytic cysteine residue, whose oxidation by hydroperoxide generates sulfenic acid (Cys-SOH). The Prx reduction mechanism involving Cys-SOH is a matter of debate, with glutaredoxin 2 (GRX2), thioredoxin 3 (Trx3), thioredoxin reductase 2 (Trr2), and ascorbate being proposed as possible reducers [68, 69, 70]. Several other studies revealed that, during oxidative stress, several Prxs are overexpressed, which can be used as a sensor of oxidative stress in several cells [71, 72, 73]. Thus, Prxs represent a group of antioxidant proteins able to decompose several types of hydroperoxides at rates of 105–8 M/second. These enzymes utilize a cysteine residue, which, after the peroxide decomposition, oxidizes (CP-SOH), forming a disulfide bond with a second cysteine, which is reduced by the enzymes thioredoxin (Trx) and thioredoxin reductase (TrxR). In addition, several drugs have been characterized as peroxiredoxin inhibitors, and their use has been helpful in unraveling the physiological and biological roles of certain peroxiredoxins. Among these Prx inhibitors, the best known is adenanthin (Adn), which inhibits Prxs I, Prx II, and other thiol-dependent antioxidant enzymes [74, 75]. Another commercial drug is MJ33, which is described as a potent inhibitor of Prx 6, an extremely essential enzyme for regulating oxidative stress, inflammation, and NADPH oxidase (NOX)2 activation [76]. In addition, conoidin A (ConA) is characterized as a potent inhibitor of peroxiredoxin II, an antioxidant enzyme that acts in the intracellular signaling and defense against oxidative stress [77]. Enzyme inhibition is one of the ways in which enzyme activity is regulated experimentally and naturally.
In the case of the pharmacological tests, inoculation of 5 μg sPLA2 purified from the total venom of
In (A), we show paw edema induced after the injection of sPLA2 and sPLA2:MJ33 (5 μg/paw) into the right paw of Swiss mice. Measurements were performed after 30, 60, 120, 180, 240 and 480 min, and statistical differences were observed with sPLA2 applied after MJ33 injection 30 minutes before sPLA2 injection. In (B), we show paw edema induced after the injection of sPLA2 and sPLA2:ConA (5 μg/paw) into the right paw of Swiss mice. Measurements were performed after 30, 60, 120, 180, 240 and 480 min, and statistical differences were observed with sPLA2 incubated with ConA (conoidin A) applied 30 minutes before sPLA2. In (C), we evaluate the effect of sPLA2 in comparison with adenanthin (Adn) previously applied 30 min before sPLA2. Each point represents the mean ± SEM of five experiments and *p < 0.05.
Prx 6 shows calcium-independent phospholipase A2 enzyme activity that is also maximal at acidic pH [79]. The determination of its functional and enzymatic properties was recently elucidated. The low MJ33 inhibitory effect observed in our study could have been due to the presence of a calcium-independent PLA2 domain. Some studies showed that Prx 2 appear to be an essential negative regulator of LPS-induced inflammatory signaling through modulation of ROS synthesis via NADPH oxidase activities; therefore, Prx 2 is crucial for the prevention of excessive host responses to microbial products [80]. Although ConA shows the ability to covalently inhibit Prx 2 activity, the results presented in Figure 5B suggest that Prx 2 does not play a relevant role in reducing edema induced by Cdt sPLA2. On the other hand, LPS stimulates monocytes/macrophages through Toll-like receptor 4 (TLR4), resulting in a series of signaling activation events, which potentiate the production of inflammatory mediators, such as IL-6 and TNF-α [81, 82]. The results presented in Figure 5C clearly show that thiol-dependent antioxidant enzymes play an essential role in edema control and recovery induced by sPLA2 purified from Cdt, and, similar to ConA and MJ33, these enzymes did not exhibit an inhibition or decrease of the edema peaks that occur at 60 min. Figure 5C also reveals that the edematogenic effect induced by sPLA2 diminished after 60–90 min, and the hind paw volume returned to its normal volume after 240 min. However, in animals treated with Adn 30 min before the sPLA2 injection, the edematogenic effect persisted for even 8 h after the experiment.
During inflammation (edema), induced by purified sPLA2, arachidonic acid generation and its metabolization by COX2 during the edema play crucial roles during this pharmacological event. Arachidonic acid can be mobilized by the catalytic activity of sPLA2 from
Another pathway that is initiated during AA mobilization involves the release of platelet aggregation factor (PAF)—another subproduct of the enzymatic hydrolysis of membrane phospholipids that cross through the cell membrane—and its specific receptor (PAF receptor or PAF-R) leads to the stimulation of PLC by G-protein [83, 88]. Thus, it is possible that sPLA2 from snake venom, such as venom from
Summary of possible inflammation mechanism of Cdt sPLA2 action during the inflammatory process.
Several studies have shown that arachidonic acid produced by the action of sPLA2 and cPLA2 can activate NADPH oxidase (NOX) enzymes and induce a significant increase in hydrogen peroxide, which gains entry to the intracellular environment through aquaporins and has a predominant role in increasing cellular oxidative stress [91, 92, 93, 94, 95, 96]. This would explain the importance of thiol-dependent antioxidant enzymes playing key roles in the control of edema induced by
On the other hand, several articles have reported that natural antioxidant compounds, such as flavonoids and related substances, when given prior to sPLA2 injection, have significant anti-inflammatory activities. This probably stems from the ability of many of these compounds to partially inhibit the enzymatic and pharmacological activities of sPLA2 from
The present project had the financial support of the FAPESP process no: 2017/20291-0 on the responsibility of Professor M.H. Toyama and the resources coming from the FAPESP process no: 2017/19942-7, to CNPq and UNESP.
The authors have no conflict of interests to declare.
This chapter aims to provide background information about head and neck cancers, including their respective treatment options and radiotherapy techniques. It is divided into 4 parts. Part 1 summarizes the information about head and neck cancers and the use of radiotherapy for head and neck cancers. Part 2 introduces the intensity-modulated radiotherapy (IMRT) which is commonly used in the treatment of head and neck cancers. Part 3 reviews the planning techniques of IMRT. Finally, part 4 discusses the current challenges of head and neck cancers radiotherapy and the promises to overcome the challenges.
