Open access peer-reviewed chapter

Antifungal Activity of Brazilian Medicinal Plants against Candida Species

Written By

Vagner Rodrigues Santos and Elizete Maria Rita Pereira

Submitted: 19 April 2018 Reviewed: 09 July 2018 Published: 05 November 2018

DOI: 10.5772/intechopen.80076

From the Edited Volume

Candida Albicans

Edited by Doblin Sandai

Chapter metrics overview

1,856 Chapter Downloads

View Full Metrics

Abstract

Due to the resistance of Candida sp. to the usual antifungal, the demand for active principles found in the plants has been the target of diverse studies around the world. There are few in vivo and human studies on the antifungal activity of medicinal plants in the mouth. Native and imported medicinal plants, used by the Brazilian population for traditional medicine use, are the subject of study in this chapter. Thirty-eight Brazilian plants were related to information on species, family, name, used part, and medical indication of popular use. All the species mentioned had their extracts tested in vitro against C. albicans, C. tropicalis, C. krusei, C. parapsilosis, among other species that occur more frequently in the mouth. In the articles consulted, there is a great variation in Candida species tested and in minimum inhibitory concentration. The in vitro studies serve as information for the continuity of studies on the best performing plants, validate the popular belief about the use, and provide subsidies for the development of new products that are effective in the control of oral and systemic candidiasis and that are cheap and accessible for the population.

Keywords

  • Brazilian medicinal plants
  • Candida sp.
  • oral candidiasis
  • minimum inhibitory concentration

1. Oral candidiasis—by Elizete Maria Rita Pereira/Vagner Rodrigues Santos

The most common fungal pathogens detected from the oral cavity are Candida sp. and their transition of harmless commensals to pathogenic microorganisms is often related to decrease immunity. Often, candidiasis occurs in a localized and superficial manner in the oral cavity, but it can be systemic or invasive and even lead to death in immunocompromised individuals [1, 2]. Like other pathogenic fungi, Candida spp. present dimorphism in the yeast and pseudohyphatic forms. The hyphal form is associated with epithelial cell invasion and thus causing tissue damage [3]. Candida spp. has other virulence factors such as adherence, production of tissue-damaging hydrolytic enzymes such as proteases, and the biofilm formation in host tissue and in medical devices [4]. Several predisposing factors, local and systemic, may result in the transition from yeast Candida to the hyphal form (pathogenic). Local factors include the use of prostheses, corticosteroid inhalers, and xerostomia, while systemic factors include immunosuppressed states as human immunodeficiency virus—HIV for example. Psoriasis, recently, was described as a predisposing factor for oral candidiasis [5].

The type of Candida spp. most commonly isolated from the oral cavity is C. albicans, which occurs in both healthy and diseased individuals [1, 6, 7]. Nonalbicans species were also isolated from the oral cavity of immunocompromised patients, such as C. glabrata, C. krusei, C. parapsilosis, C. tropicalis, C. guilliermondii, and C. dubliniensis [8]. Protective immune response can be induced by Candida in the host that allows its own survival. Immunocompetent adults, usually, present acquired immunity underlying the fungus that prevents the progression of oral colonization to symptomatic infection. Integrity of the mucosa is important for oral health because normally it prevents the invasion of microorganisms, as well as macromolecules, which may be antigenic [9].

1.1. Main types, diagnosis, and treatment of oral candidiasis

Candidiasis is an acute or chronic infection produced by Candida sp., often, limited to the skin and mucous membranes, but can produce a severe systemic disease in immunocompromised patients [3]. It may exhibit various clinical patterns such as the four primary oral forms: pseudomembranous candidiasis (thrush), acute erythematous oral candidiasis, chronic erythematous oral candidiasis, and chronic hyperplastic candidiasis (Table 1). These primary forms of candidiasis are also associated with lesions called secondary forms of candidiasis, such as angular cheilitis, median rhomboid glossitis, and Candida sp.-associated prosthesis stomatitis [10].

Primary forms of oral candidiasis Characteristics
Pseudomembranous candidiasis (oral thrush) Confluent white plaques with epithelial desquamation and accumulation of keratin, fibrin, necrotic tissue, and fungal hyphae [5, 11]
  • Ability to easily remove white plaques with gauze [5]

  • Most commonly found in immunosuppressed individuals [5]

Acute erythematous oral candidiasis
  • Known as “sore mouth antibiotic,” due to its association with prolonged use of broad-spectrum antibiotics [11]

  • It presents as erythematous patches, commonly on the palate, but may also present on the buccal mucosa or on the back of the tongue [5]

Chronic erythematous oral candidiasis
  • These are atopic lesions associated with angular cheilitis and prosthetic stomatitis [5]

  • Prevalence in HIV-positive and AIDS patients [11]

Chronic hyperplastic candidiasis (candida leukoplakia)
  • Homogeneous type of adherent white or erythematous nodular/speckled type that cannot be easily erased [5, 11]

  • It is present bilaterally in the commissure regions of the buccal mucosa [11]

Table 1.

Primary forms of oral candidiasis [10].

Figure 1.

Primary targets of several antifungal agents by Garcia-Cuesta et al. [14].

Diagnosis of oral candidiasis is established by identification of clinical signs and symptoms in conjunction with the presence of Candida organisms in the examination of an injury smear, biopsy examination containing hyphal form in the epithelium (Schiff’s Periodic Acid), or positive culture and serological tests [11, 12, 13].

Generally, the drugs of choice for localized, uncomplicated candidiasis in patients with normal immune function are topical antifungal agents (Figure 1). These agents can achieve elevated levels of concentration in the oral epithelium [14]. Azoles act inhibiting the lanosterol 14-α-demethylase (enzyme involved in ergosterol biosynthesis) activity 14-α-demethylase (enzyme involved in ergosterol biosynthesis) and disrupt the cell membrane. The resistance to azole, generally, can be observed in HIV/AIDS patients receiving treatment for pre-HAART oral or esophageal candidiasis, for example. The resistance mechanisms of C. albicans include mutations that result in increased expression of efflux pumps (CDR1P, CDR2P, and MDR1P) and mutations in the target ERG11 drug [15].

Polyenes act by direct binding to ergosterol within the membranes of fungal cells, therefore, inducing the leakage of cytoplasmic content and leading to the death of microorganism. Formulations of nystatin or amphotericin B are used for 4 weeks [11, 14]. Resistance was observed in case reports of cancer patients on chemotherapy and those who have received long-term prophylactic therapy. The mechanism of Candida resistence to the polyenes are not yet known, but seem to involve changes in the cell membrane composition [15].

