\r\n\t
",isbn:"978-1-80355-367-2",printIsbn:"978-1-80355-366-5",pdfIsbn:"978-1-80355-368-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"d3a491e5194cad4c59b900dd57a11842",bookSignature:" Vladimir V. Kalinin",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11782.jpg",keywords:"Variety of Traits, Historical Remarks, Modern Definitions and Descriptions, Personality Disorders, Comorbid Psychopathology, Depression, Anxiety, Obsessions, Delusion, Treatment of Personality Disorders, Phenomenology of Personality Traits, Delusional Symptoms",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 9th 2022",dateEndSecondStepPublish:"May 12th 2022",dateEndThirdStepPublish:"July 11th 2022",dateEndFourthStepPublish:"September 29th 2022",dateEndFifthStepPublish:"November 28th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:'A researcher with over 300 publications in psychopathology, psychopharmacology, neuropsychiatry, and epileptology, a member of the Russian Society of Psychiatry, and the Russian Society of Epileptology. Dr. Kalinin\'s biography is included in Marquis "Who’s Who in Medicine and Healthcare" (2006-2007); Who’s Who in Science and Engineering 2008-2009"; "Who’s Who in the World" (2010, 2011), and in the Cambridge International Biographical Centre.',coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"31572",title:null,name:"Vladimir V.",middleName:null,surname:"Kalinin",slug:"vladimir-v.-kalinin",fullName:"Vladimir V. Kalinin",profilePictureURL:"https://mts.intechopen.com/storage/users/31572/images/system/31572.png",biography:"Vladimir V. Kalinin was born in1952 into a family of physicians in Orenburg (Russian Federation). He obtained an MD from Moscow State Medical Stomatological University in 1976. In 1976-1977 he completed an internship in Psychiatry. In 1978 he became a scientific researcher at Moscow Research Institute of Psychiatry of Ministry of Health and Social Development where he is currently the department head. His scientific interests concern a broad range of psychiatry problems. The topic of his doctoral thesis in 1996 was the psychopathology and therapy of anxiety disorders with an emphasis on panic disorder. Prof. Kalinin has authored 228 publications, including research articles in professional journals (in Russian and English), three monographs in Russian, and four monographs in English.",institutionString:"Moscow Research Institute of Psychiatry – The Branch of Serbsky's National Center of Psychiatry and Narcology of Ministry of Health",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"4",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"21",title:"Psychology",slug:"psychology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444312",firstName:"Sara",lastName:"Tikel",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/444312/images/20015_n.jpg",email:"sara.t@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"510",title:"Anxiety Disorders",subtitle:null,isOpenForSubmission:!1,hash:"183445801a9be3bfbce31fe9752ad3db",slug:"anxiety-disorders",bookSignature:"Vladimir Kalinin",coverURL:"https://cdn.intechopen.com/books/images_new/510.jpg",editedByType:"Edited by",editors:[{id:"31572",title:null,name:"Vladimir V.",surname:"Kalinin",slug:"vladimir-v.-kalinin",fullName:"Vladimir V. Kalinin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3808",title:"Obsessive-Compulsive Disorder",subtitle:"The Old and the New Problems",isOpenForSubmission:!1,hash:"a88e0e721da6859f0d527cdf5041baf9",slug:"obsessive-compulsive-disorder-the-old-and-the-new-problems",bookSignature:"Vladimir Kalinin",coverURL:"https://cdn.intechopen.com/books/images_new/3808.jpg",editedByType:"Edited by",editors:[{id:"31572",title:null,name:"Vladimir V.",surname:"Kalinin",slug:"vladimir-v.-kalinin",fullName:"Vladimir V. Kalinin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5152",title:"Epileptology",subtitle:"The Modern State of Science",isOpenForSubmission:!1,hash:"3cd008df10046135bfaa4f329e83af7f",slug:"epileptology-the-modern-state-of-science",bookSignature:"Vladimir V. Kalinin",coverURL:"https://cdn.intechopen.com/books/images_new/5152.jpg",editedByType:"Edited by",editors:[{id:"31572",title:null,name:"Vladimir V.",surname:"Kalinin",slug:"vladimir-v.-kalinin",fullName:"Vladimir V. Kalinin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9530",title:"Anxiety Disorders",subtitle:"The New Achievements",isOpenForSubmission:!1,hash:"702af230f376b968ca17900a9007cab9",slug:"anxiety-disorders-the-new-achievements",bookSignature:"Vladimir V. Kalinin, Cicek Hocaoglu and Shafizan Mohamed",coverURL:"https://cdn.intechopen.com/books/images_new/9530.jpg",editedByType:"Edited by",editors:[{id:"31572",title:null,name:"Vladimir V.",surname:"Kalinin",slug:"vladimir-v.-kalinin",fullName:"Vladimir V. Kalinin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6494",title:"Behavior Analysis",subtitle:null,isOpenForSubmission:!1,hash:"72a81a7163705b2765f9eb0b21dec70e",slug:"behavior-analysis",bookSignature:"Huei-Tse Hou and Carolyn S. Ryan",coverURL:"https://cdn.intechopen.com/books/images_new/6494.jpg",editedByType:"Edited by",editors:[{id:"96493",title:"Prof.",name:"Huei Tse",surname:"Hou",slug:"huei-tse-hou",fullName:"Huei Tse Hou"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9052",title:"Psychoanalysis",subtitle:"A New Overview",isOpenForSubmission:!1,hash:"69cc7a085f5417038f532cf11edee22f",slug:"psychoanalysis-a-new-overview",bookSignature:"Floriana Irtelli, Barbara Marchesi and Federico Durbano",coverURL:"https://cdn.intechopen.com/books/images_new/9052.jpg",editedByType:"Edited by",editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10981",title:"Sport Psychology in Sports, Exercise and Physical Activity",subtitle:null,isOpenForSubmission:!1,hash:"5214c44bdc42978449de0751ca364684",slug:"sport-psychology-in-sports-exercise-and-physical-activity",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/10981.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde Dorthea Grindvik",surname:"Nielsen",slug:"hilde-dorthea-grindvik-nielsen",fullName:"Hilde Dorthea Grindvik Nielsen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10211",title:"The Science of Emotional Intelligence",subtitle:null,isOpenForSubmission:!1,hash:"447fc7884303a10093bc189f4c82dd47",slug:"the-science-of-emotional-intelligence",bookSignature:"Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/10211.jpg",editedByType:"Edited by",editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7811",title:"Beauty",subtitle:"Cosmetic Science, Cultural Issues and Creative Developments",isOpenForSubmission:!1,hash:"5f6fd59694706550db8dd1082a8e457b",slug:"beauty-cosmetic-science-cultural-issues-and-creative-developments",bookSignature:"Martha Peaslee Levine and Júlia Scherer Santos",coverURL:"https://cdn.intechopen.com/books/images_new/7811.jpg",editedByType:"Edited by",editors:[{id:"186919",title:"Dr.",name:"Martha",surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"65065",title:"Silicon-Based Micromachining Process for Flexible Electronics",doi:"10.5772/intechopen.83347",slug:"silicon-based-micromachining-process-for-flexible-electronics",body:'\nOver the past decade, an enthusiastic pursuit for flexible electronics, employing both organic and inorganic semiconductor materials, with continuously improved performance has been observed [1]. The material like polymer, carbon nanotubes (CNTs), and silicon (Si) membrane are popular candidates for flexible electronics. Compared with other materials, monocrystalline Si nanomembrane released from silicon-on-insulator (SOI) emerges as one of the best choices due to its high carrier mobility, commercial availability at relatively lower cost, and mature fabrication techniques [2]. Recently, nanostructured silicon has been widely used to produce flexible electronic devices like flexible solar cells, thermal electricity, and piezoelectric generators.
\nFunctional part of flexible electronics based on silicon can be fabricated in a standard complementary metal-oxide semiconductor (CMOS) technology. A standard CMOS technology includes photolithography, etch, deposition, and doping. Moreover, frontside- and backside-release process, transfer process, and bonding process for flexible substrate are developed to generate flexible silicon membrane with functional part. For frontside-release process, deep reactive-ion etching (DRIE), buffered oxide etcher (BOE), or xenon difluoride (XeF2) etching are used to release membrane structures, while for backside-release process, lapping, chemical mechanical polishing (CMP), or XeF2 etching are employed to thin the Si substrate. After fabricating thin Si membranes with functional devices, special transfer process is up required to stick released devices on a flexible substrate like PDMS or Kapton® tape. After the release process, the released Si membrane is transferred and bonded to a flexible substrate (Figure 1).
\nSchematic diagram of Si-based nanostructures that are served as flexible thermoelectric generator, solar cells, ICs, and piezoelectric generators. As shown in the middle, Si nanowire array on plastic substrate and its cross section under scanning electron microscopy (SEM) are flexible. Images at the bottom: Reproduced with permission [
Many researchers have demonstrated flexible electronics based on polymers [9, 10] and CNT [11, 12]; however, the micromachining process with those materials is largely limited by the process temperature and compatible chemicals. Moreover, the devices are typically not scalable or almost impossible to integrate with current advanced IC technology. Compared to polymers and CNT, Si-based flexible electronics can employ the matured CMOS fabrication techniques such as photolithography, atomic layer deposition (ALD), physical vapor deposition (PVD), chemical vapor deposition (CVD), Hydrofluoric Acid (HF) etching, reactive-ion etching (RIE), etc. However, in order to produce flexible electronics using traditional Si-based COMS process, development of release process, transfer process, and bonding process are essential for the production of flexible thin silicon membrane. To realize flexibility the oft used processes are DRIE, XeF2 dry etching, transfer through polymer stamp, process for bonding to flexible substrate, etc. On the whole, the fabrication of silicon-based flexible electronics consists of two major steps: the fabrication of functional part like photodiode, metal-oxide semiconductor field-effect transistor (MOSFET), fin field-effect transistor (FinFET), ferroelectric RAM (FeRAM), etc. and the thinning of device to realize the flexibility. In this chapter, micromachining processes are introduced and described.
\nCMOS process is a standard process used to produce integrated circuits (ICs) and form electronic circuits and system in large scale. CMOS process involves various basic fabrication processes such as wafer manufacturing, oxidation, photolithography, doping, deposition, etching, and CMP.
\nSilicon wafers are produced from raw material sand by purifying and crystallizing. The purified silicon is held in molten state at about 1500°C, and after dipping a seed crystal into the melt, the silicon ingot can be produced by gradually extracting the rod. In addition, the silicon can be lightly doped by inserting doping material into the crucible. The fabricated silicon material is used to produce the CMOS device such as MOSFET and FinFET. Figure 2a shows the fabricated traditional bulk Si wafer. Nowadays the most advanced transistors are FinFET or fully depleted silicon-on-insulator (FD-SOI) planar transistor technology that is developed at the scale smaller than 25 nm. In the fabrication of FD-SOI transistor, instead of the traditional bulk Silicon wafer, the new more expensive material called SOI wafer is employed. The SOI wafer is fabricated by either separation by implantation of oxygen (SIMOX) process or Smart-Cut process [13]. Figure 2b shows SOI wafer for FD-SOI transistor. The thickness of the silicon film is in the ranges from 10 nm to 30 nm; while the standard thickness of BOX is approximately 145 nm and the thickness of ultra thin BOX ranges from 10 nm to 30 nm [14].
\n(a) Traditional bulk silicon wafer. (b) FD-SOI starting wafer.
In the CMOS fabrication, silicon dioxide layer is used as an insulating material between different conducting layers or acts as a mask or protective layer against diffusion and high-energy ion implantation. The oxidation is performed by a chemical reaction between oxygen (dry oxidation) or water vapor (wet oxidation), and the silicon slice surface is heated in a high-temperature furnace at about 1000°C [15]. Dry oxidation is often used to produce thin and robust oxide layers, while wet oxidation is used to produce thicker and slightly porous layers.
\nWith the help of mask, the photolithography is employed to create patterned layers of different materials on the silicon wafer. Photolithography involves several steps. At first, a photosensitive emulsion (photoresist) film is coated on wafer surface using spin coat. Following that, the wafer is exposed to a pattern of intense light with the help of mask. For positive photoresist (PR), the exposed regions are soluble in the developer, while for negative photoresist, the unexposed regions are soluble in the developer. Tetramethylammonium hydroxide (TMAH) is a widely used developer to remove unwanted photoresist regions. After development, the etching is performed to remove the unwanted regions that are not protected by photoresist. In projection systems, the resolution is limited by the wavelength of the light and the ability of the reduction lens system to capture enough diffraction orders from the illuminated mask. Nowadays, the most advanced CMOS photolithography is at the scale of about 7 nm, but for flexible electronics photolithography at the scale of about 1 μm is enough for most application such as imager, temperature sensor, and humidity sensor.
\nDoping is used to produce electronic components such as diode and various transistors. After masking some area of the silicon surface, doping can be done in exposed regions. Doping can be performed by either diffusion method or ion implantation. There are two basic steps for diffusion method: predeposition and drive-in. In the predeposition step, the wafer is heated in a furnace to a certain temperature (about 1000°C), and carrier gas such as nitrogen and argon with the desired dopant such as phosphine PH3 or diborane B2H6 flow to the silicon wafer. The diffusion of dopant atoms takes place onto the surface of the silicon, and in this step we can control the dose of dopant atoms. In the drive-in step, the wafer is heated in an inert atmosphere for few hours to distribute the atoms more uniformly and to a higher depth [15]. For ion implantation method, charged dopants (ions) are accelerated in an electric field and penetrated into the wafer. The penetration depth can be precisely controlled by reducing or increasing the voltage that needed to accelerate the ions. Following ion implantation, a drive-in step is also performed to achieve uniform distribution of the ions and increase the depth of penetration. Figure 3 shows two phosphorous doping processes for SOI wafer, in which secondary ion mass spectrometry (SIMS) was used to analyze the doping profiles under two implantation conditions: one has energy/dose of 12 keV/1 × 1016 cm−3, and the other has 150 keV/4 × 1015 cm−3 [1].
\nSIMS results of phosphorous doping profiles of two implantation conditions: 12 keV/1 × 1016 cm−3 (a) before and (b) after annealing; 150 keV/4 × 1015 cm−3 (c) before and (d) after annealing. Reproduced with permission [
For MOS Fabrication, various deposition methods are used to form conducting insulating and passivation layers with a variety of materials. There are three main deposition processes: PVD, CVD, and ALD. CVD is widely used to deposit conducting layers such as polysilicon and insulating layers such as SiO2 and Si3N4. ALD is used to deposit gate dielectrics with high-k material such as hafnium dioxide HfO2 and tantalum pentoxide Ta2O5 that are necessary for FET at scale smaller than 25 nm. PVD is an established method of depositing metal contacts, barriers, and interconnects used in ICs [16]. In the advanced CMOS, a 3D stack chip structure is used to further improve the integration by using solder flip chip and through-silicon vias (TSVs). For the fabrication of TSVs, the depositions of passivation layer such as silicon nitride (SiN) and metal layer such as copper (Cu) are necessary. But some deposition processes are not more suitable for TSVs with aspect ratios more than 10:1; the capability of several deposition processes to coat the sidewalls of TSVs is limited as shown in Figure 4. Compared with ALD, the deposition coverage of CVD decreases below 20% for aspect ratios exceeding 10:1, and for aspect ratios larger than 2.5:1 the deposition coverage of PVD is already less than 20%. Moreover, molecular vapor deposition (MVD) is an alternative deposition process that is suitable for TSVs with aspect ratios larger than 10:1 [17].
\nSchematic graph of deposition coverage in comparison of PVD, CVD, and ALD deposition processes. Reproduced with permission [
Etching process is used to remove unwanted material and to create desired pattern. There are two types of etching methods: wet etching and dry etching. For wet etching, the wafer is immersed in a suitable etching solution, which can remove the exposed material leaving the material beneath the protective layer intact. For example, potassium hydroxide (KOH) is used to etch silicon, while hydrofluoric acid (HF) is used to etch SiO2. In addition, the etching mask should not dissolve or at least be etched much slower in the etchant. For example, SiO2 and Si3N4 can serve as mask for Si etching in KOH, while Si3N4 and metal are usually used as SiO2 wet etching mask. Dry etching, usually called plasma etching or reactive-ion etching (RIE), is used to remove the materials by chemical reactions (using chemical reactive gases or plasma) and by purely physical methods (e.g., sputtering and ion beam-induced etching) or with a combination of both chemical reaction and physical bombardment (e.g., RIE). For instance, SF6 and CF4 can be utilized to etch silicon anisotropically, while XeF2 etches silicon isotropically with pure chemical reaction. Depending on the selectivity and how much materials need to be etched, PR, SiO2, or metal can be used as the mask for silicon etching [19, 20].
\nEtching can be isotropic or anisotropic and therefore can form different etching profiles. Isotropic etching has the same etch rate in all directions and, anisotropic etching has different etch rates in the lateral and vertical directions. For example, silicon can be etched anisotropically by using CF4 or SF6 and can be etched isotropically using XeF2 or HF:HNO3:H2O.
\nCMP process is a combination of mechanical and chemical actions, and it has been widely used to polish and thin silicon substrate. A CMP process could be significantly influenced by many factors such as abrasives, pH, and polishing temperature [21]. The schema of CMP tool and process to polish wafer are shown in Figure 5 [22]. A wafer is firstly held by the polishing head using a vacuum and then the polishing head starts to rotate, resulting in the rotation of held wafer on the polishing pad [22]. The slurry used in the CMP process is dispensed through a slurry arm with the help of polishing pad conditioner, and the polishing pad surface is refreshed for each polishing process so that global planarization and polishing can be achieved [22]. During CMP process, the wafer is polished through abrasive and chemistry, and the complicate interaction between pad asperity, slurry, and wafer surface is described in Figure 5 in a microscale observation [22]. For CMP process, readers are directed to Refs. [21, 22] for more details.
\nThe schema of conventional CMP process [
Frontside-release process utilizes SOI wafers and, in general, consists of active device fabrication, frontside-release hole, or structure patterning, releasing protection coating and release etching. Two release etching strategies are usually employed: one way is to remove BOX layer in SOI and fully release the device layer. RIE or DRIE is used to etch the Si device layer depending on the required etching depth and expose the BOX layer to HF etchant for releasing.
\nThe other approach is to remove bulk silicon carrier in SOI and fully release the structures consisting of both device and BOX layers. Therefore, Si isotropically etching is required for releasing, and XeF2 is mostly employed. Pure SF6 plasma can also etch silicon isotropically.
\nDifferent from CMOS process, the thickness of FD-SOI device layer for MOSFET is approximately in the order of 100 nm, and the thickness of SOI device layer for flexible electronics can be as thick as 10 μm in many applications. Therefore DRIE is essential to form high aspect ratio trenches for exposure of BOX or silicon substrate to etchant. Following DRIE, the release can be achieved by either removing BOX or undercutting silicon substrate from frontside. HF etchant is used to remove BOX and XeF2 is used to undercut silicon. Moreover, for release by undercutting silicon below BOX layer, a protective layer is necessary to protect other silicon parts from etching. Deposition of the protective layer onto the sidewall of trenches must be performed. Compared to PVD and CVD, ALD method can deposit high conformal and continuous protective layer inside the trench. The protective layer can be made of silicon oxide or alumina. In the following sections, we first introduce DRIE and XeF2 RIE processes, and then we will describe how these two technique are utilized in the frontside-release processes.
\nDRIE is an extension of the traditional RIE process and is a highly anisotropic etch process. Different from traditional RIE, DRIE can be used to create vertical (90°) etch profiles, deep penetration, and holes with high aspect ratios. So far it has been used to fabricate capacitors for deep trench DRAM, TSVs, and microphotonic structures. With the help of novel thermal budget and by-product redeposition management, DRIE can pattern more than 5 μm silicon or even thru the wafer with cycling of two processes:
Plasma-induced deposition of a polymeric layer as passivation layer using C4F8 as working gas [18].
Anisotropic removal of passivation layer on the bottom followed by an isotropic Si chemical etch, and SF6 is usually employed as working gas for etching of Si [18].
The DRIE process is shown in Figure 6 and consists of six steps. At first, the polymeric passivation layer is coated overall to protect the sidewalls from chemical attack in the etching step (Figure 6a). Following that is the etching step; first the passivation layer on vertical surface (trench bottom) is removed through electrical field-accelerated ions (Figure 6b), and after the removal of passivation layer on trench bottom, the trench bottom is isotropically etched (Figure 6c). This isotropic etching usually lasts a few seconds, and the working gas mostly is a fluorine-based gas such as SF6. Followed by the etching step, a deposition step is performed for a few seconds to coat the overall polymeric passivation layer (Figure 6d), which is similar to the first step. Then the etching step is repeated (Figure 6e), which is similar to step 2 and step 3 [18]. The removal of passivation layer on vertical surfaces is much faster than on horizontal, since the ions are accelerated in vertical direction. After the removal of passivation layer on the trench bottom, the further etchants start etching the trench bottom, and simultaneously polymeric passivation layer of the sidewall slows the lateral etch rate [18]. To achieve the desired depth of TSVs, these etching and deposition steps are repeated several times (Figure 6f) [18]. The DRIE process involves six steps, and the performance of each step is controlled by a significant number of parameters such as gas flows, the power of the inductively coupled plasma or the platen source, time, etc. [18].
\nBosch process scheme. (a) Deposition of a conformal C4F8 passivation layer, (b) directed removal of the passivation layer by ions, (c) isotropic etching with SF6, (d) deposition of a conformal C4F8 passivation layer, (e) passivation removal and isotropic etching, and (f) alternating steps (b)–(e). reproduced with permission [
There are quite a few parameters that can significantly influence the DRIE process profile, such as gas flows, the power of the inductively coupled plasma or the platen source, time, etc. For 1 μm line and hole, scallops were deeper in the top (~40 nm) and none in the middle (<5 nm) and minimal (~20 nm) in the bottom for both holes and lines for the optimized recipe [23]. Figure 7 shows how the process parameters influence the DRIE process properties. Scallops in top and in the bottom showed that a lower etch time results in less scalloping. Those etches are isotropic, so lowering the time lowers the etch distance in all directions. It also appears to be a weak but somewhat significant evidence for dependence on temperature. However, these trends are in the opposite directions, so there is no optimal temperature for the minimal scalloping. SF6 flow shows no measured statistical significance to the scalloping or undercut.
\nDRIE profile scalloping prediction and desired profiles [
Xenon difluoride (XeF2), bromine trifluoride (BrF3), chlorine trifluoride (ClF3), and fluorine (F2) are widely used to etch silicon [24]. Compared to other silicon etchants, XeF2 has unique advantages like gas-phase isotropic etching, high selectivity for silicon, and ease of operation [24]. At room temperature and atmospheric pressure, XeF2 is white and in solid state [24]. However, when XeF2 is at a pressure smaller than 4 torr, the XeF2 solid will transform into a gas state [24]. Since the gas etching process is simple to operate, XeF2 etching process is widely performed by using the pulse etching system [24]. The XeF2 pulse etching process can be controlled by process parameters such as XeF2 pressure, etching time for a single cycle, and the number of etch cycles [24]. Figure 8 shows the micromachining mechanism of XeF2 etching.
\nSchema of interaction between XeF2 and Si by using XeF2 RIE to etch Si. (1) XeF2 gas diffused from the reactor to the external surface of the etching window. (2) XeF2 gas diffused from the etching window through the etched Si cavity to the silicon surface. (3) adsorption of XeF2 at the silicon surface. (4) dissociation of XeF2 molecule into fluorine atoms (F) and xenon (Xe) gas. (5) formation of Si-F bond and adsorption of SiF4 at the silicon surface. (6) SiF4 at the external surface is desorpted from Si surface. (7) the products are transferred from the wafer surface to the reactor. Reproduced with permission [
In this release process, the SOI BOX layer is patterned and exposed using RIE or DRIE, followed by HF wet etching and critical point dry to fully release the structures above the BOX layer.
\nThis release process involves three steps. In the first step, trenches are formed through RIE or DRIE to expose BOX (Figure 9b). When the silicon layer is thicker than 10 μm and aspect ratio is more than 10:1, DRIE is essential to expose BOX. For thin SOI, the exposure can also be performed by RIE. The second step is the deposition of a protective layer (Figure 9b). The Protective layer can protect other parts of silicon oxide from damage by etching, and the materials such as Si3N4 and PR can be used as a protective layer in this process. In the last step, the wafer is immersed in a HF-contained solution, which removes the exposed BOX. Figure 9c shows that the BOX is already partially removed, and Figure 9d shows that the BOX is fully removed through HF-contained solution. After the release process, the wafer will be transferred to a flexible substrate, and a bonding process will be performed to bond wafer to flexible substrate.
\nThe process flow for release through removal of BOX.
Zhou et al. utilized this release process to release their strained nanomembrane. In their paper for fast flexible electronics with strained silicon nanomembrane, the strips are released in a 4:1 diluted HF (49% HF) solution in which the BOX layer is selectively etched away [25]. Figure 10 shows the process for release of silicon nanomembrane from Si handling substrate.
\n(a) Atomic lattice schematic diagram showing the strain sharing principle. Optical images show the strained NM during release and after finishing release. (b) Process flow to implement the strain sharing principle and the release. Reproduced with permission [
This release process is achieved by undercutting silicon substrate under the BOX through XeF2 isotropic etching. DRIE is usually used to pattern top silicon device layer followed by protective coating and removal of BOX layer in RIE.
\nThis process involves four steps, and we use Figure 11 to describe this release process. At first, an oxide film such as PECVD SiO2 is deposited atop the device as an etching buffer layer (Figure 11a). Following that, with the help of a PR mask, the exposed oxide layers are removed through RIE, and then the exposure of silicon under the BOX is performed by using DRIE or RIE (Figure 11b). Following exposure septs, protective layer is coated overall to protect other parts of silicon from damage through etching (Figure 11c), and the materials such as Al, PR, GaN, and SiO2 can be used as protective layer in this process. After that, a RIE etching is performed to remove the protective layer at the bottom of the trenches. At last, the wafer is placed in XeF2 RIE to etch the silicon under the BOX. Once the undercuts meet with each other, the SOI and the BOX is completely released from the bulk substrate (Figure 11d). After the release process, the wafer will be transferred to flexible substrate, and a bonding process will be performed to bond wafer to flexible substrate.
\nDRIE process flow and fabricated monocentric imager: (a) after fabrication of photodiode circuitry, (b) pattern tessellated structures thru Si device and buried oxide layers, (c) sidewall passivation, (d) released device by XeF2 etching, (e) a released and curved device transferred into a hemispherical fixture, and (f) a mounted monocentric imager. Reproduced with permission [
Wu et al. (2016) employed this release process to fabricate a silicon-based flexible imager [26, 27, 28, 29, 30, 31, 32, 33], and Figure 11 shows the process flow to release an imager from the carrier substrate and the fabricated mounted monocentric imager. Sevilla et al. used this release process to fabricate a silicon-based flexible FinFET. Figure 12 shows the basic steps to release FinFET from the carrier substrate, the fabricated FinFET, and the flexible FinFET wafer [34].
\n(a) Spin coat of thick (7 μm) photoresist and hole patterning, (b) cavern formation beneath BOX due to XeF2 etchant, (c) top view of fins after the gate etch process, which is a complex task performed with a combination of reactive-ion etching and wet cleans, and (d) FinFET silicon fabric at minimum device scale bending radius (5 mm). Reproduced with permission [
Instead of etching the BOX and undercutting silicon substrate under the BOX, backside-release process etches the silicon substrate from the backside. Lapping, CMP, and RIE can be employed in this release process. The mechanisms of CMP and XeF2 RIE are already introduced in this chapter, and in this section the comparison between CMP, XeF2 RIE, and lapping is described. Following that, the process flow is described through the example in which lapping, CMP, and RIE are employed to thin the silicon substrate.
\nCMP, RIE, and lapping are used to realize backside-release, and we compare these tree fabrication processes to know how to choose suitable fabrication process.
\nThe mechanisms of CMP and XeF2 RIE are already introduced in previous sections, and lapping is a mechanical process in which a pad is used with polishing liquid to remove excess silicon from a wafer substrate. Lapping takes place between two counter-rotating cast iron plates and either an abrasive film or slurry. To adjust the penetration of the film/slurry, the wafers either spin faster or experience a heavier load to fit the target specification.
\nThe surface roughness of silicon is about 50 nm by using CMP, and through lapping the surface roughness of silicon can achieve 1 μm. The surface roughness of silicon by using RIE is worst about 10 μm. The cost of RIE is the most expensive, because this process needs also a working gas and vacuum environment. The CMP process is more expensive compared to lapping, because CMP consumes chemicals while lapping involves mechanical polish only. For thinning substrate, man can chose suitable process depending on the surface roughness and the cost.
\nFigure 13 shows three present backside thinning processes by using CMP, RIE, or lapping. For thinning through lapping and XeF2 RIE (Figure 13a), at first the substrate is reduced to exact thickness (usually about 50 μm) by lapping for cost saving, and after that the resulting surface micro-crack damages induced during the lapping process are removed by XeF2 etching processes with the buried oxide layer as the etch stop layer. Thinning process through anisotropic RIE (Figure 13b) possesses advantage high etch rate about 20 μm/min and disadvantage high surface roughness. At first the wafer is turned upside down, and then the substrate is thinned through RIE. The thickness of substrate is controlled by a measurement. Besides RIE and lapping, backside-release can be also performed through CMP, and Figure 13c shows this thinning process. Compared with RIE and lapping, the etch rate of CMP is much lower about 0.5 μm/min, and the surface roughness is best at about 50 nm. Usually for cost saving, before CMP process, the substrate can be thinned through lapping, and after lapping process expensive and more precise CMP is performed to further thin the substrate.
\nThe schema for three present backside thinning processes by using CMP, RIE, or lapping. (a) Thinning through lapping (first step) and XeF2 RIE (second step), the BOX serves as stop layer for XeF2 RIE, (b) thinning through RIE by using working gas such as CF4 and SF6, and (c) thinning through lapping (first step) and CMP (second step).