Head and neck cancers refer to the carcinomas that originate from any parts of the upper aero-digestive tract. They also include the cancers of the thyroid and salivary glands. Although head and neck cancers no longer rank among the top 5 cancers in the latest report [1], they are still regarded as major types of cancer in Hong Kong [2]. One of the main reasons for this recognition is that nasopharyngeal cancer (NPC) is ranked sixth in terms of the number of new cases in the male population in Hong Kong [1]. The NPC worldwide figures illustrated by the age-standardized rate (ASR) was 1.2 per 100,000 [3], which were much lower than the incidence in Hong Kong which was 7.4 per 100,000 in the year 2012 [1]. The high incidence of NPC in Hong Kong is attributed to its special geographical epidemiology pattern that 76% of new cases were found in east and south-eastern parts of Asia, in which Hong Kong is situated [4]. Other head and neck cancers recorded in the Hong Kong Cancer Registry include cancers of the lip, oral cavity, pharynx, nasal cavity, middle ear and accessory sinuses, larynx, and thyroid gland. Altogether, there were 2617 new cases of head and neck cancers reported in 2016 in Hong Kong, which accounted for 8.3% of all cancer new cases [1]. NPC was the most common type of head and neck cancer, accounting for 46.6% of all new cases. It was followed by the cancer of the tongue and larynx which accounted for 13.9% and 11.4%, respectively [1]. Although there have been some variations in the trend of ASR between sub-sites, the overall ASR of head and neck cancers in Hong Kong has remained around 21 per 100,000 in the past decade. Because of the relatively high incidence of head and neck cancers, their treatment remains one of the major burdens in the health care services in Hong Kong [2].
The role of radiotherapy in the radical treatment of five types of head and neck cancers including cancers of the nasopharynx, oral cavity, larynx, maxillary sinus, and parotid gland is discussed in this section. Intensity-modulated radiotherapy is a standard radiotherapy technique used. The benefit of IMRT is that it is capable of delivering highly conformal doses to the target while sparing the nearby organs at risk (OARs).
Radiotherapy is the major treatment modality for nasopharyngeal carcinoma (NPC). It is because the primary tumor site of NPC is difficult to be accessed by surgical intervention, and the tumor cells of NPC are sensitive to radiation [5]. The use of radiotherapy alone is effective to treat stage I to II NPC, while concurrent chemotherapy is added for higher stages disease to achieve better local-regional control and survival outcome [6]. IMRT is the preferred radiotherapy technique and the late side effect of xerostomia in patients receiving IMRT was significantly reduced [7]. The current standard of the prescribed total dose to the primary tumor is to give 70 Gy in 33–35 fractions [8]. With the use of simultaneous integrated boost, the prophylactic dose which is lower than the dose to the primary tumor is prescribed for the potential microscopic spread of the primary tumor and selected cervical lymph nodes regions. The prophylactic prescription can be varied in different local practices, it was reported that the prescriptions for the intermediate and low-risk cervical lymph nodes were about 60 Gy and 50 Gy, respectively [8, 9].
The cancer of the oral cavity includes various sub-sites such as the anterior tongue, buccal mucosa, hard palate, soft palate, alveolus, and floor of the mouth. The primary treatment of the cancer of the oral cavity varied according to the stage, which can be briefly divided into early and advanced. For early-stage which refers to T1 and early T2 tumors, radiotherapy entirely or partly delivered by brachytherapy can result in similar local control as in surgery [10, 11]. However, a recent retrospective study reported that primary radiotherapy to early-stage oral cavity cancer patients resulted in higher mortality as compared with those who received primary surgery [12]. It has also been reported in the same article that the majority (more than 95%) of early-stage oral cavity cancer patients received primary surgery. The small proportion of patients receiving primary radiotherapy in this group of patients was attributed to the fact that brachytherapy services were not available due to lack of expertise and suitability of applicator for insertion [10]. Hence, most early-stage oral cavity cancer patients receive surgery for primary treatment, although radiotherapy is also an alternative. Postoperative radiotherapy is only indicated for positive or close margins after resection [13]. For advanced oral cavity cancer, surgery is often the standard primary treatment whenever resectable [14], and then followed by adjuvant radiotherapy or chemo-radiotherapy. For non-resectable advanced oral cavity cancer, radical radiotherapy is offered in conjunction with chemotherapy or targeted therapy to improve disease control [15]. The total prescribed dose is 70 Gy to the gross tumor or 66 Gy to the tumor bed after resection, delivered with 2 Gy per fraction. Similar to NPC, prophylactic irradiation to the cervical lymph nodes regions is also used, where 60 Gy and 54 Gy are prescribed to the intermediate-risk and low-risk regions, respectively [16].
A specific consideration when treating cancer of the larynx is preserving organs and function. Radiotherapy alone or concurrent chemoradiotherapy is the most widely applied approach in organ preservation therapy [17]. Radical surgery is the rival choice for the patients, the outcome would lead to sub-optimal quality of life because it would result in loss of voice, swallowing problem, and often a permanent tracheostomy. To achieve a better quality of life after treatment, organ preservation therapy using radiotherapy or chemoradiotherapy is recommended for early-stage disease and some advanced cases of T3 and T4 [17, 18]. The consideration of offering surgery instead of radical chemoradiotherapy for advanced cases includes patients’ condition and the extent of the disease and should be assessed by an expert panel of clinicians from different disciplines [19, 20]. Even when surgery is chosen as the treatment option, radiotherapy still has the role in providing postoperative adjuvant treatment for high-grade tumors, positive margins, cervical lymph nodes involvement, and tumor invasion beyond the larynx [21]. The prescribed dose ranged from 66 Gy to 76 Gy to the primary tumor site and involved lymph node, and the prescription for the selective lymph node with suspected microscopic involvement is at least 50 Gy [22].
Although the primary treatment of the cancer of the maxillary sinus is surgery, postoperative radiotherapy is indicated for stage 2 and stage 3 disease, and for stage 1 disease when the surgical margin is insufficient [20]. For locally advanced disease, induction chemotherapy and then concurrent chemoradiotherapy have been suggested for non-resectable patients [23]. The treatment outcome for these patients would be better if the tumor can be down-staged and subsequent resection is possible [23]. The concern of the radiotherapy to the maxillary sinus includes the preservation of the optic apparatus which are near to the tumor [20]. It has been reported that 37% of the patients who received conventional radiotherapy developed radiotherapy-induced blindness [24]. IMRT is the preferred technique. It has been reported that IMRT could significantly spare nearby organs than those in 3DCRT. The dose to the optic chiasm can be significantly reduced from over 60 Gy in 3DCRT to less than 40 Gy in IMRT [25], while the tumor coverage by the prescribed dose is increased from 83% in 3DCRT to 95% in IMRT. The prescribed dose to the primary tumor site ranged from 66 to 70 Gy.
The primary treatment for the cancer of parotid gland is surgical resection. Radiotherapy is used for adjuvant postoperative treatment except in small and low histological risk tumor with clear surgical margins [26]. In addition, radiotherapy is also indicated as radical treatment in advanced parotid gland cancer cases when resection of the tumor is not possible [27]. The prescribed dose to the primary site is about 66 Gy. IMRT is advocated as the treatment technique to improve OARs sparing [28].