Echinocandins are noncompetitive inhibitors of the β-1,3 glucan synthase encoded by the FKS1 gene of C. albicans, which leads to the formation of fungal cell walls with impaired structural integrity, leading to osmotic lysis. Resistance is associated with acquired or intrinsic FKS1 point mutations [15]. Flucidosycin is a pyrimidine analogue, which is transported to fungal cells by cytosine permeases. After this, 5-fluorouracil and phosphorylation of 5-fluorodeoxyuridine monophosphate are deaminated. This nucleotide acts by inhibiting thymidylate synthase and interferes with DNA synthesis [14]. Mutations in the cytosine-permease FCY2 gene or the cytosine-deaminase gene FCY1 are the most common causes of drug resistance. To avoid this increased resistance, flucytosine is almost always administered to patients in conjunction with amphotericin B [15]. Griseofulvin, first isolated from griseofulvin, first isolated from Penicillium griseofulvum, inhibits the fungal mitosis to act by disrupting the production of microtubules in the spindle and cytoplasm [14].

Antifungal systemic agents are indicated in fungemia when found in low immunity or immunodeficiency, high agranulocytosis, cancer patients or patients with intravenous catheters [11]. Worldwide, an increase in the number of antifungal resistant yeasts is recognized. An important factor in contribution to human candidiasis is the ability of Candida species to form drug-resistant biofilms [4]. The antifungal resistance can occur by different mechanisms, such as the reduction of the intracellular accumulation of the drug, decreased affinity of the target by the drug, and neutralizing the effect of the drug. Depending on the mode of action of the antifungal compounds, the mechanism of resistance will be different [14].

The search for new antifungal agents and the characterization of new targets that are more appropriate and efficient have been proposed [4]. Potential alternative therapies include the use of new active principles obtained from different general sources, such as natural products, in particular, the plants that contain several components that are important sources of biologically active molecules [14].

Advertisement

2. Brazilian medicinal plants tested against Candida spp.—by Vagner Rodrigues Santos

2.1. Introduction

The search for therapeutic applications of medicinal plants and their derivatives has grown in the past years throughout the world. Several studies have been carried out in order to evaluate new biological properties from the biodiversity. The discovery of new antimicrobial components is of great relevance, particularly for dentistry, since bacterial and fungal infections of the oral cavity are a relatively common problem: Candida albicans is an opportunistic yeast commonly identified in denture stomatitis and other oral candidosis clinical forms [12].

These are examples of infectious conditions of the mouth, and the resistance to antimicrobials in clinical cases has stimulated the search for natural agents as alternative treatments for the mouth infectious conditions. In Brazil, local communities use plants and their extracts for different medicinal purposes and take advantage of the availability of these plants and the low cost for product preparation. Plants have been used as antimicrobial, anti-inflammatory, wounds scarring, and antihemorrhagic agents, just to mention a few [16].

Medicinal plants continue to be widely used in rural and urban areas of Brazil. However, the intense miscegenation of crops over the last few centuries has more popularized the use of exotic native Brazilian plants and plants imported from other countries in popular medicine, especially in the southcentral part of the country. Most of these species were introduced by the Europeans and Africans, and are usually used according to the traditions of their places of origin [15, 16]. The growth of the pharmaceutical industry during the second half of the last century also distanced the Brazilian population from traditional medicine based on native plants. In the mid-1970s, for example, commercial pharmacies had lost their importance as the pharmaceutical industry completely dominated the drug market. This period was also marked by intense repression of mysticism, including the traditional use of medicinal plants. These facts are aggravated also by the continuous destruction of the rich Brazilian ecosystems, a process initiated with the exploration of Brazilwood by the Portuguese. As a consequence, remedies prepared with native plants, especially those of Amerindian origin, are now little known or used [16].

The Brazilian territory has about 20% of the world’s biodiversity, including plants, which serve as raw materials for the production of herbal medicines and other products. The great cultural and ethnic diversity of Brazil is responsible for the knowledge transmitted over generations on the management and use of medicinal plants [17]. The high frequency of infections by the Candida species, as well as the occurrence of resistance to the usual antifungal, either in the hospital environment or in domestic use, as well as the increasing number of immunocompromised patients puts us in check and leads us to search for new active principles originated from medicinal plants that are effective in the control of microorganisms [18].

Several plants have been studied in Brazil based on popular use, mainly by rural communities [16].

The antifungal activity observed in some plants may be related to the presence of flavonoid glycosides and tannins, components that have antimicrobial and anti-inflammatory properties [19]. There is a growing interest in the use of tannins as antimicrobial agents. The activity of tannins against bacteria and yeasts can be measured by their action on the membranes, since they can cross the cell wall, composed of polysaccharides and proteins, and bind to its surface [20].

Studies with natural products generate difficulties regarding the comparison of results. This situation is due to the different presentations of the products used as tincture, ethanolic extract, aqueous extract, essential oil, among others, as well as the various methodological criteria employed [21] and also the different forms of phytotherapic presentation, among them, oral solutions, gel, and tea by decoction. The greater or lesser biological activity of the essential oils has been shown to be dependent on the composition of their chemical constituents, such as citral, pinene, cineole, caryophyllene, elemeno, furanodiene, limonene, eugenol, eucalyptol, and carvacrol. These constituents are responsible for the antiseptic, antibacterial, antifungal, and antiparasitic properties [22].

The mode of extraction of the active principles can influence significantly the antimicrobial activity. Biosynthesis of the constituents of a plant is strongly affected by the environment, harvest and postharvest, rainfall, temperature, luminosity, and humidity [23].

The mechanisms of action of medical plant extents on Candida spp. are still poorly studied. Several mechanisms of action have been proposed from the rupture of the cellular membranes, which several mechanisms of action have been proposed from the rupture of the cellular membranes, which seems to interrupt the cell cycle through the synthesis of proteins and alteration of the yeast DNA [24].

The most common microbiological methods for testing plant-derived products such as extracts, resins, and essential oils are agar diffusion tests and liquid-liquid tests such as macrodilution and microdilution [25]. The techniques of application of the plant antimicrobial substance in the diffusion method are by means of disc, stainless steel, or glass cylinders and agar perforation. The agar diffusion test, also called plaque diffusion, is a physical method in which a microorganism is challenged against a biologically active substance in solid culture medium and relates the size of the growth inhibition zone of the challenged microorganism [25, 26]. The application of the diffusion method is limited to fast-growing microorganisms, which are aerobic or anaerobic. The evaluation is comparative against a reference biological standard (positive control), and the zone or halo of inhibition of growth is measured starting from the circumference of the disc or well, to the margin where there is growth of microorganisms [27]. According to the size of the halo, the microorganisms can be classified as: sensitive, when the diameter of the zone of inhibition is greater or no more than 3 mm less than the positive control; moderately sensitive, halo greater than 2 mm, but smaller than the positive control of more than 3 mm; and resistant, diameter equal to or less than 2 mm. As a positive control, a standard antimicrobial is used, and as a negative control, the solvent is used for the dissolution of the extracts [28, 29, 30, 31, 32]. The recommended incubation conditions are 35–37°C for bacteria for 24 to 48 hours and for fungi from 25 to 27°C for 48 to 72 hours [33, 34, 35, 36, 37, 38, 39]. These tests serve to define the minimum inhibitory concentration that quantifies the lowest concentration of the product capable of inhibiting the growth of microorganisms [40, 41, 42, 43, 44, 45, 46] (Table 3).