Lapping and XeF2 etching can thin the SOI wafer from the backside all the way to the BOX layer with a clean surface finish due to high selectivity between SiO2 and Si in XeF2 RIE. This process involves three steps. At first the wafer is coated by protective layer to protect the parts of wafer that shall not be etched from damage through isotropic XeF2 RIE. Following that, the substrate can be thinned to certain thickness by lapping. At last, the rest of Si substrate is removed by XeF2 RIE, and the BOX serves as stop layer for XeF2 RIE. With the help of XeF2 RIE and stop layer, the resulting surface micro-crack damages induced during the lapping process can be removed. After thinning process, the wafer is transferred to a flexible substrate, and a bonding process will be performed to bond wafer to flexible substrate.
\nHsieh et al. used this process to fabricate a biocompatible flexible IC. At first a wafer lapping machine is used to thin the Si wafer substrate, and the thickness is reduced to ∼50 μm [28]. Following lapping, a dry XeF2 etching process with BOX as etch stop layer is performed to remove the surface micro-crack damages that are caused by the lapping process [28]. Liu et al. employed this process to fabricate a spherical flexible CMOS retina chip. They thinned the backside Si to a thickness of around 50 μm by mechanical lapping, and after that a dry etching such as XeF2 or RIE is used to etch the Si substrate down to around 10μm thickness and remove the surface micro-crack damages induced during the lapping process [33].
\nInstead of lapping and XeF2, RIE can be directly used to thin the backside bulk silicon substrate, although it results in high roughness.
\nThis backside-release process consists of deposition of photoresist to protect wafer during etching and RIE etching with thickness measurement of the substrate. In this process, the substrate can be traditional bulk substrate or SOI substrate, because the thickness is controlled by a measurement instead of a stop layer. Moreover, the protective layer against etchant is not needed for this process, because an anisotropic RIE is used to thin substrate. The PR is coated to protect the ultrathin wafer from mechanical damage such as scrape and fracture. Working gases such as CF4 and SF6 are used to etch the silicon in RIE.
\nSevilla et al. have used this approach to fabricate a flexible nanoscale high performance FinFET [36]. Figure 14a shows wafer with FinFET before the release process. First step for this process is deposition of PR that servers as protect layer against mechanical damage (Figure 14b). After deposition of PR, the wafer is turned upside down, and the substrate is thinned through RIE (Figure 14c). The thickness of substrate is controlled by measurement; when the thickness is the same to the plan, the thinning is finished. Otherwise, the wafer is placed in RIE again for further reduction of substrate. Figure 14d shows the thinned wafer, and at last the PR layer is removed (Figure 14e). If the SOI is not very thin and the surface is hard, this PR layer is not anymore necessary for this release process.
\nProcess flow for the fabrication of flexible FinFET: (a) produced FinFET devices on SOI substrate (90 nm SOI with 150 nm BOX); (b) deposition of PR to protect chip from damages induced by back etch process; (c) FinFET devices etched from backside using RIE process; (d) Si substrate thinned to 50 μm; and (e) removal of PR. Reproduced with permission [
Besides RIE and lapping, backside-release can be also performed through pure CMP process. The etch rate of CMP is much lower than RIE and lapping, but the surface roughness is the best and in the order of 10 nm or less. Since CMP process is very slow, it usually starts with a thin substrate, for example, 100–200 μm or after a lapping process with reduced thickness for cost saving purpose.
\nDumas et al. use CMP to fabricate curved focal plane detector array for wide field cameras. To spherically curve the device, they used CMP to thin the substrate. In their experiment, the process is designed to obtain a component thickness of 50 μm [37]. They have demonstrated that 10 × 10 mm2 silicon samples thinned down to 50 μm could be curved in concave and convex shapes, down to a bending radius of 40 mm [37]. The curved detector is showed in Figure 15.
\n(Color online) Pictures of curved microbolometer. (a) The thinned curved component on a glass holder. (b) This curved bolometer is bonded onto an electrical board. Reproduced with permission [
After the release, the released membranes are transferred to flexible substrate and then bonded to flexible substrate. Now we introduce transfer process and bond technique for silicon-based flexible electronics.
\nIn this transfer process, a photoresist or similar polymer layer is deposited, and then a flat piece of polymer such as poly(dimethylsiloxane) PDMS serves as stamp, which conformally contacts the top surface of the wafer. When the stamp is in contact with the PR, it is carefully peeled up with the released thin membrane. The interface between stamp and photoresist must be strongly bonded, and the wafer is transferred on a flexible substrate. The flexible substrate can be polyimide substrate or liquid crystal polymer (LCP) substrate, and the polyimide adhesion promoter is spin coated on substrate; once the wafer is brought to polyimide, the wafer is baked to cure polyimide adhesion promoter. At last the PR and stamp are striped. This transfer process is the same to the process shown in Figure 16a.
\n(a) Process flow for transfer released silicon (μs-Si) ribbons to a plastic flexible substrate. Reproduced with permission [
Figure 16a shows a transfer process developed by Menard et al. In this process, bendable single crystal silicon thin film transistors are printed on plastic substrates. At first they brought a flat piece of PDMS that served as stamp into conformal contact with PR layer on the surface of the wafer and then carefully peeled back to pick up the released wafer with silicon (μs-Si) ribbons [38]. The interaction between the PR and the PDMS must be strong enough to bond them together for removal, with good efficiency [38]. A 180 μm thick polyethylene terephthalate (PET) plastic sheet coated with a 100 nm thick indium tin oxide (ITO) was used as the flexible substrate [38]. A dielectric layer of epoxy was used to enhance the adhesion between released wafer and flexible substrate and was spin coated on flexible substrate [38]. Bringing the PDMS with the μs-Si on its surface into contact with the warm epoxy layer and then peeling back the PDMS led to the transfer of the μs-Si to the epoxy [38].
\nKim et al. demonstrate simultaneous roll transfer and interconnection of Si-based flexible NAND flash memory (f-NAND) based on highly productive roll-to-plate ACF packaging [39]. This process is described in Figure 16b.
\nWhen thinned die or wafer is transferred on the flexible substrate, the bonding between die and flexible substrate must be performed in order to realize the electrical connection between die and other devices.
\nFlip-chip bond and adhesion method can be used to bond released dies to flexible substrate. For the flip-chip bond, polyimide or liquid crystal polymer (LCP) can be used as flexible substrate. For adhesion method, the substrate is made of polyimide, and the interconnection of die is formed through wire bonding.
\nFlip-chip bond consists of four steps. First, the bumps and pads are fabricated on flexible substrate. Following that, the die is placed on the flexible substrate and aligned. Once the die and bumps are in contact, the bumps are heated at melting temperature, and then die is bonded to substrate. At last an underfill is performed. The materials such as SnPb and SnAg can be used as bumps.
\nFor the adhesion method, a polyimide adhesion promoter such as a dielectric layer of epoxy is applied, so that the die can adhere to polyimide substrate. The polyimide adhesion promoter is spin coated on substrate, and once the wafer is brought to polyimide, the wafer is baked to cure polyimide adhesion promoter. At last the interconnection is formed through wire bonding (Figure 17).
\n(a) Process flow for flip-chip bond and (b) process flow for adhesion method.
Holland et al. [40] used flip-chip bonding to bond die to substrate. Different from our bonding process, they used immersion bump. Figure 18a shows thinned die flip-chip bonded on polyimide or LCP substrate. Moreover Holland et al. [40] used also adhesion method to bond die to substrate. Different from our adhesion method, they embed the thinned Si die in Polyimide (Figure 18b).
\n(a) Illustration of polyimide or LCP substrate and solder assembly approach. Reproduced with permission [
Menard et al. used a dielectric layer of epoxy as polyimide adhesion promoter that was spin coated on substrate to bond the die to polyimide substrate through adhesion method [38].
\nTheoretically, all devices such as transistor circuit, DRAM, NAND flash, and sensors that were fabricated through traditional Si-based CMOS process can also be fabricated in flexible forms by using appropriate release processes and transfer technique. We have mainly described two types of release processes: frontside- and backside-release. The frontside-release is realized by etching the BOX or undercutting silicon under the BOX in SOI wafer. The BOX layer etching is achieved in wet etching with HF-contained etchant, and the bulk silicon undercutting is achieved by XeF2 isotropic etching. The backside-release process etches the Si substrates through CMP, lapping, or RIE. After releasing, the Si thin membrane with active devices is transferred to a flexible substrate. Polymer stamp transfer, flip-chip bond, or adhesion method can be used to bond released dies to a flexible substrate. By leveraging those silicon-based micromachining processes, flexible electronics can be achieved on top of current standard CMOS process and scale to large volume manufacturing.
\nEnergy has been a fundamental need of a human society. On the other hand, energy consumption has increased exponentially due to rapid growth in population and modernization [1]. The population of world has grown after Second World War, from two billion to seven billion in the 21st century [2, 3]. Currently fossil fuels are the major source for the primary energy of the world (Figure 1) [4, 5].
Global energy consumption in 2013 [
According to the International Energy Outlook 2013 set by the U.S Energy Information Administration [6, 7], the total energy consumed in 2010 was 5.5282 × 1020 J, which is predicted to rise further to 8.6510 × 1020 J by 2040. Accordingly, the total world energy consumption will grow by 56% between 2010 and 2040; as given in Figure 2. The mismatch between the energy supply and energy demand has increased dramatically all over the world.
Total world energy consumption, history and projection [
The limited fossil fuelsand the associated problems such as energy security environmental issueshave emphasized the need for sustainable, reliable renewable energy sources.
In the view of the current energy scenario, renewable energy sources could be fantastic choice for the world to meet the increasing energy demand and socio economic development. Renewable energy sources are gaining much attention due to their non-toxicity, biodegradability and low emissions profile as compared to petro diesel [8, 9]. According to US energy information administration, there are seven countries (Paraguay (100), Iceland (100%), Costa Rica (99%) Norway (98.5%) Austria (80%), Brazil (75%) and Denmark (69.4%) in the World to have or very near to 100 percent renewable energy sources. Resources of renewable energy are available on large scale such as hydropower, solar, biomass, wind and geothermal energy Figure 1. The fossil fuels substitution with renewable energy sources will have very positive effect on greenhouse gases emissions. It has been reported that 2% replacement of fossil fuels with renewable energy sources will result in 1.8% reduction of emissions of CO2 while replacement of 100% will lead to 90% reduction [10]. In the current energy scenario, renewable energy sources could be a fantastic choice for the World to meet the increasing energy demand. Among them, biodiesel is considered to be the most reliable and consistent source of renewable energy supply.
Biodiesel may be defined as an oxygenated, non-toxic, biodegradable, eco-friendly and sulfur-free alternative diesel oil. Chemically biodiesel may be defined as a fuel that is composed of mono-alkyl esters of long chain fatty acids obtained from renewable sources such as animal fats, vegetable oilsthat comply the ASTM and European quality standards. Different natural oils are used for the production of biodiesel such as coconut, rapeseeds, soybeans and waste cooking oil (Figure 3).
Advantages of biodiesel [
Several efforts have been made to produce derivatives of vegetable oil that can approximate the performance and properties of hydrocarbon-based diesel fuels. The problems associated with the vegetable oil to be used as diesel fuel are high viscosity, low stability against oxidation and the subsequent reactions of polymerization, low volatility due to which incomplete combustion occurs, resulting in the formation of high amount of ash [12]. Different process can be used in order to change these properties such as direct use or blending, micro emulsion, pyrolysis (thermal cracking) and the most conventional process is the transesterification.
In beginning of 1980, there was a considerable discussion about the use of vegetable oil as a fuel. The concept of using food as a fuel was explained in 1981 by Bartholomew, demonstrating that petroleum should be the alternative fuel for combustion rather than the vegetable oil. Direct use of vegetable oils has been considered impractical and not satisfactory for both direct and indirect diesel engines. The high viscosity, free fatty acid content, acid composition and the formation of gum due to polymerization and oxidation during storage and combustion are the obvious problems.
Ma et al. [13] highlighted two severe problems such as incomplete combustion and oil deterioration associated with the direct use of vegetable oil as a fuels. Therefore, it will be significant to dilute the vegetable oils with some materials such as diesel fuels, ethanol or solvents to reduce the density and viscosity of vegetable oils.
Bilgin et al. [14] reported that 4% ethanol addition to diesel fuel increased the brake torque, brake thermal efficiency and brake power while decreasing the consumption of brake specific fuel. As the ethanol boiling point is less than the diesel fuel, ethanol could assist the process of combustion through an unburned blend spray.
Generally, pyrolysis may be defined as the thermochemical decomposition of feedstock at medium (300–800℃) to high temperatures (800–1300℃) in an inert atmosphere. Pyrolysis means a chemical change that is caused by the application of thermal energy in the absence of oxygen or air or by the application of heat in the presence of catalyst that results in the bonds cleavage and formation of various small molecules [15]. Being a type of destructive distillation, it is performed in an inert atmosphere in the temperature range of 300–1300℃. Based on the operating conditions, pyrolysis may be classified into three subclasses such as conventional pyrolysis that occur in the temperature range of 550 K–900 K, (400–500℃) fast pyrolysis occurring in 850 K–1250 K (400–650℃) and the flash pyrolysis occurs in the 1050 K–1300 K (700–1000℃) range of temperature. Pyrolysis is the process used for the synthesis of fuel from triglycerides, vegetable oil, animal fats or natural fatty acids. Fast pyrolysis is used for the bio-oil production. Vegetable oils can be cracked to improve cetane number and reduce the viscosity. The products obtained as a result of cracking include carboxylic acids, alkanes, alkadienes, alkenes and aromatics in various proportions. Rape seed oil, cotton seed oil, soybean oil and other oils with the use of appropriate catalyst were successfully cracked to get biofuel.
Micro-emulsions are isotropic, translucent or clear, thermodynamically stable dispersion of water, oil, surfactants, co-surfactants (amphiphilic molecule) for stabilization. In micro-emulsions, the droplet diameters range from 100 to 1000 Å (10 nm–100 nm). A micro-emulsion can be made of vegetable oils with an ester and dispersant (co-solvent) or vegetable oil with alcohol and surfactant with or without diesel fuels [16].
Alcohols such as ethanol or methanol are frequently used as a viscosity lowering additives. Whereas higher alcohols are used as surfactants. The alkyl nitrates are also used as cetane improvers. It has been reported that micro-emulsion can results in the reduction of viscosity, increase in cetane number and good spray characters in the biodiesel. However, continuous use of micro-emulsified diesel causes problems in engine such as formation of carbon deposits, injector needle sticking and incomplete combustion.
Transesterification is a process that involves the reaction of triglycerides such as vegetable oil, with alcohol in the presence of a catalyst to produce 3 moles of fatty acid esters and one mole of glycerol [17]. Catalyst is used to increase the rate and yield of the reaction. The reaction is reversible. Excess alcohol is used to shift the equilibrium to the product side. Suitable alcohols such as methanol, ethanol, propanol, butanol and amyl alcohol are used for the transesterification reaction. Among these methanol and ethanol are most frequently used because of their low cost and physical and chemical advantages (polar and shortest chain alcohol). The fatty acid methyl ester (FAME) obtained by this process can be used as an alternative fuel for diesel engines [18]. The catalyst used for transesterification may be acid or base (homogeneous or heterogeneous) and lipase enzymes. Transesterification reaction depends on various factors such as catalyst concentration, nature of the feedstock, molar ratio of alcohol-oil, agitation rate, temperature, reaction time, amount of free fatty acids and moisture content [19]. Transesterification is a reversible reaction and proceeds by mixing the reactants under heat. In this process, 1 mole of triglyceride react with 3 moles of alcohol gives 3 mole of fatty acid alkyl ester and 1 mole of glycerol in a sequence of three reversible reactions where the triglyceride are converted to diglycerides and then to monoglycerides as shown in Figure 4. From each step, one molecule of alkyl ester is produced (Figure 5).
Transesterification reaction [
Schematic representation of transesterification.
The catalysts used in the transesterification reaction, are extremely important to the group. The presence of a catalyst speeds up the reaction, increasing the yield of the final product. These catalysts are classified into two major categories: homogeneous catalysts and heterogeneous catalysts, each of which can further be divided into subgroups. The classification is shown in Figure 6.
Catalysts used for biodiesel production.
The base catalysts used for the process of Transesterification include KOH, NaOH, carbonates and corresponding potassium and sodium alkoxides such as sodium ethoxide, sodium methoxide, sodium butoxide and sodium propoxide. The alkaline catalyzed Transesterification reactions are 4000 times faster than acid catalyzed Transesterification reactions. As compared to acidic catalyst, the base catalyst are less corrosive to industrial equipments, hence alkaline catalysts are mostly employed in commercial. However, the base catalysedTransesterification reaction is affected significantly by the presence of free fatty acid (FFA) and moisture content in the feedstock. Therefore, the glycerides and alcohol used for Transesterification must be substantially anhydrous. It has been recommended that the FFA contents should be less than 2%, whereas the moisture content below 0.5 wt%. As the value of FFA is inversely proportional to the conversion efficacy, therefore small amount of water and high FFA contents present in animal fats and vegetable oils results in the deactivation of the catalyst and cause saponification (soap formation), which consequently decrease the biodiesel yield and renders the separation of glycerol and ester [21]. So, low free fatty acid content in triglycerides is required for base catalyzed Transesterification. Homogeneous acid catalyst is then referred for Transesterification.
Generally, the mechanism of base-catalyzed Transesterification of animal fats or vegetable oils involves four steps [13, 21]. In the first step, the base react with the alcohol gives an alkoxide and protonated catalyst. In the second step, nucleophilic attack of the alkoxide at the carbonyl group of the triglycerides and generates a tetrahedral intermediate. In the third step, alkyl ester and corresponding anion of diglyceride is produced. The final step involves the deprotonation of the catalyst to regenerate the active species that is able to start another catalytic cycle by reacting with the second molecule of the alcohol. Same mechanism is followed by the diglycerides and monoglycerides to convert to a mixture of alkyl esters and glycerol. The mechanism is summarized in the Figure 7.
Mechanism for base-catalyzed transesterification [
Mineral acids such as H2SO4, HCl and H3PO4are widely used for the acid catalyzed transesterification reaction. Acid catalysts are recommended for the oils that have higher free fatty acid contents such as waste oil or palm oil [23]. Such types of oils are first treated with acid catalyst (esterification) before the basic transesterification in order to convert the free fatty acids to esters. In this case, the FFA is esterified until the free fatty acid content becomes lower than 0.5% [24] In acid catalysis the oil is treated with acid catalyst and gives biodiesel and water but the water must be removed immediately because it will results in the soap] formation in base catalyzed transesterification.
In the acid catalyzed transesterification, the protonation of carbonyl group of the ester results in the formation of carbocation, which after a nucleophilic attack of the alcohol produces a tetrahedral intermediate. This intermediate then eliminates the glycerol to form a new ester and to regenerate the catalyst. This mechanism is related to a monoglyceride. However, this reaction can be extended to di- and triglycerides (Figure 8).
Mechanism for acid-catalyzed transesterification [
In enzyme catalyzed Transesterification, the reaction is catalyzed by various lipases such as candida rugasa, candida Antarctica, immobilized lipase (lipozyme RMIM) pseudomonas cepacia, pseudomonas spp. Or rhizomucarmiehei. The yield of biodiesel greatly depends on the type of enzyme used [23]. 60% biodiesel yield was achieved from transesterification of soyabean oil using commercially avalaibleimobalized lipase (Lipozyme RMIM) [26, 27]. More importantly sufficient time is required for the enzyme catalyzed Transesterification as compared to base catalyzed Transesterification. However, the various parameters such as pH, temperature, solvent, type of micro-organism that generate enzyme etcmust be optimized to achieve the industrial goals. This process is highly selective, more efficient, produces less side products or waste i.e., environmentally favorable and involves less consumption of energy because reaction can be carried out in mild conditions [28].
Arumugam et al. [29] used the sardine oil (byproduct of fish industry) as a low cost feedstock for the production of biodiesel. The FFA content of the oil was high (32mgKOH/G of oil) and the lipase enzyme immobilized on activated carbon was used for the Transesterification. Various reaction conditions were optimized such as methano/oil ratio 9:1, water content 10 v/v% and temperature 30℃. Reusability of the catalyst was studies for 5 cycles and 13% drop in FAME yield occurred.
In heterogeneous catalysis, the phase of the catalyst is different from the phase of the reactants. Heterogeneous catalysts are very important in various fields such as industrial bulk chemical production, synthesis of selective chiral molecueles and energy [30]. Various process problems associated with homogeneous Transesterification, such as regeneration or separation of the catalyst, soap formation, disposal of byproducts, treatment of waste effluents and corrosion in case of acid catalyst have been solved by the use of heterogeneous Transesterification. Heterogeneous catalysts they are easily recovered at the end of the reaction by decantation or filteration, reusablility, show potential activity, selectivity, longer catalyst lifetimes and cost effective green process [31]. Interestingly heterogeneous catalysts could be used in certain harsh conditions such as high temperature and pressure. Heterogeneous catalysts may be solid base catalyst or solid acid catalyst.
Heterogeneous catalysts can be designed to bring out entrapment and grafting of the active molecules on the surface or inside the pores of the solid support such as alumina, silica or ceria. Mixed metal oxides [32], transition metal oxides [33], ion exchange resin [34], Alkali earth metal oxides [35] and alkali metal compounds supported on zeolite or alumina [36] have been used in different chemical reactions such as aldol condensation, isomerization, oxidation, Michael condensation, Knoevenagel condensation, and transesterification [37].
Heterogeneous base catalysts are used to overcome the constraints such as saponification that hinders the glycerol separation from the layer of methyl ester associated with the homogeneous base catalysts. These catalysts show superior catalytic activities under mild conditions and are non-corrosive, environmentally friendly, have less disposal problems and easily separated from the reaction mixture [38, 39]. Moreover, the properties of these catalysts can be tuned accordingly to enhance activity, selectivity and longer catalyst lifetime. Various metal-based oxides such as alkali metal, alkaline earth metals and transition metal oxides can be used as a base catalyst for the biodiesel production from oils by trans-esterification process. The structure of metal oxides consists of cations (positive metal ions) that possess Lewis acid characteristics and anions (negative oxygen ions) that possess Brønstedbase characteristics. The combination of Lewis acid and Bronsted base characteristics make them potential catalyst for transesterification reaction.
Alkaline earth metal oxides such as CaO, MgO, BaO, BeO and SrOhave successfully been used as a catalysts for biodiesel production by many researchers.
Calcium oxide is favored ecofriendly material that haslonger life time because it is cheap catalyst, moderate reaction conditions and high activity. Generally, calcium hydroxide and calcium nitrate are used as precursors for the CaO production. Recently, several calcium-rich waste materials such as mollusk shell and bones, chicken eggshells have been used for CaO synthesis to minimize the biodiesel production cost, problem of waste disposal.
Demirbas [40] described the supercritical conditions effect on the sunflower oil catalytic Transesterification in the presence of 3 wt% of CaO with 60–120 mesh size, 40: 1 of alcohol/oil molar ratio, at pressure of 24 MPa and 252℃ The author reported 98.9% yield of methyl ester in reaction time of 26 min.
Mixed metal oxides consist of two or more type of metal cations. Oxides may be binary, ternary and quaternary and so on with respect to the presence of the number of different metal cations [41]. Mixed metal-based oxides are mainly used as basic catalyst depending on the mixture of the catalyst. More importantly, the basicity of these catalysts can be tuned by changing their chemical composition and procedure for synthesis. Similarly, activation energy, type of synthesis method and structure of the catalyst have a strong impact on the final basicity of the mixed metal oxides.
It has been reported that, calcining MgO with ZrO2 gives a bimetallic oxide MgO-ZrO2having high basicity character and is almost unaffected by dissolution. Similarly, MnO, CuO and CuO supported on Al2O3 have been investigated in transesterification reaction at room temperature, yielded upto 97%. Al2O3-ZnO mixed oxide and rare earth oxides were studied but require high temperature for biodiesel production from vegetable oils. Calcium bimetallic oxides such as CaCeO3, CaZrO3, CaMnO3, CaTiO3 and Ca2Fe2O5 have also been investigated for the transesterification at 60℃, which displayed good activity and reusability [42, 43].
Xie et al. [44] used the Zinc aluminate catalyst (ZnAl2O4) in a batch processing for the biodiesel production from waste cooking oil. More than 95% ester yield was obtained at temperature greater than 150 C, alcohol to oil molar ratio 40:1, stirrer speed of 700 rpm, reaction time of 2 h and varying the catalyst amount in the range of 1–10 wt%. The catalyst was reused for 3 cycles and the yield reduced after the 3 run. The authors reported that the decrease may be due to the carbon deposition on the surface catalyst or loss of tiny particles of the catalyst during the process of recovery.
Basic catalyst may have several problems during the process of transesterification because they are sensitive to free fatty acid content. If the free fatty acid content is higher than 2 wt %, soap formation occurs resulting in decrease in the yield of biodiesel. The downstream purification process raises problems such as producing a large amount of wastewater [45].
Metal oxides such as FeTiO, ZrFeO, ZrFeTiO and Cesium-doped heteropolyacid have been used successfully as solid acid catalysts for the Transesterification of oil using ethanol and methanol as a solvent. Acid catalysts are insensitive to water content and free fatty acid (FFAs) present in the feedstock and is a are preferable method for cheaper feedstock [45].
Alhassan et al. [46] developed Ferric-manganese-based solid catalyst by impregnating the support material of sulfated zirconia with Fe2O3-MnO. The catalyst wascalcined for 3 h at 600℃. The synthesized catalyst was then used for the waste cooking oil Transesterification. The author found 96.5% yield of biodiesel under optimum reaction conditions of oil to alcohol molar ratio of 1:20, at 180℃ temperature and catalyst loading of 3 wt%. The yield of the catalyst remained the same (96.5%) for 6 runs but decreased upto 87% upon the seven run. They reported that the decrease may be due to blockage of the energetic centers as a result of the accumulation of triglycerides in the pores of the catalyst.
Heteropolyacids and their salts are also used as solid acid catalysts for the biodiesel production. HPAs withKeggin structure can be prepared very easily as compared to other HPAs. They possess high thermal stability and are preferably used for production of biodiesel from different feedstocks. Keggin-type HPA has a low specific surface area, which can be overcome using appropriate supportive material. Similarly, HPAs supported on the carriers are used in biodiesel production because of their structural mobility and superacidity.
Sakthivel et al. [47] used the tungstophosphoric acid (HPW) and MCM-48-supported HPW catalysts for the esterification of long chain fatty acids and alcohol in supercritical CO2 (sc-CO2) medium. High yield was obtained in the supercritical CO2 medium due to the rapid diffusion of reactants and products in the MCM-48 channels and high contact of the reactants with the catalyst.
Acidic catalyst may have several problems such as very slow reaction rate, corrosive to reactors and pipelines. Normally, high reaction temperature, high oil to methanol molar ratio and long reaction time are required [45].
As the alkali catalyzed transesterification of the feedstock with higher FFA contents can produce low yield of biodiesel, because the FFA reacts with the alkali catalyst and produce the foam that results in separation and emulsification problems [48]. To solve this problem, a two steps catalytic process for the biodiesel production is recommended. In the first step, the free fatty acid contents of the feedstock are esterified using the acidic catalyst such as ferric sulfate or sulfuric acid. In the second step, biodiesel are produced by the transesterification using the basic catalyst such as CaO or ZnO. The problem of the catalyst removal in the first step can be avoided by neutralizing the acid catalyst by using the extra alkaline catalyst in the second step. But the use of extra catalyst can increase the overall cost of the biodiesel production. The residues of the acidic or alkaline catalyst in the products of biodiesel can cause the engine problems because the acidic catalyst can attack the metallic parts of the engine. On the other hand, basic catalyst can produce higher level of incombustible ash. Therefore, both the catalyst must be removed properly from the biodiesel to avoid the aforementioned problems [49, 50]. Further, it can be concluded that there is substantial room for the development of an efficient and effective catalyst for profitable biodiesel technology (Figure 9).
Schematic representation of operating principle of bifunctional catalyst [
Recently, bifunctional heterogeneous catalysts has been introduced to solve the drawbacks adhere with the solid base/acid catalyst and develop more economical biodiesel technology. The bifunctional heterogeneous solid catalyst can be used as an alternative for the biodiesel production that can promote both esterification and Transesterification simultaneously [52].
In recent years, bifunctional heterogeneous catalysts have been used widely for the production of industrial fine chemicals. The bifunctionality concept has been designed to drive complex reactions through the advance approach of combining two hostile functions, such as acid and base, with cooperative interactions between their active sites precisely positioned functional groups [53]. Therefore, bifunctional heterogeneous catalyst can perform simultaneous esterification and transeseterification of free fatty acids and triglycerides respectively without being affected by the water content present or produced during the formation of biodiesel [54].
Generally, heterogeneous reactions involve three steps such as adsorption, surface reaction and desorption [55]. In the first step, carbonyl group of free fatty acids (FFA) adsorbs on acid sites while methanol adsorb on the basic site of the catalyst to produce carbocation and oxygen anion for esterification and transesterification respectively. In the second step, at the surface of the catalyst, nucleophilic attacked carbocation and oxygen anion at each methanol hydroxyl group and triglyceride carbonyl group for esterification and transesterification reactions, respectively. The nucleophilic attack would generate tetrahedral intermediate. Finally, the product (FAME) is formed from desorption of hydroxyl group and alkyl triglycerides from catalyst surface after breaking the -OH and -C-O- bond respectively, while the deprotonated catalyst regenerated the active species for starting another catalytic cycle. Glycerol, H2O, are produced as by-product during esterification and transesterification reactions (Figure 10).
Mechanism for esterification and transesterification reactions on a bifunctional heterogeneous catalyst [
Transition metals such as Ni, Fe and Co based compounds have been extensively investigated as bifunctional heterogeneous catalyst for biodiesel production. The TiO and MnO have shown good catalytic activity for biodiesel production. These catalysts have been used for the simultaneous esterification of FFAs and transesterification of triglycerides under continuous flow conditions by using low grade feedstock with high fatty acids contents ofupto 15%.
Cannilla et al. [57] used a novel MnCeOx system for the transesterification of refined sunflower with the methanol. The performance of such catalyst was compared with that of common acid supported catalyst. The results showed that MnCeOx system have a superior activity especially by operating at low temperature i.e., ≤120°C. The catalytic performance was the result of synergic role played by the presence of both base/acid character and textural porosity.
Mixed metal oxides have shown potential applicationsin terms of their catalytic activity in various reactions due to their increased active acidic or basic sites and large surface area. As a result of these characteristic, the mixed metal oxides can simultaneously catalyze the esterification and transesterification and increases the yield of reaction under mild reaction condition [32].