As discussed, IMRT has commonly used for radiotherapy of head and neck cancers The concept of IMRT has been introduced as early as 30 years ago [29], when the method of optimizing the intensity distribution of the incident beams with the purpose to achieve the required dose distribution in the targets was described. The following points summarize the concept of the delivery of IMRT: (1) There are multiple radiation beams with specially decided nonuniform intensity in beamlets, also known as intensity modulation. (2) The multiple radiation beams are applied from different directions, and the region of the convergence of the beams can achieve the desired dose distribution based on the modulated beam intensity. (3) Calculation of the modulated beam intensity usually follows an inverse approach, in which the final dose distribution indicated by planners is used by the computer to calculate the intensity of each beamlets in the treatment field of the IMRT plan.
The delivery of intensity-modulated beams is largely contributed by the dynamic multi-leaf collimator (MLC). The MLC can change the field shape automatically and the summation of numerous sub-fields in different shapes then generate a field with intensity modulation. A simplified rationale of intensity modulation is illustrated in Figure 1. Assume there is no OAR surrounding the target, the intensity of the beam should be proportional to the target thickness from the perspective of each beam. Although beam modifying devices such as wedges and compensators have been used in 3DCRT, their flexibility of beam intensity modification is far less than that in the IMRT. This is best illustrated by the fact that IMRT can produce concave shape isodose distribution which 3DCRT can hardly generate. The freedom of intensity modulation has a great impact on the dosimetric superiority of IMRT, in which better target coverage and less dose to the OARs can be achieved.
Illustration of the relationship of beam intensity and target thickness.
The superiority of IMRT over 3DCRT is illustrated in Figure 2, which shows radiotherapy plans for NPC patients. The dose-volume histogram (DVH) and the isodose distribution show that IMRT is more capable of sparing the dose delivered to both parotid glands while delivering an adequate dose to the PTV.
Procedure of IMRT planning.
To achieve the dosimetric superiority of IMRT described in the last section, the planning procedure adopts an inverse approach. Inverse planning is a process to determine the optimal beam intensity. Numerous inverse planning approaches have been proposed and they can be classified as dose-volume based or biological index based [30]. The inverse planning procedure starts with the delineation of the regions of interest (ROI) which includes the PTV and OAR, followed by the beam configuration, objective function setting, and computer optimization. The workflow of IMRT planning is illustrated in Figure 3.
Comparisons in NPC patients with 3DCRT and IMRT plans. (a) Isodose distribution; (b) 3-dimensional dose color wash; (c) dose-volume histogram.
The procedures which require human input, including the setting of ROI delineation, beam configuration, and objective function, and evaluation of the plan are further discussed in the following sections.
Target delineation is the first and a very important step in IMRT planning to ensure effective treatment. The delineation of targets in head and neck cancers includes the high-risk, intermediate-risk, and low-risk planning target volume (PTV) [31]. The intermediate-risk PTV refers to the regional lymph nodes and the isotropic margins of the high-risk PTV, the low-risk PTV refers to selective negative lymph nodes for prophylactic treatment, and the high-risk PTV encompasses the primary tumor or tumor bed and the positive lymph nodes. The consensus guideline on the delineation of elective lymph nodes levels is well-established [32]. The guideline classifies the regional lymph nodes in the head and neck region into 10 levels and defines their anatomical boundaries. While the selection of lymph nodes levels to be treated largely depends on different oncologists’ judgment and individual patients’ conditions, there have been published guidelines to review the criteria for the lymph nodes levels selection for treatment in different types of head and neck cancers [32, 33]. Contrary to the well-established consensus in the delineation of PTV for the regional lymph nodes, the high-risk PTV delineation technique varies among oncologists. It can either be based on the isotropic expansion of the gross tumor volume or the inclusion of anatomical sub-sites [31]. The method of isotropic expansion to form PTV and the margins needed has been described [34]. The aim of the margins is to account for the uncertainties in the delivery of radiation to avoid target miss. On the other hand, the aim of the inclusion of anatomical subsites in the high-risk PTV in addition to the gross tumor volume is to include regions with possible microscopic extension [33].
The delineation of PTV is closely associated with the dose optimization regarding the skin dose. Usually, oncologists contour a clinical target volume (CTV) that covers all clinical and subclinical malignancy to be irradiated [35]. PTV, on the other hand, would add geometrical margins to CTV to ensure that the prescribed dose is adequately delivered. The CTV to PTV margins can be determined by previously reported margin recipes, accounting for systematic and random error during irradiation [36]. It is worth to note that there is a common circumstance when the head and neck cancers CTV stops just below the skin surface, i.e. no disease in the skin, while the PTV would cover the skin surface or even go beyond it after adding the CTV to PTV margins. In this case, the inverse planning procedure of IMRT would unnecessarily attempt to deliver an extra dose into the skin surface region [37], leading to excessive dose to the skin and adverse skin reactions [38]. Special attention is suggested to these cases, where the target is close to but not involving skin surface so PTV margins should be modified to avoid excessive skin surface normal tissue dose. Many imaging modalities contribute to the delineation of the target. It is important for the definition of tumor extent, the assessment of lymph nodes involvement, and the evaluation of perineural spread [39]. The common modalities include computed tomography (CT) and magnetic resonance imaging (MRI). Both CT and MRI are imaging modalities that provide sectional images with 3-dimensional reconstruction. Each of them has their unique strengths and therefore can provide complementary information in the localization of tumors and organs at risk.
Although both CT and MRI generate sectional images, their image generation mechanisms are not the same. The CT generates images using X-ray. By rotating the X-ray tube, a fan beam of X-ray is irradiated around the patients. After passing through the patient’s body and being attenuated differentially by different body tissue with various densities, the X-ray detector receives many projections from the scanned body region. The computer then generates cross-sectional images based on the information gathered from the detected X-ray projections [40]. The resultant images are shown in grayscale according to the tissue density, which can be illustrated by appearing white for bone (high density), gray for soft tissue (medium density), and black for air (low density) [40]. In addition to the visualization of internal anatomy for the diagnosis purpose, the grayscale which is derived from the CT numbers and the robust geometrical information make the CT images suitable to be used for the dose calculation in radiotherapy planning [41].