Table 2 shows the species, families, popular names, and used parts of plants for the various applications in traditional medicine.

Herbs Family Local popular name Used source Medical use Ref.
Allium sativum L. Liliaceae Garlic Bulb Antimicrobial,
healing,
antioxidant,
antitumor
[47, 48]
Anacardium humile L. Anacardiaceae Cajuzinho-do-cerrado,
little cuckoo
Shells,
sheets,
pulp
Antifungal,
anti-inflammatory,
hypoglycemic
antioxidant,
antimicrobial
antiparasitic
[49, 50]
Anadenanthera colubrina (Vell) Brenan Fabaceae Angico branco,
white Angico
Shells, resin Healing,
anti-inflammatory,
antimicrobial
[51, 52]
Annona crassiflora Mart. Annonaceae Araticum Shells, sheets,
fruits
Antimicrobial
cytotoxicity
[53, 54]
Arrabidaea chica (Hum. & Bonpl.) B. Verlot Bignoniaceae Crajiru Sheets,
shells
Anti-inflammatory,
Antimicrobial
Antihypertensive,
antitumoral
[55, 56]
Azadirachta indica A. Juss Meliaceae Neem,
nim
Oil, flowers,
leaves, seeds,
bark
Antimicrobial,
insecticide,
antimalarial
[57, 59]
Baccharis dracunculifolia DC Asteraceae Rosemary, broom Sheets,
flowers,
stalk
Antimicrobial
antioxidant,
antitumoral,
healing
[38, 60, 61]
Baccharis trimera (Less.)DC Asteraceae Carqueja Flowers
sheets
oil
Antioxidant,
antihepatotoxic,
anti-inflammatory
[62, 63]
Calendula officinalis L. Asteraceae Calendula Flowers Anti-inflammatory,
healing,
antimicrobial
[64, 65]
Ceiba speciosa (A.St-Hil) Ravena Malvaceae Paineira Shells,
sheets
Antiematism,
antihypertensive,
antimicrobial
[66, 67]
Centaurium erythraea Rafn Gentianaceae Centaurea Shells,
sheets
Digestive, emetic, febrifuge, hepatic, antioxidant,
anti-inflammatory
[49, 68]
Chrysobalanus icaco L. Chrysobalanus Ajiru Sheets Antimicrobial,
anti-inflammatory,
antitumoral
[71]
Coriandrum sativum L. Apiaceae Coriander,
coentro
Sheets,
seeds
Antibacterial,
antioxidant,
hepatoprotective, anticonvulsivant
[69, 70]
Croton campestris (A. St-Hill.) Euphorbiaceae Canopy, velame Oil, barks,
root
Anti-inflammatory,
antimicrobial,
antioxidant
[49, 72]
Curatella americana L. Dilleniaceae Sambaiba Sheets Antimicrobial,
anti-inflammatory, antiulcerogenic,
antihypertensive
[73, 74]
Dalbergia ecastophyllum (Linn.) Taub. Leguminosae Rabo-de-bugio Resin,
sheets
Antitumoral,
antimicrobial,
antioxidant,
anti-inflammatory
[75, 76]
Drimys winteri (J.R.Forst & G. Forst) Winteraceae Casca d’anta Bark Antifungal,
antibacterial,
antioxidant
[77, 78]
Eugenia dysenterica ex DC Mart. Myrtaceae Cagaita Leaves,
barks
Antidiarrhoeic,
antileukemic
[79, 80]
Eugenia uniflora L. Myrtaceae Pitanga Leaves Diarrhea, fever, diabetes, inflammation,
headache
[81, 82]
Equisetum arvense L. Equisetaceae horsetail Sheets,
bark
Antioxidant,
anti-inflammatory,
antimicrobial,
antitumoral
[83, 84]
Glycyrrhiza glabra L. Fabaceae Licorice Alcacuz Root,
rhizome
Antioxidant,
anti-inflammatory,
antiosteoporotic
[85, 86]
Hymenaea courbaril L. Leguminosae Jatobá Sap,
peel
Antimicrobial,
anti-inflammatory,
bronchitis, antidiarrheal
[87, 88]
Jacaranda cuspidifolia Mart. Bignoniaceae Rosewood
Jacarandá
Barks, leaves, resin Antimicrobial
anti-inflammatory,
antitumor
[89, 90]
Lafoensia pacari (A.St-Hill). Lythraceae Mangava brava Stem
bark
Anti-inflammatory
analgesic
[91, 49]
Lippia sidoides Cham. Verbenaceae Rosemary-pepper, Alecrim-pimenta Leaves, barks Antinociceptive,
anti-inflammatory
antimicrobial
[60, 92]
Malva sylvestris L. Malvaceae Mauve,
malva
Sheets,
flowers
Cough,
anti-inflammatory
healing
[93, 94]
Maytenus salicifolia Mart Ex Reissek Celastraceae Holy Thorn, Espinheira santa Sheets Antiseptic,
dyspepsia,
antiulcer
[95, 96]
Melaleuca alternifolia
Cheel
Myrtaceae Melaleuca Essential oil Antiseptic
anti-inflammatory,
antifungal
[87, 97, 98]
Mentha piperita L. Lamiaceae Peppermint, H ortelã--pimenta Sheets Expectorant,
carminative,
anti-inflammatory
antimicrobial
[55, 92]
Myroxylon peruiferum L.f. Fabaceae Cabreúva Bark,
fruits
Anti-inflammatory,
anti-headache,
antifungal
[87, 99]
Psidium guajava L. Myrtaceae Guava tree goiabeira Leaves,
fruits
Antioxidant,
antimicrobial,
anti-inflammatory
[81, 100]
Punica granatum L. Punicaceae Pomegranate
Romã
Bark, peel,
pericarp,
leaves,
juice
Antioxidant,
anti-inflammatory,
antimicrobial,
anticarcinogenic
[20, 101, 102]
Ricinus communis L. Euphorbiaceae Castor
mamona
Aerial parts Antidiabetic,
antifertility,
anti-inflammatory,
antimicrobial,
antioxidant
[103, 104]
Sapindus saponaria var. drummondii (Hook. & Arn.) L. Benson Sapindaceae Soapberry Leaves, fruits,
barks
Diuretics,
expectorants
antifungal,
antioxidant
[105, 106]
Schinus terebinthifolius Raddi Anacardiaceae Aroeira Fruits, leaves, stem bark,
essential oil
Antioxidant,
anti-inflammation
antimicrobial,
antifungal,
antiulcer
[69, 107]
Stryphnodendron adstringens (Mart) Coville, 1910 Fabaceae Barbatimão Bark
leaves
Anti-inflammatory,
cicatrizant,
antimicrobial
[108, 109, 110]
Vismia guianensis (Aubl.) Pers. Clusiaceae Sealing wax
Pau-de-lacre,
Resin,
sheets, stalk
Anti-inflammatory,
antifungal
[87, 111, 112]
Ziziphus joazeiro Mart. Rhamnaceae Juazeiro Leaves, fruits, bark, root. Anti-inflammation, antimicrobial, healing [87, 113]

Table 2.

Relation of Brazilian medicinal plants tested in vitro against Candida species.

The table lists the native species and those imported or brought to Brazil.


*Ref.—References.


Herbs Active compounds Microorganism MIC: μg//mL Ref.
Allium sativum L. Quercetin, cyanidin,
allistatin, allicin, ajoene
C. albicans
C. glabrata
C. tropicalis
C. parapsilosis
0.125
0.312
1.56
12.5
[47, 48]
Anacardium humile Tannins,
saponins, flavonoids amentoflavone
C. albicans 1.50 [114, 49, 50]
Anadenanthera colubrina (Vell) Tannins, flavonoids C. albicans 0.031 [115, 51, 52]
Annona crassiflora(Mart.) Antioxidant, tannins C. albicans
C. tropicalis
C. krusei
2.0
0.25
0.5
[54, 116]
Arrabidaea chica Isoscutellarein, 6-hydroxyluteolin, hispidulin, scutellarein, luteolin, apigenin; anthocyanins, coumarins, flavonoids, saponins, tannins, triterpenes C. albicans,
C. dubliniensis
C. parapsilosis
C. tropicalis
C. krusei
C. guilliermondii,
C. utilis
C. lusitaniae
C. glabrata
C. rugosa
0.007/0.015 [55, 56, 102]
Azadirachta indica Nimonol, mahmoodin, naheedin C. albicans 1000/500 [58, 117, 118]
Baccharis dracunculifolia Artepillin C, baccharin, kaempferide, drupanin, p-coumaric acid, culifolin, caffeic acid phenethyl ester, chlorogenic acid, kaempferol, pinocembrin, naringenin, chrysin C. albicans,
C. glabrata.
C. albicans,
C. tropicalis,
C. stellatoidea,
C. krusei
0.350
0.43
20–320
[24, 38, 92, 119]
Baccharis trimera Flavonoids, phenolic acids, quercetin, luteolin, nepetin or eupafolin, apigenin, hispidulin, phytoalexin C. albicans 2.0 [120, 121]
Calendula officinalis L. Quercetin, hyperosides, α-cadinol, gamma-cadinene, 1,2,3-cadinatriene, α-muurolol C. albicans
C. parapsilosis
C. dubliniensis
C. glabrata
11.0 a 30 [64, 65]
Ceiba speciosa (A.St-Hil) Ravena Quercetin, ruthin, kaferol, gallic acid, chlorogenic acid, elagenic acid, caffeic acid C. albicans 0.2 [66, 67]
Centaurium erythraea Rafn Erytaurin, gentiopicrin, erytro-centaurin C. albicans, 10.5 [49, 68]
Coriandrum sativum L. Decanal, trans-2-decenal, 2-decen-1-ol, cyclodecane, mono- and sesquiterpene hydrocarbons C. albicans
C. tropicalis
C. stellatoidea
C. krusei
0.007
20
32
20
[60, 92, 122]
Chrysobalanus icaco Pomolic acid C. albicans,
C. tropicalis
1.56
6.25
[71]
Croton campestris L. Spathulenol, borneol,
Β-caryophyllene,
1,8-cineole
C. albicans 5.25 [49, 123, 124]
Curatella americana L. Tannins, 4-O-methyl—catechin; epicatechin-3-O-gallate; 4-O-methyl-catechin-3-O-gallate C. albicans
C. tropicalis
C. parapsilosis
15.6
31.3
31.3
[73]
Dalbergia ecastaphyllum Luteolin, quercetin,
biochanin A,
Dalbergin, liquiritigenin,
rutin
C. albicans,
C. glabrata,
C. tropicalis
64 [125, 126]
Drimys winteri Polygodial,
caffeic acid,
3-caffeoylquinic acid
C. albicans 0.015 [92, 127]
Eugenia dysenterica ex DC Mart. Caryophyllene,
bicyclogermacrene,
spathulenol,
Caryophyllene oxide
C. albicans,
C. tropicalis,
C. stellatoidea,
C. krusei.
C. albicans
20
32
32
20
0.250
[69, 92]
Eugenia uniflora Linn Castor oil,
isoquercetin,
quercetin
C. krusei
C. famata,
C. guilliermondii
C. tropicalis
250
125
500
125
[79, 80, 128]
Equisetum arvense L. Camptothin A,
Eugiflorins D1 and D2,
afzelin, myricitrin, quercetin, myricetin, betulinic acid, centelloside C
C. albicans
C. albicans
C. tropicalis
C. krusei
C. parapsilosis
0.250
1000
31.2
31.2
125
[129, 81, 82, 130]
Glycyrrhiza glabra L. Flavonoids, phenolic acids, alkaloids, phytosterols, tannins, and triterpenoids C. albicans 0.78–3.12 [131, 132]
Hymenaea courbaril L. Triterpenic saponins, glycyrrhizin,
glabridin
C. glabrata 8 [133]
Jacaranda cuspidifolia Mart. Terpene,
phenolic,
salicylic acid
C. albicans
C. glabrata
C. krusei
C. parapsilosis
C. tropicalis
1.25
0.625
1.25
1.25
0.625
[87]
Lafoensia pacari St. Hil. Saponins,
coumarins, quinones, flavonoids, tannins, triterpenes, steroids, alkaloids
C. albicans 16 [90]
Lippia sidoides Cham. Ellagic acid C. albicans, 4.40 [60, 92]
Malva sylvestris L. Isoborneol, bornyl acetate,
α-humulene, α-fenchene
C. albicans 0.250 [92, 134]
Maytenus salicifolia Mart Ex Reiss Mucopolysaccharides,
mucilages,
flavonoids
C. albicans
C. tropicalis
C. stellatoidea
C. krusei
20
32
32
20
[69, 93, 94]
Melaleuca alternifolia
Cheel
Tannins, nepeticin, rigidenol,
gliquidone,
11-Π± −hydroxygliquidone,
16-b-hydroxypristymerin
C. albicans 50 [95, 96]
Mentha piperita L. 8-cineole, neomenthol, menthol, carvone, acetato de metila, trans-cariofileno e viridiflorol menthol, menthone C. albicans 0.73 [87, 97, 98]
Myroxylon peruiferum α-Copaene, safrole,
δ-cadinene, cumarin,
cabreuvina
C. albicans 0.500 [55, 92]
Psidium guajava Phenolic, flavonoid,
carotenoid, terpenoid
triterpene
C. albicans
C. glabrata
C. krusei
C. parapsilosis
C. tropicalis
1.25
1.25 μg
0.625
0.625
1.25
[87, 99, 135]
Punica granatum Tannins, piperidine alkaloids, polyphenols, oxalic acid, malic acid, ascorbic acid, estrone punicic acid, punicalagin C. albicans
C. tropicalis
C. stellatoidea
C. krusei
C. albicans
C. krusei
20
32
20
32
125
15,6
[136, 69, 81]
Ricinus communis Ricinoleic acid,
ricin, ricinin
C. albicans,
C. dubliniensis,
C. parapsilosis
C. tropicalis
C. krusei
C. guilliermondii
C. utilis,
C. lusitaniae,
C. glabrata,
C. rugosa
125
15.6
125
12.5
125
100
100
30
100
30
[137, 138, 139]
Sapindus saponaria var. Drummondii (Hook. & Arn.) L. Benson Terpene-acetylated saponins
hederagenin
C. albicans 200/400 [140, 141]
Schinus terebinthifolius Raddi α-Pinene, sabinene,
z-salven, β- pinene,
α-funebrene,
limonene, myrcene,
alphaphellandrene
C. albicans
C. parapsilosis
C. glabrata
C. tropicalis
300/600
600
300
300
[105, 106, 142]
Stryphnodendron adstringens (Mart) Coville, 1910 Gallic acid,
procyanidin
tannins,
delphinidin
C. albicans,
C. tropicalis,
C. stellatoidea,
C. krusei
C. albicans
4.25; 20
32
32
20
7.8
[49, 143, 144]
Vismia guianensis (Aubl.) Pers. Vismiofuranoxantona, isojacareubina
flavan-3-ol: epicatequina
C. albicans 4.25 [108, 110, 145]
Zizyphus joazeiro Mart. Betulinic acid, oleanolic acid, caffeine, amphibine D, jujubogenin C. albicans
C. glabrata
C. krusei
C. parapsilosis
C. tropicalis
C. albicans
0.625
1.25
0.625
1.25
1.25
1.00
[87, 92, 112, 146]

Table 3.

Minimum inhibitory concentration(MIC)—in vitro antimicrobial test of Brazilian medicinal plants against Candida species.

* Ref—References.


Advertisement

3. Oral candidiasis clinical trial studies

There are few clinical studies in humans on the efficacy of extracts from Brazilian plants in the treatment of oral candidiasis. More recently, human effectiveness of Brazilian green propolis derived from B. dracunculifolia on plaque control and gingivitis [49] has been shown for the prevention and control of oral mucositis and candidiasis [147, 148] and compared green propolis gel with benzydamine hydrochloride in cancer patients and irradiated in the head and neck regions [149]. Also, the Brazilian red propolis, derived from D. ecastaphyllum, both extract and gel, inhibited C. albicans in vitro, periodontopathogenic bacteria in vitro and in vivo, besides controlling periodontitis in rats [150]. The antifungal activity of Brazilian green propolis, originated by Baccharis dracunculifolia, was proven when tested against Candida albicans collected from HIV-patients mouth. The authors also demonstrated the more effectivity of propolis compared with usual antifungal tested [29].

Advertisement

4. Conclusions

In this chapter, there is information about the most used Brazilian species of plants against Candida species. The highest antimicrobial activities were obtained with diverse plant extracts. Some tests were done with the wild-type microorganisms collected from patients’ mouths; however, most tests were done using standardized American Type Culture Collection (ATCC) samples. There is a certain difficulty in doing clinical tests on humans, especially when it comes to natural products. On the other hand, tested are antibacterial and anticandidal agents and could be used in the treatment of various oral diseases caused by multiresistant microbial agents. It is also clear from this study that the antifungal activity of these 38 medicinal plants was found with ethanolic, methanol, n-butanol, and chloroformic fractions. Studies have also revealed that the plants tested are not toxic at therapeutic doses with good antimicrobial properties. However, this study is an important step toward clinical evaluation in order to produce improved phytomedicine in the treatment of oral candidiasis for multiresistant Candida albicans.

Advertisement

Acknowledgments

The authors thank Ms. Lorena de Melo Santos for the English revision.

Advertisement

Photo Credits (alphabetical order of Latin names): 1 Allium sativum, alho; 2 Anacardium humile, cajuzinho do campo. https://www.dicaparasaude.com/beneficios-do-cajui/; 3 Anadenanthera colubrina (Vell.) Brenan; Angico branco. https://sites.unicentro.br/wp/manejoflorestal/8598-2/;4 Annona sylvatica (Araticum) http://independente.com.br/os-araticuns/; 5 Arrabidea chica (crajirú), https://manausalerta.com.br/pesquisa-analisa-acao-anti-inflamatoria-do-crajiru/, 6 Azadirachta indica (nem) -https://br.pinterest.com/pin/520095456944307200/, 7 Baccharis dracunculifolia, alecrim. http://www.ufrgs.br/fitoecologia/florars/open_sp.php?img=14749, 8 Baccharis trimera (carqueja) - http://plantaslujan-a.blogspot.com/2015/01/baccharis-trimera.html, 9 Calendula officinalis, calêndula. https://plantsam.com/calendula-officinalis/10 Ceiba speciosa(https://www.ebay.co.uk/itm/50-seeds-of-Ceiba-speciosa-Chorisia-speciosa-bottle-of-fake-kapok-tree-R-/151774995083, 11 Centaurium erythraea, centaurea. http://naturalhealingroom.com/Centaury-Herb-Centaurium-Erythraea_p_1337.html, 12 https://en.wikipedia.org/wiki/Chrysobalanus_icaco; 13 Coriandrum sativum, coentro. https://commons.wikimedia.org/wiki/File:Starr_070906-8875_Coriandrum_sativum.jpg; 14 Croton campestris, https://www.flickr.com/photos/142712970@N03/38936756240; 15 Curatella americana, cajueiro-bravo-do-campo. https://pt.wikipedia.org/wiki/Cajueiro-bravo-do-campo; 16 Dalbergia ecastophyllum http://www.ufal.edu.br/unidadeacademica/ceca/pt-br/pos-graduacao/zootecnia/dissertacoes/talita-almeida-de-paula; 17 Drimys winteri, https://futureforests.ie/products/drimys-winteri; 18 Equisetum arvense, https://www.ebay.com/itm/Equisetum-Arvense-15-Fresh-Seeds-Herb-Medicinal-Plant-Field-Common-Horsetail-/132339802749; 19 Eugenia dysenterica, cagaita. http://www.viveiroipe.com.br/?mudas=cagaita; 20 Eugenia uniflora, pitangueira. https://www.fazfacil.com.br/jardim/pitangueira/; 21 Glycyrrhiza glabra https://www.indiamart.com/proddetail/glycyrrhiza-glabra-mulethi-extract-12502491912.html; 22 Hymenaea courbaril http://fredsonpaivareporter.blogspot.com/2017/01/hymenaea-courbaril-viveiro-da-patrulha.html; 23 Jacaranda cuspidifolia -https://br.pinterest.com/pin/24769866672935594/?lp=true; 26 Malva sylvestris, malva. http://johnstarnesurbanfarm.blogspot.com/2011/11/malva-sylvestris.html; 27 Maytenus salicifolia, espinheira santa. http://www.ervanariamarcosguiao.com/product-page/espinheira-santa; 28 Melaleuca alternifolia; 29 Mentha piperita, 30 Myroxylon peruiferum, 31 Psidium guajava, 32 Punica granatum, http://www.medicinanatural.com.br/; 34 Sapindus saponaria, https://www.flickr.com/photos/mercadanteweb/10829969066; 35 Schinus therebintifolia, https://en.wikipedia.org/wiki/Schinus_terebinthifolia; 36 S. adstringenshttps://www.tudosobreplantas.com.br;37Vismiaguianensis, lacre. http://tropical.theferns.info; 38 Z. joazeirohttp://www.naturezabela.com.br/2011/04/juazeiro-ziziphus-joazeiro.html; 23 Photos of the author Vagner Rodrigues Santos: (1) A. sativum, (13) Coriandrum sativum, (24) Lafoensia pacari, (25) Lippia sidoides, (33) Ricinus communis.

References

  1. 1. Manfredi M, Polonelli L, Aguirre-Urizar JM, Carrozzo M, McCullough MJ. Urban legends series: Oral candidosis. Oral Diseases. 2012;19:245-261
  2. 2. Pietrzak A, Grywalska E, Socha M, Roliński J, Franciszkiewicz-Pietrzak K, Rudnicka L, et al. Prevalence and possible role of Candida species in patients with psoriasis: A systematic review and meta-analysis. Mediators of Inflammation. 2018 May 6;2018:9602362. DOI: 10.1155/2018/9602362. eCollection 2018
  3. 3. Dabas PS. An approach to etiology, diagnosis and management of different types of candidiasis. Journal of Yeast and Fungal Research. 2013;4:63-74
  4. 4. Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes-Giannini MJS. Candida species: Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. Journal of Medical Microbiology. 2013;62:10-24
  5. 5. Millsop JW, Fazel N. Oral candidiosis. Clinics in Dermatology. 2016;34:487-494
  6. 6. Cannon RD, Chaffin WL. Colonization is a crucial factor in oral candidiasis. Journal of Dental Education. 2001;65:785-787
  7. 7. Farah CS, Lynch N, McCullough MJ. Oral fungal infections: An update for the general practitioner. Australian Dent J. 2010;55(1 Suppl):48-54
  8. 8. Anibal PC, Peixoto IT, Foglio MA, Höfling JF. Antifungal activity of the ethanolic extracts of Punica granatum L. and evaluation of the morphological and structural modifications of its compounds upon the cells of Candida spp. Brazilian Journal of Microbiology. 2013;44(3):839-848. DOI: 10.1590/S1517-83822013005000060. eCollection 2013
  9. 9. Dineshshankar J, Sivakumar M, Karthikeyan M, Udayakumar P, Shanmugam KT, Kesavan G. Immunology of oral candidiasis. Journal of Pharmacy & Bioallied Sciences. 2004;6(Suppl 1):S9-S12
  10. 10. Sawant B, Khanb T. Recent advances in delivery of antifungal agents for therapeutic management of candidiasis. Biomedicine & Pharmacotherapy. 2017;96:1478-1490
  11. 11. Patil S, Rao RS, Majumdar B, Anil S. Clinical appearance of oral candida infection and therapeutic strategies. Frontiers in Microbiology. 2015;6:1391
  12. 12. Ellepola AN, Morrison CJ. Laboratory diagnosis of invasive candidiasis. The Journal of Microbiology. 2005;43:65-84
  13. 13. Rossie K, Guggenheimer J. Oral candidiasis: Clinical manifestations, diagnosis, and treatment. Practical Periodontics and Aesthetic Dentistry. 1997;9:635-641
  14. 14. Garcia-Cuesta C, Sarrion-Pérez MG, Bagan JV. Current treatment of oral candidiasis: A literature review. Journal of Clinical and Experimental Dentistry. 2014;6:5:e576-e582
  15. 15. Taff HT, Mitchell KF, Edward JA, Andes DR. Mechanisms of Candida biofilm drug resistance. Future Microbiology. 2013;8:1-19
  16. 16. Brandao MGL. Plantas Uteis de Minas Gerais na obra dos Naturalistas. Belo Horizonte: Codigo Editora; 2010. 120pp
  17. 17. Lopes RH, Macorini LF, Antunes KÁ, Espindola PP, Alfredo TM, da Rocha Pdos S, Pereira ZV, Dos Santos EL, de Picoli Souza K, Lorenzi H, Matos FJA. Plantas Medicinais do Brasil—Nativas e exóticas. São Paulo: Instituto Plantarum; 2002
  18. 18. Freire JCP, Nóbrega MTC, Oliveira Júnior JK, Freire SCP, Dias-Ribeiro E. Herbal of antifungal activity on oral candidose: A literature review. SALUSVITA. 2016;35(4):537-546
  19. 19. Pereira JV, Pereira MSV, Sampaio FC, Sampaio MCC, Alves PM, Araújo CRF, Higino JS. In vitro antibacterial and antiadherence effect of Punica granatum Linn extracts upon dental biofilm microorganisms. Brazilian Journal of Pharmacognsosy. 2006;16:88-93
  20. 20. Vasconcelos LC, Sampaio MC, Sampaio FC, Higino JS. Use of Punica granatum Linn as an antifungal agent against antifungal activity of Higino JS 847 candidosis associated with denture stomatitis. Mycoses. 2003;46:192-196
  21. 21. Freires Ide A, Murata RM, Furletti VF, Sartoratto A, Alencar SM, Figueira GM, de Oliveira Rodrigues JA, Duarte MC, Rosalen PL. Coriandrum sativum L. (Coriander) essential oil: Antifungal activity and mode of action on Candida spp., and molecular targets affected in human whole-genome expression. PLoS One. 2017;9(6):e99086. DOI: 10.1371/journal.pone.0099086. eCollection 2014
  22. 22. Souza EL et al. Inhibitory action of some essential oils and phytochemicals on the growth of moulds isolated from foods. Brazilian Archives of Biology and Technology. 2005;48:245-250
  23. 23. Tiwari R, Latheef SK, Ahmed I, Iqbal HMN, Bule MH, Dhama K, et al. Herbal immunomodulators: A remedial panacea for designing and developing effective drugs and medicines: Current scenario and future prospects. Current Drug Metabolism. 2018;19(3):264-301. DOI: 10.2174/1389200219666180129125436
  24. 24. Mello AM, Gomes RT, Lara SR, Silva LG, Alves JB, Cortés ME, et al. The effect of Brazilian propolis on the germ tube formation and cell wall of Candida albicans. Pharmacology. 2006;3:352-358
  25. 25. Soliman S, Alnajdy D, El-Keblawy AA, Mosa KA, Khoder G, Noreddin AM. Plants' natural products as alternative promising anti-Candida drugs. Pharmacognosy Reviews. 2017;11(22):104-122. DOI: 10.4103/phrev.phrev_8_17
  26. 26. Besra M, Kumar V. In vitro investigation of antimicrobial activities of ethnomedicinal plants against dental caries pathogens. 3 Biotech. 2018 May;8(5):257. DOI: 10.1007/s13205-018-1283-2
  27. 27. Hindler JA, Jorgensen JH. Procedures in antimicrobial susceptibility testingin. In: Mahon C, Manusels Jr. G. Text Book of Diagnostic Microbiology. Chapter 3. Philadelphia, United States: W.B. SaundersComp; 1995. 58-96pp
  28. 28. de Paula AMB, Gomes RT, SW Kwasnicka, Dias RS, Cortés ME, Santos V R. Susceptibility of oral pathogenic bacteria and fungi tobrazilian green propolis extract. Pharmacologyonline. 2006;3:467-473
  29. 29. Martins RS, Péreira ESJ, Lima SM, Senna MI, Mesquita RA, Santos VR. Effect of commercial ethanol propolis extract on the in vitro growth of Candida albicans collected from HIV-seropositive and HIV-seronegative Brazilian patients with oral candidiasis. Journal of Oral Science. 2002;44(1):41-48
  30. 30. HMoreno PR, da Costa-Issa FI, Rajca-Ferreira AK, Pereira MA, Kaneko TM. Native Brazilian plants against nosocomial infections: A critical review on their potential and the antimicrobial methodology. Current Topics in Medicinal Chemistry. 2013;13(24):3040-3078
  31. 31. Giriraju A, Yunus GY. Assessment of antimicrobial potential of 10% ginger extract against Streptococcus mutans, Candida albicans, and Enterococcus faecalis: An in vitro study. Indian Journal of Dental Research. 2013;24(4):397-400. DOI: 10.4103/0970-9290.118356
  32. 32. Clinical and Laboratory and Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, Approved Standard. 2nd ed. CLSI document M27-S4. Wayne, PA, USA: CLSI; 2012
  33. 33. Silva EJ, Herrera DR, Rosa TP, Duque TM, Jacinto RC, Gomes BP, et al. Evaluation of cytotoxicity, antimicrobial activity and physicochemical properties of a calcium aluminate-based endodontic material. Journal of Applied Oral Science. 2014;22(1):61-67. DOI: 10.1590/1678-775720130031.q
  34. 34. Kirbag S, Erecevit P, Zengin F, Guvenc AN. Antimicrobial activities of some Euphorbia species. African Journal of Traditional, Complementary, and Alternative Medicines. 2013;10(5):305-309
  35. 35. Elansary HO, Szopa A, Kubica P, Ekiert H, Ali HM, Elshikh MS, Abdel-Salam EM, El-Esawi M, El-Ansary DO. Bioactivities of traditional medicinal plants in Alexandria. Evidence-Based Complementary and Alternative Medicine. 2018, Jan 31;2018:1463579. DOI: 10.1155/2018/1463579. eCollection 2018
  36. 36. Franca JR, De Luca MP, Ribeiro TG, Castilho RO, Moreira AN, Santos VR, et al. Propolis--based chitosan varnish: Drug delivery, controlled release and antimicrobial activity against oral pathogen bacteria. BMC Complementary and Alternative Medicine. 2014;14:478. DOI: 10.1186/1472-6882-14-478
  37. 37. Gomes BP, Ferraz CC, Garrido FD, Rosalen PL, Zaia AA, Teixeira FB, et al. Microbial susceptibility to calcium hydroxide pastes and their vehicles. Journal of Endodontia. 2002;28(11):758-761
  38. 38. Pereira CA, da Costa AC, Machado AK, Beltrame Júnior M, Zöllner MS, Junqueira JC, Jorge AO. Enzymatic activity, sensitivity to antifungal drugs and Baccharis dracunculifolia essential oil by Candida strains isolated from the oral cavities of breastfeeding infants and in their mothers' mouths and nipples. Mycopathologia. 2011;171(2):103-139. DOI: 10.1007/s11046-010-9353-y
  39. 39. De Luca MP, Franca JR, Macedo FAFF, Grenho L, Cortes ME, Faraco AAG, Moreira AN, Santos VR. Propolis varnish: Antimicrobial properties against cariogenic bacteria, cytotoxicity, and sustained-release profile. BioMed Research International. 2014;2014:6. Article ID: 348647. DOI: 10.1155/2014/348647
  40. 40. Ostrosky EA, Mizumoto MK, Lima MEL, Kaneko TM, Nishikawa SO, Freitas BR. Methods for evaluation of the antimicrobial activity and determination of minimum inhibitory concentration (MIC) of plant extracts. Revista Brasileira de Farmacognosia. Apr/June 2008;18(2):João Pessoa. DOI: 10.1590/S0102-695X2008000200026
  41. 41. Zgoda JR, Freyer AJ, Killmer LB, Porter JR. Polyacetylene carboxylic acids from Mitrephora celebica. Journal of Natural Products. 2001;64(10):1348-1349
  42. 42. Kunicka-Styczyńska A, Śmigielski K, Prusinowska R, Rajkowska K, Kuśmider B, Sikora M. Preservative activity of lavender hydrosols in moisturizing body gels. Letters in Applied Microbiology. 2015;60(1):27-32. DOI: 10.1111/lam.12346
  43. 43. Åhman J, Matuschek E, Kahlmeter G. The quality of antimicrobial disks from nine manufacturers—EUCAST evaluations in 2014 and 2017. Clinical Microbiology and Infection. 2018 Jun 7. pii:S1198-743X(18)30456-7. DOI: 10.1016/j.cmi.2018.05.021. [in press]
  44. 44. Dalyan CB, Topaç T, Ağca H, Sağlam S, Efe K, Ener B. Comparison of clinical laboratory standards institute (CLSI) and European committee on antimicrobial susceptibility testing (EUCAST) broth microdilution methods for determining the susceptibilities of Candida isolates. Mikrobiyoloji Bülteni. 2018;52(1):35-48. DOI: 10.5578/mb.63991
  45. 45. de-Souza-Silva CM, Guilhelmelli F, Zamith-Miranda D, de Oliveira MA, Nosanchuk JD, Silva-Pereira I, Albuquerque P. Broth microdilution in vitro screening: An easy and fast method to detect new antifungal compounds. Journal of Visualized Experiments. Feb 14 2018;132:4. DOI: 10.3791/57127. Abstract
  46. 46. Caamal-Herrera IO, Carrillo-Cocom LM, Escalante-Réndiz DY, Aráiz-Hernández D, Azamar-Barrios JA. Antimicrobial and antiproliferative activity of essential oil, aqueous and ethanolic extracts of Ocimum micranthum Willd leaves". BMC Complementary and Alternative Medicine. 2018 Feb 8;18(1):55. DOI: 10.1186/s12906-018-2122-z
  47. 47. Li WR, Shi QS, Dai HQ, Liang Q, Xie XB, Huang XM, et al. Antifungal activity, kinetics and molecular mechanism of action of garlic oil against Candida albicans. Scientific Reports. 2016;6:22805. DOI: 10.1038/srep22805
  48. 48. Khan S, Imran M, Imran M, Pindari N. Antimicrobial activity of various ethanolic plant extracts against pathogenic multidrug resistant Candida spp. Bioinformation. 2017 Mar 31;13(3):67-72. DOI: 10.6026/97320630013067. eCollection 2017
  49. 49. Pereira EM, Gomes RT, Freire NR, Aguiar EG, Brandão Md, Santos VR. In vitro antimicrobial activity of Brazilian medicinal plant extracts against pathogenic microorganisms of interest to dentistry. Planta Medica. 2011 Mar;77(4):401-404. DOI: 10.1055/s-0030-1250354. Epub 2010 Sep 22
  50. 50. Urzêda MA, Marcussi S, Silva Pereira LL, França SC, Pereira AM, Pereira PS, et al. Evaluation of the ypoglycemic properties of Anacardium humile aqueous extract. Evidence-Based Complementary and Alternative Medicine. 2013;2013:191080. DOI: 10.1155/2013/191080
  51. 51. Lima RF, Alves ÉP, Rosalen PL, Ruiz ALTG, Duarte MCT, Góes VFFi, Medeiros ACD, Pereira JV, Godoy GP, Costa EMMB. Antimicrobial and antiproliferative potential of Anadenanthera colubrina (Vell.) Brenan. Evidence-Based Complementary and Alternative Medicine. 2014;2014:802696. DOI: 10.1155/2014/802696
  52. 52. Barreto HM, Coelho KM, Ferreira JH, Dos Santos BH, de Abreu AP, Coutinho HD, et al. Enhancement of the antibiotic activity of aminoglycosides by extracts from Anadenanthera colubrine (Vell.) Brenan var. cebil against multi-drug resistant bacteria. Natural Product Research. 2016 Jun;30(11):1289-1292. DOI: 10.1080/14786419.2015.1049177
  53. 53. Lage GA, Medeiros Fda S, Furtado Wde L, Takahashi JA, de Souza Filho JD, Pimenta LP. The first report on flavonoid isolation from Annona crassiflora Mart. Natural Product Research. 2014;28(11):808-811. DOI: 10.1080/14786419.2014.885518
  54. 54. Formagio AS, Vieira MC, Volobuff CR, Silva MS, Matos AI, Cardoso CA, et al. Carvalho JE In vitro biological screening of the anticholinesterase and antiproliferative activities of medicinal plants belonging to Annonaceae. Brazilian Journal of Medical and Biological Research. 2015 Apr;48(4):308-315. DOI: 10.1590/1414-431X20144127
  55. 55. Patel K, Patel DK. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. Journal of Traditional and Complementary Medicine. 2016 Dec 10;7(3):360-366. DOI: 10.1016/j.jtcme.2016.11.003. eCollection 2017 Jul
  56. 56. Siraichi JT1, Felipe DF, Brambilla LZ, Gatto MJ, Terra VA, Cecchini AL, Cortez LE, Rodrigues-Filho E, Cortez DA. Antioxidant capacity of the leaf extract obtained from Arrabidaea chica cultivated in Southern Brazil. PLoS One. 2013 Aug 29;8(8):e72733. DOI: 10.1371/journal.pone.0072733. eCollection 2013
  57. 57. Sujarwo W, Keim AP, Caneva G, Toniolo C, Nicoletti M. Ethnobotanical uses of neem (Azadirachta indica a.Juss.; Meliaceae) leaves in Bali (Indonesia) and the Indian subcontinent in relation with historical background and phytochemical properties. Journal of Ethnopharmacology. 2016 Aug 2;189:186-193. DOI: 10.1016/j.jep.2016.05.014
  58. 58. Gupta SC, Prasad S, Tyagi AK, Kunnumakkara AB, Aggarwal BB. Neem (Azadirachta indica): An Indian traditional panacea with modern molecular basis. Phytomedicine. 2017 Oct 15;34:14-20. DOI: 10.1016/j.phymed.2017.07.001
  59. 59. Santos WL, Freire MGM, Bogorni PC, Vendramim JD, Macedo ML R. Effect of the aqueous extracts of the seeds of Talisia sculenta and Sapindus saponaria on fall armyworm. Brazilian Archives of Biology and Technology. 2008;51(2) Curitiba Mar/Apr. DOI: 10.1590/S1516-89132008000200018
  60. 60. Freires IA, