Open access peer-reviewed chapter

Medicinal Plants Used by Indigenous Communities of Oaxaca, Mexico, to Treat Gastrointestinal Disorders

Written By

Mónica Lilian Pérez-Ochoa, José Luis Chávez-Servia, Araceli Minerva Vera-Guzmán, Elia Nora Aquino-Bolaños and José Cruz Carrillo-Rodríguez

Submitted: 27 July 2018 Reviewed: 22 October 2018 Published: 14 December 2018

DOI: 10.5772/intechopen.82182

From the Edited Volume

Pharmacognosy - Medicinal Plants

Edited by Shagufta Perveen and Areej Al-Taweel

Chapter metrics overview

1,336 Chapter Downloads

View Full Metrics

Abstract

The use of medicinal plants for the treatment of gastrointestinal disorders and ethnodiseases such as diarrhea, stomachache, dysentery, “empacho” (blockage), and bile is a common strategy among indigenous communities. It is estimated that approximately 34% of medicinal plants are used to treat diseases of the digestive tract. In Mexico, gastrointestinal infections caused by bacteria, parasites, or viruses represent one of the main causes of death in children in rural populations. Our objective was to document the use of medicinal plants used by the indigenous groups of Oaxaca, Mexico, for the treatment of gastrointestinal disorders, based on previous studies, experiences, and field observations in indigenous communities and supplemented with bibliographic references. In Oaxaca, there are 16 indigenous groups, the largest being the speakers of the Zapoteco, Mixteco, Mazateco, Mixe, Chinanteco, Amuzgo, Tacuate, Chatino, and Cuicateco languages. In this review of the medicinal plants used for gastrointestinal disorders, 186 species were grouped into 147 genera and 71 botanical families, among which the largest number of species belonged to Asteraceae (29), Fabaceae (15), Euphorbiaceae (9), Solanaceae (9), and Lamiaceae (9). Different pharmacological studies showed potential for preventing microbial and fungal pathogens that cause gastrointestinal disease.

Keywords

  • ethnodiseases
  • bioculture
  • indigenous knowledge
  • plant diversity

1. Introduction

Medicinal plants are key elements of traditional medicine because they are part of the collection of knowledge and cultural heritage of sociocultural communities. Communities are often repositories and users of medicinal plants, and both rural and urban social groups with rural or indigenous origins have knowledge of these plants. Based on ethnobotanical, ethnomedicinal, and ethnopharmacological studies, the plants that are used by different healers and families of the Tarahumara, Yaqui, Chontal, Nahuatl, Mazahua, Otomi, Mixteco, Zapoteco, Mixe, Maya and Tzotzil groups, and all Mexican indigenous groups are symbolic [1].

In Mexico, gastrointestinal diseases are common in communities that are highly marginalized and poverty-stricken and are often transmitted through the fecal-oral route and the consumption of contaminated water and food. The infant population is the most vulnerable, both in terms of incidence and vulnerability [2]. In 2012, approximately 20% of the population of Chiapas, Guerrero, and Oaxaca did not have access to an adequate quality of water. This problem was exacerbated because only between 65 and 75% of houses have adequate waste management systems. Gastrointestinal diseases in children under 5 years of age directly affect mortality rates (19.2–19.4%) and mainly occur in marginalized communities [3]. These observations suggest that minimizing gastrointestinal diseases is dependent on the social environment of the community, access to clean water and food safety. As such, the symptoms and syndromes of diarrhea, stomachache, gastric atrophy, and enteric fever are associated with bacterial, fungal, parasitic, and rotavirus agents [2], and the frequency of these symptoms among children varies from community to community.

Medicinal plants are commonly used by communities for the treatment of gastrointestinal disorders through plant infusions, maceration, chewing, poultices, and different types of extracts (alcoholic or aqueous) [1]. Some studies have documented the traditional uses of medicinal plants by healers, their conservation, and their cultural importance in different indigenous groups [4, 5, 6, 7, 8, 9]. Other studies have contributed ethnobotanical knowledge of medicinal plants [10, 11, 12]. The evaluation of phytochemical compounds with medicinal activity is also a subject of interest [13, 14, 15, 16]. One aspect in which different authors have devoted a great amount of attention to is the antiparasitic and antimicrobial effects of medicinal plants for the treatment of diarrhea and other gastrointestinal disorders [17, 18, 19, 20, 21, 22, 23, 24, 25].

Research in natural products is often based on ethnobotanical information. One goal of ethnopharmacology is to improve the understanding of the pharmacological effects of plants on health, especially for indigenous communities that are highly marginalized and poverty-stricken. In this study, we examined plants used for the treatment of gastrointestinal disorders such as diarrhea, dysentery, and abdominal pain. The objective of this work was to document the use of medicinal plants used by the indigenous groups of Oaxaca, Mexico for the treatment of gastrointestinal disorders, based on previous unreported studies, experiences, and field observations in indigenous communities. Our results are supplemented with bibliographic reviews.

Advertisement

2. Sociocultural and ethnographic context of Oaxaca, Mexico

Mexico has an indigenous population of 12.25 million (10.1% of the total), of which 7.38 million speak an indigenous language [26]. It is estimated that there are 1.2 million speakers in Oaxaca over 3 years of age that speak an indigenous language. Oaxaca is the state with the largest indigenous population (32.2% of its total population) and has 245 municipalities where more than 40% of the population speaks indigenous languages [26, 27, 28]. However, in Mexico, 24.4 million people consider themselves indigenous [26, 29], a figure that is higher than the total number of inhabitants of several European countries and is of great importance in the preservation of culture, biodiversity, and biocultural heritage. Indigenous peoples are also associated with the use of medicinal plants.

Based on the vegetation, ecosystem, biome, and indigenous settlement maps, Toledo et al. [30] identified 26 indigenous regions in Mexico. These regions coincide with the zones of greatest biodiversity and pluriculturality or indigenous settlements and are also where protected natural areas are located. In Oaxaca, eight indigenous regions were identified: Mixteca, Cañada, Papaloapan, Sierra Norte, Istmo, Costa, Sierra Sur, and Valles Centrales Different indigenous communities can be found in each of these regions. The Mixteca region is dominated by the Mixteco, Triqui, Chocho and Nahuatl groups, the Cañada by the Cuicateco and Mazateco groups, and so on. The topography of the mountainous areas and valleys of Oaxaca is rugged, with contrasting climates ranging from humid temperate at 2000–3000 masl, to temperate to subtemperate in intermediate zones from 1000 to 2000 masl, to tropical and subtropical regions (<1000 masl) [31]. Thus, indigenous communities are located in various climates, altitudes and vegetation, and consequently have access to and knowledge of different medicinal plants. We should note that among Oaxaca indigenous regions, the differences are not extreme in terms of climatic conditions, flora, fauna, topography, crops, handicrafts, and the use of traditional medicinal plants (Table 1); however, there are sociocultural differences in the knowledge associated with the use of plants for treating ethnodiseases and diseases with clinical diagnoses.

Indigenous region (n1)Main indigenous groupsClimate and precipitationsAltitude (m)
Mixteca (155)Mixtecos, Triquis, NahuasTropical subhumid, semitropical sub-humid to temperate subhumid, annual precipitation from 550 to 2177 mm. Includes a semi-dry region1200–2800
Cañada (45)Mazatecos, Cuicatecos, Ixcatecos, NahuasSemidesert with variations of very warm, semiwarm and temperate in high areas, annual precipitation from 372.8 to 643.7 mm1180–2700
Papaloapan (20)Chinantecos, Zapotecos, Mazatecos, MixesTropical humid, semitropical humid to humid temperate, and precipitation from 2000 to 4500 mm. The rainiest region of Oaxaca0–2000
Sierra Norte (68)Zapotecos de la Sierra, Mixes, Chinantecos, Mazatecos, CuicatecosTropical subhumid, semitropical subhumid to temperate subhumid, annual precipitation from 1000 to 3000 mm1000–3200
Valles Centrales (121)Zapotecos de Valles, Mixtecos, MixesSubtropical to semidry, annual precipitation from 600 to 800 mm1000–2000
Istmo (41)Zapotecos, Huaves, Zoques, ChontalesTropical subhumid to semitropical subhumid, annual precipitation from 800 to 2500 mm.0–1600
Sierra Sur (70)Zapotecos de la Sierra Sur, Amuzgos, Mixtecos, Chatinos, TriquisTropical subhumid, semitropical subhumid to humid temperate, annual precipitation from 800 to 2000 mm1000–2600
Costa (50)Zapotecos de la Costa, Mixtecos, Amuzgos, Chatinos, ChontalesTropical subhumid, semitropical subhumid to temperate, delimited region by Sierra Madre del Sur, annual precipitation from 731.9 to 2050 mm0–2000

Table 1.

Ecogeographic descriptions of eight indigenous regions of Oaxaca, Mexico.

Number of municipalities; sources: Arellanes et al. [31].


Among indigenous communities from distant ethnic regions and origins, and occupying different geographical territories, the use of plants for the treatment of gastrointestinal disorders is different, even though the symbolic or cosmological meanings may be the same. Thus, there is similar understanding of how plants are used to treat stomach, intestinal, diarrhea, or psychosomatic diseases (e.g., “susto” (fright), stomachaches, “mal aire” (bad air) with vomiting, and “empacho” (blockage), but the species of plant used, form of use, and application differ significantly between ethnic groups. In severe cases of illness, indigenous peoples resort to the community healers or alternate among medical professionals, pharmaceutical medicine, and the use of medicinal plants recommended by the family or healers [32, 33].

Advertisement

3. Relationship between indigenous groups and endemic medicinal plants used for gastrointestinal disorders

Among rural and indigenous communities, the concept of health and disease is holistic. As such, the human body develops its organic and metabolic functions without physical deterioration and includes mental, mystical-spiritual, and psychological aspects (symbolic reality). Social, cultural, and ethnic concepts are implicit in the perceptions of health and disease, and based on these concepts, the healing-therapeutic benefits of medicinal plants are sought. From the indigenous perspective, the causal explanations of illness are complex. The body suffers symptomatic imbalances resulting from physical, emotional, or mental deterioration, which are consequences of “susto” (fright), anger, interpersonal conflicts, cold currents, harmful foods (cold, hot, types of meat, cravings, etc.), sexual relations, witchcraft, etc. [34, 35, 36, 37, 38]. Consequently, the factors that produce imbalances in the body, in this case stomach problems, are to be avoided.

The knowledge and use of medicinal plants in indigenous communities is changing due to the introduction of pharmaceutical products recommended by health professionals. Giovannini et al. [39] note two trends in support of this fact: the complete displacement of medicinal plants by pharmaceutical products and the coexistence between clinical medicine and the use of medicinal plants. Thus far, local indigenous knowledge for the treatment of cardiovascular diseases, cancers, diabetes, and other prevalent diseases has been disseminated, which is why patent medicine is used. However, there are some examples of healing via the use of medicinal plants. In cases of chronic diarrhea caused by pathogens, the use of plants has been beneficial, such as plants used to treat diarrhea caused by Salmonella spp. [24]. In Oaxaca, acute diarrhea and acute respiratory infections are the main causes of mortality in children under 5 years of age [40].

The prevalence among Oaxacan children of microbial or parasitic gastrointestinal diseases, which cause acute diarrhea and other problems, has forced communities to resort to medicinal plants. Consequently, under these circumstances, there is a set of common species among indigenous communities that are used similarly, provided that their ecological conditions are also similar. It should also be noted that knowledge may be treated differently between different ethnic communities, especially when faced with common health problems. For example, the Mixe, Mixteco, and Zapoteco groups of the Sierras, located in temperate regions, commonly use Chenopodium graveolens, Lantana achyranthifolia, Baccharis salicifolia, and Miconia mexicana, although the local names used by each region are different. Additionally, the Chinanteco groups and Zapoteco of the Istmo use similar plant species (Table 2).

Indigenous group (climate at the communities)SpeciesSpanish nameReferences
Mixtecos, Mixe, Zapotecos de las Sierras (temperate)Chenopodium graveolens Willd.Epazote de zorrillo[14, 17]
Mixtecos, Mixe, Zapotecos de las Sierras (temperate)Lantana achyranthifolia Desf.Cinco negritos, Hierba mariposa[8, 16]
Mixtecos, Mixe, Zapotecos de las Sierras (temperate)Baccharis salicifolia (Ruiz & Pavón) Pers.Jara, cacho de venado[1, 4, 5, 13]
Mixtecos, Mixe, Zapotecos de las Sierras (temperate)Miconia mexicana (Bonpl.) NaudinItswa[21]
Mixe, Mixtecos (temperate)Loeselia mexicana (Lam.) Brand.Espinosilla[21, 41]
Chinantecos, Zapotecos del Istmo (tropical and subtropical)Gomphrena serrata L.Cabezona, amor seco, amor de soltero[1, 42, 43]
Chinantecos, Zapotecos del Istmo (tropical and subtropical)Byrsonima crassifolia (L.) KunthNanche amarillo (corteza)[6, 14, 24, 41]
Chinantecos, Zapotecos del Istmo (tropical and subtropical)Cuphea pinetorum Benth.Cenicilla, Hierba de gallina[18, 25]
Chinantecos, Mixe, Zapotecos del Istmo (tropical and subtropical)Gouania lupuloides (L.) Urb.Bejuco de reuma[17, 44, 45]

Table 2.

Common plants used by indigenous groups for the treatment of gastrointestinal disorders in Oaxaca, Mexico.

3.1 Healers and medicinal plants

Within Oaxacan indigenous groups, the healers play essential roles as therapists or ethnopractitioners and are not referred to as shamans, witch doctors, or herbalists. Here, we only refer to the cures or treatments using plants recommended by healers for the treatment of gastrointestinal disorders. The indigenous healers have social recognition in the communities as persons of knowledge, skills, and healing practices. These healers have the facilities to explain the physical and nonphysical causes of diseases through a symbolic, verbal and corporal language, and resort to deities to exercise healing techniques. The body of knowledge is a legacy inherited or acquired from their ethnic medical culture and becomes a depository with the capacity to incorporate medical experiences regarding the descriptions of diseases, anatomy, and physiology of the human body [1, 34, 38, 46, 47].

The healer’s diagnosis is based on the spirit, soul, and body, which are closely interconnected, to define health and disease. In Oaxacan communities, Mixe and Mazateco healers use psychotropic or hallucinogenic plants and mushrooms for successful diagnoses and healing. These hallucinogens are used as a mechanism to access supernatural forces and as interlocutors to ward off malignant agents [34, 46, 47]. The remedies or treatments recommended by healers for gastrointestinal problems vary from diets, teas, maceration or poultices of medicinal plants, changes in eating habits such as avoiding foods considered “hot” or “cold,” avoiding animals or people, sun exposure, or environmental changes in temperature, such as avoiding cold water, etc.

María Sabina was a well-known healer among the Mazateco Indians of the Sierra de Huautla de Jiménez in Oaxaca and throughout Mexico. After her death, she was recognized as a symbolic character of the Mexican healers. She used mushrooms (e.g., Psilocybe zapotecorum and Psilocybe mexicana) and hallucinogenic plants (e.g., Salvia divinorum) to obtain divine powers both to diagnose and to restore the health of the patient. In the case of gastrointestinal diseases, all recommendations are preventive/curative and are accompanied by psychospiritual rituals of protection, reintegration, and cleanliness of the soul. She is known to have said, “The health services provided by healers and Western medicine should not be lucrative,” [48, 49].

3.2 Plants used in indigenous communities for the treatment of gastrointestinal disorders

Medicinal plants are essential natural resources in the indigenous communities of Oaxaca, Mexico; they are easily accessible and there is a high diversity of species and forms of use for the treatment of diseases of the digestive tract. The region has the greatest level of diversity and endemism of species of phytotherapeutic use [50]. Based on a bibliographical compilation and field notes of visits to the indigenous communities of Oaxaca, a short list of medicinal plants used for gastrointestinal disorders was obtained (Table 1A). The compilation consists of 71 botanical families, among which the greatest number of species is in the families Asteraceae (29), Fabaceae (15), Euphorbiaceae (9), Solanaceae (9), Lamiaceae (9), Verbenaceae (6), Myrtaceae (5), Malvaceae (5), and Fagaceae (5). These families included 147 genera and 186 endemic species [50]. The genera used most frequently were Croton (5), Quercus (4), Piper (4), Psidium (3), Ocimum (3), and Tagetes (3). The medicinal species introduced to Mexico were excluded from this list, despite being widely used by Oaxacan indigenous groups.

Among indigenous communities, plants are grouped according to gastrointestinal physiological alterations, among which the most common refer to diarrhea (112 plants), stomach pain (90 plants), and dysentery (79 plants). Acute diarrhea is a symptom of gastrointestinal tract infection, which is commonly caused by pathogenic bacteria (e.g., Escherichia coli, Salmonella spp., Vibrio cholerae, Clostridium perfringens, Bacillus cereus, Staphylococcus aureus, Vibrio parahaemolyticus, Campylobacter jejuni, Campylobacter coli, Shigella spp., and Aeromonas spp.), viruses (rotavirus, adenovirus, enterovirus, and norovirus), or parasites (Giardia lamblia and Entamoeba histolytica) and is frequently accompanied by abdominal pain, stomach pain, fever, and vomiting [51]. For the treatment of vomiting, constipation and parasites, between 28 and 31 plant species are used. For the condition known locally as “empacho” (gastrointestinal disease) as well as for indigestion, ulcers and gastritis, between 17 and 39 species are utilized (Table 1A). It is important to note that we refer to the local descriptions of symptoms and the disease names that are used by Oaxacan indigenous communities.

The indigenous knowledge of medicinal plants includes the different phases of use, correct identification of the species (although they do not have systematic botanical studies), wild or cultivated origin, collection time (morning, noon, afternoon, or night), plant part to be used, and processing required for use. Each of these elements affects the effectiveness of the plant [8, 17, 51]. The leaves, stems and flowers are the most used parts, and the bark, roots and seeds are used less often (Table 1A). The form of use or extraction preparation ranges from infusion and cooking in water, maceration in ethyl alcohol (Dorstenia drakena L. and Barkleyanthus salicifolius (Kunth) H. Rob. & Brettell) or cane alcohol (Saccharum officinarum L.) and consumed as tea (oral), or as a topical application between the stomach and intestines. Additionally, the fresh crushed leaves or leaves macerated in ethyl alcohol can be ingested or applied topically (rubbed onto the affected part). Plants for treating dysentery are used as purgatives or for treating constipation as rectal washes and include Eryngium foetidum L., Capraria biflora L., Prosopis laevigata, and Solanum rostratum Dunal (Table 1A).

Bark is often cooked or used as an infusion in hot or cold water; it is a common treatment for diarrhea, dysentery and related symptoms. The bark of Semialarium mexicanum (Miers) Mennega, Hymenaea courbaril L., Quercus oleoides, Hintonia latiflora, and Guaiacum coulteri is used to treat ulcers or gastritis, and the bark of Amphipterygium adstringens is used to treat stomach cancer. The roots of some plants have shown to be beneficial to treat diarrhea, stomach pain, and intestinal infection. In addition, the use of fruits and seeds to treat diarrhea, dysentery, constipation, and “empacho” is mentioned. For example, the fruits and seeds of the chili pepper (Capsicum annuum L.) are used for the treatment of dyspepsia (inflammation of the digestive tract), diarrhea, and dysentery. An infusion of guava leaves and roots (Psidium spp.) is used to treat diarrhea, dysentery, stomach pain, flatulence, and vomiting. The peel of the fruits of Curatella americana L. and Persea americana Mill. and the stigmas of the corn flower (Zea mays L.) are made into an infusion to treat stomachaches. The seeds of Carica papaya L. are used to treat diarrhea, vomiting, fever, intestinal inflammation, and parasites (Table 1A).

“Empacho” is a digestive ethnodisease recognized by traditional Mexican people. This disorder primarily occurs in children and does not correspond to a specific clinical diagnosis, but is culturally recognized in all Mexican rural communities. Empacho is characterized by discomfort caused by the intake of food that is difficult to unfold, and the healer or mother of the child indicates that food is “stuck” to the stomach or intestine. Symptoms include abdominal pain, lack of appetite, diarrhea, flatulence, and vomiting. The treatment includes the use of ash- or salt-containing oral plant infusions, purgatives, and massages [52]. Some traditional treatments recommend infusions made from the bark and/or leaves of Guazuma ulmifolia Lam. complemented with spoonful of castor oil and massages (sobadas) that “release the empacho” [53].

Another ethnodisease associated with gastrointestinal disorders is “bile or bile leakage.” The healer and adults report “pounding” (vibrations) from an area near the stomach, which is accompanied by pain in the esophagus. Symptoms include loss of appetite, headache, feeling of “bitterness” in the mouth upon waking up, and fatigue. Pseudognaphalium attenuatum DC., Agastache mexicana spp. Xolocotziana, Hintonia latiflora, Loeselia mexicana, Tecoma stans, Zornia thymifolia, Anoda cristata, Oenothera rosea, Verbena litoralis, and Calea ternifolia var. Ternifolia are used to treat bile (Table 1A). For gastrointestinal intestinal disorders in children, Psidium guajava, Byrsonima crassifolia, and Quercus spp. are used [53]. Mixe communities use fruit and bark infusions of G. ulmifolia to treat diarrhea and hemorrhages [14], whereas Cestrum nocturnum is used among the Zapotecas from the southern highlands and the Chinantecos of Oaxaca [53, 54].

Several studies have shown the importance of flavonoids, tannins, terpenoids, and alkaloids present in medicinal plants used for the treatment of gastrointestinal diseases. Other mechanisms of action include antispasmodic activity, delaying of intestinal transit, suppression of intestinal motility, stimulation of the adsorption of water, and a reduction in the secretion of electrolytes [20]. The compounds most frequently reported are terpenoids (monoterpenes, sesquiterpenes, di-, and triterpenes), flavonoids (flavones, flavonols), tannins (condensed and hydrolysable), and volatile compounds, which are derived from the essential oils in aromatic plants.

Root extracts of Tagetes erecta have shown to have high efficacy against Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis, and Micrococcus luteus), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and fungi (Candida albicans and Aspergillus niger). Flowers of T. erecta have been shown to contain thiophene derivatives, terpenoids, alkaloids, flavonoids, and carotenoids [55]. Similarly, methanol extracts of Tagetes lucida yielded coumarins with high antimicrobial activity against Gram-positive and Gram-negative bacterial strains, with greater inhibition of V. cholerae as well as antifungal activity. The antifungal activity of T. lucida results from the presence of dimethoxy: 6,7-dimethoxy-4-methylcoumarin and scoparone (6,7-dimethoxycoumarin) [56] and is effective against Helicobacter pylori [57]. In traditional Oaxacan medicine, the anthelminthic effects of Chenopodium ambrosioides (epazote) along with the epimastigotes of Trypanosoma cruzi have demonstrated efficacy against Entamoeba histolytica infections due to the effect of limonene [58].

Advertisement

4. Antipathogenic efficacy of medicinal plants

A natural question about the use of medicinal plants for treating gastrointestinal disorders is: how effective are the uses of plants in controlling or preventing infections by pathogenic agents? Several in vitro studies have been conducted that aimed to evaluate the biological activity of plant extracts against enteropathogenic bacteria (Escherichia coli, Shigella sonnei, Shigella flexneri, Salmonella, and Campylobacter) and parasites (Giardia lamblia and Entamoeba histolytica) responsible for diarrhea, dysentery and/or gastric disorders [59, 60, 61]. Several chemical compounds (alkaloids, tannins, flavonoids, and terpenes) responsible for the pharmacological effects of these plants have been identified and isolated [62, 63]. Examples of biological activity of native plants of Oaxaca, Mexico, used for the prevention and control of gastrointestinal disorders are listed in Table 3.

Plant speciesGastro-intestinal disorders (parts1)Chemical compoundsAntimicrobial activityReferences
Ambrosia artemisiifolia L.Stomachache and intestinal parasites (All)Isabelin (germacranolide sesquiterpene dilactone)S. aureus
C. albicans
[64]
Artemisia ludoviciana NuttChronic active gastritis and peptic ulcer (St, L)Camphor, 1,8-cineole and camphene, sesquiterpene lactones, and flavonoidsV. cholerae
H. pylori
A. castellanii,
L. infantum
T. vaginalis
[57, 65, 66, 67]
Geranium mexicanum KunthDiarrhea, dysentery, and stomachache (R, St, L)(−)-EpicatechinS. flexneri
S. sonnei,
E. histolytica
G. lamblia
[59, 60, 61]
Ocimum basilicumDiarrhea, dysentery, stomachache and vomit (St, L)Linalool, epi-α-cadinol, α-bergamotene, and γ-cadineneV. cholerae
S. aureus and
B. subtilis
[62, 65]
Lantana achyranthifolia Desf.Gastro-intestinal disease (AP)Carvacrol, isocaryophyllene, α-bisabolol, bisabolene, and 1,8-cineoleV. cholerae,
S. boydii,
Y. enterocolitica
F. moniliforme
[8, 68]
Chiranthodendron pentadactylonAntimicrobial and antidiarrheal activities (F)Epicatechin and tilirosideS. flexneri
S. sonnei
E. histolytica
G. lamblia
E. coli
Salmonella spp.
V. cholerae.
[60, 69]
Anoda cristataStomachache (L)Acacetin and diosmetinH. pylori[63, 70]
Bocconia frutescensDiarrhea, dysentery stomachache ulcers (L)E. coli and S. aureus.[63]
Lippia graveolens H.B.K.Diarrhea, dysentery, indigestion (AP)Carvacrol, α-terpinyl acetate, m-cymene, and thymolR. solani
E. coli
P. aeruginosa
S. aureus
[68, 71]
Guaiacum coulteri A. GrayChronic active gastritis and peptic ulcer (OB)AlkaloidsHelicobacter pylori[57]

Table 3.

Antimicrobial activity of native medicinal plants of Oaxaca, Mexico.

All, all parts; AP, aerial parts; L, leaf; St, stem; and OB, outer bark.


The experiences in the communities of Oaxaca indicate that the roots and aerial parts of Geranium mexicanum Kunth and the flowers of Chiranthodendron pentadactylon are effective to treat diarrhea, dysentery, and stomach pain (Table 3). The methanolic or aqueous extracts of these plants showed high antibacterial activity against Shigella flexneri and Shigella sonnei at minimum inhibitory concentrations of 8 mg/mL. Both extracts can be considered an alternative strategy to treat enteric pathogens resistant to common drugs [60]. In biological experiments using mice, it was demonstrated that the molecule (−)-epicatechin, which is isolated from Geranium mexicanum, has high antiprotozoal activity (Giardia lamblia) in concentrations of 0.072 μmol/kg, which is the dose required to kill 50% of microorganisms [59].

Calzada et al. [69], found that (−)-epicatechin and tiliroside, isolated from extracts of C. pentadactylon flowers, were effective against E. histolytica, G. lamblia, E. coli, S. sonnei, S. flexneri, Salmonella sp., and Vibrio cholerae. In another work, Calzada et al. [11] determined that root extracts of G. mexicanum had a greater hyperperistaltic effect than the extracts of Lygodium venustum, Chenopodium ambrosoides, and C. pentadactylon, which was similar to the effect of the drug loperamide, which is used to control acute and constant diarrhea associated with intestinal inflammation. In experiments with mice, the methanolic extracts of G. mexicanum, Bocconia frutescens, and C. pentadactylon in a concentration of 300 mg/kg of body weight had high inhibitory or intestinal antisecretory activity against V. cholerae. The activity of these extracts exceeds the effect of the drug loperamide [72]. A similar effect was determined with extracts of C. pentadactylon flowers [73]. B. frutescens also showed inhibitory activity against S. aureus and E. coli [60]. These results show that G. mexicanum, C. pentadactylon, and B. frutescens have medicinal properties and are effective for the treatment of diarrhea, among other gastrointestinal problems (Table 3).

