The parameters of the LLC converter.
Abstract
Recently, DC/DC resonant converters have received much research interest as a result of the advancements in their applications. This increase in their industrial application has given rise to more efforts in enhancing the softswitching, smooth waveforms, highpower density, and high efficiency features of the resonant converters. Their suitability to high frequency usage and capacity to minimize switching losses have endeared them to industrial applications compared to the hardswitching conventional converters. However, studies have continued to suggest improvements in certain areas of these converters, including highpower density, wide load variations, reliability, high efficiency, minimal number of components, and low cost. In this chapter, the resonant power converters (RPCs), their principles, and their classifications based on the DCDC family of converters are presented. The recent advancements in the constructions, operational principles, advantages, and disadvantages were also reviewed. From the review of different topologies of the resonant DCDC converters, it has been suggested that more studies are necessary to produce power circuits, which can address the drawbacks of the existing one.
Keywords
 softswitching
 LLC resonant converter
 control strategies
 resonant power converters (RPCs)
1. Introduction
Several studies have been conducted on the switching mode DCDC converters to ensure that they satisfy the most demanding criteria for power electronics application. The possibility of minimizing the switching and conduction losses in the switchmode through increasing the switching frequency makes them more attractive. However, several switching topologies can attain a highpower transfer [1, 2] but the problem is the power switches (transistors or MOSFET), diodes, and energy storage passive elements (capacitors and inductors) contained in the structure of the power converters, which affects their efficiency. Efficient circuits have been developed for power converters along with the developments in materials, control systems, and devices technology. Such topologies can minimize the overall converter size and the switching losses, thereby, providing a higher efficiency [3, 4, 5]. The DCDC converters can be categorized into three major groups (linear, hardswitching, and softswitching mode resonant converters) based on their modes of operation as depicted in Figure 1 [6, 7, 8].
The advantages of the linear regulator technologies include low noise, fast response, simplicity, and excellent regulation. However, they have some disadvantages such as power dissipation in any working condition, which can result in low efficiency. The switchingmode topologies can be categorized based on the isolation feature to galvanic isolation converter, which also called chopper, and nonisolated converter. Galvanic isolation is required in most applications during the process of converting the power from the utility grid (voltages ranging from 100 to 600 V) for safety reason [9, 10, 11]. Since a higher power transformer is required in these converters, the singleswitch converter may not be a proper solution for higher power applications, and as such, the other DCDC isolated converters with more than one switch, such as the pushpull and full or halfbridge converters, are more appropriate for such highpower applications. Hardswitching transitions in devices operating with switchedmode converters will result in high power dissipation and a gradual reduction of the efficiency of the converter; it can damage the switching devices as well. Snubbers are used to reduce the stress of the switches and solve this problem of power dissipation. Furthermore, the hardswitching converters have other disadvantages such as limited frequency, high EMI, high switching losses, large size, and heavy weight. Two more problems are encountered during the control of the transferred power; the first one is the generated noise during the switching process while the second one is the energy lost in the switches.
Regardless of these drawbacks, this study implemented the hardswitching transitions [12]. The voltage and the active switches’ current were modified to overcome or minimize their effects [13]. These modified methods work by either forcing the voltage across the switch or current through the switch to zero, and such a transition technique can only be achieved with a softswitching technique (Figure 2). The current waveform is forced to reduce to 0 in the zero current switching (ZCS) circuit while the voltage waveform is treated as such by the zero voltage switching (ZVS) circuit. Power circuits with these types of transition techniques are called softswitching converters (SSCs) [14]. Meanwhile, there are several advantages of the SSCs over the linear mode regulators. The advantages include (i) the possibility of using a small ferrite transformer core due to the highswitching frequency, making operation in a wider DC input voltage range possible compared to the linear regulators; and (ii) it offers a higher efficiency. However, the complexity of the control circuit is associated with several drawbacks compared to the linear control circuit; and the power switching technique may increase the supply noise.
The SSCs have been significantly improved in the areas of switching losses, the EMIs, and device stresses, allowing the converters to perfectly work even at higher frequencies and a consequent reduction in the magnetic components. Generally, the SSC families are categorized into resonant transition converters (RTCs), resonant power converters (RPCs), quasiresonant converters (QRCs), and multiresonant converters (MRCs) based on their modes of operation, as shown in Figure 3.