On the other hand, MRI works by detecting the reaction of the MR-active nuclei in different parts of the body, mainly hydrogen, to the magnetic fields generated by the MRI machine [42]. MR-active nuclei refer to the particles that have net spins of the protons and neutrons, which create magnetic fields on the nuclei [43]. These MR-active nuclei, therefore, react to the strong magnetic field applied by the MRI machine. The image formation is first done by the application of magnetic field to patients’ body to align the spinning axis of the MR-active nuclei in the body tissue. Then, by the application of short pulse radiofrequency, the alignment is displaced and then relaxed. This procedure, called relaxation, leads to the release of energy detected by the receiver coil [42, 44]. The two main types of relaxation are longitudinal relaxation time (T1) and transverse relaxation time (T2). T1 determines the rate of the spinning axis of the MR-active nuclei to realign to the MRI machine magnetic field, while T2 determines the rate of the MR-active nuclei to lose phase from the alignment [43]. The detection of the energy released can then be processed by computers to generate the cross-sectional images. The differences in the relaxation time (T1 or T2) and the density of the nuclei contribute to the tissue contrast in MRI images [43].
Utilization of both CT and MRI images in head and neck cancers is common because they are complementary to each other. In general, MRI is better in soft-tissue contrast while CT is better in detecting bone erosion. For example, T1 weighted MRI images are the most suitable to delineate NPC tumors because of better soft-tissue contrast and more sensitive in detecting the perineural extension of the tumor [45]. However, MRI images may fail to detect subtle skull base bone erosion, which can be complemented by coronary CT images in the bone window [46]. Also, in the cancer of the oral cavity, contrast-enhanced T1 weighted MRI images are the best for the delineation of tumor margin [47], while CT images are useful for the detection of the small lytic lesion in the cortical mandible [48].
In addition, PETCT also provides useful information to the commonly used CT and MRI images. The PETCT utilizes the mechanism of the increased uptake of the fluorodeoxyglucose (FDG) in tumor cells than in normal cells because of their higher metabolic activity [49]. The FDG uptake site can then be localized by scanners by detecting the radioactivity of the FDG. There are several circumstances that PETCT can provide supplementary information in addition to CT and MRI images. PETCT has been reported to have superior performance than CT and MRI in the detection of involved cervical lymph nodes. This is illustrated by the sensitivity of 90% and specificity of 94% in PETCT, compared with about 80% sensitivity and specificity in MRI and CT [50]. Also, PETCT is better in the detection of the unknown primary tumor, which is essential to decide the treatment regimen [51]. Furthermore, PETCT is useful in determining the presence of distant metastasis. It has the sensitivity and specificity of 89% and 95% respectively which indicates a very accurate diagnosis of the metastatic stage of the disease [52].
Inverse planning of IMRT involves the estimation of OAR dose for the calculation of the beam modulated intensity. The accuracy of the OARs delineation is crucial for the estimation of OARs dose, and hence the inverse planning procedure. There has been a consensus guideline on the OARs delineation in the head and neck regions [53]. This guideline listed the anatomical boundaries of 25 OARs in the head and neck region for the purpose of consistency in the delineation. Detailed atlas has also been supplemented for reference. Figure 4 shows part of the atlas provided by the guideline
Part of the OAR delineation atlas. Adapted from [
In the early application of IMRT, an equally spaced beam arrangement was commonly used [54, 55]. There are two other beam arrangement options available in the Eclipse treatment planning system (Varian Medical System, Palo Alto, USA). These include volumetric modulated arc therapy (VMAT) that enables rotational beams and beam angle optimization (BAO) that automatically chooses optimal static beam angles in either coplanar or non-coplanar beam arrangements.
The delivery of IMRT requires several beams to achieve the assigned dose distribution [29]. It has been a common practice to use the 5–9 beams arrangement in IMRT for head and neck cancer [55, 56]. Theoretically, a greater number of beams can have a higher chance to achieve the planned dose distribution, which increases the time for delivery and quality assurance. Hence, effort should be put to minimize the number of beams to use. Another concern in the beam placement is that opposing beams should be avoided in IMRT because it reduces the effectiveness of the optimization [57]. Furthermore, it has been calculated that the optimal number of beams is 7–9 after striking a balance between the gain in dose distribution and the expenses of treatment time in further addition of beams [58].
Selecting optimal beam orientations can help to improve the dose distribution in complex plans [59]. BAO is a function available in the Eclipse treatment planning system that a built-in algorithm can automatically choose the optimal beam arrangements in static beam IMRT. The mechanism of selecting the beams is by elimination of beams from up to 400 pre-assigned beams orientations. Then, the calculation of fluence optimization iterations can help to eliminate the beams that cause the least contribution to the pre-set objective functions until the number of desired beams is reached. Planners must customize the resulting number of beams, coplanar or non-coplanar arrangement, and the number of initial beams. Also, objective functions for each target volume and OARs must be set beforehand for the purpose of fluence optimization in the beam elimination process. The user interface of BAO is shown in Figure 5.
User interface of BAO in Eclipse treatment planning system.
VMAT is a technique that enables the delivery of IMRT in one or more rotations of the linear accelerator gantry. The delivery time is shorter than static gantry methods while maintaining at least comparable dosimetric quality [60]. It is done by simultaneous modulation of the position of the multi-leaf collimator (MLC), dose rate, and gantry speed, while the gantry is rotating around the patient during treatment. The VMAT plan optimization is done on the same user interface as the fixed beam IMRT plan, which is the photon optimizer in the Eclipse treatment planning system. While individual optimal fluence for the beam intensity modulation is optimized for the fixed beam IMRT, the VMAT optimization considers the full rotation of the gantry by dividing it into 178 equally spaced control points [61]. Assuming that the radiation from each control point is delivered from a static gantry, the optimizer then generates the information of the MLC position, dose rate, and gantry speed altogether for the dose distribution calculation. The photon optimizer user interface for the optimization of IMRT in the Eclipse treatment planning system is shown in Figure 6.
User interface of photon optimizer.
The setting of dose objective is a crucial step in inverse planning because it defines the doses to be delivered to various delineated structures. The computer then calculates the intensity modulation of the treatment field based on the definition of dose objectives [62]. While both dose-volume based objectives and biological objectives can be input in the current commercially available system, dose-volume based objectives were more commonly used. This is because it has been demonstrated that the use of generalized equivalent uniform dose (gEUD) objectives would lead to poorer homogeneities [63]. Inverse planning was first proposed in 1982 [64], in which the dose distribution was defined by planners for the calculation of beam intensity to deliver the desired dose. It is an “inverse” process when compared with the conventional “forward” approach, in which the planners define beam parameters for the calculation of dose distribution [62]. There are upper objective, lower objective and mean objective in the definition of dose-volume based objectives for a structure. A priority number is assigned for each objective to indicate their relative importance. Because the objectives to achieve target dose coverage and to avoid dose to OARs sometimes oppose to each other, the setting of priority provides information for the computer system to decide the “trade-off” between conflicting objectives.
In general, there are 3 types of dose constraints settings before the optimization. They are the PTVs, serial OARS, and parallel OARs respectively. For the PTV, it requires the setting of at least one upper objective and one lower objective as shown in Figure 7. The resultant dose-volume histogram (DVH) should show that the majority of the PTV receives the desired dose with little volume receive the higher dose, and the shape should look like a plateau at 100% volume with an extremely steep cliff at the end when it reaches the prescribed dose.
Dose constraints setting of PTV.
The dose constraints setting for serial OARs only requires an upper objective to limit its maximum dose, as shown in Figure 8.
Dose constraints setting of serial OARs.
For parallel OARs, since the dose received by the various proportion of volume is the concern for late side effects, setting of upper objectives to limit the maximum dose is not enough. It can be done by setting multiple upper objectives at different dose-volume levels or setting the mean objectives. The purpose is to limit the received dose at all volume levels and to push the DVH to its left end as much as possible. A sample objective setting for a parallel OAR is shown in Figure 9.
Dose constraints setting of parallel OARs.
Although the planning procedures are driven by treatment planning computer calculations in an inverse planning process, it is not a completely automatic procedure and there are difficulties in the planning. The difficulties in planning are largely related to the number of OARs and the geometric relationship between the PTVs and the OARs. In the optimization process of the inverse planning, it is usually not possible to achieve all the lower objectives for the PTVs while fulfilling all the upper and mean objectives for the OARs because they naturally contradict each other when the PTVs and OARs are in the vicinity [65]. In head and neck cancers, there are many OARs near to the PTVs including but not limited to the brain stem, the spinal cord, the parotid gland, and the optic nerves. Because of this, the treatment planning system optimization usually has no optimal solution that can fulfill all the set objective functions. Therefore, planners need to intervene in the procedure by evaluating the optimized treatment plans using their own experiences, and to balance the trade-off among all the nonoptimal objective functions of the PTVs and OARs.
In the evaluation of radiotherapy plan dosimetric quality, there are four main parameters to be evaluated: (1) PTV coverage, (2) OAR dose, (3) PTV homogeneity, and (4) PTV conformity [66]. PTV coverage refers to the minimum proportion of PTV covered by the prescribed dose. OAR dose is to see whether it is within the organ tolerance. PTV homogeneity is used to assess the dose uniformity within the PTV whereas PTV conformity is to evaluate whether the prescribed dose level encompasses and follows the shape of the PTV. Examples of different PTV coverage, homogeneity, and conformity situations are illustrated in Figure 10.
Examples of different PTV coverage, homogeneity, and conformity situations. The PTV is in blue solid lines and the body is in black solid lines. The purple dashed lines are the prescribed isodose and the red dashed lines are the hot spots isodose. Their respective dose-volume histograms are shown above.
The evaluation of PTV coverage and OAR dose is conducted using the dose-volume histogram (DVH). PTV homogeneity and conformity are assessed by indices known as the homogeneity index [67] and conformity index respectively [68].
As illustrated, IMRT offers the opportunity for better treatment outcome and less side effects in radiotherapy of head and neck cancers when compared with 3DCRT. A positive aspect of IMRT is that it can increase the dose conformity and homogeneity to the PTV while better sparing of the OARs [69, 70]. The following challenges are needed to be addressed for further development of the advantages of IMRT.
In the treatment planning of IMRT, the inverse planning process requires planners to define the dose limits of various PTVs and OARs for the optimization of the beam intensity modulation. This process is regarded as the setting of the objective function, which includes the dose constraints and priority of the PTVs and OARs as discussed in Section 4.5. In general, the setting of PTVs objective functions are guided by the prescription whereas those for the OARs are set according to their dose tolerance [71]. In practice, however, the objectives for OARs sparing are often in conflict with the objectives to achieve PTV dose coverage [72]. This is because OARs and PTVs are often in close proximity and sometimes may even overlap one another. In this condition, we may have to deliver OARs doses that are close to or even higher than their dose tolerance in order to achieve PTV adequate dose coverage. On the contrary, when the OARs are far from the PTV, the actual OARs dose would be well below their tolerance. It is logical to deduce that the OARs dose is related to their anatomical relationship with PTVs, and this relationship varies greatly among different patients.
Knowledge-based radiotherapy planning has recently emerged as rapidly developing area with the aim to improve the IMRT planning process [73]. Knowledge-based planning refers to the strategy to incorporate past plans data (known as knowledge) into the treatment planning process. Six different categories of purpose in knowledge-based planning have been summarized in a review article, which includes (1) the determination of DVH, (2) specific dose metrics, (3) voxel-level doses, (4) objective function weights, (5) beam parameters and (6) quality assurance metrics [73]. The development of knowledge-based radiotherapy planning enables planners to determine the setting of objective functions in a more systematic approach, less dependent on personal experience, and therefore higher consistency of plan qualities.
The technology of delivering 4pi VMAT is emerging. 4pi radiotherapy refers to the incorporation of beams distributed on the imaginary isotropically expanded spherical surface around the iso-center during plan optimization [74]. The 4pi VMAT can be delivered by non-coplanar arc beams using a static couch or synchronizing the arc rotation of the gantry with a rotating couch [75, 76]. It has been shown that 4pi VMAT has the potential to further decrease the dose to OARs compared with coplanar VMAT. For example, a study on head and neck cancers reported that the mean Dmax to the brain stem and spinal were decreased by 6 Gy and 3.8 Gy respectively using 4pi VMAT [77]. In addition, the method of delivering 4pi VMAT with synchronized gantry and couch rotation enabled more sophisticated arc trajectories compared with the static couch method. It was expected to deliver a highly conformed dose to the PTV with a reduction of OARs dose and 50% isodose volume in the patient body [76]. Although the treatment time will increase by 30% in current linear accelerators compared with coplanar VMAT [75], the potential of 4pi VMAT can be unleashed with the advancement of the future linear accelerators with automatic couch and gantry motion capabilities for faster 4pi VMAT delivery [78].
IMRT offers the possibility to escalate the dose to the tumor because of its better ability to spare the OARs. In fact, dose-escalation has already been implemented in IMRT in the treatment of NPC when the gross tumor dose was raised from 66 Gy in conventional radiotherapy to about 70 Gy [79]. NPC is known for its radio-sensitivity and the existence of dose-tumor-control relationship beyond routine cancericidal dose [80], hence increasing the dose to the tumor volume is able to increase the local control rate. It has been reported that in the group of predominantly locally advanced NPC (T3-4 N0-1), 61.8% of the failure was caused by local relapse [81]. Another study also revealed that 80% of the recurrent cases had the relapse sites at the region delivered with the median dose of 70.4 Gy in the previous treatment [82]. Clinical investigations on the dose escalation in the treatment of NPC using external beam radiotherapy [83] and brachytherapy have been reported [84]. Although it has shown good local control and survival in both reports, treatment side effects were the concern. For example, grade 3 mucositis was observed in about 80% of the cases [83]. Also, by assessing the acute toxicity, it has been suggested that the maximal tolerable dose in IMRT of head and neck cancers was 2.36 Gy per fraction to a total of 70.8 Gy [85].