Many researchers have investigated the catalytic activity of mixed metal oxide for biodiesel production. Furata et al. [58] prepared the Al2O3/ZrO2/WO3 solid catalyst by co-precipitation method for biodiesel production from soybean oil. The catalyst was compatible for both esterification and transesterification at 250℃ temperature and alcohol to oil molar ratio of 40:1, provided 90% methyl ester yield.
The feedstock is one of the key factor that plays vital role in the economics of the biodiesel technology. More than 350 oil-bearing crops have been identified as a potential feedstock for the production of biodiesel. The feedstock should fulfill two main requirements (i) large production scale (ii) low production cost [59]. The feedstock availability for the production of biodiesel depends upon the geographical location, local soil conditions, regional climate and agricultural practices of any country. The suitability of feedstock depends upon various factors such as oil yield per hectare, production cost, oil content of the seeds and relevant product properties of the oil. It has been found that, the cost of the feedstock is about 75% of overall production cost of biodiesel [60]. Therefore, selection of cheapest feedstock is a major problem and high relevant to the biodiesel industry. Biodiesel feedstocks are generally categorized into four classes as shown (Figure 11).
Feedstocks used for biodiesel production [
Resources of edible oil such as peanut [62], soybeans [63], sunflower [64], rapeseed [65], safflower, coconut and palm oil are extensively utilized for biodiesel production and are classified as first generation biofuels because these were the first crops used for production of biodiesel [66]. Many countries of the World such as USA, Malaysia and Germany, have well off plantations of these vegetable oils. Currently, more than 95% of the world biodiesels are produced from the edible oils where rapeseed oil contributes 84%, sunflower 13%, 1% palm oil, 2% soybean and others. However, economic and social problems such as food versus fuel crisis and various environmental issues (such as destruction of vital soil resources), usage and deforestation of the available arable land are adhere with use of edible oils.
Due to the presence of some toxic components in the non-edible vegetable oils, they are not suitable to be used for human food. The use of non-edible vegetable oil for the production of biodiesel would pave the ways to overcome the economic, social and environmental problems and tackle the energy crises worldwide [60]. Non-edible vegetable crops are grown on the lands that are largely unproductive, located in poverty-stricken areas and in degraded forests. These plants can also be planted on fallow lands, cultivator’s field boundaries and in public land such as roads, railways and irrigation canals. Plants of non-edible feedstocks are well adapted to arid, semi-arid conditions require low moisture and fertility. Moreover, these plants can grow and propagated through cutting or seeds [67]. As these plants oilsdo not compete with food therefore the seed cake may be used as fertilizers for soil enrichment. Therefore, from economic and social prospective, edible oils must be replaced by some suitable feedstock for biodiesel production. Hence, non-edible feedstocks for biodiesel production could be considered as sustainable and alternative fuels.
Mazari is the local name for dwarf palm (
Mazari palm seeds.
Mazarifibres are widely used for making ornamental products, ropes, mates, banns, different commodities for mosques, trays, baskets, grain bins, brooms, cupboards, hand fans and decoration pieces etc. (shown in Figure 13) [68, 69].
Different products of mazari palm.
Fresh and dried leaves both are used for making products. Raw mazari production in the Pakistan is about 37,315 tons. Baluchistan is the biggest producer of the mazari with an average annual production of 27,265 tons [70]. In 1991, the total exports of the products prepared from mazari by rural people were 126 milion rupees. Main buyer of these products are the local people because most of the products are used for domestic purposes and also these fascinating products attract both domestics and international tourists. Figure 14 shows the main buyer of the products.
Main buyer of mazari palm products [
The fruits of
Jatropha curcas is the bionomical name of Jatropha, belongs to spurge family. It is commonly known as Barbados, Purging or Physic nut. The height of Jatropha plant is about 6 m and is a flowering plant. The plant matures in 9–10 months and yield 2–3 times per year. On maturation, green rounded shaped seeds appeared on the plants and then turn into light blue or purple colored hard shells. The oil bearing mass located inside the shells known as meat or kernels. Oil content in the seeds varies from 20–60% by weight [74, 75]. J. curcas oil could be a valuable feedstock for the production of biodiesel in Pakistan (Figure 15).
Jatropha curcas [
Jatropha is a multipurpose drought resistant plant that is widely distributed in the wild or semi-cultivated areas in South East Asia, Pakistan, India and Central and South America. It is well adapted to arid and semi-arid conditions [76]. Jatropha is rich source of hydrocarbons. Therefore, it is considered as commercial source for biofuel production all over the world. Jatropha oil contains 42% oleic, 35% linoleic, 14% palmatic and 6% stearic acid by composition [77].
In Pakistan, certain institutions are promoting Jatropha cultivation at the nursery level in various locations across Baluchistan, Punjab, and Sindh. In nurseries, these cultivated plants ranged in age from a few weeks to 18 months [78]. However, after three years of private sector efforts in2008, oil bearing crop cultivation increased from 2 acres to over 400 acres. PSO (Pakistan State Oil) took a step in this direction in 2008, planting 20,000 saplings in farms. They’ve recently increased the number of samples taken for each transplantation, up to 20,000 or more. PSO’s initiatives aimed to plant more than 6 million trees produce 24 million kg of oil bearing seeds, and produce 7.2 million L of biodiesel worth 345 million PKR at a unit price of PKR 48 L−1 [79].
Other interested parties, such as the Karachi Forest Department and the Pakistan Army, have also successfully planted Jatropha plants in Sindh [80]. So far, the Forest Department has been successful in cultivating 3000 samples on a trial basis in Malir Cantonment in 2010 for the cultivation of Jatropha seeds supplied by PS [81]. Similarly, the Pakistan Agricultural Research Council (PARC) and KijaniEnergy, a Canadian company, are interested in establishing large-scale Jatropha cultivation for the production of biodiesel on marginal lands [79]. Kijani Energy invested approximately US$ 150 million in2009, resulting in the use of 200,000 acres of land for Jatropha cultivation in Umerkot, Khairpur, Tharparker, Cholistan, and Sanghar.
Date or date palm is a flowering plant species belongs to the palm family Arecaceae cultivated for its edible sweet fruit. It is a dioecious having separate male and female plants. It is a source of human nutrition rich with dietary fibers, carbohydrates, lipids, proteins, some vitamins and mineral matter [86]. For millennia, the date palm tree has been cultivated in the Middle East and North Africa, and it is thought to be the world’s oldest domesticated fruit tree. Because of the variety of resources it provides, it has traditionally been the most valuable fruit crop in harsh arid or desert environments where water scarcity and extreme temperatures are common. Date palm trees are now grown in semi-arid climates and other parts of the world, including southern Europe, Australia and America. There are now over 100 million date palm trees in the world with around 2000 cultivars [87, 88]. A palm tree produces 500 kg of fresh dates per year on average, with production beginning at 5 years and lasting up to 60 years. Date production and consumption have increased rapidly, from 1.88 million t in 1965 to 3.43 million tons in 1990 and 8.46 million tons in 2016, with Middle Eastern and African countries dominating production [89]. It’s a pitted fruit with a seed in the centre surrounded by a fleshy pericarp as shown in Figure 17.
Date fruit and seeds [
The date seeds are very hard ranging from 5 to 15 mm in length with oblong shape with a ventral groove. The weight is about 11–18% of the total fruit mass and contain 4–13% of oil. Based on these digits, an estimated 1.3 million tons of date seeds and 127,000metric tons of date seed oil (similar amount of biodiesel) could be annually produced. In 2015, the total annual production of biodiesel was 38,700 tons in the Middle East and Africa [90, 91]. Date production in the world reached 9.07 million metric tons in 2019, up from 8.4 million metric tons in 2017. Similarly, date palm is widely distributed in different areas of Baluchistan, Sindh, KPK and Punjab. It has been reported that the annual production of date seed is around 600,000 metric ton per year in Pakistan [92]. These seeds are used as feed for animals in some areas. However, most of these seeds degrade without any proper utilization. Therefore, the use of date seeds as biodiesel feedstock could be a promising to concern energy solution (Figure 18).
Top 10 global date-producing countries [
Karanja (
Karanja (
Many researchers have utilized karanja oil as feedstock for biodiesel production. It has been reported that the biodiesel obtained from karanja shows excellent properties such as low acid value, lower viscosity and higher flash point. Naik et al. [95] followed two steps process for the production of biodiesel from karanja oil with 20% free fatty acid. First, acid-catalyzed esterfication was applied using 0.5% (w/w) H2SO4, 6:1 methanol to oil ratio at 65℃. The acid treated oil was later transesterifiued with KOH using 1% (w/w) potassium hydroxide, 6:1 methanol to oil ratio to lower the FFA content. The yield of biodiesel obtained by dual step process from karanja oil was 96.6–97% at 65℃.
Neem (
Muthu et al. [97] produced the neem methyl ester from the neem oil in the presence of catalysts by two steps process of esterfication and Transesterification. Sulfated Zirconia was used as solid acid catalyst for esterfication, while alkali catalyst i.e., KOH was used for Transesterification. Optimum conversion of free fatty acid was achieved with 1 wt% of sulfated zirconia (acid) catalyst, at 65℃ temperature, 9:1 methanol/oil ratio and 2 h reaction time. The acid value of the raw oil was reduced by 94% (24.76 mg KOH/g) which show the successful conversion. The authors noted that when the pretreated oil was transesterified in the presence of KOH, 95% conversion efficiency was achieved (Figure 20).
Neem (
Microalgae are eukaryotic or prokaryotic photosynthetic micro-organism that can grow rapidly and live in harsh conditions due to their unicellular or simple multicellular structure [98]. Examples of eukaryotic micro-organisms are green algae i.e., chlorophytaand diatoms i.e., bacillariophyta and prokaryotic micro-organisms are cyanobacteria. Microalgae are present in all existing ecosystem of the earth, not only in aquatic but also terrestrial ecosystem that lives in a wide range of environmental conditions [99]. Interestingly, it is observed in small ponds and ditches in the villages and towns become fully green within a week during the rainy season in Pakistan. Although in Pakistan, the cultivation of oleaginous microalgae is in its infancy, however several species of algae are reported in the literature that can further process or cultivated for the production of oil [100]. Microalgae can provide feedstock for several types of renewable fuels such as methane, biodiesel, ethanol and hydrogen. Biodiesel produced from algae contains no sulfur, reduce emissions of particulate matter, hydrocarbons, CO and SOx. However, NOx emissions may be higher in some types of engine.
Furthermore, a Pakistani researcher at Japan’s Mie University claims that the country could benefit from using its 27–28 million acre saline lands for algal farming, which would create jobs and benefit the rural community [101]. Four algae strains suitable for cultivation in Pakistan’s deserts have been identified by other researchers. Other researchers have identified four strains of algae that are suitable for cultivation in Pakistan’s deserts and produce acceptable lipid yields, i.e. 40% by weight
To produce biodiesel, researchers at the National University of Sciences and Technology (NUST) cultivated Chlorella vulgaris in a closed photo-bioreactor (20 L) in a controlled environment and characterized its properties. At 5000 and 9000 psi and 50 and 80°C, the highest biodiesel yield (more than 99%) was achieved. The biodiesel produced was found to be of ASTM D6751 quality [102].
The term waste cooking oil (WCO) refers to vegetable oil that has been used in production of food and no longer viable for its intended use. Sources of waste cooking oil are domestic, industrial and commercial products [103]. Waste cooking oils are problematic waste streams that need to manage properly because if WCO is disposed improperly, down streams of the kitchen, the oil solidifies and cause blockages of sewer pipes [98, 104]. Degraded waste cooking oil gets into sewage system and causes corrosion to metal and concrete elements [105]. Thus, the waste cooking oil can be used as an effective feedstock for the biodiesel production via Transesterification [99].
In Pakistan, waste cooking oil sources include hotel chains, confectioneries, restaurants and domestic cooking. Pakistan is basically an agricultural country and has diverse ecological conditions, so the people mainly depend upon the agricultural products. Plants and crops that yield edible oils for cooking purposes are cultivated on extensive scale in the country. These oils are used in local shops, hotels, huts and every home of Pakistan [80]. Pakistani people use meat of cows, buffaloes, camels, goats, poultry on large scale and use fats for cooking purposes. These all are the major sources for collection of waste cooking oil.
Animal fats and vegetable oils are of two types of biological lipid materials that are made up of mainly triacylglycerides (TAGs) and less diacyglycerides DAG and monoacylglycerides (MAGs) [106]. Fats and oil have similar physical properties and chemical structures such as hydrophobicity, water-insolubility and solubility in nonpolar organic solvents. However, the high fatty acids content in fats and their different distributions make it different from oil. Oils are generally liquid at room temperature while fats and greases are solids due to their high content of saturated fatty acids (SFA). Different waste animal fats such as tallow (mutton tallow from sheep and beef tallow from domestic cattle), pork lard (rendered pork fat), chicken fats and grease. Since, many animal meat processing facilities, rendering companies of collecting and processing of animal mortalities, large food service and processing facilities create large amount of waste animal fats (WAFs), that will be a great opportunity to produce biodiesel from these very cheap raw material [107]. The use of these waste animal fats as a feedstock for biodiesel production will eliminate the need of their disposal.
Pakistan is the world’s sixth largest country in terms of population, (213 million) and an annual growth rate of 2%.A significant portion (63%) of this population lives in rural areas, while 37 percent live in urban areas [108]. The recent economic growth and an ever-increasing population, has resulted in an increase in energy consumption. The country still depends on conventional resources of fossil oil.
Various initiatives to promote renewable energy in Pakistan have been taken over the years, but their outcomes are still pending due to a lack of sound policy [109]. Recently, Alternative Energy Development Board (AEDB), was established in 2003 [78], in Pakistan to improve green technologies that can reduce greenhouse gas emissions and promote renewable technologies through a variety of projects that have been recognized on an international level by the International Solar Energy Society (ISES) and the World Wind Energy Association (WWEA) [110].
There is a significant gap between Pakistan’s energy production and energy demands, which is being bridged by the import of fossil fuels and requires substantial state revenue to be spent on these imports. Pakistan imported 13.57 Milliontons of oil equivalent (MTOE) of petroleum during fiscal year 2014–2015, ultimately putting tremendous pressure on the economy by increasing the import bills [111]. Transportation and power generation are the main fossil fuel consuming sectors in Pakistan. Fuel price increases frequently, leading to increases in transportation costs and utility bills for both public and private consumers and pose socioeconomic challenges for the country. At present, Pakistan’s indigenous resources account for only up to 15 percent of the country’s energy requirements [112]. Pakistan spends approximately 60% of its currency exchange on importing fuels to meet energy needs, and these import bills can be significantly reduced if indigenous alternative energy resources are used appropriately [110].
Pakistan’s government is searching for cost-effective, environmentally friendly alternative energy sources in order to address current energy crises and maintain economic stability [108].
The use of agricultural residues as a renewable energy resource in Pakistan can provide a sustainable way to enhance the country’s energy mix in order to meet ever-increasing energy needs. Energy production through suitable and efficient technologies can have multiple positive economic impacts on Pakistan, (1) by saving huge investments in energy imports, (2) by reducing harmful gas emissions in order to protect the environment and (3) by empowering the people of the country in terms of social aspects [111]. It can provide multiple job opportunities to people working in the agricultural, transportation and daily wagering sectors. Furthermore, public awareness campaigns emphasizing the importance of renewable energy resources, as well as basic education on how to effectively manage these resources, should be launched [113]. This can be achieved by distinct financial assistance programs should be made available to encourage business investments in the renewable energy production sector [114].