The methanolic extracts Ocimum basilicum and Artemisia ludoviciana have inhibitory effects against V. cholerae, and the minimum bactericidal concentration varies from 0.5 to 3.0 mg/mL. The extracts have a degradative effect on the cellular membranes of V. cholerae, which increases membrane permeability, decreases cytoplasmic pH, hyperpolarizes the membrane, decreases the cellular ATP concentration, and consequently causes cell death [65]. This result indicates a chemical modification of the growth medium and induction of the death of the pathogen. For example, Hussain et al. [62] reported that basil contains essential oils (linalool, epi-α-cadinol, α-bergamotene, and γ-cadinene) that exert antimicrobial activity against S. aureus and B. subtilis. Similarly, the essential oil of A. ludoviciana contains camphor, 1,8-cineole, and camphene, which were effective against Acanthamoeba castellanii, Leishmania infantum, and Trichomonas vaginalis [66].

Aqueous extracts of A. ludoviciana ssp. Mexicana and methanolic extracts of Guaiacum coulteri showed high growth inhibitory activity against Helicobacter pylori at minimum inhibitory concentrations of 125 and < 15.6 μg/mL, respectively [57]. H. pylori is the etiological agent of chronic active gastritis and peptic ulcer and is related to gastric carcinoma. It was also shown that A. ludoviciana has activity against Campylobacter jejuni and C. coli at minimum bactericidal concentrations of 0.5 mg/mL [74]. Ruiz-Cancino et al. [67] determined that the sesquiterpene lactones (douglanin, ludovicin A, 1α, 3α-dihydroxyarbusculin B, santamarin, arglanin, artemorin, chrysartemin B, armefolin, ridentin, eudesmanolide 3α-hydroxyreynosin, etc.) and flavonoids (eupatilin and jaceosidin) of A. ludoviciana spp. mexicana are the molecules responsible for the inhibitory properties against the nuclear transcription factor kappa B, NF-κB [14]. NF-κB is involved in critical mechanisms related to the development of cancer. The signaling cascades of NF-κB may be the main malignant gastrointestinal mediators that favor esophageal, gastric, and colon cancer [75].

The essential oils of Lantana achyranthifolia consist of monoterpenes and sesquiterpenes (carvacrol, isocaryophyllene, α-bisabolol, α-bisabolene, and 1,8-cineole), have antibacterial activities against Gram-positive and Gram-negative bacteria, V. cholerae, Shigella boydii, and Yersinia enterocolitica [76]. The antibacterial activity results from the compounds carvacrol, 1,8-cineole and linalool [77]. The essential oils of L. achyranthifolia and Lippia graveolens have antifungal activity [68] and contain carvacrol, α-terpinyl acetate, β-caryophyllene, geranyl acetate, terpinyl acetate, bornyl acetate, and limonene [77, 78]. More research is required on other medicinal species with similar potential.

The extracts of Cnidoscolus aconitifolius, Crotalaria pumila, and Anoda cristata (Table 3) inhibit bacterial growth. The flavonoids acacetin and diosmetin from A. cristata have been shown to inhibit up to 90% of H. pylori growth. These data suggest that, through the use of nutraceutical food plants, H. pylori infections can be prevented [70]. Ambrosia artemisiifolia L. is used to treat stomach pain and contains isabelin, a germacranolide sesquiterpene dilactone with antimicrobial activity against S. aureus and Candida albicans [64].

Advertisement

5. Remarks

Medicinal plants continue to play an indispensable role in the daily life of rural and urban communities. However, their use is controversial, and they are often only used in teas or hot drinks; they are not associated with healing properties. Through interactions with the indigenous communities of Oaxaca, Mexico, it was found that all households use the inherited knowledge of medicinal plants. In the regions furthest from the urban centers where the hospitals are located, medicinal plants are part of the survival strategy.

In the communities of Oaxaca and other regions of Mexico, healers (the generic name for traditional practitioners) are called “yerberos” (herbalists) because they only use plants. The consultation or intervention of the healers occurs when the symptoms of the disease or ethnodisease continue after the patient takes the “remedies” (teas, crushed, chewed, potions, etc.), which are prepared by the adults of the family. We define ethnodisease as a disorder that has no somatic symptoms, description of organic or metabolic dysfunction, or association with clinical symptomatology. Thus, “empacho” is often associated with indigestion, but has a broader sociocultural description than a gastroenterological disorder.

Based on our field notes and previous documentation of the indigenous communities in Oaxaca, Mexico, as well as our bibliography, a brief list of medicinal plants used for gastrointestinal disorders was compiled. This list comprises 71 botanical families, among which the most speciose were Asteraceae (29), Fabaceae (15), Euphorbiaceae (9), Solanaceae (9), Lamiaceae (9), Verbenaceae (6), Myrtaceae (5), Malvaceae (5), and Fagaceae (5). The families included 147 genera and 186 endemic species. The most frequently used genera were Croton (5), Quercus (4), Piper (4), Psidium (3), Ocimum (3), and Tagetes (3) (Table 1A). The medicinal species introduced to Mexico were excluded from this list, despite being widely used by Oaxacan indigenous groups.

The use of antibiotics for infectious gastrointestinal diseases is unconscionable among the users of pharmacological medicine and has generated collateral damage, including antibiotic resistance of pathogenic microorganisms. Cases of antibiotic resistance are increasingly frequent, and thus, medicinal plants will fill an important niche once their antibacterial, antiprotozoal, antisecretory, spasmolytic, and anti-inflammatory protective effects are demonstrated. In addition to these benefits, antiradical and antioxidant activity effective against gastroenterological disorders have been shown after the frequent consumption of teas. Advances have been made in the knowledge of antipathogenic effects of medicinal plants and their association with specific compounds. However, not all plants used by the indigenous groups of Mexico and Latin America are being studied and documented.

Advertisement

Acknowledgments

The authors are grateful for the financial support provided by the Instituto Politecnico Nacional (project nos. 1922 and 20181030).

Advertisement

Family/ species1Gastrointestinal disorders (used parts2)Bioactive compoundsReferences
Acanthaceae
Justicia spicigera Schltdl.Stomachache, diarrhea, dysentery, nausea, cramps (L, St, F)Phenolics, flavonoids, lignans[14, 17, 51, 53, 79, 80, 81]
Amaranthaceae
Dysphania ambrosioides (L.)Diarrhea, vomiting, stomach pain and inflammation, parasites (AP, L)Terpenoids, flavonoids[4, 11, 53, 54, 60, 82, 83, 84, 85]
Dysphania graveolens (Willd.) Mosyakin & ClemantsStomach pain, diarrhea, parasites, dysentery, indigestion, empacho, vomiting (AP)Terpenoids, flavonoids[17, 53, 57, 86]
Anacardiaceae
Amphipterygium adstringens (Schltdl.) Standl.Ulcers, stomach cancer, gastritis, stomach pain, intestinal infection, and inflammation (Se, St, Bark)Triterpenes, phenolic, lipids[41, 53, 57, 87, 88]
Spondias mombin L.Diarrhea, stomach pain, dysentery, empacho (OB)Phenols, flavonoids, saponins[53, 89, 90, 91]
Spondias purpurea L.Diarrhea in children (OB, R)Phenols, flavonoids, tannins, phenolic acid derivatives, terpenoids[14, 17, 41, 92, 93]
Annonaceae
Annona glabra L.Dysentery, diarrhea (R, L, Sh)Flavonoids, diterpenoids[53, 94, 95]
A. reticulata L.Diarrhea, stomach pain, intestinal pain (bark, L, Sh)Acetogenins, terpenoids, alkaloids, phenols[14, 53, 92, 96, 97, 98, 99, 100]
Apiaceae
Donnellsmithia juncea (Spreng.) Mathias & ConstanceDiarrhea, vomiting (All)[53]
Eryngium foetidum L.Diarrhea, dysentery, stomach pain (L)Tannins, saponins, terpenoids, flavonoids, phenols, eryngial[53, 54, 92, 101, 102, 103]
Apocynaceae
Plumeria rubra L.Intestinal parasites, diarrhea, purgative (Steam latex)Terpenoids, iridoids, phenols, flavonoids[53, 104, 105]
Thevetia ahouai (L.) A. DC.Ulcers, purgative (All)Cardenolide glycosides[53, 106]
Araceae
Anthurium schlechtendalii Kunth ssp. JimeneziiDiarrhea (All)[92]
A. schlechtendalii Kunth ssp. SchlechtendaliiDiarrhea (All)[92]
Aristolochiaceae
Aristolochia leuconeura LindenDiarrhea, colics (All)[84]
Asclepiadaceae
Asclepias curassavica L.Intestinal parasites, purgative (AP)Cardenolides, glycosides, protease[14, 92, 107]
Asteraceae
Ageratum conyzoides L.Stomach pain (All)Terpenoids, flavonoids, benzofuranes, and coumarins[92, 108, 109]
Ambrosia artemisiifolia L.Stomach pain, intestinal parasites (L)Terpenoids, sterols[53]
Artemisia ludoviciana ssp. mexicana Nutt.Stomach pain, vomiting, dysentery, colic, parasites, indigestion, diarrhea, flatulence (L, St)Sesquiterpene lactones, flavonoids[4, 5, 6, 10, 11, 14, 53, 57, 60, 67, 72, 84]
Baccharis conferta KunthDiarrhea, vomiting, indigestion, colic, and stomach pain (All)Flavonoids, terpenoids[10, 41, 43, 53, 110]
B. salicifolia (Ruiz & Pav.) Pers.Stomach infection, stomach pain; diarrhea, dysentery (All)Flavonoids, terpenoids[5, 9, 13, 53]
Barkleyanthus salicifolius (Kunth) H. Rob. & BrettellVomiting, diarrhea, fever (St, L)Terpenoids, alkaloids, flavonoids[9, 53, 111]
Bidens pilosa L.Diarrhea, vomiting, stomach pain, and inflammation, ulcers (F, L, B)Terpenoids[53, 112]
Calea ternifolia Kunth var. ternifoliaStomach pain, diarrhea, indigestion, malaria, bilis (L)Terpenoids[10, 53, 113]
C. urticifolia (Miller) DC.Dysentery, diarrhea, malaria, stomach pain, heartburn (All)Terpenoids[14, 17, 53, 92, 113]
Chaptalia nutans L. PollakDysentery, intestinal parasites (R, L, St)7-O-beta-D-glucopyranosyl-nutanocoumarin[17, 41, 53, 114]
Chrysactinia mexicana A. GrayDiarrhea, dysentery, colic (AP)Terpenoids[11, 53, 60, 115, 116, 117]
Dyssodia papposa (Vent.) Hitchc.Diarrhea, stomach pain, vomiting (All)[53]
Heterotheca inuloides CassGastritis, ulcers (AP)Terpenoids, flavonoids, phenolics, steroids[53, 57, 118, 119, 120]
Koanophyllon albicaule (Sch. Bip. ex Klatt) R.M. King & H. Rob.Diarrhea (L)Sterols, flavonoids, tannins[53]
Melampodium divaricatum (Rich.) DCDysentery, vomiting, nausea (All)Terpenoids, coumarins, glycoside derivatives[53, 121]
Mikania houstoniana (L.) B.L. Rob.Stomach pain (St)[53]
Parthenium hysterophorus L.Stomach pain, fever, empacho, malaria, parasites (All)Resin, alkaloids[53]
Pinaropappus roseus (Less.) Less.Constipation (L, R, F)[53]
Piqueria trinervia Cav.Intestinal infections, diarrhea, typhoid, empacho, stomach pain, purgative, parasites, malaria (F, L, R)Terpenoids[53, 122]
Pluchea odorata (L.) Cass.Vomiting, stomach pain (L)Flavonoids, terpenoids[41, 53, 123]
Porophyllum macrocephalum DC.Laxative (R, L)Terpenoids, sulfur compounds[10, 53]
Pseudognaphalium attenuatum DC.Stomach pain, gastritis, bilis (AP)[53, 92]
Sanvitalia procumbens Lam.Diarrhea, dysentery, indigestion, vomiting, stomach pain (All)Terpenoids[53]
Tagetes erecta L.Stomach pain, empacho, diarrhea, colic, vomiting, indigestion, parasites (L, F)Thiophene derivative, terpenoids, flavonoids, carotenoids[53, 54, 124, 125, 126]
T. filifolia Lag.Stomach pain, flatulence (All)Terpenoids[41, 53, 127]
T. lucida Cav.Stomach pain, colic, diarrhea, dysentery, empacho, typhoid, vomiting (L, F)Coumarins, terpenoids, flavonoids[53, 56, 57, 92, 124]
Tithonia diversifolia (Hemsl.) A. GrayVomiting, stomach pain, diarrhea, malaria (L)Terpenoids, flavonoids, phenols[5, 10, 57, 84, 128]
Vernonanthura patens (Kunth) H. Rob.Dysentery (L, Sh, B)Terpenoids[53, 129, 130]
Zinnia peruviana L.Diarrhea, stomach pain (All)[53, 131]
Bignoniaceae
Dolichandra uncata (Andrews) L.G. LohmannIntestinal inflammation, fever (L, B9[53]
Parmentiera aculeata (Kunth) Seem.Dysentery, empacho (Bark, Fr)Flavonoids, sterols, tannins[7, 41, 53, 132]
Tabebuia rosea (Bertol.) A. DC.Dysentery, fever, stomach inflammation (Bark)[41, 43, 53]
Tecoma stans (L.) Juss ex KunthStomach pain, dysentery, bilis, gastritis, poor digestion, empacho, intestinal atony (L, St, B, OB)Alkaloids, terpenoids, flavonoids, phenolic acids[6, 22, 41, 53, 133, 134]
Brassicaceae
Nasturtium officinale R. Br.Indigestion (All)[53]
Burseraceae
Bursera microphylla A. GrayStomach pain (B, gum)Lignans, terpenoids, flavonoids[53, 135]
Bursera simaruba L. Sarg.Dysentery, stomach pain, diarrhea, intestinal infection, purgative (OB)Tannins, flavonoids, saponins[41, 53, 135]
Caricaceae
Carica papaya L.Diarrhea, dysentery, colic, intestinal parasites, constipation (Fr, L, Se, Latex)Papain[6, 11, 53, 72, 92]
Celastraceae
Semialarium mexicanum (Miers) MennegaUlcers, stomach pain, colic, diarrhea, dysentery (R)Terpenoids[11, 53, 60]
Chrysobalanaceae
Chrysobalanus icaco L.Diarrhea, dysentery (Se, Fr)[53]
Convolvulaceae
Ipomoea bracteata Cav.Diarrhea (T)[53, 54]
Ipomoea pes-caprae (L.)Dysentery (L)Aromatic compounds[41, 53]
Cruciferae
Lepidium virginicum L.Diarrhea, dysentery, stomach pain, flatulence, colic, vomiting, indigestion, empacho, purgative, intestinal parasites (All)[53]
Cucurbitaceae
Cucurbita pepo L.Intestinal parasites (Se)Steroids, alkaloids, flavonoids, terpenoids, glycosides, pyrrolidine, sterols[53]
Sechium edule (Jacq.) Sw.Intestinal parasites, vomiting, constipation (L)[6, 92]
Dilleniaceae
Curatella americana L.Stomach pain, diarrhea (Fr, L)Flavonoids, terpenoids[41, 53]
Eduphorbiaceae
Phyllanthus niruri L.Diarrhea, stomach pain (All)[53]
Ericaceae
Arctostaphylos pungens KunthDiarrhea, stomach pain, empacho (L, Fr)Pyrocatechin, resin, and tannins[53]
Euphorbiaceae
Acalypha alopecuroidea Jacq.Diarrhea, ulcers (All)Flavonoids, polyphenols, saponins, tannins[53]
Croton ciliatoglandulifer OrtegaEmpacho, intestinal inflammation, purgative (All)Isoquinoline derivatives[53]
C. draco Schltdl. & Cham.Diarrhea, vomiting, stomach pain, empacho (OB)[41, 53, 96]
C. glandulosus L.Stomach painTerpenoids, alkaloids[92]
C. repens Schlecht.Diarrhea, dysentery (R)[53, 92]
C. soliman Cham. & Schltdl.Intestinal inflammation, parasites (R)[53]
Euphorbia tithymaloides L.Intestinal parasites, purgative, gastritis (Latex)Alkaloids, steroids, sterols, terpenoids[53, 92]
Hura polyandra Baill.Stomach pain, constipation, intestinal parasites, purgative (Se)[10, 53, 92, 96]
Jatropha curcas L.Diarrhea, vomiting, constipation (R)[53, 136]
Fabaceae
Chamaecrista hispidula (Vahl) H.S. Irwin & Barneby[84]
Crotalaria longirostrata Hook. & Arn.Indigestion (L, B)[41, 53]
Desmodium incanum DC.Diarrhea, stomach pain (L)[53]
Diphysa carthagenensis Jacq.Diarrhea, dysentery (OB)[53]
Enterolobium cyclocarpum (Jacq.) Griseb.Diarrhea, purgative, indigestion (Fr, gum, bark)Terpenoids[53]
Gliricidia sepium (Jacq.) Kunth ex Walp.Empacho, parasites (L, St)Flavonoids[41, 53, 96]
Hymenaea courbaril L.Dysentery, diarrhea, ulcers (OB, L)Tannins flavonoids, terpenoids[41, 53, 92]
Leucaena diversifolia (Schltdl.) Benth.Parasites (All)[53]
Machaerium floribundum Benth.Diarrhea (All)[43, 53, 92]
Mimosa albida Humb. & Bonpl. Ex Willd.Diarrhea, dysentery (B)[41, 53]
Pithecellobium dulce (Roxb.) Benth.Diarrhea, stomach pain, dysentery, constipation, indigestion (OB)Flavonoids, glucoside derivatives, sterols, terpenoids[53]
Prosopis juliflora (Sw.) DC.Stomach pain, dysentery, indigestion, purgative, parasites (L)Alkaloids, terpenoids, flavonoids[53]
P. laevigata (Humb. & Bonpl. ex Willd.) M.C. Johnst.Colic, intestinal inflammation, dysentery, stomach pain (OB)[53]
Senna skinneri (Benth.) H.S. Irwin & BarnebyDysentery, empacho, fever (L)[53]
Vachellia farnesiana (L.) Wight & Arn.Empacho, dysentery, dyspepsia, diarrhea, typhoid (All)Sterols, alkaloids, flavonoids, phenols[53]