2. Resonant power converters (RPCs)
Figure 4 shows the structure of the RPCs and each stage represents a specific job to be carried out. The controlled switching network (CSN) is powered by the DC source; it rapidly switches on and off depending on the working frequency to generate the output voltage or current, which feeds the next stage. The sinusoidal voltage and current signals are generated at a stage of the highfrequency resonant tank network (RTN), where there are two or more reactive components. This is to ensure a reduced electromagnetic interference and harmonic distortion [15]. Being deployed as an energy cushioning stage between the load and the CSN, a frequencyselective network can identify this stage. The impedances of both capacitance and inductance at resonance condition are equivalent and will produce the resonant frequency. A rectifier network and a pass filter are then used for rectifying and filtering the output signal to generate the anticipated DC output voltage [16].
2.1 Control switching network (CSN)
The full and half bridge are the commonest switching networks, whose usage is powerdependent. For highpower applications, the full bridge inverter is often used as opposed to the single ended or half bridge inverters, which can only supply the active switch with half of the input voltage. This indicates that full bridge inverters have a low rate of voltage switch, making them ideal for application in high input voltage conditions [17]. The RPCs and either a half or fullbridge inverter are often deployed together along with each of centertapped or fullbridge rectifiers [18].
The CSN depicted in Figure 5 generates a square waveform voltage Vs(t) of the switching frequency fs (ɷ_{s} = 2π fs) as represented in Eq. 1 by the Fourier series. Considering the response of the resonant tank, which is dominant to the basic constituent fs of the voltage waveform Vs(t), then, the infinitesimal response clearly demonstrated the harmonic frequencies nfs, n = 3, 5, 7, …. As a result, the power that correlates to the basic voltage waveform constituent Vs(t) is moved to the resonant tank as represented in Eq. (2). The basic constituent is a sinusoidal waveform with a peak amplitude of (4/π) times the DC source voltage. This basic constituent and the original waveform are in the same phase. However, when the S1 is on, there is a positive output sinusoidal switched current (t) but negative when S2 is off. This is due to the alternate working principle of the two switches, and its peak amplitude Is1 with phase equal to φs. The input current (DC) to the CSN can be computed by dividing the sinusoidal switched current with half the switching period [6, 16].
2.2 Resonant tank network (RTN)
Resonant tank networks (RTNs) comprise of LC circuit (reactive elements) that stock oscillating energy with the frequency of circuit resonant. The LC circuit’s resonance h attains the electromagnetic frequency useful in several applications, including the telecommunication technology. The tank can possibly be charged to a certain resonant frequency through the adjustment of reactive element data. In addition, the essential phase of the resonant power converter is the resonant tank network. There are different kinds of RTN; it is mainly categorized into three parameters. Firstly, the resonant power converter can be sectioned through the connection technique used in tank element. The main common three resonant circuits include a seriesparallel resonant converter (SPRC), a series resonant converter (SRC), and parallel resonant converter (PRC) [19]. The second factor lies in a quantity of the reactive elements (amount of transfer function order). However, the third one depends on the elements and multielements resonant tank [16]. Topographies of the three elements RTN (third order resonant tank) are controlled in overpowering the inadequacies in the two elements RTN. Most especially, the third element is put in the two elements RTN with a certain rumination to generate the three elements RTN. Thus, these can be taken as an integration of the advantages of mostly used two elements resonant converters PRC and SRC and enhance their inadequacies. The third order RTN contains 36 various tanks, the most common used tanks are LCC, LCL, and CLL [14, 20]. Multielement resonant converters are RTN that contains four and beyond the number of elements. It should be noted that an increase in the number of reactive elements cause the network to be more complicated based on its size, analysis, and cost. For instance, Figure 6 illustrates the fourth order RTN, which is referred to as the LCLC tank system [21]; this topology includes the characteristics of two main famous threeelement systems such as LLC and LCC, and then reflects on their setbacks.
2.3 Diode rectifier network with low pass filter (DRLPF)
The RTN generates voltage waveforms and sinusoidal current based on the output voltage and resonant frequency, which are taken to be the input to the last phase DRLPF is the pulse waveform. This implies that the purpose of utilizing DRLPF is to filter and correct the AC waveform to achieve the entailed DC output waveform. In the previous studies on resonant power converter, the DRLPS had been illustrated as a fullbridge or centertapped rectifiers. While the centertapped rectifier is inappropriate due to an elevated voltage stress from the diodes, the low pass filter had been investigated for the entire occurrences of inductance or capacitive [16, 22].