Various important steps and measures must be taken as soon as possible, such as the establishment of generous research and development programs at the Country’s Universities and research institutions, with a focus on research activities involving renewable resources in the country.
This review presents an extensive analysis of the potential of biomass for renewable energy production in Pakistan. It also emphasizes the availability of local biomass resources as well as state-of-the-art of biomass conversion technologies. Heavy reliance on imported fossil fuels and global climate change are key factors contributing to Pakistan’s economic problems. To address these issues, relying on locally available renewable energy sources is a promising and cost-effective financial solution. The transportation sector is a major importer of petroleum fuels, accounting for the majority of the total import bill. Biodiesel and bio-ethanol, can supplement HSD/petrol, transportation fuels. To overcome this issue biodiesel production with full utilization of its by-products can provide a sustainable and environmentally friendly replacement of mineral high speed diesel (HSD).
Moreover, comprehensive detail of the locally abundantly available feedstocks for biodiesel production has also been discussed in this chapter. Overall, this study further concludes that Pakistan has the immense potential to produce economical viable biodiesel from the locally available feedstocks.
These Terms and Conditions outline the rules and regulations pertaining to the use of IntechOpen’s website www.intechopen.com and all the subdomains owned by IntechOpen located at 5 Princes Gate Court, London, SW7 2QJ, United Kingdom.
',metaTitle:"Terms and Conditions",metaDescription:"These terms and conditions outline the rules and regulations for the use of IntechOpen Website at https://intechopen.com and all its subdomains owned by Intech Limited located at 7th floor, 10 Lower Thames Street, London, EC3R 6AF, UK.",metaKeywords:null,canonicalURL:"/page/terms-and-conditions",contentRaw:'[{"type":"htmlEditorComponent","content":"By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\\n\\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\\n\\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\\n\\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\\n\\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\\n\\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\\n\\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\\n\\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\\n\\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\\n\\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\\n\\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\\n\\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\\n\\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\\n\\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\\n\\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\\n\\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\\n\\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\\n\\nCroatian version of Terms and Conditions available here
\\n"}]'},components:[{type:"htmlEditorComponent",content:'By accessing the website at www.intechopen.com you are agreeing to be bound by these Terms of Service, all applicable laws and regulations, and agree that you are responsible for compliance with any applicable local laws. Use and/or access to this site is based on full agreement and compliance of these Terms. All materials contained on this website are protected by applicable copyright and trademark laws.
\n\nThe following terminology applies to these Terms and Conditions, Privacy Statement, Disclaimer Notice, and any or all Agreements:
\n\n“Client”, “Customer”, “You” and “Your” refers to you, the person accessing this website and accepting the Company’s Terms and Conditions;
\n\n“The Company”, “Ourselves”, “We”, “Our” and “Us”, refers to our Company, IntechOpen;
\n\n“Party”, “Parties”, or “Us”, refers to both the Client and ourselves, or either the Client or ourselves.
\n\nAll Terms refer to the offer, acceptance, and consideration of payment necessary to provide assistance to the Client in the most appropriate manner, whether by formal meetings of a fixed duration, or by any other agreed means, for the express purpose of meeting the Client’s needs in respect of provision of the Company’s stated services/products, and in accordance with, and subject to, the prevailing laws of the United Kingdom.
\n\nAny use of the above terminology, or other words in the singular, plural, capitalization and/or he/she or they, are taken as interchangeable.
\n\nUnless otherwise stated, IntechOpen and/or its licensors own the intellectual property rights for all materials on www.intechopen.com. All intellectual property rights are reserved. You may view, download, share, link and print pages from www.intechopen.com for your own personal use, subject to the restrictions set out in these Terms and Conditions.
\n\nWe employ the use of cookies. By using the IntechOpen website you consent to the use of cookies in accordance with IntechOpen’s Privacy Policy. Most modern day interactive websites use cookies to enable the retrieval of user details for each visit. On our site, cookies are predominantly used to enable functionality and ease of use for those visiting the site.
\n\nIn no circumstances shall IntechOpen or its suppliers be liable for any damages (including, without limitation, damages for loss of data or profit, or due to business interruption) arising out of the use, or inability to use, the materials on IntechOpen's websites, even if IntechOpen or an IntechOpen authorized representative has been notified orally or in writing of the possibility of such damage. Some jurisdictions do not allow limitations on implied warranties, or limitations of liability for consequential or incidental damages; consequently, these limitations may not apply to you.
\n\nIntechopen.com website content and services are provided on an "AS IS" and an "AS AVAILABLE" basis. Material appearing on www.intechopen.com could include minor technical, typographical, or photographic errors. IntechOpen may make changes to any material contained on its website at any time without notice.
\n\nIntechOpen has no formal affiliation to any external sites that link to www.intechopen.com, unless otherwise specifically stated. As such, it is not responsible for content that appears on any such sites. The inclusion of any link to IntechOpen does not imply endorsement by IntechOpen. Use of any such linked website is done solely at the user's own discretion.
\n\nWe reserve the right of ownership over our entire website www.intechopen.com, and all contents. By using our services, you agree to remove all links to our website immediately upon request. We also reserve the right to amend these Terms and Conditions and our linking policy at any time. By continuing to link to our website, you agree to be bound to, and abide by, these linking Terms and Conditions.
\n\nIf you find any link on our website, or any linked website, objectionable for any reason, please Contact Us. We will consider all requests to remove links but will have no obligation to do so.
\n\nWithout prior approval and express written permission, you may not create frames around our web pages or use other techniques that alter in any way the visual presentation or appearance of our website.
\n\nIntechOpen may revise its Terms of Service for its website at any time without notice. By using this website, you are agreeing to be bound by the current version of all Terms at the time of use.
\n\nThese Terms and Conditions are governed by and construed in accordance with the laws of the United Kingdom and you irrevocably submit to the exclusive jurisdiction of the courts in London, United Kingdom.
\n\nCroatian version of Terms and Conditions available here
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6674},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2461},{group:"region",caption:"Asia",value:4,count:12719},{group:"region",caption:"Australia and Oceania",value:5,count:1018},{group:"region",caption:"Europe",value:6,count:17724}],offset:12,limit:12,total:134466},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"7,21,23"},books:[{type:"book",id:"11782",title:"Personality Traits - The Role in Psychopathology",subtitle:null,isOpenForSubmission:!0,hash:"d3a491e5194cad4c59b900dd57a11842",slug:null,bookSignature:" Vladimir V. Kalinin",coverURL:"https://cdn.intechopen.com/books/images_new/11782.jpg",editedByType:null,editors:[{id:"31572",title:null,name:"Vladimir V.",surname:"Kalinin",slug:"vladimir-v.-kalinin",fullName:"Vladimir V. Kalinin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11444",title:"Happiness - Biopsychosocial and Anthropological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"fa84e7fc3611e5428e070239dcf5a93f",slug:null,bookSignature:"Dr. Floriana Irtelli and Prof. Fabio Gabrielli",coverURL:"https://cdn.intechopen.com/books/images_new/11444.jpg",editedByType:null,editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11601",title:"Econometrics - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc8ab49e2cf436c217a49ca8c12a22eb",slug:null,bookSignature:"Dr. Brian Sloboda",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",editedByType:null,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12239",title:"Topics on Globalization",subtitle:null,isOpenForSubmission:!0,hash:"43443244d8385c57f1424d5d37c91788",slug:null,bookSignature:"Prof. Elsadig Musa Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/12239.jpg",editedByType:null,editors:[{id:"268621",title:"Prof.",name:"Elsadig",surname:"Ahmed",slug:"elsadig-ahmed",fullName:"Elsadig Ahmed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11779",title:"Non-government Organizations - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"c109a472a9e0ea8398ae95e2d21be039",slug:null,bookSignature:"Prof. Vito Bobek and Dr. Tatjana Horvat",coverURL:"https://cdn.intechopen.com/books/images_new/11779.jpg",editedByType:null,editors:[{id:"128342",title:"Prof.",name:"Vito",surname:"Bobek",slug:"vito-bobek",fullName:"Vito Bobek"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11477",title:"Public Economics - New Perspectives and Uncertainty",subtitle:null,isOpenForSubmission:!0,hash:"a8e6c515dc924146fbd2712eb4e7d118",slug:null,bookSignature:"Dr. Habtamu Alem",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",editedByType:null,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty - Evolutionary, Social and Cultural Perspectives on Attractiveness",subtitle:null,isOpenForSubmission:!0,hash:"8f2773e5d4ffe767f38dd15712258e8c",slug:null,bookSignature:"Dr. Farid Pazhoohi",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:[{id:"470837",title:"Dr.",name:"Farid",surname:"Pazhoohi",slug:"farid-pazhoohi",fullName:"Farid Pazhoohi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11437",title:"Social Media - Risks and Opportunities",subtitle:null,isOpenForSubmission:!0,hash:"000e31f2e2f7295805e9a3864158ad63",slug:null,bookSignature:"Dr. Shafizan Mohamed and Dr. Shazleen Mohamed",coverURL:"https://cdn.intechopen.com/books/images_new/11437.jpg",editedByType:null,editors:[{id:"302450",title:"Associate Prof.",name:"Shafizan",surname:"Mohamed",slug:"shafizan-mohamed",fullName:"Shafizan Mohamed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11443",title:"Empathy - Advanced Research and Applications",subtitle:null,isOpenForSubmission:!0,hash:"4c1042dfe15aa9cea6019524c4cbff38",slug:null,bookSignature:"Ph.D. Sara Ventura",coverURL:"https://cdn.intechopen.com/books/images_new/11443.jpg",editedByType:null,editors:[{id:"227763",title:"Ph.D.",name:"Sara",surname:"Ventura",slug:"sara-ventura",fullName:"Sara Ventura"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11769",title:"Multiculturalism and Interculturalism",subtitle:null,isOpenForSubmission:!0,hash:"6c4bda24f278d74f943f2155f13f4d73",slug:null,bookSignature:"Dr. Muhammad Mohiuddin, Dr. Tareque Aziz and Dr. Sreenivasan Jayashree",coverURL:"https://cdn.intechopen.com/books/images_new/11769.jpg",editedByType:null,editors:[{id:"418514",title:"Dr.",name:"Muhammad",surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12109",title:"Identifying Occupational Stress and Coping Strategies",subtitle:null,isOpenForSubmission:!0,hash:"09a2f5fe50b90b20637b7aceccf1cfdd",slug:null,bookSignature:"Dr. Kavitha Palaniappan",coverURL:"https://cdn.intechopen.com/books/images_new/12109.jpg",editedByType:null,editors:[{id:"311189",title:"Dr.",name:"Kavitha",surname:"Palaniappan",slug:"kavitha-palaniappan",fullName:"Kavitha Palaniappan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11775",title:"Global Peace and Security",subtitle:null,isOpenForSubmission:!0,hash:"131303f07b492463a5c4a7607fe46ba9",slug:null,bookSignature:"Dr. Norman Chivasa",coverURL:"https://cdn.intechopen.com/books/images_new/11775.jpg",editedByType:null,editors:[{id:"331566",title:"Dr.",name:"Norman",surname:"Chivasa",slug:"norman-chivasa",fullName:"Norman Chivasa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:61},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:108},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:25},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4438},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11042",title:"Complementary Therapies",subtitle:null,isOpenForSubmission:!1,hash:"9eb32ccbef95289a133a76e5808a525b",slug:"complementary-therapies",bookSignature:"Mario Bernardo-Filho, Redha Taiar, Danúbia da Cunha de Sá-Caputo and Adérito Seixas",coverURL:"https://cdn.intechopen.com/books/images_new/11042.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"157376",title:"Prof.",name:"Mario",middleName:null,surname:"Bernardo-Filho",slug:"mario-bernardo-filho",fullName:"Mario Bernardo-Filho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10037",title:"Thermoelectricity",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"ad1d3f637564a29cf1636759f5401994",slug:"thermoelectricity-recent-advances-new-perspectives-and-applications",bookSignature:"Guangzhao Qin",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"188870",title:"Mr.",name:"Guangzhao",middleName:null,surname:"Qin",slug:"guangzhao-qin",fullName:"Guangzhao Qin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11357",title:"Sustainable Crop Production",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"ee41e09e4ad6a336ca9f0e5462da3904",slug:"sustainable-crop-production-recent-advances",bookSignature:"Vijay Singh Meena, Mahipal Choudhary, Ram Prakash Yadav and Sunita Kumari Meena",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"420235",title:"Dr.",name:"Vijay",middleName:null,surname:"Meena",slug:"vijay-meena",fullName:"Vijay Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10863",title:"Cardiac Rhythm Management",subtitle:"Pacing, Ablation, Devices",isOpenForSubmission:!1,hash:"a064ec49b85ebfc60585c9c3690af53a",slug:"cardiac-rhythm-management-pacing-ablation-devices",bookSignature:"Mart Min and Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/10863.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"62780",title:"Prof.",name:"Mart",middleName:null,surname:"Min",slug:"mart-min",fullName:"Mart Min"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10874",title:"Insights on Antimicrobial Peptides",subtitle:null,isOpenForSubmission:!1,hash:"23ca26025e87356a7c2ffac365f73a22",slug:"insights-on-antimicrobial-peptides",bookSignature:"Shymaa Enany, Jorge Masso-Silva and Anna Savitskaya",coverURL:"https://cdn.intechopen.com/books/images_new/10874.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11137",title:"Mineralogy",subtitle:null,isOpenForSubmission:!1,hash:"e0e4727c9f1f9b34d788f0dc70278f2b",slug:"mineralogy",bookSignature:"Miloš René",coverURL:"https://cdn.intechopen.com/books/images_new/11137.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"142108",title:"Dr.",name:"Miloš",middleName:null,surname:"René",slug:"milos-rene",fullName:"Miloš René"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10882",title:"Smart Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"70c3ce4256324b3c58db970d446ddac4",slug:"smart-drug-delivery",bookSignature:"Usama Ahmad, Md. Faheem Haider and Juber Akhtar",coverURL:"https://cdn.intechopen.com/books/images_new/10882.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10885",title:"Snake Venom and Ecology",subtitle:null,isOpenForSubmission:!1,hash:"cc4503ed9e56a7bcd9f2ca82b0c880a8",slug:"snake-venom-and-ecology",bookSignature:"Mohammad Manjur Shah, Umar Sharif, Tijjani Rufai Buhari and Tijjani Sabiu Imam",coverURL:"https://cdn.intechopen.com/books/images_new/10885.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",middleName:null,surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10381",title:"Electrocatalysis and Electrocatalysts for a Cleaner Environment",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"9dbafb0b297cf5cbdb220707e022a228",slug:"electrocatalysis-and-electrocatalysts-for-a-cleaner-environment-fundamentals-and-applications",bookSignature:"Lindiwe Eudora Khotseng",coverURL:"https://cdn.intechopen.com/books/images_new/10381.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"236596",title:"Dr.",name:"Lindiwe Eudora",middleName:null,surname:"Khotseng",slug:"lindiwe-eudora-khotseng",fullName:"Lindiwe Eudora Khotseng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10900",title:"Prunus",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"9261926500acb26c4ae5a29eee78f0db",slug:"prunus-recent-advances",bookSignature:"Ayzin B. Küden and Ali Küden",coverURL:"https://cdn.intechopen.com/books/images_new/10900.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"200365",title:"Prof.",name:"Ayzin B.",middleName:"B.",surname:"Küden",slug:"ayzin-b.-kuden",fullName:"Ayzin B. Küden"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"993",title:"Pre-Hospital Emergency Medicine",slug:"critical-care-medicine-pre-hospital-emergency-medicine",parent:{id:"173",title:"Critical Care Medicine",slug:"critical-care-medicine"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:69,numberOfWosCitations:18,numberOfCrossrefCitations:12,numberOfDimensionsCitations:21,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"993",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5970",title:"Bedside Procedures",subtitle:null,isOpenForSubmission:!1,hash:"ba56d3036ac823a7155f40e4a02c030d",slug:"bedside-procedures",bookSignature:"Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/5970.jpg",editedByType:"Edited by",editors:[{id:"191888",title:"Dr.",name:"Gabriel",middleName:null,surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5756",title:"Intensive Care",subtitle:null,isOpenForSubmission:!1,hash:"c15f872f6c0158a19bf64f081fe1e854",slug:"intensive-care",bookSignature:"Nissar Shaikh",coverURL:"https://cdn.intechopen.com/books/images_new/5756.jpg",editedByType:"Edited by",editors:[{id:"107703",title:"Dr.",name:"Nissar",middleName:null,surname:"Shaikh",slug:"nissar-shaikh",fullName:"Nissar Shaikh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5220",title:"Oncology Critical Care",subtitle:null,isOpenForSubmission:!1,hash:"6ca48669ac7afaf59398a958335eff65",slug:"oncology-critical-care",bookSignature:"Jeffrey B. Hoag",coverURL:"https://cdn.intechopen.com/books/images_new/5220.jpg",editedByType:"Edited by",editors:[{id:"91738",title:"Dr.",name:"Jeffrey",middleName:null,surname:"Hoag",slug:"jeffrey-hoag",fullName:"Jeffrey Hoag"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"52089",doi:"10.5772/64372",title:"Infections in Cancer Patients",slug:"infections-in-cancer-patients",totalDownloads:2556,totalCrossrefCites:4,totalDimensionsCites:5,abstract:"Cancer therapy is a dynamically evolving field. Chemotherapy and biologic agents impact the magnitude and duration of immunosuppression in the already-immunocompromised cancer hosts who are then susceptible to a broad spectrum of infectious complications ranging from mild opportunistic infections to severe, fatal neutropenic sepsis. Numerous bacterial, fungal, and viral organisms have been implicated dictating varied preventative approaches. Rapid assessment and risk stratification of febrile patients identify individuals requiring hospital admission. Timely delivery of antimicrobials reduces the risk of complications and death. Herein, we summarize the current “state of art” in the management of infection in the cancer patient. We detail the advances in antibacterial and antifungal therapy.",book:{id:"5220",slug:"oncology-critical-care",title:"Oncology Critical Care",fullTitle:"Oncology Critical Care"},signatures:"Deepjot Singh and Robert A. Bonomo",authors:[{id:"181936",title:"Dr.",name:"Deepjot",middleName:null,surname:"Singh",slug:"deepjot-singh",fullName:"Deepjot Singh"},{id:"187145",title:"Dr.",name:"Robert",middleName:null,surname:"Bonomo",slug:"robert-bonomo",fullName:"Robert Bonomo"}]},{id:"55443",doi:"10.5772/intechopen.68630",title:"Aneurysmal Subarachnoid Hemorrhage",slug:"aneurysmal-subarachnoid-hemorrhage",totalDownloads:2919,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Aneurysmal subarachnoid hemorrhage (SAH) is a devastating neurological syndrome, which occurs at a rate of 3–25 per 100,000 population. Smoking and hypertension are the most important risk factors of subarachnoid hemorrhage. Rupture of cerebral aneurysm leads to rapid spread of blood into cerebrospinal fluid and subsequently leads to sudden increase of intracranial pressure and severe headache. Subarachnoid hemorrhage is associated with neurological (such as re‐bleeding and vasospasm) and systemic (such as myocardial injury and hyponatremia) complications that are causes of high mortality and morbidity. Although patients with poor‐grade subarachnoid hemorrhage are at higher risk of neurological and systemic complications, the early and aggressive management of this group of patient has decreased overall mortality by 17% in last 40 years. Early aneurysm repair, close monitoring in dedicated neurological intensive care unit, prevention, and aggressive management of medical and neurological complications are the most important strategies to improve outcome.",book:{id:"5756",slug:"intensive-care",title:"Intensive Care",fullTitle:"Intensive Care"},signatures:"Adel E. Ahmed Ganaw, Abdulgafoor M. Tharayil, Ali O. Mohamed\nBel Khair, Saher Tahseen, Jazib Hassan, Mohammad Faisal Abdullah\nMalmstrom and Sohel Mohamed Gamal Ahmed",authors:[{id:"198979",title:"Dr.",name:"Saher",middleName:null,surname:"Tahseen",slug:"saher-tahseen",fullName:"Saher Tahseen"},{id:"199923",title:"Dr.",name:"Adel. E. Ahmad",middleName:null,surname:"Ganaw",slug:"adel.-e.-ahmad-ganaw",fullName:"Adel. E. Ahmad Ganaw"},{id:"200584",title:"Dr.",name:"Abdulgafoor",middleName:null,surname:"Tharayil",slug:"abdulgafoor-tharayil",fullName:"Abdulgafoor Tharayil"},{id:"205193",title:"Dr.",name:"Ali",middleName:"O Mohamed",surname:"Bel Khair",slug:"ali-bel-khair",fullName:"Ali Bel Khair"},{id:"205194",title:"Dr.",name:"Jazib",middleName:null,surname:"Hassan",slug:"jazib-hassan",fullName:"Jazib Hassan"},{id:"205195",title:"Dr.",name:"M. Faisal",middleName:null,surname:"Malmstrom",slug:"m.-faisal-malmstrom",fullName:"M. Faisal Malmstrom"},{id:"205787",title:"Dr.",name:"Sohel Mohamed Gamal",middleName:null,surname:"Ahmed",slug:"sohel-mohamed-gamal-ahmed",fullName:"Sohel Mohamed Gamal Ahmed"}]},{id:"56878",doi:"10.5772/intechopen.70498",title:"Lumbar Puncture of the Newborn",slug:"lumbar-puncture-of-the-newborn",totalDownloads:1445,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Heinrich Irenäus Quincke was the first person in medical history to perform lumbar puncture (LP). Indications of lumbar puncture include suspected meningitis, suspected subarachnoid hemorrhage, administration of chemotherapeutic agents, instillation of contrast media for imaging of the spinal cord, and the evaluation of various neurologic conditions including normal pressure hydrocephalus and Guillain-Barré syndrome, and the treatment of idiopathic intracranial hypertension. Contraindications of lumbar puncture include findings of increased intracranial pressure, bleeding diathesis, cardiopulmonary instability, soft tissue infection at the puncture site, shock, respiratory insufficiency, and suspected meningococcal septicemia with extensive or spreading purpura. Altered mental status, focal neurologic signs, papilledema, focal seizure, and risk for brain abscess are indications for cranial imaging before performing LP. Lack of local anesthetic use and advancement of the spinal needle with the stylet in place were most prominent risk factors for a traumatic LP. Ultrasound may minimize the number of LP attempts and decrease patient and parent anxiety by easily identifying an insertion site. Infection, spinal hematoma, epidermoid tumor, and cerebral herniation are the main complications of LP. When LP is traumatic, the wisest approach is to assume the patient is having meningitis and start empirical therapy.",book:{id:"5970",slug:"bedside-procedures",title:"Bedside Procedures",fullTitle:"Bedside Procedures"},signatures:"Selim Öncel",authors:[{id:"200133",title:"Associate Prof.",name:"Selim",middleName:null,surname:"Öncel",slug:"selim-oncel",fullName:"Selim Öncel"}]},{id:"54793",doi:"10.5772/intechopen.68308",title:"Intensive Care Unit Workforce: Occupational Health and Safety",slug:"intensive-care-unit-workforce-occupational-health-and-safety",totalDownloads:2198,totalCrossrefCites:0,totalDimensionsCites:2,abstract:"There are many different work tasks and workplace hazards related to the ICU setting. The workplace hazards include the physical environment of the ICU, working conditions, psychosocial factors, ergonomic factors, biological factors and chemical factors that cause ICU workers to have health problems. The occurrence of occupational health problems in ICU workers not only leads to decreased job satisfaction and productivity but also increases absenteeism and burnout. Moreover, this situation adversely affects patient care and increases the cost of treatment. Recognising occupational hazards and risks arising from the work environment will assist in planning strategies to protect and promote health programmes for ICU workers. Understanding the importance of occupational health and safety practices by all institutions is a key factor to improve quality of life, work efficiency and work satisfaction of ICU workers.",book:{id:"5756",slug:"intensive-care",title:"Intensive Care",fullTitle:"Intensive Care"},signatures:"Melek Nihal Esin and Duygu Sezgin",authors:[{id:"183522",title:"Prof.",name:"Melek Nihal",middleName:null,surname:"Esin",slug:"melek-nihal-esin",fullName:"Melek Nihal Esin"},{id:"197030",title:"Dr.",name:"Duygu",middleName:null,surname:"Sezgin",slug:"duygu-sezgin",fullName:"Duygu Sezgin"}]},{id:"54955",doi:"10.5772/intechopen.68348",title:"Acute Kidney Injury in the Intensive Care Unit",slug:"acute-kidney-injury-in-the-intensive-care-unit",totalDownloads:2434,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Acute kidney injury (AKI) is defined as an abrupt decrease in glomerular filtration rate (GFR). Incidence varies from 20% to as high as 70% in critically ill patients. Classically, AKI has been divided into three broad pathophysiologic categories: prerenal AKI, intrinsic AKI, and postrenal (obstructive) AKI. The clinical manifestations of AKI vary among a wide range of symptoms and metabolic abnormalities. A sudden decrease in GFR will result in rising concentrations of solutes in the blood, which are normally excreted by the kidneys. Recently, new urinary and serum biomarkers have gained a place in the diagnosis, classification, and prognosis prediction of AKI. The best treatment for AKI is prevention. Patients with prerenal azotemia should have intravascular volume deficits corrected and cardiac function optimized. Obstructive (postrenal) kidney disease is treated by mechanical relief of the block. The primary management of acute interstitial nephritis is discontinuation of the inciting agent. Renal replacement therapy (RRT) has emerged as a supportive mechanism rather than just as a lifesaving measure. Continuous techniques are preferable in treating critically ill patients, although every modality has its benefits, indications, and contraindications.",book:{id:"5756",slug:"intensive-care",title:"Intensive Care",fullTitle:"Intensive Care"},signatures:"Jose J. Zaragoza and Faustino J. Renteria",authors:[{id:"181646",title:"Dr.",name:"Jose",middleName:"Jesus",surname:"Zaragoza",slug:"jose-zaragoza",fullName:"Jose Zaragoza"},{id:"200843",title:"Dr.",name:"Faustino",middleName:null,surname:"Renteria",slug:"faustino-renteria",fullName:"Faustino Renteria"}]}],mostDownloadedChaptersLast30Days:[{id:"55736",title:"Haemodynamic Monitoring in the Intensive Care Unit",slug:"haemodynamic-monitoring-in-the-intensive-care-unit",totalDownloads:3316,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Monitoring is a cognitive aid that allows clinicians to detect the nature and extent of pathology and helps assessment of response to therapy. The cardiovascular system is the most commonly monitored organ system in the critical care setting. It helps identify the presence and nature of shock and guides response to resuscitation by detection of cardiac rate and rhythm, evaluation of volume state, cardiac contractility and systemic vascular resistance. Newer technologies allow greater assessment of oxygen delivery to vulnerable tissues. We discuss the nature, history, modalities and interpretation of the most commonly available haemodynamic monitoring methods in clinical use currently.",book:{id:"5756",slug:"intensive-care",title:"Intensive Care",fullTitle:"Intensive Care"},signatures:"Mainak Majumdar",authors:[{id:"86678",title:"Dr.",name:"Mainak",middleName:null,surname:"Majumdar",slug:"mainak-majumdar",fullName:"Mainak Majumdar"}]},{id:"56744",title:"Endotracheal Intubation in Children: Practice Recommendations, Insights, and Future Directions",slug:"endotracheal-intubation-in-children-practice-recommendations-insights-and-future-directions",totalDownloads:2416,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Management of airway is mandatory in a critically ill child with severe trauma or any other situation that threatens his or her life. It is important, that clinicians who attend critically ill pediatric patients requiring airway management know the rapid sequence intubation (RSI) procedure, identify a patient with difficult airway, know the devices and techniques for the management of difficult airway, and look for receiving a formal training in endotracheal intubation (ETI). Future strategies for teaching and/or training clinicians in pediatric and neonatal ETI should be evaluated through conducting controlled clinical trials to identify which type will be the most effective by considering the less number of attempts and complications.",book:{id:"5970",slug:"bedside-procedures",title:"Bedside Procedures",fullTitle:"Bedside Procedures"},signatures:"Maribel Ibarra-Sarlat, Eduardo Terrones-Vargas, Lizett Romero-\nEspinoza, Graciela Castañeda-Muciño, Alejandro Herrera-Landero\nand Juan Carlos Núñez-Enríquez",authors:[{id:"166303",title:"Dr.",name:"Juan",middleName:"Carlos",surname:"Nuñez-Enriquez",slug:"juan-nunez-enriquez",fullName:"Juan Nuñez-Enriquez"},{id:"206296",title:"Dr.",name:"Eduardo",middleName:null,surname:"Terrones-Vargas",slug:"eduardo-terrones-vargas",fullName:"Eduardo Terrones-Vargas"},{id:"206297",title:"Dr.",name:"Maribel",middleName:null,surname:"Ibarra-Sarlat",slug:"maribel-ibarra-sarlat",fullName:"Maribel Ibarra-Sarlat"},{id:"206298",title:"Dr.",name:"Lizett",middleName:null,surname:"Romero-Espinoza",slug:"lizett-romero-espinoza",fullName:"Lizett Romero-Espinoza"},{id:"206299",title:"Dr.",name:"Alejandro",middleName:null,surname:"Herrera-Landero",slug:"alejandro-herrera-landero",fullName:"Alejandro Herrera-Landero"},{id:"213723",title:"Dr.",name:"Graciela",middleName:null,surname:"Castañeda-Muciño",slug:"graciela-castaneda-mucino",fullName:"Graciela Castañeda-Muciño"}]},{id:"55848",title:"Airway Management in ICU Settings",slug:"airway-management-in-icu-settings",totalDownloads:2830,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Maintenance of patent airway, adequate ventilation, and pulmonary gas exchange is very important in critically ill patients. Airway management in intensive care patients differs significantly from routine surgical procedures in the operating room. The airway competence in intensive care unit (ICU) should be coping with the rapidly evolving advances in airway management. Therefore, efforts should be focused on the three pillars of airway master: airway providers as intensivists or critical care physicians, equipment, and operational plans. Not all institutions can afford all airway equipment in the market; however, they should make sure that critical care providers have a full access to the available tools and they are comfortable using it. Educational sessions and refresher courses should be tailored to meet the competence level of the ICU providers and equipment availability. Operational plan includes developing institutional airway protocols and implementing difficult airway guidelines. The protocols should consider different staffing models of ICU and make sure all the time at least one member of the team with the highest experience in airway should be always available. The aim of writing this chapter is to enable the intensivist to optimize their use of airway equipment and managing high‐risk patients in ICU.",book:{id:"5756",slug:"intensive-care",title:"Intensive Care",fullTitle:"Intensive Care"},signatures:"Nabil Abdelhamid Shallik, Mamdouh Almustafa, Ahmed Zaghw\nand Abbas Moustafa",authors:[{id:"202782",title:"Dr.",name:"Nabil A.",middleName:null,surname:"Shallik",slug:"nabil-a.-shallik",fullName:"Nabil A. Shallik"},{id:"206965",title:"Dr.",name:"Mamdouh",middleName:null,surname:"Almustafa",slug:"mamdouh-almustafa",fullName:"Mamdouh Almustafa"},{id:"206966",title:"Dr.",name:"Ahmed",middleName:null,surname:"Zaghw",slug:"ahmed-zaghw",fullName:"Ahmed Zaghw"},{id:"206967",title:"Dr.",name:"Abbas",middleName:null,surname:"Moustafa",slug:"abbas-moustafa",fullName:"Abbas Moustafa"}]},{id:"56878",title:"Lumbar Puncture of the Newborn",slug:"lumbar-puncture-of-the-newborn",totalDownloads:1444,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Heinrich Irenäus Quincke was the first person in medical history to perform lumbar puncture (LP). Indications of lumbar puncture include suspected meningitis, suspected subarachnoid hemorrhage, administration of chemotherapeutic agents, instillation of contrast media for imaging of the spinal cord, and the evaluation of various neurologic conditions including normal pressure hydrocephalus and Guillain-Barré syndrome, and the treatment of idiopathic intracranial hypertension. Contraindications of lumbar puncture include findings of increased intracranial pressure, bleeding diathesis, cardiopulmonary instability, soft tissue infection at the puncture site, shock, respiratory insufficiency, and suspected meningococcal septicemia with extensive or spreading purpura. Altered mental status, focal neurologic signs, papilledema, focal seizure, and risk for brain abscess are indications for cranial imaging before performing LP. Lack of local anesthetic use and advancement of the spinal needle with the stylet in place were most prominent risk factors for a traumatic LP. Ultrasound may minimize the number of LP attempts and decrease patient and parent anxiety by easily identifying an insertion site. Infection, spinal hematoma, epidermoid tumor, and cerebral herniation are the main complications of LP. When LP is traumatic, the wisest approach is to assume the patient is having meningitis and start empirical therapy.",book:{id:"5970",slug:"bedside-procedures",title:"Bedside Procedures",fullTitle:"Bedside Procedures"},signatures:"Selim Öncel",authors:[{id:"200133",title:"Associate Prof.",name:"Selim",middleName:null,surname:"Öncel",slug:"selim-oncel",fullName:"Selim Öncel"}]},{id:"55443",title:"Aneurysmal Subarachnoid Hemorrhage",slug:"aneurysmal-subarachnoid-hemorrhage",totalDownloads:2916,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Aneurysmal subarachnoid hemorrhage (SAH) is a devastating neurological syndrome, which occurs at a rate of 3–25 per 100,000 population. Smoking and hypertension are the most important risk factors of subarachnoid hemorrhage. Rupture of cerebral aneurysm leads to rapid spread of blood into cerebrospinal fluid and subsequently leads to sudden increase of intracranial pressure and severe headache. Subarachnoid hemorrhage is associated with neurological (such as re‐bleeding and vasospasm) and systemic (such as myocardial injury and hyponatremia) complications that are causes of high mortality and morbidity. Although patients with poor‐grade subarachnoid hemorrhage are at higher risk of neurological and systemic complications, the early and aggressive management of this group of patient has decreased overall mortality by 17% in last 40 years. Early aneurysm repair, close monitoring in dedicated neurological intensive care unit, prevention, and aggressive management of medical and neurological complications are the most important strategies to improve outcome.",book:{id:"5756",slug:"intensive-care",title:"Intensive Care",fullTitle:"Intensive Care"},signatures:"Adel E. Ahmed Ganaw, Abdulgafoor M. Tharayil, Ali O. Mohamed\nBel Khair, Saher Tahseen, Jazib Hassan, Mohammad Faisal Abdullah\nMalmstrom and Sohel Mohamed Gamal Ahmed",authors:[{id:"198979",title:"Dr.",name:"Saher",middleName:null,surname:"Tahseen",slug:"saher-tahseen",fullName:"Saher Tahseen"},{id:"199923",title:"Dr.",name:"Adel. E. Ahmad",middleName:null,surname:"Ganaw",slug:"adel.-e.-ahmad-ganaw",fullName:"Adel. E. Ahmad Ganaw"},{id:"200584",title:"Dr.",name:"Abdulgafoor",middleName:null,surname:"Tharayil",slug:"abdulgafoor-tharayil",fullName:"Abdulgafoor Tharayil"},{id:"205193",title:"Dr.",name:"Ali",middleName:"O Mohamed",surname:"Bel Khair",slug:"ali-bel-khair",fullName:"Ali Bel Khair"},{id:"205194",title:"Dr.",name:"Jazib",middleName:null,surname:"Hassan",slug:"jazib-hassan",fullName:"Jazib Hassan"},{id:"205195",title:"Dr.",name:"M. Faisal",middleName:null,surname:"Malmstrom",slug:"m.-faisal-malmstrom",fullName:"M. Faisal Malmstrom"},{id:"205787",title:"Dr.",name:"Sohel Mohamed Gamal",middleName:null,surname:"Ahmed",slug:"sohel-mohamed-gamal-ahmed",fullName:"Sohel Mohamed Gamal Ahmed"}]}],onlineFirstChaptersFilter:{topicId:"993",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:320,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:17,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"July 5th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:9,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"13633",title:"Prof.",name:"Abdelhamid",middleName:null,surname:"Mellouk",slug:"abdelhamid-mellouk",fullName:"Abdelhamid Mellouk",profilePictureURL:"https://mts.intechopen.com/storage/users/13633/images/1567_n.jpg",institutionString:null,institution:{name:"Paris 12 Val de Marne University",institutionURL:null,country:{name:"France"}}},{id:"109268",title:"Dr.",name:"Ali",middleName:null,surname:"Al-Ataby",slug:"ali-al-ataby",fullName:"Ali Al-Ataby",profilePictureURL:"https://mts.intechopen.com/storage/users/109268/images/7410_n.jpg",institutionString:null,institution:{name:"University of Liverpool",institutionURL:null,country:{name:"United Kingdom"}}},{id:"3807",title:"Dr.",name:"Carmelo",middleName:"Jose Albanez",surname:"Bastos-Filho",slug:"carmelo-bastos-filho",fullName:"Carmelo Bastos-Filho",profilePictureURL:"https://mts.intechopen.com/storage/users/3807/images/624_n.jpg",institutionString:null,institution:{name:"Universidade de Pernambuco",institutionURL:null,country:{name:"Brazil"}}},{id:"38850",title:"Dr.",name:"Efren",middleName:null,surname:"Gorrostieta Hurtado",slug:"efren-gorrostieta-hurtado",fullName:"Efren Gorrostieta Hurtado",profilePictureURL:"https://mts.intechopen.com/storage/users/38850/images/system/38850.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},{id:"239041",title:"Prof.",name:"Yang",middleName:null,surname:"Yi",slug:"yang-yi",fullName:"Yang Yi",profilePictureURL:"https://mts.intechopen.com/storage/users/239041/images/system/239041.jpeg",institutionString:"Virginia Tech",institution:{name:"Virginia Tech",institutionURL:null,country:{name:"United States of America"}}}]},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",slug:"asim-bhatti",fullName:"Asim Bhatti",profilePictureURL:"https://mts.intechopen.com/storage/users/13818/images/system/13818.jpg",institutionString:null,institution:{name:"Deakin University",institutionURL:null,country:{name:"Australia"}}},{id:"151889",title:"Dr.",name:"Joao Luis Garcia",middleName:null,surname:"Rosa",slug:"joao-luis-garcia-rosa",fullName:"Joao Luis Garcia Rosa",profilePictureURL:"https://mts.intechopen.com/storage/users/151889/images/4861_n.jpg",institutionString:null,institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",institutionURL:null,country:{name:"Turkey"}}}]},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"1177",title:"Prof.",name:"António",middleName:"J. R.",surname:"José Ribeiro Neves",slug:"antonio-jose-ribeiro-neves",fullName:"António José Ribeiro Neves",profilePictureURL:"https://mts.intechopen.com/storage/users/1177/images/system/1177.jpg",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"220565",title:"Dr.",name:"Jucheng",middleName:null,surname:"Yang",slug:"jucheng-yang",fullName:"Jucheng Yang",profilePictureURL:"https://mts.intechopen.com/storage/users/220565/images/5988_n.jpg",institutionString:null,institution:{name:"Tianjin University of Technology",institutionURL:null,country:{name:"China"}}},{id:"29299",title:"Prof.",name:"Serestina",middleName:null,surname:"Viriri",slug:"serestina-viriri",fullName:"Serestina Viriri",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOalQAG/Profile_Picture_1620817405517",institutionString:null,institution:{name:"University of KwaZulu-Natal",institutionURL:null,country:{name:"South Africa"}}},{id:"315933",title:"Dr.",name:"Yalın",middleName:null,surname:"Baştanlar",slug:"yalin-bastanlar",fullName:"Yalın Baştanlar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002qpr7hQAA/Profile_Picture_1621430127547",institutionString:null,institution:{name:"Izmir Institute of Technology",institutionURL:null,country:{name:"Turkey"}}}]},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios",profilePictureURL:"https://mts.intechopen.com/storage/users/111683/images/system/111683.jpg",institutionString:"De La Salle University",institution:{name:"De La Salle University",institutionURL:null,country:{name:"Philippines"}}},{id:"106873",title:"Prof.",name:"Hongwei",middleName:null,surname:"Ge",slug:"hongwei-ge",fullName:"Hongwei Ge",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Dalian University of Technology",institutionURL:null,country:{name:"China"}}},{id:"171056",title:"Dr.",name:"Sotirios",middleName:null,surname:"Goudos",slug:"sotirios-goudos",fullName:"Sotirios Goudos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9IuQAK/Profile_Picture_1622623673666",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"15895",title:"Assistant Prof.",name:"Takashi",middleName:null,surname:"Kuremoto",slug:"takashi-kuremoto",fullName:"Takashi Kuremoto",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLrqQAG/Profile_Picture_1625656196038",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}},{id:"125844",title:"Prof.",name:"Wellington",middleName:"Pinheiro Dos",surname:"Santos",slug:"wellington-santos",fullName:"Wellington Santos",profilePictureURL:"https://mts.intechopen.com/storage/users/125844/images/4878_n.jpg",institutionString:null,institution:{name:"Federal University of Pernambuco",institutionURL:null,country:{name:"Brazil"}}}]},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}},{id:"16614",title:"Prof.",name:"Juan Ignacio",middleName:null,surname:"Guerrero Alonso",slug:"juan-ignacio-guerrero-alonso",fullName:"Juan Ignacio Guerrero Alonso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6HB8QAM/Profile_Picture_1627901127555",institutionString:null,institution:{name:"University of Seville",institutionURL:null,country:{name:"Spain"}}},{id:"3095",title:"Prof.",name:"Kenji",middleName:null,surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/3095/images/1592_n.jpg",institutionString:null,institution:{name:"University of Chicago",institutionURL:null,country:{name:"United States of America"}}},{id:"214067",title:"Dr.",name:"W. David",middleName:null,surname:"Pan",slug:"w.-david-pan",fullName:"W. David Pan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEI9QAO/Profile_Picture_1623656213532",institutionString:null,institution:{name:"University of Alabama in Huntsville",institutionURL:null,country:{name:"United States of America"}}},{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk",profilePictureURL:"https://mts.intechopen.com/storage/users/72920/images/system/72920.jpeg",institutionString:"Dalarna University, Faculty of Data and Information Sciences",institution:{name:"Dalarna University",institutionURL:null,country:{name:"Sweden"}}}]},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"275140",title:"Dr.",name:"Dinh Hoa",middleName:null,surname:"Nguyen",slug:"dinh-hoa-nguyen",fullName:"Dinh Hoa Nguyen",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRbnKQAS/Profile_Picture_1622204093453",institutionString:null,institution:{name:"Kyushu University",institutionURL:null,country:{name:"Japan"}}},{id:"20259",title:"Dr.",name:"Hongbin",middleName:null,surname:"Ma",slug:"hongbin-ma",fullName:"Hongbin Ma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRhDJQA0/Profile_Picture_2022-05-02T08:25:21.jpg",institutionString:null,institution:{name:"Beijing Institute of Technology",institutionURL:null,country:{name:"China"}}},{id:"28640",title:"Prof.",name:"Yasushi",middleName:null,surname:"Kambayashi",slug:"yasushi-kambayashi",fullName:"Yasushi Kambayashi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOQxQAO/Profile_Picture_1625660525470",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}}]}]},overviewPageOFChapters:{paginationCount:23,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11570",title:"Influenza - New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",hash:"157b379b9d7a4bf5e2cc7a742f155a44",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",hash:"069d6142ecb0d46d14920102d48c0e9d",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 31st 2022",isOpenForSubmission:!0,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",hash:"92c881664d1921c7f2d0fee34b78cd08",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"435274",title:null,name:"Muhammad",middleName:null,surname:"Shahid Khan",slug:"muhammad-shahid-khan",fullName:"Muhammad Shahid Khan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Islamia University of Bahawalpur",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"25",type:"subseries",title:"Evolutionary Computation",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11421,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios",profilePictureURL:"https://mts.intechopen.com/storage/users/111683/images/system/111683.jpg",institutionString:"De La Salle University",institution:{name:"De La Salle University",institutionURL:null,country:{name:"Philippines"}}},{id:"106873",title:"Prof.",name:"Hongwei",middleName:null,surname:"Ge",slug:"hongwei-ge",fullName:"Hongwei Ge",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Dalian University of Technology",institutionURL:null,country:{name:"China"}}},{id:"171056",title:"Dr.",name:"Sotirios",middleName:null,surname:"Goudos",slug:"sotirios-goudos",fullName:"Sotirios Goudos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9IuQAK/Profile_Picture_1622623673666",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"15895",title:"Assistant Prof.",name:"Takashi",middleName:null,surname:"Kuremoto",slug:"takashi-kuremoto",fullName:"Takashi Kuremoto",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLrqQAG/Profile_Picture_1625656196038",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}},{id:"125844",title:"Prof.",name:"Wellington",middleName:"Pinheiro Dos",surname:"Santos",slug:"wellington-santos",fullName:"Wellington Santos",profilePictureURL:"https://mts.intechopen.com/storage/users/125844/images/4878_n.jpg",institutionString:null,institution:{name:"Federal University of Pernambuco",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{},publishedBooks:{},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/65065",hash:"",query:{},params:{id:"65065"},fullPath:"/chapters/65065",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()