Zornia thymifolia KunthStomach pain, bilis, ulcer (St, L)[53, 92, 96]
Fabaceae
Quercus crassipes Bonpl.Diarrhea (OB)[53]
Q. glaucescens Bonpl.Diarrhea (OB)Tannins[92]
Q. oleoides Schltdl. & Cham.Diarrhea, gastritis, empacho (OB)Tannins[17, 53, 92]
Q. sapotifolia Liebm.Diarrhea (OB)Tannins[92]
Geraniaceae
Geranium mexicanum KunthDiarrhea, dysentery, stomach pain (R, AP)Sterols, flavonoids, tyramine[11, 53, 60, 61, 72]
Gesneriaceae
Sinningia incarnata (Aubl.) D.L. DenhamDiarrhea, dysentery (T)[14, 92]
Heliconiaceae
Heliotropium indicum L.[84]
Krameriaceae
Krameria paucifolia (Rose) RoseDiarrhea (AP)[137]
Lamiaceae
Agastache mexicana Bye, E.L. Linares and Ramam.Colic, stomach pain, bilis (F, L, St)Terpenoids, oleic acid, flavonoids[138, 139]
A. mexicana ssp. MexicanaColic, stomach pain, intestinal pain, empacho, indigestion (L)Terpenoids, flavonoids[138, 140, 141, 142]
Clinopodium macrostemum var. laevigatum (Moc. & Sessé ex Benth.) KuntzeStomach pain, dysentery, hangover (L, F)Terpenoids[14, 53, 143]
Ocimum basilicum L.Diarrhea, dysentery, stomach pain, vomiting, empacho (AP)[9, 11, 41, 43, 53, 57, 60, 72, 140, 144]
O. campechianum Mill.Intestinal inflammation, ulcers, gastritis, fever, dysentery, empacho, vomiting, stomach pain vermifuge (L, B)Terpenoids[53, 54, 145, 146]
O. carnosum (Spreng.) Link & Otto ex BenthStomach pain, flatulence, diarrhea, dysentery, abdominal pain and intestinal parasites (L)Phenols, terpenoids[53]
Salvia hispanica L.Diarrhea (Se)Unsaturated fatty acids, flavonoids[53, 147, 148]
S. microphylla KunthDiarrhea, dysentery, empacho, infection and inflammation of the stomach, vomiting (B)Terpenoids, alkaloids, tannins[53, 146]
Vitex mollis KunthColic, intestinal inflammation, diarrhea, dysentery, stomach pain (L, Sh)[53]
Lauraceae
Litsea glaucescens KunthStomach pain, empacho, children’s diarrhea, indigestion (L)Terpenoids[53, 54, 149, 150]
Persea americana Mill.Stomach pain, parasites, diarrhea, dysentery, constipation, flatulence, vomiting (Fr, L)Terpenoids[41, 57, 92, 151, 152, 153]
Liliaceae
Milla biflora Cav.Vomiting, stomach pain, nausea, diarrhea (F)[53]
Loganiaceae
Buddleja americana L.Stomach pain, stomach infection, ulcers (L)Lignans, flavonoids, alkaloids, tannins[14, 53, 92]
Lygodiaceae
Lygodium venustum Sw.Diarrhea, dysentery, nausea (AP)[11, 53, 60, 72]
Lythraceae
Cuphea hyssopifolia KunthStomach pain (All)[53]
Magnoliaceae
Chiranthodendron pentadactylon LarreatDiarrhea, dysentery, colic (F)Flavonoids, steroids, phenols[11, 53, 60, 72, 133, 144]
Magnolia mexicana DC.Stomach pain, parasites (F)[6, 53]
Magnolia schiedeana Schltdl.Stomach pain (F)[6]
Malpighiaceae
Byrsonima crassifolia (L.) KunthDiarrhea, dysentery, empacho, stomach pain, indigestion, constipation (OB)Tannins, proanthocyanidines, phenolic acids, terpenoids[4, 6, 10, 41, 53, 84, 92]
Malpighia mexicana A. Juss.Empacho, diarrhea, dysentery (OB)[53]
Malvaceae
Anoda cristata (L.) Schltdl.Stomach pain, empacho, intestinal inflammation, bilis (AP, R)[53]
Malvaviscus arboreus Cav.Dysentery, diarrhea, stomach pain (AP)Flavonoids, sterols, tannins[14, 17, 53, 92, 96]
Pavonia schiedeana Steud.Empacho, diarrhea (L, St)Sterols, tannins[53]
Sida acuta Burm. f.Diarrhea, dysentery, empacho (L)[53]
Sida rhombifolia L.Stomach pain, gastritis, ulcers, diarrhea, dysentery (B)Alkaloids[41, 53, 146]
Melastomataceae
Conostegia xalapensis (Bonpl.) D. DonDiarrhea (L)[41, 53]
Meliaceae
Swietenia humilis L.Empacho, stomach pain, diarrhea, fever, amoebic dysentery (Se, OB)[41, 53]
Swietenia macrophylla G. KingDiarrhea, fever (Se)[53]
Menispermaceae
Cissampelos pareira L.Dysentery, diarrhea, snake bite (L, St, R)Alkaloids, sterols[14, 17, 53, 54, 92]
Molluginaceae
Mollugo verticillata L.Intestinal inflammation, dysentery, diarrhea, empacho, colic, and stomach pain (B, L)[41, 53]
Moraceae
Dorstenia drakena L.Diarrhea, dysentery, stomach pain (R)[6, 53, 137]
Ficus cotinifolia KunthMalaria, ulcers (L, latex)[53]
Muntingiaceae
Muntingia calabura L.Diarrhea, stomach pain, empacho, vomiting, dysentery, intestinal infection (OB)Flavonoids[53, 96]
Myrtaceae
Eugenia acapulcensis Steud.Diarrhea, dysentery (L, OB)Tannins[14, 17, 92]
E. capuli (Schltdl. & Cham.) Hook. & ArnDiarrhea, dysentery (B)[53]
Psidium guajava L.Diarrhea, stomach pain, dysentery (All)Sterols, terpenoids, flavonoids, tannins[4, 6, 14, 43, 53, 54, 84, 92]
P. guineense Sw.Diarrhea, dysentery, flatulence, vomiting (L, Fr, R)[53, 92]
P. salutare (Kunth) O. BergDiarrhea (Fr, L, R)[4, 6, 84]
Nyctaginaceae
Boerhavia coccinea MillPurgative (L)[53]
Mirabilis jalapa L.Stomach pain, purgative (All)Terpenoids, sterols, flavonoids, alkaloids[53, 57]
Oleaceae
Fraxinus uhdei (Wenz.) Lingelsh.Diarrhea, infection intestinal, purgante (All)[53]
Onagraceae
Oenothera rosea L’Hér. exStomach pain, inflammation or infection, colic, diarrhea, bilis, empacho, constipation (AP)[53]
Papaveraceae
Argemone mexicana L.Purgative (Se)Alkaloids, flavonoids y glycosides[53]
Bocconia frutescens LDiarrhea, dysentery, stomach pain, ulcers (AP)[11, 53, 60, 72]
Passifloraceae
Passiflora exsudans Zucc.Dysentery (R)[53]
Phytolaccaceae
Petiveria alliacea L.Stomach pain, dyspepsia, susto (R)Alkaloids, sterols[53]
Pinaceae
Pinus oocarpa Schiede ex Schltdl.Dysentery (L)[53]
Piperaceae
Piper aduncum L.Diarrhea (All)[53]
P. auritum KunthStomach pain, lack of appetite and constipation (L)Terpenoids[53, 54, 84, 96]
P. sanctum (Miq.) Schltdl. ex C. DC.Stomach pain, diarrhea (L)Aromatic compounds[53, 54, 154]
Piper schiedeanum SteudelEmpacho (All)[53]
Plantaginaceae
Scoparia dulcis L.Diarrhea, colic, stomach pain, dysentery (AP)Flavonoid, glucosides, terpenoids[53, 92]
Poaceae
Lasiacis ruscifolia (Kunth) Hitchc.Diarrhea (All)[53, 54]
Zea mays L.Diarrhea, stomach pain, constipation, dysentery, vomiting (cob, tassel)Polysaccharides[6, 17, 41, 53, 92]
Polemoniaceae
Loeselia mexicana (Lam.) BrandBilis, dysentery, stomach pain or inflammation, indigestion, typhoid, vomiting, laxative (AP)[14, 21, 41, 53, 92]
Polygalaceae
Polygala longicaulis KunthStomach pain (All)[53]
P. variabilis KunthAbdominal pain (All)[92]
Portulacaceae
Portulaca oleracea L.Intestinal infection, constipation, parasites (All)Tannins, alkaloids, steroids[53, 155]
Primulaceae
Myrsine juergensenii (Mez) Ricketson & PipolyStomach pain (All)[53]
Rhamnaceae
Karwinskia humboldtiana (Schult.) Zucc.Dysentery (L)[53]
Rhizophoraceae
Rhizophora mangle L.Dysentery, diarrhea (R, OB)Phenolics, tannins[53]
Rubiaceae
Galium mexicanum KunthStomach pain, empacho, diarrhea (All)[53]
Hintonia latiflora (Sessé & Moc. ex DC.) BullockBilis, gastric ulcer, empacho, parasites, malaria, gastroenteritis (OB)Phenylcoumarins, cucurbitacins, glucocucurbitacins[53, 156]
Randia echinocarpa Sessé & Moc. ex DC.Diarrhea, malaria (All)[53]
Sapindaceae
Serjania triquetra Radlk.[53, 84]
Sapotaceae
Pouteria sapota (Jacq.) H.E. Moore & StearnDiarrhea, empacho, stomach pain (All)Phenolics, carotenoids, δ-tocopherol[41, 53, 96, 157]
Scrophulariaceae
Capraria biflora L.Dysentery, inflammation of the stomach, gastroenteritis, intestinal fever (L)Alkaloids, terpenoids, naphthoquinone[53, 158, 159]
Russelia sarmentosa Jacq.Stomach pain (L)[14, 53, 92]
Selaginellaceae
Selaginella pallescens (Presl) SpringDiarrhea (All)[53, 54]
Smilacaceae
Smilax laurifolia L.Diarrhea (All)Taninos ausentes, 1B[92]
Solanaceae
Calibrachoa parviflora (A. Juss.) D’ArcyFlatulence (All)[53]
Capsicum annuum L.Dyspepsia, diarrhea, dysentery (Fr, S)Alkaloids, capsaicinoids, carotenoids, tocopherols, sapogenins, phenolic acids[53, 160]
Cestrum dumetorum Schltdl.Intestinal inflammation (All)Sterols, tannins[53]
C. nocturnum L.Stomach pain (L, St, F)Sapogenins, coumarins, sitosterols, flavonoids[41, 43, 53, 54, 161]
Physalis coztomatl Moc. & Sessé ex DunalDiarrhea with blood from amoebic infection or other parasites, diarrhea, stomach pain, dysentery (R, B)Alkaloids, glycosides[53]
P. lagascea R. & S.Stomach pain (L)[53]
Solanum rostratum DunalPurgative, stomach pain, diarrhea (L, F)[53]
S. amictum Moric. ex Dunal.Stomach pain (L)[53]
S. torvum Sw.Diarrhea, dolor de estómago (All)Sapogenins, alkaloids[53]
Sterculiaceae
Guazuma ulmifolia Lam.Diarrhea, intestinal infection, dysentery, empacho (All)Procyanidins, Tannins[6, 10, 14, 41, 53, 92]
Melochia pyramidata L.Purgative (AP)[53]
Waltheria indica L.Diarrhea, dysentery, empacho, fever (All)Flavonoids, esters, alkaloids[53]
Verbenaceae
Lantana achyranthifolia Desf.Diarrhea, dysentery, empacho (All)Terpenoids, flavonoids, and phenylpropanoids[8, 16, 53, 68]
L. camara L.Stomach pain or inflammation, intestinal pain, parasites, vomiting (L, St)Terpenoids, flavonoids, phenols[53, 162, 163, 164]
Lippia alba (Mill.) N.E. Br. ex Britton & P. WilsonDiarrhea, dysentery, stomach pain, colic, indigestion (AP)Terpenoids[4, 11, 53, 60, 61, 72, 92, 133, 146]
L. graveolens KunthDiarrhea, dysentery, empacho, indigestion (AP)Terpenoids, flavonoids[53, 165, 166]
Stachytarpheta jamaicensis (L.) VahlStomach pain, intestinal inflammation (L)[53, 92]
Verbena litoralis KunthStomach pain, bilis, vomiting, malaria (L)[53, 146]
Zygophyllaceae
Guaiacum coulteri A. GrayUlcers (OB)Alkaloids[41, 53, 57]