Radiomics refers to the extraction of features in the regions of interest (ROI) from medical images [86]. The extracted features can be the image voxel intensity, ROI texture and shape features, etc. [87] These extracted radiomics features can be used to correlate with clinical data such as recurrence and metastasis status of patients, so as to develop tools for predicting treatment outcome in future patients based on individual patients’ image radiomics features. Research articles have been published to evaluate the chance of local recurrence in NPC patients, and it was reported that local recurrence can be predicted using pre-treatment imaging with a concordance index of over 0.8 [88, 89]. The future direction could be to incorporate radiomics study for more accurate and individualized patient selection instead of based on their staging. With the attempt to generate own local recurrence prediction model based on radiomics features, NPC patients indicated for GTV dose escalation could be more accurately identified.
Radiotherapy is necessary for the treatment of various head and neck cancers either as a primary treatment or adjuvant treatment after surgery to cure the disease. To achieve optimal radiotherapy treatment, we need to understand the rationale of IMRT and the procedure of treatment planning. With the help of treatment planning computer, inverse planning procedure can accomplish treatment plans with highly conformal radiation dose to PTV and dose avoidance from OARs. Because of the conflicting nature of the 2 major dosimetric goals: high PTV dose and low nearby OARs dose, the optimal radiotherapy treatment is usually achieved by experienced planners who are able to carefully balance the trade-off between the conflicting goals. Nevertheless, the present development of knowledge-based planning could provide a guidance for planners to decide the trade-off in a more objective manner. In addition, the development of 4-pi VMAT and research of radiomics may strengthen the advantage of IMRT in terms of OARs sparing and tumor dose escalation.
"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n\\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\\n\\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\\n\\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\\n\\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\n\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\n\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\n\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6602},{group:"region",caption:"Middle and South America",value:2,count:5908},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12542},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132766},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"56121318 FILLER ads"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:61},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:124},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[],latestBooks:[]},subject:{topic:{id:"904",title:"Intravascular Immunity",slug:"pure-immunology-intravascular-immunity",parent:{id:"150",title:"Pure Immunology",slug:"pure-immunology"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:7,numberOfWosCitations:6,numberOfCrossrefCitations:25,numberOfDimensionsCitations:46,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"904",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8590",title:"Macrophage Activation",subtitle:"Biology and Disease",isOpenForSubmission:!1,hash:"e15abd1b0e08f1b67d33592999c52c32",slug:"macrophage-activation-biology-and-disease",bookSignature:"Khalid Hussain Bhat",coverURL:"https://cdn.intechopen.com/books/images_new/8590.jpg",editedByType:"Edited by",editors:[{id:"162478",title:"Dr.",name:"Khalid Hussain",middleName:null,surname:"Bhat",slug:"khalid-hussain-bhat",fullName:"Khalid Hussain Bhat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7129",title:"Neutrophils",subtitle:null,isOpenForSubmission:!1,hash:"4f71e75cb45249658d48e765d179ce9f",slug:"neutrophils",bookSignature:"Maitham Khajah",coverURL:"https://cdn.intechopen.com/books/images_new/7129.jpg",editedByType:"Edited by",editors:[{id:"173123",title:"Dr.",name:"Maitham",middleName:null,surname:"Khajah",slug:"maitham-khajah",fullName:"Maitham Khajah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"68185",doi:"10.5772/intechopen.88013",title:"Macrophages: The Potent Immunoregulatory Innate Immune Cells",slug:"macrophages-the-potent-immunoregulatory-innate-immune-cells",totalDownloads:2173,totalCrossrefCites:16,totalDimensionsCites:30,abstract:"Macrophages are ubiquitously present innate immune cells in humans and animals belonging to both invertebrates and vertebrates. These cells were first recognized by Elia Metchnikoff in 1882 in the larvae of starfish upon insertion of thorns of tangerine tree and later in Daphnia magna or common water flea infected with fungal spores as cells responsible for the process of phagocytosis of foreign particles. Elia Metchnikoff received the Noble prize (Physiology and Medicine) for his discovery and describing the process of phagocytosis in 1908. More than 130 years have passed and different subtypes and roles of macrophages as innate immune cells have been established by the researchers. In addition to their immunoregulatory role in immune homeostasis and pathogenic infection, they also play a crucial role in the pathogenesis of sterile inflammatory conditions including autoimmunity, obesity, and cancer. The present chapter describes the immunoregulatory role of macrophages in the homeostasis and inflammatory diseases varying from autoimmunity to metabolic diseases including obesity.",book:{id:"8590",slug:"macrophage-activation-biology-and-disease",title:"Macrophage Activation",fullTitle:"Macrophage Activation - Biology and Disease"},signatures:"Vijay Kumar",authors:[{id:"63844",title:"Dr.",name:"Vijay",middleName:null,surname:"Kumar",slug:"vijay-kumar",fullName:"Vijay Kumar"}]},{id:"67289",doi:"10.5772/intechopen.86474",title:"The Pivotal Role of Macrophages in Metabolic Distress",slug:"the-pivotal-role-of-macrophages-in-metabolic-distress",totalDownloads:1230,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"Obesity is a prevalent condition with several associated co-morbidities including the development of metabolic diseases. In obesity there is immune cell infiltration into the white adipose tissue and this is associated with the generation of inflammation and insulin resistance (IR). A large majority of the infiltrating leukocytes in obese adipose tissue are pro-inflammatory macrophages, which upon activation induce a switch in metabolism from oxidative phosphorylation, as is utilised by macrophages in lean adipose tissue, towards aerobic glycolysis. The signalling pathways evoked in the recruited macrophages induce the release of pro-inflammatory cytokines, in signalling pathways which directly interfere with insulin signalling and thus induce a state of IR. As macrophages appear to play such a pivotal role in the generation of IR and are the largest leukocyte population in the adipose tissue, they provide a promising therapeutic target. Indeed, there are several strategies currently being studied to induce a ‘switch’ in macrophages associated with obese adipose tissue, towards the phenotype of those associated with lean adipose tissue, with arguably the most promising being those strategies designed to target the metabolic pathways within the macrophages. This chapter will discuss the polarisation and activation of macrophages within lean and obese adipose tissue and how these cells can be targeted therapeutically.",book:{id:"8590",slug:"macrophage-activation-biology-and-disease",title:"Macrophage Activation",fullTitle:"Macrophage Activation - Biology and Disease"},signatures:"Joseph Roberts, Padraic G. Fallon and Emily Hams",authors:null},{id:"64543",doi:"10.5772/intechopen.81995",title:"Cannabinoid Receptors as Regulators of Neutrophil Activity in Inflammatory Diseases",slug:"cannabinoid-receptors-as-regulators-of-neutrophil-activity-in-inflammatory-diseases",totalDownloads:1115,totalCrossrefCites:4,totalDimensionsCites:4,abstract:"Cannabinoids are compounds present in Cannabis sativa (phytocannabinoids), endogenously produced (endocannabinoids) or synthesized, that bind to G protein-coupled receptors named cannabinoid receptors B1 and B2. They were first described as psychotropic compounds; however, cannabinoids are also potent immunoregulatory agents. Cannabinoids can modulate neutrophil activity in sterile and infectious inflammatory diseases. Concerning sterile inflammatory diseases as arthritis, ischemic diseases, and colitis, the use of CB2 agonist impairs the intracellular signaling pathways involved in the production of inflammatory mediators and expression of adhesion molecules. As a consequence, neutrophils did not release metalloproteinases either to adhere to endothelial cells, resulting in reduced tissue damage. A similar anti-inflammatory CB2 agonist mechanism of action in sepsis and mycobacterial infection models is observed. However, it is not clear if inflammation resolution promoted by cannabinoid treatment during infection is also related to microbial viability. Despite the growing literature showing the effects of cannabinoids on neutrophils, there are still some gaps that should be filled before proposing cannabinoid-based drugs to treat neutrophil-dependent diseases.",book:{id:"7129",slug:"neutrophils",title:"Neutrophils",fullTitle:"Neutrophils"},signatures:"Mariana Conceição Souza and Elaine Cruz Rosas",authors:null},{id:"68678",doi:"10.5772/intechopen.88754",title:"Macrophages in the Pathogenesis of Leprosy",slug:"macrophages-in-the-pathogenesis-of-leprosy",totalDownloads:881,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Leprosy is a chronic infectious disease caused by the intracellular pathogen Mycobacterium leprae. The disease may present different clinical forms depending on the immunological status of the host. M. leprae may infect macrophages and Schwann cells, and recent studies have demonstrated that macrophages are fundamental cells for determining the outcome of the disease. Skin lesions from patients with the paucibacillary form of the disease present a predominance of macrophages with a pro-inflammatory phenotype (M1), whereas skin lesions of multibacillary patients present a predominance of anti-inflammatory macrophages (M2). More recently, it was shown that autophagy is responsible for the control of bacillary load in paucibacillary macrophages and that the blockade of autophagy is involved in the onset of acute inflammatory reactional episodes in multibacillary cells. So, strategies that aim to induce autophagy in infected macrophages are promising not only to improve the efficacy of multidrug therapy (MDT) but also to avoid the occurrence of reactional episodes that are responsible for the disabilities observed in leprosy patients.",book:{id:"8590",slug:"macrophage-activation-biology-and-disease",title:"Macrophage Activation",fullTitle:"Macrophage Activation - Biology and Disease"},signatures:"Rhana Berto da Silva Prata, Mayara Garcia de Mattos Barbosa, Bruno Jorge de Andrade Silva, Jéssica Araujo da Paixão de Oliveira, Tamiris Lameira Bittencourt and Roberta Olmo Pinheiro",authors:null},{id:"67817",doi:"10.5772/intechopen.86433",title:"Wnt Signaling Regulates Macrophage Mediated Immune Response to Pathogens",slug:"wnt-signaling-regulates-macrophage-mediated-immune-response-to-pathogens",totalDownloads:994,totalCrossrefCites:0,totalDimensionsCites:2,abstract:"Infection with pathogenic microbes is a global threat. Macrophages play a fundamental role in promoting host resistance to deadly infections from pathogenic microbes by virtue of a well-orchestrated immune defense system. Phagocytosis and obliteration of invading pathogens by macrophages are an innate immune function that not only sustains immune homeostasis but also bolsters adaptive immune response through antigen processing and presentation. Wnt signaling, where Wnt, a secreted glycoprotein which interacts with Frizzled and ROR cell surface receptors to initiate cellular interactions, could be vital for the immune response executed and propagated by macrophages in both innate and adaptive immune responses. The goal of this chapter is to describe how Wnt signaling influences phagocytosis, autophagy, and transcriptional activation to enable the macrophage to exercise its immune response program to resist infection.",book:{id:"8590",slug:"macrophage-activation-biology-and-disease",title:"Macrophage Activation",fullTitle:"Macrophage Activation - Biology and Disease"},signatures:"Suborno Jati and Malini Sen",authors:null}],mostDownloadedChaptersLast30Days:[{id:"68185",title:"Macrophages: The Potent Immunoregulatory Innate Immune Cells",slug:"macrophages-the-potent-immunoregulatory-innate-immune-cells",totalDownloads:2173,totalCrossrefCites:16,totalDimensionsCites:30,abstract:"Macrophages are ubiquitously present innate immune cells in humans and animals belonging to both invertebrates and vertebrates. These cells were first recognized by Elia Metchnikoff in 1882 in the larvae of starfish upon insertion of thorns of tangerine tree and later in Daphnia magna or common water flea infected with fungal spores as cells responsible for the process of phagocytosis of foreign particles. Elia Metchnikoff received the Noble prize (Physiology and Medicine) for his discovery and describing the process of phagocytosis in 1908. More than 130 years have passed and different subtypes and roles of macrophages as innate immune cells have been established by the researchers. In addition to their immunoregulatory role in immune homeostasis and pathogenic infection, they also play a crucial role in the pathogenesis of sterile inflammatory conditions including autoimmunity, obesity, and cancer. The present chapter describes the immunoregulatory role of macrophages in the homeostasis and inflammatory diseases varying from autoimmunity to metabolic diseases including obesity.",book:{id:"8590",slug:"macrophage-activation-biology-and-disease",title:"Macrophage Activation",fullTitle:"Macrophage Activation - Biology and Disease"},signatures:"Vijay Kumar",authors:[{id:"63844",title:"Dr.",name:"Vijay",middleName:null,surname:"Kumar",slug:"vijay-kumar",fullName:"Vijay Kumar"}]},{id:"68585",title:"Macrophage Polarization Is Decisive for Chronic Bacterial Infection-Induced Carcinogenesis",slug:"macrophage-polarization-is-decisive-for-chronic-bacterial-infection-induced-carcinogenesis",totalDownloads:809,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Macrophages are the special cells of the immune system and play both immunological and physiological role. One of the peculiar characteristics of macrophages is that they are double-edged and highly plastic component of immune system. Due to this characteristic, they are responsible for both progressions as well control of a variety of