2.3.1 Diode rectifier with capacitive low pass filter (DRCLPF)
In the DRCLPF, the input voltage VR(t) is appraised as the square wave of a resonant frequency as illustrated in Figure 7. The input voltage VR(t) can be estimated based on the resonant tank filtering with its basic component VR1(t) as shown in Eqs. (6) and (7), respectively. In addition, the basic component and current are in the same phase, any drop in current to zero alters the basic compartment because of the variations in the conducting diodes.
2.3.2 Diode rectifier coupled with inductive low pass filter (DRLLPF)
The diode rectifier is coupled with the input voltage VR(t) (sinusoidal waveform) and an inductive filter jacket. The current inputted is appraised as the square waveform iR(t) as illustrated in Figure 8.
3. Properties of resonant power converters
3.1 Parallel resonant converter (PRC)
The PRC is categorized into two elements tank converter. The resonant capacitor Cr needs to be parallel to the diode rectifier network DR and load. For the effective load resistance, Rac is much more enormous relative to resonant capacitor reactance Cr; this implies that the resonant current is unproportionable to the load. Moreover, in addition, the voltage over the resonant capacitor and parallel resistance Rac can be improved by declining the load [14]. Figure 9 shows the relationship between the load quality factor and PRC voltage gain depending on switching frequency based on Eq. (13). It can be observed that the high voltage gain is attained from the switching frequencies and light load conditions, which are nearly equivalent to resonant frequency fs = fr. Therefore, PRC can either step the output voltage down or up depending on the variation in the control switching system frequency. The voltage output can be adjusted with load states, whereas, the resonant current is restricted to resonant inductor data, this causes the PRC to be appropriate for open and short circuit applications [23].
3.2 LLC resonant converter
LLC resonant converter in the RTN comprises three reactive elements, whereby it is appraised as a conventional SRC and addition of inductor L_{r} equidistant to the load that is referred to as parallel inductor L_{rp}. The parallel inductor can be replaced by using the magnetizing inductance when using a transformer [14, 16]. The topology of LLC generates two resonant frequencies: firstly, the series resonant frequency fr1 depending on the series elements L_{r} C_{r} and secondly, the parallel resonant frequency fr2 depending on the entire three tank elements (L_{rp}, C_{r}, and L_{r}) as illustrated in Eqs. (14) and (15), where f_{r1} > f_{r2}.
Figure 10 illustrates the LLC voltage gain depending on the unity inductance ration (AL = 1), switching frequency, and load quality factor as shown in the Eq. (16).
3.3 LCC resonant converter
The topology of LCC in the RTN comprises three reactive elements, the capacitor Crp that is connected to the load in parallel represents the third element. Thus, the topology contains two resonant frequencies: firstly, the series resonant frequency fr1 depending on the series elements Lr Cr and secondly, the parallel resonant frequency fr2 depending on the entire three tank elements (Lrp, Cr, and Lr) as illustrated in as they are shown in Eqs. (17) and (18), where fr1 < fr2.
In the LCC converters, the proportion of resonant capacitors AC should be chosen prudently to be equal to the targeted peak gain. Figure 11 explains the LCC voltage gain as depending on the load quality parameter and switching frequency with single inductance ratio (AC = 1) as described in Eq. (19). It is seen that the light load voltage gain advances across the converter properties and parallel resonant frequency fr2 acts as a parallel resonant converter PRC.
3.4 LCLC resonant converter
Similar to LCC, the topology of LCLC in the RTN comprises four reactive elements as illustrated in Figure 6, where this topology homogenizes the characteristics of LLC and LCC. The topology structure comprises parallel resonant capacitor Crp, parallel resonant inductance Lrp, and a series elements Lr Cr, which implies that the topology contains two proportions whereby the inductance AL and capacitance AC must be appraised in the design. Moreover, the topology comprises three frequencies: two parallel frequencies frp1, frp2, and one series resonant frequency frs. Figure 12 reflected the relationship between the load quality factor, AC = AL = 1 and LCLC voltage gain depending on the switching frequency as shown in Eq. (20).