Table 1A.

List of plants used by the indigenous groups of Oaxaca for the treatment of gastrointestinal disorders.

Checklist of native vascular plants of Mexico [50].


L, leaves; St, stem; F, flower; AP, aerial parts; Se, seeds; R, root; All, whole plant; Sh, shoots; B, branches; Fr, Fruit; T, tuber; OB, outer bark.


References

  1. 1. UNAM. Biblioteca Digital de la Medicina Tradicional Mexicana [Internet]. 2009. Available from: http://www.medicinatradicionalmexicana.unam.mx/index.php [Accessed: 2018-09-27]
  2. 2. Hernández C, Aguilera MG, Castro G. Situación de las enfermedades gastrointestinales en México. Enfermedades Infecciosas y Microbiología. 2011;31(4):137-151 http://www.medigraphic.com/pdfs/micro/ei-2011/ei114f.pdf
  3. 3. Secretaria de Salud. Informe sobre la Salud de los Mexicanos 2015: Diagnóstico general de la salud poblacional. [Internet]. 2015. Available from: https://www.gob.mx/cms/uploads/attachment/file/64176/INFORME_LA_SALUD_DE_LOS_MEXICANOS_2015_S.pdf [Accessed: 2018-09-27]
  4. 4. Heinrich M, Ankli A, Frei B, Weimann C, Sticher O. Medicinal plants in Mexico: Healers’ consensus and cultural importance. Social Science & Medicine. 1998;47(11):1859-1871. DOI: 10.1016/S0277-9536(98)00181-6
  5. 5. Heinrich M, Robles M, West JE, Ortiz-de-Montellano BR, Rodriguez E. Ethnopharmacology of Mexican Asteraceae (Compositae). Annual Review of Pharmacology and Toxicology. 1998;38:539-565. DOI: 10.1146/annurev.pharmtox.38.1.539
  6. 6. Frei B, Sticher O, Viesca C, Heinrich M. Medicinal and food plants: Isthmus sierra Zapotec criteria for selection. Angewandte Botanik. 1998;72:82-86 http://discovery.ucl.ac.uk/1381118/1/Heinrich_Applied%20Botany_Frei_1998.pdf
  7. 7. Ankli A, Heinrich M, Bork P, Wolfram L, Bauerfeind P, Brun R, et al. Yucatec Mayan medicinal plants: Evaluation based on indigenous uses. Journal of Ethnopharmacology. 2002;79(1):43-52. DOI: 10.1016/S0378-8741(01)00355-5
  8. 8. Hernández T, Canalez M, Caballero J, Durán A, Lira R. Análisis cuantitativo del conocimiento tradicional sobre plantas utilizadas para el tratamiento de enfermedades gastrointestinales en Zapotitlán de Las Salinas, Puebla, México. Interciencia. 2005;30(9):529-535 http://www.redalyc.org/articulo.oa?id=33910803
  9. 9. Valdés-Cobos A. Conservación y uso de plantas medicinales: El caso de la región de la Mixteca Alta Oaxaqueña, México. Ambiente y Desarrollo. 2013;17(33):87-97 http://revistas.javeriana.edu.co/index.php/ambienteydesarrollo/article/view/7044
  10. 10. Heinrich M. Ethnobotany and natural products: The research for new molecules, new treatments of old diseases or a better understanding of indigenous cultures? Current Topics in Medicinal Chemistry. 2003;3(2):29-42. DOI: 10.2174/1568026033392570
  11. 11. Calzada F, Arísta R, Pérez H. Effect of plants used in Mexico to treat gastrointestinal disorders on charcoal-gum acacia-induced hyperperistalsis in rats. Journal of Ethnopharmacology. 2010;128(1):49-51. DOI: 10.1016/j.jep.2009.12.022
  12. 12. Juárez-Vázquez MC, Carranza-Álvarez C, Alonso-Castro AJ, González-Alcaraz VF, Bravo-Acevedo E, Chamarro-Tinajero FJ, et al. Ethnobotany of medicinal plants used in Xalpatlahuac, Guerrero, México. Journal of Ethnopharmacology. 2013;148(2):521-527. DOI: 10.1016/j.jep.2013.04.048
  13. 13. Loayza I, Abujder D, Aranda R, Jakupovic J, Collin G, Deslauriers H, et al. Essential oils of Baccharis salicifolia, B. latifolia and B. dracunculifolia. Phytochemistry. 1995;38(2):381-389. DOI: 10.1016/0031-9422(94)00628-7
  14. 14. Bork PM, Scmitz LL, Kuhtnt M, Escher C, Heinrich M. Sesquiterpene lactone containing Mexican Indian medicinal plants and pure sesquiterpene lactones as potent inhibitors of transcription facto NF-kB. FEBS Letters. 1997;402(1):85-90. DOI: 10.1016/S0014-5793(96)01502-5
  15. 15. Savithramma N, Rao ML, Ankanna S. Screening of traditional medicinal plants for secondary metabolites. International Journal of Research in Pharmaceutical Sciences. 2011;2(4):643-647 https://www.researchgate.net/profile/S_Ankanna/publication/267690135_Screening_of_Medicinal_Plants_for_Secondary_Metabolites/links/55ed339808aeb6516268d1e2/Screening-of-Medicinal-Plants-for-Secondary-Metabolites.pdf
  16. 16. Sousa EO, Costa JGM. Genus lantana: Chemical aspects and biological activities. Brazilian Journal of Pharmacognosy. 2012;22(5):1155-1180. DOI: 10.1590/S0102-695X2012005000058
  17. 17. Heinrich M, Kuhnt M, Wright CW, Rimpler H, Phillipson JD, Schandelmaier A, et al. Parasitological and microbiological evaluation of Mixe indian medicinal plantas (Mexico). Journal of Ethnopharmacology. 1992;36(1):81-85. DOI: 10.1016/0378-8741(92)90063-W
  18. 18. Calzada F. Additional antiprotozoal constituents from Cuphea pinetorum, a planta used in Mayan traditional medicine to treat diarrhea. Phytotherapy Research. 2005;19(8):725-727. DOI: 10.1002/ptr.1717
  19. 19. Atta AH, Mouneir SM. Evaluation of some medicinal plant extracts for anitidiarrhoeal activity. Phytoterapy Research. 2005;19(6):481-485. DOI: 10.1002/ptr.1639
  20. 20. Palombo EA. Phytochemicals from traditional medicinal plants used in the treatment of diarrhea: Modes of action and effects on intestinal function. Phytotherapy Research. 2006;20(9):717-724. DOI: 10.1002/ptr.1907
  21. 21. Navarro-García VM, Rojas G, Zepeda LG, Aviles M, Fuentes M, Herrera A, et al. Antifungal and antibacterial activity of four selected Mexican medicinal plants. Pharmaceutical Biology. 2006;44(4):297-300. DOI: 10.1080/13880200600715837
  22. 22. Robles-Zepeda RE, Velázquez-Contreras CA, Garibay-Escobar A, Gálvez-Ruiz JC, Ruiz-Bustos E. Antimicrobial activity of northwestern Mexican plants against Helicobacter pylori. Journal of Medicinal Food. 2011;14(10):1280-1283. DOI: 10.1089/jmf.2010.0263
  23. 23. Cushnie TP, Lamb AJ. Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents. 2011;38(2):99-107. DOI: 10.1016/j.ijantimicag.2011.02.014
  24. 24. Arrieta-Baez D, de Esparza RR, Jiménez-Estrada M. Mexican plants used in the salmonellosis treatment. In: Kumar Y, editor. Salmonella—A Diversified Superbug. Rijeka, Croatia: Intech; 2012. pp. 169-184. DOI: 10.5772/31291
  25. 25. Ramírez-Moreno E, Soto-Sanchez J, Rivera G, Marchat LA. Mexican medicinal plants as an alternative for the development of new compounds against protozoan parasites. In: Khater H, Govindarajan M, Benelli G, editors. Natural Remedies in the Fight against Parasites. Rijeka, Croatia: Intech; 2017. pp. 62-91. DOI: 10.5772/67259
  26. 26. Instituto Nacional de Estadística, Geografía e Informática (INEGI). Resultados de Encuesta Intercensal 2015. Instituto Nacional de Estadística, Geografía e Informática, Aguascalientes, México. [Internet]. 2015. Available from: http://www.beta.inegi.org.mx/proyectos/enchogares/especiales/intercensal/?init=1 [Accessed: 2018-09-27]
  27. 27. García-Vargas LA. Radiografía demográfica de la población indígena en Oaxaca. Oaxaca Población Siglo XXI. 2018;41:7-20 http://www.digepo.oaxaca.gob.mx/recursos/revistas/revista42.pdf
  28. 28. Instituto Nacional de Lenguas Indígenas (INALI). Catálogo de las lenguas indígenas nacionales. Variantes lingüísticas de México con sus autodenominaciones y referencias geoestadísticas. México DF: INALI; 2010. 371 p. Available from: https://site.inali.gob.mx/pdf/catalogo_lenguas_indigenas.pdf [Accessed: 2018-09-27]
  29. 29. Grupos H-DJ, de Oaxaca I. Situación sociodemográfica. Oaxaca, México: Universidad Autónoma Benito Juárez de Oaxaca; 2005. 139 p
  30. 30. Toledo VM, Alarcón-Chaires P, Moguel P, Olivo M, Cabrera A, Leyequien E, et al. El atlas etnoecológico de México y Centroamérica: Fundamentos, métodos y resultados. Etnoecología. 2001;6(8):7-41 https://ccp.ucr.ac.cr/bvp/pdf/cambiodemografico/atlas_etnologico.pdf
  31. 31. Arellanes A, de la Cruz V, Romero MA, Sánchez C, Ruiz FJ, Martínez VR, et al. Historia y Geografía de Oaxaca. Carteles: Oaxaca, México; 2006. 207 p
  32. 32. Heinrich M. Herbal and symbolic medicines of the lowland Mixe (Oaxaca, Mexico). Disease concepts, healer’s roles, and plant use. Anthropos. 1994;89:73-83 https://www.jstor.org/stable/40463843
  33. 33. Pérez-Nicolas M, Vibrans H, Romero-Manzanares A, Saynes-Vásquez A, Luna-Cavazos M, Flores-Cruz M, et al. Patterns of knowledge and use of medicinal plants in Santiago Camotlán, Oaxaca, Mexico. Economic Botany. 2017;71(3):209-223. DOI: 10.1007/s12231-017-9384-0
  34. 34. Rubel AJ, Browner CH. Antropología de la salud en Oaxaca. Alteridades. 1999;9(17):85-94 http://alteridades.izt.uam.mx/index.php/Alte/article/view/461/460
  35. 35. Ugent D. Medicine, myths and magic the folk healers of a Mexican market. Economic Botany. 2000;54(4):427-438. DOI: 10.1007/BF02866542
  36. 36. Berenzon-Gorn S, Hernández-Hernández J, Saavedra-Solano N. Percepciones y creencias en torno a la salud-enfermedad mental, narradas por curanderos urbanos de la ciudad de México. Gazeta de Antropologia. 2001;17:21 http://digibug.ugr.es/handle/10481/7481
  37. 37. Berenzon-Gorn S, Ito-Sugiyama E, Vargas-Guadarrama LA. Enfermedades y padeceres por los que se recurre a terapeutas tradicionales de la Ciudad de México. Salud Pública de México. 2006;48(1):45-56 http://saludpublica.mx/index.php/spm/article/view/6670/8292
  38. 38. Lámbarri-Rodríguez A, Flores-Palacios F, Berezon-Gorn S. Curanderos, malestar y daños: una interpretación social. Salud Mental. 2012;35(2):123-128 http://revistasaludmental.mx/index.php/salud_mental/article/view/1464/1462
  39. 39. Giovannini P, Reyes-García V, Waldstein A, Heinrich M. Do pharmaceuticals displace local knowledge and use of medicinal plants? Estimates from a cross-sectional study in a rural indigenous community, Mexico. Social Science & Medicine. 2011;72(6):928-936. DOI: 10.1016/j.socscimed.2011.01.007
  40. 40. Instituto Nacional de Salud Pública (INSP). Encuesta Nacional de Salud y Nutrición 2012. Resultados Nacionales. 2nd ed. Cuernavaca, México: Instituto Nacional de Salud Pública. 2013. 190 p. Available from: https://ensanut.insp.mx/informes/ENSANUT2012ResultadosNacionales2Ed.pdf Accessed: 2018-09-27
  41. 41. Luna-José AL, Rendón-Aguilar B. Recursos vegetales útiles en diez comunidades de la Sierra Madre del Sur, Oaxaca, Mexico. Polibotánica. 2008;26:193-242 http://www.scielo.org.mx/pdf/polib/n26/n26a11.pdf
  42. 42. Salas-Morales SH, Saynes-Vásquez A, Schibli L. Flora de la costa de Oaxaca, México: Lista florística de la región de Zimatán. Boletín de la Sociedad Botánica de México. 2003;72:21-58 http://www.redalyc.org/pdf/577/57707202.pdf
  43. 43. Aguilar-Stoen M, Moe SR, Camargo-Ricalde SL. Home gardens sustain crop diversity and improve farm resilience in Candelaria Loxicha, Oaxaca, Mexico. Human Ecology. 2009;37(1):55-77. DOI: 10.1007/s10745-008-9197-y
  44. 44. Pool A. Taxonomic revision of Gouania (Rhamnaceae) for North America. Annals of the Missouri Botanical Garden. 2014;99(3):490-552. DOI: 10.3417/2013016
  45. 45. Meave JA, Rincón-Gutiérrez A, Ibarra-Maríquez G, Gallardo-Hernández C, Romero-Romero MA. Checklist of the vascular flora of a portion of the hyper-humid region of La Chinantla, Northern Oaxaca range, Mexico. Botanical Sciences. 2017;95(4):722-759. DOI: 10.17129/botsci.1812
  46. 46. Zacharias S. Mexican Curanderismo as ethnopsychotherapy: A qualitative study on treatment practices, effectiveness, and mechanisms of change. International Journal of Disability, Development and Education. 2006;53(4):381-400. DOI: 10.1080/10349120601008522
  47. 47. Montiel-Tafur M, Crowe TK, Torres E. A review of curanderismo and healing practices among Mexicans and Mexican Americans. Occupational Therapy International. 2009;16(1):82-88. DOI: 10.1002/oti.265
  48. 48. Ciofalo N. Indigenous women’s ways of knowing and healing in Mexico. Women & Therapy. 2018;41(1-2):52-68. DOI: 10.1080/02703149.2017.1323478
  49. 49. Maqueda AE. The use of Salvia divinorum from a Mazatec perspective. In: Labate BC, Cavnar C, editors. Plant Medicines, Healing and Psychedelic Science. Cham, Switzerland: Springer International Publishing AG; 2018. pp. 55-70. DOI: 10.1007/978-3-319-76720-8_4
  50. 50. Villaseñor JL. Checklist of the native vascular plants of Mexico. Revista Mexicana de Biodiversidad. 2016;87(3):559-902. DOI: 10.1016/j.rmb.2016.06.017
  51. 51. Sepúlveda-Jiménez G, Reyna-Aquino C, Chaires-Martinez L, Bermúdez-Torres K, Rodríguez-Monroy M. Antioxidant activity and content of phenolic compounds and flavonoids from Justicia spicigera. Journal of Biological Sciences. 2009;9(6):629-632. DOI: 10.3923/jbs.2009.629.632
  52. 52. UNAM. Diccionario enciclopédico de la medicina tradicional mexicana. [Internet]. 2009. Biblioteca Digital de la Medicina Tradicional Mexicana. Available from: http://www.medicinatradicionalmexicana.unam.mx/alfa.php?opcion=D&p=a [Accessed: 2018-09-27]
  53. 53. Argueta A, Gallardo VM, editors. Atlas de las plantas de la medicina tradicional mexicana. 1st ed. México: Instituto Nacional Indigenista; 1994. 1786 p
  54. 54. Lipp FJ. Ethnobotany of the Chinantec indians, Oaxaca, Mexico. Economic Botany. 1971;25:234-244. DOI: 10.1007/BF02860760
  55. 55. Li W, Gao Y, Zhao J, Wang Q. Phenolic, flavonoid, and lutein ester content and antioxidant activity of 11 cultivars of Chinese marigold. Journal of Agricultural and Food Chemistry. 2007;55(21):8478-8484. DOI: 10.1021/jf071696j
  56. 56. Céspedes CL, Avila JG, Martínez A, Serrato B, Calderón-Mugica JC, Salgado-Garciglia R. Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). Journal of Agricultural and Food Chemistry. 2006;54(10):3521-3527. DOI: 10.1021/jf053071w
  57. 57. Castillo-Juárez I, González V, Jaime-Aguilar H, Martínez G, Linares E, Bye R, et al. Anti-Helicobacter pylori activity of plants used in Mexican traditional medicine for gastrointestinal disorders. Journal of Ethnopharmacology. 2009;122(2):402-405. DOI: 10.1016/j.jep.2008.12.021
  58. 58. Kiuchi F, Itano Y, Uchiyama N, Honda G, Tsubouchi A, Nakajima-Shimada J, et al. Monoterpene hydroperoxides with trypanocidal activity from Chenopodium ambrosioides. Journal of Natural Products. 2002;65(4):509-512. DOI: 10.1021/np010445g
  59. 59. Barbosa E, Calzada F, Campos R. In vivo antigiardial activity of three flavonoids isolated of some medicinal plants used in Mexican traditional medicine for the treatment of diarrhea. Journal of Ethnopharmacology. 2007;109(3):552-554. DOI: 10.1016/j.jep.2006.09.009
  60. 60. Alanis AD, Calzada F, Cervantes JA, Torres J, Ceballos GM. Antibacterial properties of some plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. Journal of Ethnopharmacology. 2005;100(1-2):153-157. DOI: 10.1016/j.jep.2005.02.022
  61. 61. Calzada F, Cervantes-Martínez JA, Yépez-Mulia L. In vitro antiprotozoal activity from the roots of Geranium mexicanum and its constituents on Entamoeba histolytica and Giardia lamblia. Journal of Ethnopharmacology. 2005;98(1-2):191-193. DOI: 10.1016/j.jep.2005.01.019
  62. 62. Hussain AI, Anwar F, Sherazi STH, Przybylski R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chemistry. 2008;108(3):986-995
  63. 63. Sánchez-Arreola E, Hernández-Molina LR, Sánchez-Salas JL, Martínez-Espino G. Alkaloids from Bocconia frutescens and biological activity of their extracts. Pharmaceutical Biology. 2006;44(7):540-543. DOI: 10.1080/13880200600883106
  64. 64. Molinaro F, Tyc O, Beekwilder J, Cankar K, Bertea CM, Negre M, et al. The effect of isabelin, a sesquiterpene lactone from Ambrosia artemisiifolia on soil microorganisms and human pathogens. FEMS Microbiology Letters. 2018;365(4):fny001. DOI: 10.1093/femsle/fny001
  65. 65. Sánchez E, García S, Heredia N. Extracts of edible and medicinal plants damage membranes of Vibrio cholerae. Applied and Environmental Microbiology. 2010;76(20):6888-6894. DOI: 10.1128/AEM.03052-09
  66. 66. Baldemir A, Karaman Ü, Ilgun S, Kacmaz G, Demirci B. Antiparasitic efficacy of Artemisia ludoviciana Nutt. (Asteraceae) essential oil for Acanthamoeba castellanii, Leishmania infantum and Trichomonas vaginalis. Indian Journal of Pharmaceutical Education and Research. 2018;52(3):416-425. DOI: 10.5530/ijper.52.3.48
  67. 67. Ruiz-Cancino A, Cano AE, Delgado G. Sesquiterpene lactones and flavonoids from Artemisia ludoviciana ssp. mexicana. Phytochemistry. 1993;33(5):1113-1115. DOI: 10.1016/0031-9422(93)85032-M
  68. 68. Hernández T, Canales M, García AM, Duran Á, Meráz S, Dávila P, et al. Antifungal activity of the essential oils of two verbenaceae: Lantana achyranthifolia and Lippia graveolens of Zapotitlán de las Salinas, Puebla (México). Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas. 2008;7(4):202-206 https://www.blacpma.usach.cl/sites/blacpma/files/007-004.pdf
  69. 69. Calzada F, Juárez T, García-Hernández N, Valdes M, Ávila O, Mulia LY, et al. Antiprotozoal, antibacterial and antidiarrheal properties from the flowers of Chiranthodendron pentadactylon and isolated flavonoids. Pharmacognosy Magazine. 2017;13(50):240-244 http://www.phcog.com/text.asp?2017/13/50/240/204564
  70. 70. Gomez-Chang E, Uribe-Estanislao GV, Martinez-Martinez M, Gálvez-Mariscal A, Romero I. Anti-Helicobacter pylori potential of three edible plants known as Quelites in Mexico. Journal of Medicinal Food. 2018. DOI: 10.1089/jmf.2017.0137
  71. 71. Arana-Sánchez A, Estarrón-Espinosa M, Obledo-Vázquez EN, Padilla-Camberos E, Silva-Vázquez R, Lugo-Cervantes E. Antimicrobial and antioxidant activities of Mexican oregano essential oils (Lippia graveolens HBK) with different composition when microencapsulated in β-cyclodextrin. Letters in Applied Microbiology. 2010;50(6):585-590. DOI: 10.1111/j.1472-765X.2010.02837.x
  72. 72. Velázquez C, Calzada F, Torres J, González F, Ceballos G. Antisecretory activity of plants used to treat gastrointestinal disorders in Mexico. Journal of Ethnopharmacology. 2006;103(1):66-70. DOI: 10.1016/j.jep.2005.06.046
  73. 73. Velázquez C, Calzada F, Esquivel B, Barbosa E, Calzada S. Antisecretory activity from the flowers of Chiranthodendron pentadactylon and its flavonoids on intestinal fluid accumulation induced by Vibrio cholerae toxin in rats. Journal of Ethnopharmacology. 2009;126(3):455-458. DOI: 10.1016/j.jep.2009.09.016
  74. 74. Castillo SL, Heredia N, Contreras JF, García S. Extracts of edible and medicinal plants in inhibition of growth, adherence, and cytotoxin production of Campylobacter jejuni and Campylobacter coli. Journal of Food Science. 2011;76(6):M421-M426. DOI: 10.1111/j.1750-3841.2011.02229.x
  75. 75. Gambhir S, Vyas D, Hollis M, Aekka A, Vyas A. Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies. World Journal of Gastroenterology. 2015;21(11):3174-3183. DOI: 10.3748/wjg.v21.i11.3174
  76. 76. Hernández T, Canales M, Avila JG, García AM, Martínez A, Caballero J, et al. Composition and antibacterial activity of essential oil of Lantana achyranthifolia Desf. (Verbenaceae). Journal of Ethnopharmacology. 2005;96(3):551-554. DOI: 10.1016/j.jep.2004.09.044
  77. 77. Cimanga K, Apers S, de Bruyne T, Van Miert S, Hermans N, Totté J, et al. Chemical composition and antifungal activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. Journal of Essential Oil Research. 2002;14(5):382-387. DOI: 10.1080/10412905.2002.9699894
  78. 78. Deena MJ, Thoppil JE. Antimicrobial activity of the essential oil of Lantana camara. Fitoterapia. 2000;71(4):453-455. DOI: 10.1016/S0367-326X(00)00140-4
  79. 79. Euler KL, Alam M. Isolation of kaempferitrin from Justicia spicigera. Journal of Natural Products. 1982;45(2):220-221. DOI: 10.1021/np50020a020
  80. 80. Vega-Avila E, Espejo-Serna A, Alarcón-Aguilar F, Velasco-Lezama R. Cytotoxic activity of four Mexican medicinal plants. Proceedings of the Western Pharmacology Society. 2009;52:78-82
  81. 81. Corrêa GM, Alcântara AF. Chemical constituents and biological activities of species of Justicia: A review. Revista Brasileira de Farmacognosia. 2012;22(1):220-238. DOI: 10.1590/S0102-695X2011005000196
  82. 82. Kliks MM. Studies on the traditional herbal anthelmintic Chenopodium ambrosioides L.: Ethnopharmacological evaluation and clinical field trials. Social Science & Medicine. 1985;21(8):879-886. DOI: 10.1016/0277-9536(85)90144-3
  83. 83. Ávila-Blanco ME, Rodríguez MG, Moreno-Duque JL, Muñoz-Ortega M, Ventura-Juárez J. Amoebicidal activity of essential oil of Dysphania ambrosioides (L.) Mosyakin & Clemants in an amoebic liver abscess hamster model. Evidence-based Complementary and Alternative Medicine. 2014:1-7. DOI: 10.1155/2014/930208
  84. 84. Geck MS, Réyes-García AJ, Casu L, Leonti M. Acculturation and ethnomedicine: A regional comparison of medicinal plant knowledge among the Zoque of southern Mexico. Journal of Ethnopharmacology. 2016;187:146-159. DOI: 10.1016/j.jep.2016.04.036
  85. 85. Barros L, Pereira E, Calhelha RC, Dueñas M, Carvalho AM, Santos-Buelga C, et al. Bioactivity and chemical characterization in hydrophilic and lipophilic compounds of Chenopodium ambrosioides L. Journal of Functional Foods. 2013;5(4):1732-1740. DOI: 10.1016/j.jff.2013.07.019
  86. 86. Álvarez-Ospina H, Rivero Cruz I, Duarte G, Bye R, Mata R. HPLC determination of the major active flavonoids and GC–MS analysis of volatile components of Dysphania graveolens (Amaranthaceae). Phytochemical Analysis. 2013;24(3):248-254. DOI: 10.1002/pca.2405
  87. 87. Oviedo-Chávez I, Ramírez-Apan T, Soto-Hernández M, Martínez-Vázquez M. Principles of the bark of Amphipterygium adstringens (Julianaceae) with anti-inflammatory activity. Phytomedicine. 2004;11(5):436-445. DOI: 10.1016/j.phymed.2003.05.003
  88. 88. Rivero-Cruz I, Acevedo L, Guerrero JA, Martínez S, Bye R, Pereda-Miranda R, et al. Antimycobacterial agents from selected Mexican medicinal plants. The Journal of Pharmacy and Pharmacology. 2005;57(9):1117-1126. DOI: 10.1211/jpp.57.9.0007
  89. 89. Igwe CU, Onyeze GO, Onwuliri VA, Osuagwu CG, Ojiako AO. Evaluation of the chemical compositions of the leaf of Spondias mombin Linn from Nigeria. Australian Journal of Basic and Applied Sciences. 2010;4(5):706-710. http://www.ajbasweb.com/old/ajbas/2010/706-710.pdf
  90. 90. Alves-Brito S, Ferreira de Almeida CL, Italo de Santana T, Da Silva AR, Bezerra do Nascimento JC, Torres-Souza I, et al. Antiulcer activity and potential mechanism of action of the leaves of Spondias mombin L. Oxidative Medicine and Cellular Longevity. 2018:1-20. DOI: 10.1155/2018/1731459
  91. 91. Cristofoli NL, Lima CA, Vieira MM, Andrade KS, Ferreira SR. Antioxidant and antimicrobial potential of cajazeira leaves (Spondias mombin) extracts. Separation Science and Technology. 2018;12:1-1. DOI: 10.1080/01496395.2018.1508233
  92. 92. Heinrich M, Rimpler H, Barrera NA. Indigenous phytotherapy of gastrointestinal disorders in a lowland Mixe community (Oaxaca, Mexico): Ethnopharmacologic evaluation. Journal of Ethnopharmacology. 1992;36:63-80. DOI: 10.1016/0378-8741(92)90062-V
  93. 93. Sameh S, Al-Sayed E, Labib RM, Singab AN. Genus Spondias: A phytochemical and pharmacological review. Evidence-based Complementary and Alternative Medicine. 2018:1-13. DOI: 10.1155/2018/5382904
  94. 94. Galvão SDL, Monteiro AD, Siqueira EP, Bomfim MR, Dias-Souza MV, Ferreira GF, et al. Annona glabra flavonoids act as antimicrobials by binding to Pseudomonas aeruginosa cell walls. Frontiers in Microbiology. 2016;21(7):1-9. DOI: 10.3389/fmicb.2016.02053
  95. 95. Nhiem NX, Hien NT, Tai BH, Anh HL, Hang DT, Quang TH, et al. New ent-kauranes from the fruits of Annona glabra and their inhibitory nitric oxide production in LPS-stimulated RAW264. 7 macrophages. Bioorganic & Medicinal Chemistry Letters. 2015;25(2):254-258. DOI: 10.1016/j.bmcl.2014.11.059
  96. 96. Abe F, Nagafuji S, Yamauchi T, Okabe H, Maki J, Higo H, et al. Trypanocidal constituents in plants. 1. Evaluation of some Mexican plants for their trypanocidal activity and active constituents in Guaco, roots of Aristolochia taliscana. Biological & Pharmaceutical Bulletin. 2002;25(9):1188-1191. DOI: 10.1248/bpb.25.1188
  97. 97. Chang FR, Wu YC, Duh CY, Wang SK. Studies on the acetogenins of Formosan annonaceous plants. II. Cytotoxic acetogenins from Annona reticulata. Journal of Natural Products. 1993;56:1688-1694. DOI: 10.1021/np50100a005
  98. 98. Chavan SS, Shamkuwar PB, Damale MG, Pawar DP. A comprehensive review on Annona reticulata. International Journal of Pharmaceutical Sciences and Research. 2014;5(1):45-50. DOI: 10.13040/IJPSR.0975-8232.5(1).45-50
  99. 99. Jamkhande PG, Wattamwar AS, Kankudte AD, Tidke PS, Kalaskar MG. Assessment of Annona reticulata Linn. leaves fractions for in vitro antioxidative effect and antimicrobial potential against standard human pathogenic strains. Alexandria Journal of Medicine. 2016;52:19-25. DOI: 10.1016/j.ajme.2014.12.007J
  100. 100. Quílez AM, Fernández-Arche MA, García-Giménez MD, De la Puerta R. Potential therapeutic applications of the genus Annona local and traditional uses and pharmacology. Journal of Ethnopharmacology. 2018;225:244-270. DOI: 10.1016/j.jep.2018.06.014
  101. 101. Paul JH, Seaforth CE, Tikasingh T. Eryngium foetidum L.: A review. Fitoterapia. 2011;82(3):302-308. DOI: 10.1016/j.fitote.2010.11.010
  102. 102. Rojas-Silva P, Graziose R, Vesely B, Poulev A, Mbeunkui F, Grace MH, et al. Leishmanicidal activity of a daucane sesquiterpene isolated from Eryngium foetidum. Pharmaceutical Biology. 2014;52(3):398-401. DOI: 10.3109/13880209.2013.837077
  103. 103. Forbes WM, Gallimore WA, Mansingh A, Reese PB, Robinson RD. Eryngial (trans-2-dodecenal), a bioactive compound from Eryngium foetidum: Its identification, chemical isolation, characterization and comparison with ivermectin in vitro. Parasitology. 2014;141(2):269-278. DOI: 10.1017/S003118201300156X
  104. 104. Hassan EM, Shahat AA, Ibrahim NA, Vlietinck AJ, Apers S, Pieters L. A new monoterpene alkaloid and other constituents of Plumeria acutifolia. Planta Medica. 2008;74(14):1749-1750. DOI: 10.1055/s-0028-1088317
  105. 105. Srivastava A, Gupta AK, Rajendiran A. Phytochemical screening and in-vitro anthelmintic activity of methanolic extract from the stem bark of Plumeria rubra Linn. International Journal of Pharmaceutical Sciences and Research. 2017;8(12):5336-5341. DOI: 10.13040/IJPSR.0975-8232.8(12).5336-41
  106. 106. Endo H, Warashina T, Noro T, Castro VH, Mora GA, Poveda LJ, et al. Cardenolide glycosides from Thevetia ahouai (LINN.) a. DC. Chemical & Pharmaceutical Bulletin. 1997;45(9):1536-1538. DOI: 10.1248/cpb.45.1536
  107. 107. Li JZ, Qing C, Chen CX, Hao XJ, Liu HY. Cytotoxicity of cardenolides and cardenolide glycosides from Asclepias curassavica. Bioorganic & Medicinal Chemistry Letters. 2009;19(7): 1956-1959. DOI: 10.1016/j.bmcl.2009.02.045
  108. 108. Shirwaikar A, Bhilegaonkar PM, Malini S, Kumar JS. The gastroprotective activity of the ethanol extract of Ageratum conyzoides. Journal of Ethnopharmacology. 2003;86(1):117-121. DOI: 10.1016/S0378-8741(03)00050-3
  109. 109. Kouame BF, Toure D, Kablan L, Bedi G, Tea I, Robins R, et al. Chemical constituents and antibacterial activity of essential oils from flowers and stems of Ageratum conyzoides from Ivory Coast. Records of Natural Products. 2018;(2):160-168. DOI: 10.25135/rnp.22.17.06.040
  110. 110. Weimann C, Göransson U, Pongprayoon-Claeson U, Claeson P, Bohlin L, Rimpler H, et al. Spasmolytic effects of Baccharis conferta and some of its constituents. The Journal of Pharmacy and Pharmacology. 2002;54(1):99-104. DOI: 10.1211/0022357021771797
  111. 111. Romo de Vivar A, Pérez-Castorena AL, Arciniegas A, Villaseñor JL. Secondary metabolites from Mexican species of the tribe Senecioneae (Asteraceae). Journal of the Mexican Chemical Society. 2007;51(3):160-172 http://www.scielo.org.mx/pdf/jmcs/v51n3/v51n3a7.pdf
  112. 112. Shen Y, Sun Z, Shi P, Wang G, Wu Y, Li S, et al. Anticancer effect of petroleum ether extract from Bidens pilosa L and its constituent's analysis by GC-MS. Journal of Ethnopharmacology. 2018;217:126-133. DOI: 10.1016/j.jep.2018.02.019
  113. 113. Lima TC, de Jesus Souza R, da Silva FA, Biavatti MW. The genus Calea L.: A review on traditional uses, phytochemistry, and biological activities. Phytotherapy Research. 2018;32(5):769-795. DOI: 10.1002/ptr.6010