inflammatory, infectious and metabolic diseases and cancer. These are found in the body in three major phenotypes, which are known as M0 (also known as naïve); M1 (classically activated macrophages); and/or M2 (alternatively activated macrophages) at normal physiological conditions. We have been exploring macrophages in context of bacterial infection and previously demonstrated that M2 polarization of M1 effector alveolar macrophages during chronic/persistent Chlamydia pneumonia, Mycobacterium tuberculosis and Helicobacter pylori pathogens are decisive for the infection induced cancer development in host. Since chronic infection with these pathogens has been associated with adenocarcinoma, therefore, we feel that disruption of macrophage plasticity plays crucial role in the host for the development of cancer. On the basis of this, we propose that in such pathological conditions, management of M1/M2 imbalance is paramount for minimizing the risk of developing cancer by chronic and persistent infection.",book:{id:"8590",slug:"macrophage-activation-biology-and-disease",title:"Macrophage Activation",fullTitle:"Macrophage Activation - Biology and Disease"},signatures:"Mishi Wasson, Sonia Kapoor, Manoj Garg, Sandhya Singh and Hridayesh Prakash",authors:null},{id:"64543",title:"Cannabinoid Receptors as Regulators of Neutrophil Activity in Inflammatory Diseases",slug:"cannabinoid-receptors-as-regulators-of-neutrophil-activity-in-inflammatory-diseases",totalDownloads:1115,totalCrossrefCites:4,totalDimensionsCites:4,abstract:"Cannabinoids are compounds present in Cannabis sativa (phytocannabinoids), endogenously produced (endocannabinoids) or synthesized, that bind to G protein-coupled receptors named cannabinoid receptors B1 and B2. They were first described as psychotropic compounds; however, cannabinoids are also potent immunoregulatory agents. Cannabinoids can modulate neutrophil activity in sterile and infectious inflammatory diseases. Concerning sterile inflammatory diseases as arthritis, ischemic diseases, and colitis, the use of CB2 agonist impairs the intracellular signaling pathways involved in the production of inflammatory mediators and expression of adhesion molecules. As a consequence, neutrophils did not release metalloproteinases either to adhere to endothelial cells, resulting in reduced tissue damage. A similar anti-inflammatory CB2 agonist mechanism of action in sepsis and mycobacterial infection models is observed. However, it is not clear if inflammation resolution promoted by cannabinoid treatment during infection is also related to microbial viability. Despite the growing literature showing the effects of cannabinoids on neutrophils, there are still some gaps that should be filled before proposing cannabinoid-based drugs to treat neutrophil-dependent diseases.",book:{id:"7129",slug:"neutrophils",title:"Neutrophils",fullTitle:"Neutrophils"},signatures:"Mariana Conceição Souza and Elaine Cruz Rosas",authors:null},{id:"63248",title:"Neutrophil Activation by Antibody Receptors",slug:"neutrophil-activation-by-antibody-receptors",totalDownloads:1380,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Neutrophils, the most abundant leukocytes in blood, are relevant cells of both the innate and the adaptive immune system. Immunoglobulin (Ig) G antibody molecules are crucial activators of neutrophils. IgGs identify many types of pathogens via their two Fab portions and are in turn detected through their Fc portion by specific Fcγ receptors (FcγRs) on the membrane of neutrophils. Thus, antibodies bring the specificity of the adaptive immune response to the potent antimicrobial and inflammatory functions of neutrophils. Two types of FcγRs with several polymorphic variants exist on the human neutrophil. These receptors are considered to be redundant in inducing cell responses. Yet, new evidence presented in recent years on how the particular IgG subclass and the glycosylation pattern of the antibody modulate the IgG–FcγR interaction has suggested that a particular effector function may in fact be activated in response to a specific type of FcγR. In this chapter, we describe the main types of FcγRs on neutrophils and our current view on how particular FcγRs activate various signaling pathways to promote unique effector cell functions, including phagocytosis, activation of integrins, nuclear factor activation, and formation of neutrophil extracellular traps (NETs).",book:{id:"7129",slug:"neutrophils",title:"Neutrophils",fullTitle:"Neutrophils"},signatures:"Carlos Rosales and Eileen Uribe-Querol",authors:[{id:"192432",title:"Dr.",name:"Carlos",middleName:null,surname:"Rosales",slug:"carlos-rosales",fullName:"Carlos Rosales"},{id:"198687",title:"Dr.",name:"Eileen",middleName:null,surname:"Uribe-Querol",slug:"eileen-uribe-querol",fullName:"Eileen Uribe-Querol"}]},{id:"67326",title:"Polarization of Tumor-Associated Macrophages by Chinese Medicine Intervention: Mechanisms and Applications",slug:"polarization-of-tumor-associated-macrophages-by-chinese-medicine-intervention-mechanisms-and-applica",totalDownloads:935,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Macrophage polarization is a spectrum of phenotypes and generally can be classified into two states: (1) classically activated or M1 macrophages, which can be driven by lipopolysaccharide (LPS) alone or in association with Th1 cytokines and produce pro-inflammatory cytokines such as TNF-α, IL-6 and, IL-12, and (2) alternatively activated M2 macrophages, which can be promoted by Th2 mediators IL-4 and IL-13 and produce anti-inflammatory cytokines such as TGF-β and IL-10. Current studies have found that the phenotypic switch between M1 and M2 macrophages governs the fate of an organ in inflammation or injury. The imbalance of M1/M2 polarization is closely involved in various pathological processes and is becoming a potential target for therapeutic strategies. Traditional Chinese medicine is an integrated healthcare system composed of many practices and is characterized by multi-target, multi-level, and coordinated intervention effects. Chinese medicines nowadays are applied to regulate phenotype polarization of macrophages to improve the microenvironment, thus ameliorating or even eliminating the symptoms. In this chapter, we will discuss the molecular mechanisms of macrophage polarization, their roles in health and disease, and the intervention with Chinese medicines to modulate the polarization of macrophages in tumor microenvironment (TME) for therapeutic purpose.",book:{id:"8590",slug:"macrophage-activation-biology-and-disease",title:"Macrophage Activation",fullTitle:"Macrophage Activation - Biology and Disease"},signatures:"Yuanjun Lu, Hor Yue Tan, Ning Wang and Yibin Feng",authors:[{id:"14428",title:"Prof.",name:"Yibin",middleName:null,surname:"Feng",slug:"yibin-feng",fullName:"Yibin Feng"}]}],onlineFirstChaptersFilter:{topicId:"904",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 24th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:50,paginationItems:[{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"15",type:"subseries",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11411,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",slug:"azhar-rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},onlineFirstChapters:{},publishedBooks:{},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/65249",hash:"",query:{},params:{id:"65249"},fullPath:"/chapters/65249",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()