Abstract
The BG model (a model for predicting 3D beach changes based on the Bagnold’s concept) was introduced, and the fundamental aspects of the model were explained. The BG model is based on the concepts such as (1) the contour line becomes orthogonal to the wave direction at any point at the final stage, (2) similarly, the local beach slope coincides with the equilibrium slope at any point, and (3) a restoring force is generated in response to the deviation from the statically stable condition, and sand transport occurs owing to this restoring force. The same concept has been employed in the contour-line-change model and N-line model. In these studies, the movement of certain contour lines was traced, but in the BG model, 3D beach changes were directly calculated.
Keywords
- BG model
- derivation
- physical meaning
1. Introduction
The BG model is based on the concepts such as (1) the contour line is orthogonal to the wave direction at any point at the final stage, (2) similarly, the local beach slope coincides with the equilibrium slope at any point, and (3) a restoring force is generated in response to the deviation from the statically stable condition, and sand transport occurs owing to this restoring force. The same concept has been employed not only in the contour-line-change model [1] but also in the N-line model [2, 3, 4, 5, 6, 7]. In these studies, the movement of certain contour lines was traced, but in the BG model, the depth change on the 2D horizontal grids was directly calculated. Falqués et al. [8, 9] developed a medium- to long-term model for beach morphodynamics named Q2D-morfo. In their model, similar expressions regarding crossshore and longshore sand transport equations as the BG model were employed. In particular, they used the beach slope measured on a real coast as the equilibrium slope, similar to the BG model, and the prediction of beach changes bounded by two groynes was carried out, but the prediction period was as short as 35 days [8]. van den Berg et al. [10] predicted the development of a sand wave associated with large-scale beach nourishment due to shoreline instability under the oblique wave incidence at a large angle using the model proposed by Falqués et al. [8]. Larson et al. [11] proposed the crossshore sand transport equation in the swash zone using the concept of the equilibrium slope and predicted the foreshore evolution. Similarly, Larson and Wamsley [12] proposed crossshore and longshore sand transport formulae in the swash zone, and they used the similar equations as the BG model. Their equations were also employed in the 3D beach change model in the swash zone by Nam et al. [13].
2. Derivation of the BG model
In the derivation of the sand transport equation of the BG model, we referred Bagnold [14] and the previous studies after Bagnold (Inman and Bagnold [15], Bowen [16], Bailard and Inman [17], and Bailard [18]). Bagnold [14] derived the sand transport equation for a unidirectional steady flow with an explicit expression of the seabed slope by applying the energetics approach. Inman and Bagnold [15] assumed that sand transport in a wave field is the sum of the components caused by shoreward flow during the motion of incoming waves and those caused by seaward flow during the motion of outgoing waves and defined the slope satisfying zero net onshore or offshore sediment transport as the equilibrium slope. Their equilibrium slope is the slope when upslope effect due to the asymmetry in action of incoming and outgoing waves and downslope effect due to the gravity balance each other.
Regarding the sand transport equation under waves, Bowen [16], Bailard and Inman [17], and Bailard [18] formulated the instantaneous sand transport flux on the basis of the sand transport equation for a unidirectional steady flow by Bagnold [14], assuming that the wave dissipation rate is proportional to the third power of the instantaneous velocity. Then, the net sand transport formula was derived by integrating the instantaneous sand transport flux over one wave period. Furthermore, they derived the equilibrium slope equation using the wave velocity parameters. Out of these studies, the sand transport flux formula by Bailard and Inman [17] considers both bed load and suspended load, and this formula has been extensively used in the models for predicting beach changes. Kabiling and Sato [19] calculated the wave and nearshore current field using the Boussinesq equation and predicted 3D beach changes using the Bailard formula. Long and Kirby [20] also carried out the numerical simulation of beach changes using the Bailard formula and Boussinesq equation. However, the application of their model to the long-term prediction of the topographic changes in an extensive calculation domain is limited because the recurrent calculations in solving the time-dependent equation of the wave field are time consuming. On a real coast, a longitudinal profile maintains its stable form as a whole, as a result of the wave action for a long period of time, apart from the short-period seasonal variation of the beach, suggesting the existence of an equilibrium slope on a real coast. In contrast, in their studies, the beach slope does not necessarily agree with the equilibrium slope after long-term prediction, even though an equilibrium slope exists, and it is difficult to explain the phenomena really observed on a coast.
In this study, we return to the starting point of Bagnold’s basic study, and simple sand transport equations are derived. Then, a model for predicting 3D beach changes by applying the concept of the equilibrium slope introduced by Inman and Bagnold [15] and the energetics approach of Bagnold [14] is developed [21].
Figure 1 shows the definitions of the variables. Consider Cartesian coordinates (

Figure 1.
Setup of the coordinate system and definition of variables.
The components of the sand transport vector
When the gradient vector of
The fluid motion due to waves near the sea bottom becomes oscillatory, and a sand particle moves back and forth in the crossshore direction. Sand transport in a wave field is assumed to be the sum of the components caused by shoreward flow during the motion of incoming waves and those caused by seaward flow during the motion of outgoing waves, as suggested in [15], and the sand transport equation for a unidirectional steady flow introduced by Bagnold [14] can be applied to each component.
Assuming that tan
Here, the subscript
The net sand transport flux due to waves,
Here, the subscripts + and – denote the values corresponding to incoming and outgoing waves, respectively, and
Here,
In this study, we used the seabed slope measured on real coasts as the equilibrium slope instead of using the formulated results of the equilibrium slope. The measured slope is assumed to be given a priori because the real seabed topography includes every effect of past events, and it has a stable form, except for seasonal short-period variations, in the long term.
Applying the energetics approach [14] and assuming that the coefficient
Here,
3. Physical meaning of the sand transport equation of the BG model
3.1 Statically stable condition
When we set
This equation demonstrates that the directions of the vectors on both sides of Eq. (27) and their absolute values are equivalent. When tan
Finally, the conditions required for the formation of a statically stable beach are (1) the contour line is orthogonal to the wave direction at any point and (2) the local beach slope coincides with the equilibrium slope at any point. This concept was also employed in the model for predicting a statically stable beach [28]. According to Eq. (26), a restoring force is generated in response to the deviation from the statically stable condition, and sand transport occurs owing to this restoring force.
3.2 Topographic changes
Topographic changes can be determined from the mass conservation equation.
When the sand transport fluxes in Eq. (26) are expressed by the components in (
The left term and the terms in the parenthesis on the right represent the rate of topographic changes and the spatial curvature of the topography, respectively. In other words, beach changes cause the smoothing of an uneven topography, and in a closed system of sand transport, a statically stable beach is obtained such that the direction of the contours at any point becomes orthogonal to the wave direction, and the local slope is equivalent to the equilibrium slope. These characteristics are the same as those of the contour-line change model [1].
3.3 Dynamically stable beach
In addition to the formation of a statically stable beach, a stable beach can also be dynamically stable, which occurs when the divergence of the sand transport flux in Eq. (30) becomes 0. The dynamically stable beach topography satisfies the Laplace equation, and the relationship between the dynamically stable topography and the sand transport flux has an analogy with the two-dimensional potential flow in fluid dynamics [29].
3.4 Crossshore sand transport
Using Eqs. (6) and (26), the crossshore component of sand transport
Here,
Eq. (32) has the characteristics that crossshore sand transport diminishes when waves are incident from the direction normal to the shoreline, and the local slope is equal to the equilibrium slope

Figure 2.
Stabilization mechanism of the beach profile based on the sand movement during the one wave period.
Figure 2(a) shows the stabilization mechanism of a beach profile based on sand movement during one wave period, a sand particle moves from point 1 to point 2 during incoming waves and from point 2 to point 3 during outgoing waves, and it returns to the same position after one wave period. The net movement of the sand particle is zero, resulting in the formation of a stable beach profile. The seabed slope tan
Figure 3 shows a summary of the movement of a sand particle. Crossshore sand transport is zero when the local seabed slope is equivalent to the equilibrium slope, similar to the stabilization mechanism of the longitudinal profile described by Serizawa et al. [1]. Offshore (shoreward) sand transport occurs when the local slope is larger (smaller) than the equilibrium slope.

Figure 3.
Equilibrium between the gravity effect and the wave action.
When waves are obliquely incident to the shoreline, the equilibrium slope tan
Although tan
3.5 Longshore sand transport
Using Eqs. (7) and (26), the longshore component of sand transport
Here,

Figure 4.
Formation of stable contour lines.
When the total sand transport
Here, (
References
- 1.
Serizawa M, Uda T, San-nami T, Furuike F, Kumada K. Improvement of contour-line change model in terms of stabilization mechanism of longitudinal profile. In: Coastal Sediments ‘03. World Sceintific Publication Co.; 2003. pp. 1-15 - 2.
Hanson H, Aarninkhof S, Capobianco M, Jimenez JA, Larson M, Nicholls R, et al. Modelling coastal evolution on early to decadal time scales. Journal of Coastal Research. 2003; 19 :790-811 - 3.
Perlin M, Dean RG. A numerical model to simulate sediment transport in the vicinity of coastal structures, Misc. Report, No. 83-10. Coastal Engineering Research Center, U.S. Army Corps of Engineers; 1983. p. 119 - 4.
Steetzel HJ, de Vroeg JH. Application of a multilayer approach for morphological modelling. In: Coastal Sediments’ 99. Vicksburg: ASCE; 1999. pp. 2206-2218 - 5.
Steetzel HJ, de Vroeg H, van Rijn LC, Stam JM. Long-term modelling of the Holland coast using a multi-layer model. In: Proceedings of the 27th International Conference on Coastal Engineering. Sydney, Australia: ASCE; 2000. pp. 2942-2955 - 6.
Hanson H, Larson M. Simulating coastal evolution using a new type N-line model. In: Proceedings of the 27th International Conference on Coastal Engineering. Vicksburg: ASCE; 2000. pp. 2808-2821 - 7.
Dabees MA, Kamphuis JW. Efficient modeling of 3D beach change. In: Proceedings of the 27th International Conference on Coastal Engineering. Sydney, Australia: ASCE; 2000. pp. 2700-2713 - 8.
Falqués A, Garnier R, Ojeda E, Ribas F, Guillen J. Q2D-morfo: A medium to long term model for beach morphodynamics. River, Coastal and Estuarine Morphodynamics. 2007; 1-2 :71-78 - 9.
Falqués A, van den Berg N, Calvete D. The role of cross-shore profile dynamics on shoreline instability due to high-angle waves. In: Proceedings of 31st ICCE; 2008. pp. 1826-1838 - 10.
van den Berg N, Falqués A, Ribasz F. Long-term evolution of nourished beaches under high angle wave conditions. Journal of Marine Systems. 2011; 88 (1):102-112 - 11.
Larson M, Kubota S, Erikson L. Swash zone sediment transport and foreshore evolution: Field experiment and mathematical modeling. Marine Geology. 2004; 212 :61-79 - 12.
Larson M, Wamsley TV. A formula for longshore sediment transport in the swash. In: Proceedings of Coastal Sediment'07. ASCE; 2007. pp. 1924-1937 - 13.
Nam PT, Larson M, Hanson H, Hoan LX. A numerical model of beach morphological evolution due to waves and currents in the vicinity of coastal structures. Coastal Engineering. 2011; 58 (9):863-876 - 14.
Bagnold RA. Mechanics of marine sedimentation. In: Hill MN, editor. The Sea. Vol. 3. New York: Wiley; 1963. pp. 507-528 - 15.
Inman DL, Bagnold RA. Littoral processes. In: Hill MN, editor. The Sea. Vol. 3. New York: Wiley; 1963. pp. 529-533 - 16.
Bowen AJ. Simple models for nearshore sedimentation: Beach profiles and longshore bars. In: The Coastline of Canada, The Geological Survey of Canada, McCann SB, Paper 80(10); 1980. pp. 1-11 - 17.
Bailard JA, Inman DL. An energetics bedload model for a plane sloping beach: Local transport. Journal of Geophysical Research. 1981; 86 (C3):2035-2043 - 18.
Bailard JA. An energetics total load sediment transport model for a plane sloping beach. Journal of Geophysical Research. 1981; 86 (C11):10938-10954 - 19.
Kabiling M, Sato S. Two-dimensional nonlinear dispersive wave-current model and three-dimensional beach deformation model. Coastal Engineering in Japan. 1993; 36 (2):195-212 - 20.
Long W, Kirby JT. Cross-shore sediment transport model based on the Boussinesq equations and an improved Bagnold formula. In: Proceedings of Coastal Sediments ’03. Clearwater Beach: ASCE; 2003 - 21.
Serizawa M, Uda T, San-nami T, Furuike K. Three-dimensional model for predicting beach changes based on Bagnold’s concept. In: Proceedings of 30th ICCE; 2006. pp. 3155-3167 - 22.
Hardisty J. A note on negative beach slopes and flow asymmetry. Marine Geology. 1985; 69 :203-206 - 23.
Hardisty J. A morphodynamic model for beach gradients. Earth Surface Processes and Landforms. 1986; 11 :327-333 - 24.
Dean RG. Equilibrium beach profiles: Characteristics and applications. Journal of Coastal Research. 1991; 7 (1):53-84 - 25.
Dean RG, Dalrymple RA. Coastal Processes with Engineering Applications. New York, NY: Cambridge University Press; 2002. p. 474 - 26.
Larson M, Kraus NC, Wise RA. A equilibrium beach profiles under breaking and non-breaking waves. Coastal Engineering. 1999; 36 :59-85 - 27.
Komar PD, Inman DL. Longshore sand transport on beaches. Journal of Geophysical Research. 1970; 75 :5914-5927 - 28.
Sakai K, Uda T, Serizawa M, Kumada T, Kanda Y. Model for predicting three-dimensional sea bottom topography of statically stable beach. In: Proceedinsg of 30th ICCE; 2006. pp. 3184-3196 - 29.
Uda T, Serizawa M, San-nami T, Furuike K. Model for predicting dynamically stable beach based on analogy with two-dimensional potential flow. In: Proceedings of 30th ICCE; 2006. pp. 3911-3923 - 30.
CERC. Shore Protection Manual. Vicksburg, Mississippi: U.S. Army Coastal Engineering Research Center, Corps of Engineers - 31.
Komar PD. Beach Processes and Sedimentation. London: Prentice Hall International; 1998. p. 544 - 32.
Horikawa K, editor. Nearshore Dynamics and Coastal Processes. Tokyo: University of Tokyo Press; 1988. p. 522