  114. 114. Torrado-Truiti MD, Sarragiotto MH, Abreu-Filho BA, Vataru-Nakamura C, Dias-Filho BP. In vitro antibacterial activity of a 7-O-beta-D-glucopyranosyl-nutanocoumarin from Chaptalia nutans (Asteraceae). Memórias do Instituto Oswaldo Cruz. 2003;98(2):283-286. DOI: 10.1590/S0074-02762003000200020
  115. 115. Cárdenas-Ortega NC, Zavala-Sánchez MA, Aguirre-Rivera JR, Pérez-González C, Pérez-Gutiérrez S. Chemical composition and antifungal activity of essential oil of Chrysactinia mexicana Gray. Journal of Agricultural and Food Chemistry. 2005;53(11):4347-4349. DOI: 10.1021/jf040372h
  116. 116. Guerra-Boone L, Alvarez-Román R, Salazar-Aranda R, Torres-Cirio A, Rivas-Galindo VM, Waksman de Torres N, et al. Chemical compositions and antimicrobial and antioxidant activities of the essential oils from Magnolia grandiflora, Chrysactinia mexicana, and Schinus molle found in Northeast Mexico. Natural Product Communications. 2013;8(1):135-138
  117. 117. Zavala-Mendoza D, Grasa L, Zavala-Sánchez MÁ, Pérez-Gutiérrez S, Murillo MD. Antispasmodic effects and action mechanism of essential oil of Chrysactinia mexicana A. Gray on rabbit ileum. Molecules. 2016;21(6):783. DOI: 10.3390/molecules21060783
  118. 118. Sagrero-Nieves L, Bartley JP. Volatile components from the leaves of Heterotheca inuloides Cass. Flavour and Fragrance Journal. 1996;11(1):49-51. DOI: 10.1002/(SICI)1099-1026(199601)11:1<49::AID-FFJ538>3.0.CO;2-J
  119. 119. Egas V, Salazar-Cervantes G, Romero I, Méndez-Cuesta CA, Rodríguez-Chávez JL, Delgado G. Anti-Helicobacter pylori metabolites from Heterotheca inuloides (Mexican arnica). Fitoterapia. 2018;127:314-321. DOI: 10.1016/j.fitote.2018.03.001
  120. 120. García-Pérez JS, Cuéllar-Bermúdez SP, Arévalo-Gallegos A, Rodríguez-Rodríguez J, Iqbal H, Parra-Saldivar R. Identification of bioactivity, volatile and fatty acid profile in supercritical fluid extracts of Mexican arnica. International Journal of Molecular Sciences. 2016;17(9):1528. DOI: 10.3390/ijms17091528
  121. 121. Borges-Del-Castillo J, Martinez-Martir AI, Rodriguez-Luis F, Rodriguez-Ubis JC, Vazquez-Bueno P. Isolation and synthesis of two coumarins from Melampodium divaricatum. Phytochemistry. 1984;23(4):859-861. DOI: 10.1016/S0031-9422(00)85043-8
  122. 122. Rufino-González Y, Ponce-Macotela M, Jiménez-Estrada M, Jiménez-Fragoso CN, Palencia G, Sansón-Romero G, et al. Piqueria trinervia as a source of metabolites against Giardia intestinalis. Pharmaceutical Biology. 2017;55(1):1787-1791. DOI: 10.1080/13880209.2017.1325912
  123. 123. Wollenweber E, Mann K, Arriaga FJ, Yatskievych G. Flavonoids and terpenoids from the leaf resin of Pluchea odorata. Zeitschrift für Naturforschung. Section C. 1985;40:321-324. DOI: 10.1515/znc-1985-5-607
  124. 124. Vasudevan P, Kashyap S, Sharma S. Tagetes: A multipurpose plant. Bioresource Technology. 1997;62:29-35. DOI: 10.1016/S0960-8524(97)00101-6
  125. 125. Pérez-Gutiérrez RO, Hernández-Luna HE, Hernández-Garrido SE. Antioxidant activity of Tagetes erecta essential oil. Journal of the Chilean Chemical Society. 2006;51(2):883-886. DOI: 10.4067/S0717-97072006000200010
  126. 126. Xu LW, Juan CH, Qi HY, Sshi YP. Phytochemicals and their biological activities of plants in Tagetes L. Chinese Herbal Medicines. 2012;4(2):103-117. DOI: 10.3969/j.issn.1674-6384.2012.02.004
  127. 127. Camarillo G, Rodríguez C. Biological activity of Tagetes filifolia (Asteraceae) on Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Revista Colombiana de Entomologia. 2009;35(2):177-184 http://www.scielo.org.co/pdf/rcen/v35n2/v35n2a12.pdf
  128. 128. Tagne AM, Marino F, Cosentino M. Tithonia diversifolia (Hemsl.) A. Gray as a medicinal plant: A comprehensive review of its ethnopharmacology, phytochemistry, pharmacotoxicology and clinical relevance. Journal of Ethnopharmacology. 2018;220:94-116. DOI: 10.1016/j.jep.2018.03.025
  129. 129. Santana PI, Osorio MS, Sterner O, Garcìa EL. Phytochemical studies of fractions and compounds present in Vernonanthura patens with antifungal bioactivity and potential as antineoplastic. In: Rao V, editor. Phytochemicals—A Global Perspective of their Role in Nutrition and Health. InTech; 2012. pp. 503-518. DOI: 10.5772/28961
  130. 130. Manzano PI, Miranda M, Abreu-Payrol J, Silva M, Sterner O, Peralta EL. Pentacyclic triterpenoids with antimicrobial activity from the leaves of Vernonanthura patens (Asteraceae). Emirates Journal of Food and Agriculture. 2013;1:539-543. DOI: 10.9755/ejfa.v25i7.15989
  131. 131. Satorres SE, Chiaramello AI, Tonn CE, Laciar AL. Antibacterial activity of organic extracts from Zinnia peruviana (L.) against gram-positive and gram-negative bacteria. Emirates Journal of Food and Agriculture. 2012;24(4):344-347 https://www.ejfa.me/index.php/journal/article/view/894
  132. 132. Lim TK. Parmentiera aculeata. In: Edible Medicinal and Non-Medicinal Plants. Dordrecht: Springer; 2012. pp. 508-511. DOI: 10.1007/978-90-481-8661-7_67
  133. 133. Abad MJ, Bermejo P, Villar A, Sanchez Palomino S, Carrasco L. Antiviral activity of medicinal plant extracts. Phytotherapy Research. 1997;11(3):198-202. DOI: 10.1002/(SICI)1099-1573(199705)11:3<198::AID-PTR78>3.0.CO;2-L
  134. 134. Mohan SC, Anand T, Priya RM. Protective effect of Tecoma stans flowers on gentamicin-induced nephrotoxocity in rats. Asian Journal of Biochemistry. 2016;11(1):59-67. DOI: 10.3923/ajb.2016.59.67
  135. 135. Marcotullio M, Curini M, Becerra J. An ethnopharmacological, phytochemical and pharmacological review on lignans from Mexican Bursera spp. Molecules. 2018;23:1976. DOI: 10.3390/molecules23081976
  136. 136. Mujumdar AM, Misar AV. Anti-inflammatory activity of Jatropha curcas roots in mice and rats. Journal of Ethnopharmacology. 2004;90(1):11-15. DOI: 10.1016/j.jep.2003.09.019
  137. 137. Frei B, Heinrich M, Bork PM, Herrmann D, Jaki B, Kato T, et al. Multiple screening of medicinal plants from Oaxaca, Mexico: Ethnobotany and bioassays as a basis for phytochemical investigation. Phytomedicine. 1998;5(3):177-186. DOI: 10.1016/S0944-7113(98)80025-1
  138. 138. Estrada-Reyes R, Aguirre-Hernández E, García-Argáez A, Soto-Hernández M, Linares E, Bye R, et al. Comparative chemical composition of Agastache mexicana subsp. mexicana and A. mexicana subsp. xolocotziana. Biochemical Systematics and Ecology. 2004;32(7):685-694. DOI: 10.1016/j.bse.2004.01.005
  139. 139. Juárez ZN, Hernández LR, Bach H, Sánchez-Arreola E, Bach H. Antifungal activity of essential oils extracted from Agastache mexicana ssp. xolocotziana and Porophyllum linaria against post-harvest pathogens. Industrial Crops and Products. 2015;74:178-182. DOI: 10.1016/j.indcrop.2015.04.058
  140. 140. Méndez-Hernández A, Hernández-Hernández AA, López-Santiago MD, Morales-López J, editors. Herbolaria Oaxaqueña para la Salud. 1st ed. México; 2009. pp. 1-143
  141. 141. Hernández-Abreu O, Durán-Gómez L, Best-Brown R, Villalobos-Molina R, Rivera-Leyva J, Estrada-Soto S. Validated liquid chromatographic method and analysis of content of tilianin on several extracts obtained from Agastache mexicana and its correlation with vasorelaxant effect. Journal of Ethnopharmacology. 2011;138(2):487-491. DOI: 10.1016/j.jep.2011.09.041
  142. 142. Zielińska S, Matkowski A. Phytochemistry and bioactivity of aromatic and medicinal plants from the genus Agastache (Lamiaceae). Phytochemistry Reviews. 2014;13(2):391-416. DOI: 10.1007/s11101-014-9349-1
  143. 143. Villa-Ruano N, Pacheco-Hernández Y, Cruz-Durán R, Lozoya-Gloria E. Volatiles and seasonal variation of the essential oil composition from the leaves of Clinopodium macrostemum var. laevigatum and its biological activities. Industrial Crops and Products. 2015;77:741-747. DOI: 10.1016/j.indcrop.2015.09.050
  144. 144. Calzada F, Yépez-Mulia L, Aguilar A. In vitro susceptibility of Entamoeba histolytica and Giardia lamblia to plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. Journal of Ethnopharmacology. 2006;108(3):367-370. DOI: 10.1016/j.jep.2006.05.025
  145. 145. Caamal-Herrera IO, Muñoz-Rodríguez D, Madera-Santana T, Azamar-Barrios JA. Identification of volatile compounds in essential oil and extracts of Ocimum micranthum Willd leaves using GC/MS. International Journal of Applied Research in Natural Products. 2016;9(1):31-40 http://www.ijarnp.org/index.php/ijarnp/article/view/331/pdf
  146. 146. Pérez-Nicolás M, Vibrans H, Romero-Manzanares A. Can the use of medicinal plants motivate forest conservation in the humid mountains of northern Oaxaca, México? Botanical Sciences. 2018;96(2):267-285. DOI: 10.17129/botsci.1862
  147. 147. Reyes-Caudillo E, Tecante A, Valdivia-López MA. Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chemistry. 2008;107(2):656-663. DOI: 10.1016/j.foodchem.2007.08.062
  148. 148. Porras-Loaiza P, Jiménez-Munguía MT, Sosa-Morales ME, Palou E, López-Malo A. Physical properties, chemical characterization and fatty acid composition of Mexican chia (Salvia hispanica L.) seeds. International Journal of Food Science and Technology. 2014;49(2):571-577. DOI: 10.1111/ijfs.12339
  149. 149. Jiménez-Pérez ND, Lorea-Hernández FG, Jankowski CK, Reyes-Chilpa R. Essential oils in Mexican bays (Litsea spp., Lauraceae): Taxonomic assortment and ethnobotanical implications. Economic Botany. 2011;65(2):178-189. DOI: 10.1007/s12231-011-9160-5
  150. 150. Guzmán-Gutiérrez SL, Gómez-Cansino R, García-Zebadúa JC, Jiménez-Pérez NC, Reyes-Chilpa R. Antidepressant activity of Litsea glaucescens essential oil: Identification of β-pinene and linalool as active principles. Journal of Ethnopharmacology. 2012;143(2):673-679. DOI: 10.1016/j.jep.2012.07.026
  151. 151. Sagrero-Nieves L, Bartley JP. Volatile components of avocado leaves (Persea americana mill) from the Mexican race. Journal of the Science of Food and Agriculture. 1995;67(1):49-51. DOI: 10.1002/jsfa.2740670109
  152. 152. Abe F, Nagafuji S, Okawa M, Kinjo J, Akahane H, Ogura T, et al. Trypanocidal constituents in plants. 5. Evaluation of some Mexican plants for their trypanocidal activity and active constituents in the seeds of Persea americana. Biological & Pharmaceutical Bulletin. 2005;28(7):1314-1317. DOI: 10.1248/bpb.28.1314
  153. 153. Granados-Echegoyen C, Pérez-Pacheco R, Alonso-Hernández N, Vásquez-López A, Lagunez-Rivera L, Rojas-Olivos A. Chemical characterization and mosquito larvicidal activity of essential oil from leaves of Persea americana mill (Lauraceae) against Culex quinquefasciatus (say). Asian Pacific Journal of Tropical Disease. 2015;5(6):463-467. DOI: 10.1016/S2222-1808(15)60816-7
  154. 154. Mata R, Morales I, Pérez O, Rivero-Cruz I, Acevedo L, Enriquez-Mendoza I, et al. Antimycobacterial compounds from Piper sanctum. Journal of Natural Products. 2004;67(12):1961-1968. DOI: 10.1021/np0401260
  155. 155. Catap ES, Kho MJ, Jimenez MR. In vivo nonspecific immunomodulatory and antispasmodic effects of common purslane (Portulaca oleracea Linn.) leaf extracts in ICR mice. Journal of Ethnopharmacology. 2018;215:191-198. DOI: 10.1016/j.jep.2018.01.009
  156. 156. Argotte-Ramos R, Ramírez-Avila G, Rodríguez-Gutiérrez MD, Ovilla-Muñoz M, Lanz-Mendoza H, Rodríguez MH, et al. Antimalarial 4-phenylcoumarins from the stem bark of Hintonia latiflora. Journal of Natural Products. 2006;69(10):1442-1444. DOI: 10.1021/np060233p
  157. 157. Yahia EM, Gutiérrez-Orozco F, Arvizu-de Leon C. Phytochemical and antioxidant characterization of mamey (Pouteria sapota Jacq. HE Moore & Stearn) fruit. Food Research International. 2011;44(7):2175-2181. DOI: 10.1016/j.foodres.2010.11.029
  158. 158. Vasconcellos MC, Montenegro RC, Militão GC, Fonseca AM, Pessoa OD, Lemos TL, et al. Bioactivity of biflorin, a typical o-naphthoquinone isolated from Capraria biflora L. Zeitschrift für Naturforschung. Section C. 2005;60(5-6):394-398. DOI: 10.1515/znc-2005-5-605
  159. 159. Collins DO, Gallimore WA, Reynolds WF, Williams LA, Reese PB. New skeletal sesquiterpenoids, caprariolides A−D, from Capraria biflora and their insecticidal activity. Journal of Natural Products. 2000;63(11):1515-1518. DOI: 10.1021/np000280w
  160. 160. Imran M, Butt MS, Suleria HA. Capsicum annuum bioactive compounds: Health promotion perspectives. In: Jean-Michel M, Ramawat KG, editors. Bioactive Molecules in Food. Cham: Springer; 2018. pp. 1-22. DOI: 10.1007/978-3-319-54528-8_47-1
  161. 161. Khaled RN, Ćirić A, Glamočlija J, Calhelha RC, Ferreira ICFR, Soković M. Identification of the bioactive constituents and the antibacterial, antifungal and cytotoxic activities of different fractions from Cestrum nocturnum L. Jordan Journal of Biological Sciences. 2018;11(3):273-279
  162. 162. Zoubiri S, Baaliouamer A. GC and GC/MS analyses of the Algerian Lantana camara leaf essential oil: Effect against Sitophilus granarius adults. Journal of Saudi Chemical Society. 2012;16(3):291-297. DOI: 10.1016/j.jscs.2011.01.013
  163. 163. Hernández T, García-Bores AM, Serrano R, Ávila G, Dávila P, Cervantes H, et al. Fitoquímica y actividades biológicas de plantas de importancia en la medicina tradicional del Valle de Tehuacán-Cuicatlán. TIP. Revista Especializada en Ciencias Químico-Biológicas. 2015;18(2):116-121. DOI: 10.1016/j.recqb.2015.09.003
  164. 164. Sousa EO, Miranda CM, Nobre CB, Boligon AA, Athayde ML, Costa JG. Phytochemical analysis and antioxidant activities of Lantana camara and Lantana montevidensis extracts. Industrial Crops and Products. 2015;70:7-15. DOI: 10.1016/j.indcrop.2015.03.010
  165. 165. Lin LZ, Mukhopadhyay S, Robbins RJ, Harnly JM. Identification and quantification of flavonoids of Mexican oregano (Lippia graveolens) by LC-DAD-ESI/MS analysis. Journal of Food Composition and Analysis. 2007;20(5):361-369. DOI: 10.1016/j.jfca.2006.09.005
  166. 166. Hernández T, Canales M, Avila JG, García AM, Meraz S, Caballero J, et al. Composition and antibacterial activity of essential oil of Lippia graveolens HBK (Verbenaceae). Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas. 2009;8(4):295-300

Written By

Mónica Lilian Pérez-Ochoa, José Luis Chávez-Servia, Araceli Minerva Vera-Guzmán, Elia Nora Aquino-Bolaños and José Cruz Carrillo-Rodríguez

Submitted: 27 July 2018 Reviewed: 22 October 2018 Published: 14 December 2018