4. Controlled strategies of resonant converters
The controlled strategies of the resonant converter is a bit disparate from the pulse width modulated (PWM) converters. A lot of parameters should be considered to attain a soft switching at a certain segment to fabricate the precise controller that can achieve the desired results like load condition, energy storage elements, frequency range, and among others. There were several controlled topologies, which had been applied in the previous studies to manage the series resonant converters. For example, the pulse density modulation, voltage and current control, diode conduction control, and frequency control [24]. The full bridge resonant converter voltage had been regulated through the phase shift control; this phenomenon can be referred to as the switching signal primary control. In addition, to enhance the outcome of a control system, several improved techniques through adaptive controls had been reported [25], which include the passivitybased control and auto disturbancerejection control (ADRC). A phase shift control had been used to control the current of resonant [26]. Because of this, the control outcome was increased in relative to the traditional PSRC control system. From the previous studies, the controlled techniques can be categorized into their implementation technique either through analog or digital. The digital controls are used because of their flexibility features in compact, programming, and light in comparison to analog controllers, they are also more resistant to inferences and noise. A three element DCDC resonant converter type
Moreover, to ensure the expansion range of ZVS for entire inverter switches (S1–S4), and to improve the converter voltage gain. Then, the magnetizing inductance and resonant tank are used to generate a second resonant frequency
From Figure 14, the LLC resonant converter gain M is evaluated using voltage divider law by considering the load quality factor Q and transformer stepup ratio as shown in Eq. (21).
4.1 Fixed frequency control
The purpose of using this technique is that the voltage output is being influenced by changing the dutycycle to attain a targeted voltage output. However, the error that exists between the constant desired voltage (reference voltage)
4.2 Variablefrequency control
This control varies the switching frequency in adjusting the output voltage so as to reach the targeted load stage and save the output voltage of converter stable in any situation as illustrated in Figure 5. Moreover, the error that exists between the stable targeted voltage (reference voltage)
4.3 Simulation results
The model simulation of resonant converter is carried out and implemented by utilizing the MATLAB/SIMULINK software using the factors enlisted in Table 1; this is to verify the LLC series resonant DCDC converter design circuit as shown in Figure 13 and control techniques analysis.

100 (V) 

200 (μH) 

70 (nF) 

4.7 (μF) 

300 (V) 

100 (Ω) 

300 (μH) 

2.7, 0.5 


In this frequency control, the controlled signal is used for the
Figure 16 illustrates an output voltage of the dutycycle controller dynamic response, the load is stepped up and down within half load of
In the variable frequency control technique, the measured output voltage is used to detect frequency. Thereafter, the controlled signal is implemented on PWM to produce gate signals to the entire switches by considering the switching duration depending on the converter nature to generate enormous output voltage gain. Moreover, the variation in load is being tested and applied to affirm the controller dynamic responses. Figure 18 illustrates the parameter frequency controller dynamic response of the output voltage, and the load is stepped up and down in the similar way of dutycycle control. It can also be observed that in this control technique, the full load condition results in enormous output voltage ripple as compared to half load state, and this affirms the significant variation in frequency with the entire load condition. Moreover, the parameter frequency control gives a significant response to the tank AC parameters as illustrated in Figure 17. As the load varies, the AC parameters temporarily react by increasing or decreasing the voltage and resonant current values depending on the varied frequency and keeping a shape of the sinusoidal waveform.
5. Applications of resonant power converters
Based on the sufficient demerit of RPCs as earlier stated in the above segments, they have uncommon application in modern industries. The summary of the noticeable implementations is discussed in this segment. The main areas of RPCs application are household applications like induction cookers, portable power supplies, network connection of renewable energy mains, and hybrid and electric vehicles. In a case of the portable power supply, requirements of the converter include a low price tag, lightweight and small size, high efficiency, high reliability, and low electromagnetic interference (EMI). Soft switching is the way of ensuring higher efficiency; it can be implemented by utilizing RPCs. Based on the area of application, the topology can be chosen to ensure maximum efficiency, ideal cost, and size. For example, the supply of power to an electron beam welding compartment uses a full bridge LLC resonant converter [16]. The soft switching technique and topology solves the problem associated with power utilization within the filament supply by staying away from the inverter heating challenge and ensures higher efficiencies. RPCs are used in the electrostatic precipitator. This is a highpower appliance industrially utilized for removing smoke and dust from a flowing gas. The seriesparallel RPC coupled with phase control suggested by [27] is negligible in size; it gives a faster temporary response and possesses a higher efficiency as compared to the traditional line frequency power supplies. RPCs are known for charging hybrid vehicles whereby the batteries need to be charged either by wireless or wired. Due to being smaller and demonstrating higher effectiveness, the charging of EVs through wire [28] and plugin EVs [29] RPCs are used. For example, the highperformance LLC converters are suggested in the twostage smart battery chargers. The converter evacuates the low and frequencies ripples from the current output and increases the life of a battery without the size increment of the charger. Previous studies had proposed several wired charging topologies. Apart from wired chargers, wireless power transfer (WPT) has been a modern charging process used in the hybrid and electric vehicles. The accessible WPT technologies include electromagnetic, magnetic, and electric power transfer. Among all of these, the magnetic coupling method utilizes RPCs, which portray higher power transmission and higher efficiency within a closer distance. Application of RPC in WPT for hybrid and electric vehicles had been reported [30].
The grid integration of renewable energy mains such as fuel cell, wind, and solar PV needs converters of minimal current ripple and higher efficiency. DCDC converters are the main prerequisite in processing power from renewable energy mains. Out of several options, RPCs can be the main competitor because of its low EMI, higher efficiency, robustness, and low output ripple current. RPCs are used in FC networks [31, 32], PVs [33], grid connection, and electrolyser interfaces [34]. Moreover, RPCs is applied to home induction cookers. The resonant inverter is the induction cooker key element; it produces an AC current that heats up the inductorvessel compartment. The resonant inverters utilize in induction cooker are multilevel, half bridge, singleswitch, and full bridge inverters [35].
6. Conclusion
This chapter has vividly explained the resonant power converters, which include the effective generation of RPCs as a highswitching converter that can serve as a solution to electromagnetic interference (EMI) and switching losses difficulties that surface by using the PWM converters. Furthermore, the resonant converter classifications depending on several points of views as well as controlled techniques (either varied or fixed frequency techniques) were elucidated. The controlled techniques and several application areas of resonant converters have been explained. The variable and fixed frequency controls are used to crosscheck the LLC converter output voltage. The load is changed when using 50% of the full load in the entire control techniques; the obtained results affirmed the significant stable response of both controllers with little overshoot voltage. Nevertheless, the variable frequency control gives a significant outcome based on the resonant tank waveforms in relative to the stable frequency control when changing the load.
References
 1.
Outeiro MT, Visintini R, Buja G. Considerations in designing power supplies for particle accelerators. In: Industrial Electronics Society, IECON 201339th Annual Conference of the IEEE 2013 Nov 10. IEEE; 2013. pp. 70767081. DOI: 10.1109/IECON.2013.6700307  2.
Salem M, Jusoh A, Idris NR. Implementing buck converter for battery charger using soft switching techniques. In: Power Engineering and Optimization Conference (PEOCO), 2013 IEEE 7th International 2013 Jun 3. IEEE; 2013. pp. 188192. DOI: 10.1109/PEOCO.2013.6564540  3.
Mostaghimi O, Wright N, Horsfall A. Design and performance evaluation of SiC based DCDC converters for PV applications. In: Energy Conversion Congress and Exposition (ECCE), 2012 IEEE 2012 Sep 15. IEEE; 2012. pp. 39563963. DOI: 10.1109/ECCE.2012.6342163  4.
Ching TW, Chan KU. Review of softswitching techniques for highfrequency switchedmode power converters. In: Vehicle Power and Propulsion Conference, 2008. VPPC'08. IEEE 2008 Sep 3. IEEE; 2008. pp. 16. DOI: 10.1109/VPPC.2008.4677473  5.
Shafiei N, Pahlevaninezhad M, Farzanehfard H, Bakhshai A, Jain P. Analysis of a fifthorder resonant converter for highvoltage DC power supplies. IEEE Transactions on Power Electronics. 2013; 28 (1):85100. DOI: 10.1109/TPEL.2012.2200301  6.
Outeiro MT, Buja G, Carvalho A. Resonant converters for electric equipment power supply. In: Industrial Electronics Society, IECON 201440th Annual Conference of the IEEE 2014 Oct 29. IEEE; 2014. pp. 50655071. DOI: 10.1109/IECON.2014.7049270  7.
Salem M, Jusoh A, Idris NR, Sutikno T, Buswig YM. Phaseshifted series resonant converter with zero voltage switching turnon and variable frequency control. International Journal of Power Electronics and Drive Systems (IJPEDS). 2017; 8 (3):11841192. DOI: 10.11591  8.
Jin K, Ruan X. Hybrid fullbridge threelevel LLC resonant convertera novel DCDC converter suitable for fuel cell power system. In: Power Electronics Specialists Conference, 2005. PESC'05. IEEE 36th 2005 Jun 16. IEEE; 2015. pp. 361367. DOI: 10.1109/PESC.2005.1581649  9.
Salem M, Jusoh A, Rumzi N, Idris N, Alhamrouni I. Steady state and generalized state space averaging analysis of the series resonant converter. In: 3rd IET International Conference on Clean Energy and Technology (CEAT). 2014. pp. 15. DOI: 10.1049/cp.2014.1488  10.
Alhamroun I, Salem M, Jusoh A, Idris NR, Ismail B, Albatsh FM. Comparison of two and four switches inverter feeding series resonant converter. In: Energy Conversion (CENCON), 2017 IEEE Conference on 2017 Oct 30. IEEE; 2017. pp. 334338. DOI: 10.1109/CENCON.2017.8262508  11.
Rathore AK, Bhat AK, Oruganti R. A comparison of softswitched DCDC converters for fuel cell to utility interface application. IEEJ Transactions on Industry Applications. 2008; 128 (4):450458. DOI: 10.1541/ieejias.128.450  12.
Salem M, Jusoh A, Idris NR, Alhamrouni I. Comparison of LCL resonant converter with fixed frequency, and variable frequency controllers. In: Energy Conversion (CENCON), 2017 IEEE Conference on 2017 Oct 30. IEEE; 2017. pp. 8489. DOI: 10.1109/CENCON.2017.8262463  13.
Yang Y, Huang D, Lee FC, Li Q. Analysis and reduction of common mode EMI noise for resonant converters. In: Applied Power Electronics Conference and Exposition (APEC), 2014 TwentyNinth Annual IEEE 2014 Mar 16. IEEE; 2014. pp. 566571. DOI: 10.1109/APEC.2014.6803365  14.
Outeiro MT, Buja G, Czarkowski D. Resonant power converters: An overview with multiple elements in the resonant tank network. IEEE Industrial Electronics Magazine. 2016; 10 (2):2145. DOI: 10.1109/MIE.2016.2549981  15.
Polleri A, Anwari M. Modeling and simulation of paralleled seriesloadedresonant converter. In: Second Asia International Conference on Modelling & Simulation. 2008. p. 974. DOI: 10.1109/AMS.2008.86  16.
Salem M, Jusoh A, Idris NR, Das HS, Alhamrouni I. Resonant power converters with respect to passive storage (LC) elements and control techniques–An overview. Renewable and Sustainable Energy Reviews. 2018; 91 :504520. DOI: 10.1016/j.rser.2018.04.020  17.
Chuang YC, Ke YL, Chuang HS, Chen HK. Implementation and analysis of an improved seriesloaded resonant DCDC converter operating above resonance for battery chargers. IEEE Transactions on Industry Applications. 2009; 45 (3):10521059. DOI: 10.1109/TIA.2009.2018946  18.
Ivensky G, Bronshtein S, Abramovitz A. Approximate analysis of resonant LLC DCDC converter. IEEE Transactions on Power Electronics. 2011; 26 (11):32743284. DOI: 10.1109/TPEL.2011.2142009  19.
Salem M, Jusoh A, Idris NR, Alhamrouni I. A review of an inductive power transfer system for EV battery charger. European Journal of Scientific Research. 2015; 134 :4156  20.
Tan X, Ruan X. Equivalence relations of resonant tanks: A new perspective for selection and design of resonant converters. IEEE Transactions on Industrial Electronics. 2016; 63 (4):21112123. DOI: 10.1109/TIE.2015.2506151  21.
Shafiei N, Farzanehfard H. Steady state analysis of LCLC resonant converter with capacitive output filter. In: Power and Energy (PECon), 2010 IEEE International Conference on 2010 Nov 29. IEEE; 2010. pp. 807812. DOI: 10.1109/PECON.2010.5697690  22.
Lin BR, Hou BR. Analysis and implementation of a zerovoltage switching pulsewidth modulation resonant converter. IET Power Electronics. 2014; 7 (1, 1):148156. DOI: 10.1049/ietpel.2013.0134  23.
Salem M, Jusoh A, Idris NR, Sutikno T, Abid I. ZVS full bridge series resonant boost converter with seriesconnected transformer. International Journal of Power Electronics and Drive Systems (IJPEDS). 2017; 8 (2):812825. DOI: 10.11591  24.
Salem M, Jusoh A, Idris NR, Tan CW, Alhamrouni I. Phaseshifted series resonant DCDC converter for wide load variations using variable frequency control. In: Energy Conversion (CENCON), 2017 IEEE Conference on 2017 Oct 30. IEEE; 2017. pp. 329333. DOI: 10.1109/CENCON.2017.8262507  25.
Lu Y, Cheng KW, Ho SL, Pan JF. Passivitybased control of a phaseshifted resonant converter. IEE ProceedingsElectric Power Applications. 2005; 152 (6):2005, 15092015. DOI: 10.1049/ipepa:20045261  26.
Lu Y, Cheng KE, Ho SL. Quasi current mode control for the phaseshifted series resonant converter. IEEE Transactions on Power Electronics. 2008; 23 (1):353358. DOI: 10.1109/TPEL.2007.911846  27.
Salem M, Jusoh A, Idris NR, Alhamrouni I. Extension of zero voltage switching range for series resonant converter. In: Energy Conversion (CENCON), 2015 IEEE Conference on 2015 Oct 19. IEEE; 2015. pp. 171175. DOI: 10.1109/CENCON.2015.7409534  28.
Musavi F, Craciun M, Gautam DS, Eberle W, Dunford WG. An LLC resonant DCDC converter for wide output voltage range battery charging applications. IEEE Transactions on Power Electronics. 2013; 28 (12):54375445. DOI: 10.1109/TPEL.2013.2241792  29.
Mousavi SM, Beiranvand R, Goodarzi S, Mohamadian M. Designing A 48 V to 24 V DCDC converter for vehicle application using a resonant switched capacitor converter topology. In: Power Electronics, Drives Systems & Technologies Conference (PEDSTC), 2015 6th 2015 Feb 3. IEEE; 2015. pp. 263268. DOI: 10.1109/PEDSTC.2015.7093285  30.
Bojarski M, Asa E, Outeiro MT, Czarkowski D. Control and analysis of multilevel type multiphase resonant converter for wireless EV charging. In: Industrial Electronics Society, IECON 201541st Annual Conference of the IEEE 2015 Nov 9. IEEE; 2015. pp. 50085013. DOI: 10.1109/IECON.2015.7392886  31.
Outeiro MT, Carvalho A. Methodology of designing power converters for fuel cell based systems: A resonant approach. In: New Developments in Renewable Energy. Rijeka: In Tech; 2013. DOI: 10.5772/54674  32.
Outeiro MT, Carvalho A. Design, implementation and experimental validation of a DCDC resonant converter for PEM fuel cell applications. In: Industrial Electronics Society, IECON 201339th Annual Conference of the IEEE 2013 Nov 10. IEEE; 2013. pp. 619624. DOI: 10.1109/IECON.2013.6699206  33.
Rezaei MA, Lee KJ, Huang AQ. A highefficiency flyback microinverter with a new adaptive snubber for photovoltaic applications. IEEE Transactions on Power Electronics. 2016; 31 (1, 1):318327. DOI: 10.1109/TPEL.2015.2407405  34.
Beres RN, Wang X, Blaabjerg F, Liserre M, Bak CL. Optimal design of highorder passivedamped filters for gridconnected applications. IEEE Transactions on Power Electronics. 2016; 31 (3):20832098. DOI: 10.1109/TPEL.2015.2441299  35.
Mishima T, Nakagawa Y, Nakaoka M. A bridgeless BHB ZVSPWM ACAC converter for highfrequency induction heating applications. IEEE Transactions on Industry Applications. 2015; 51 (4):33043315. DOI: 10.1109/TIA.2015.2409177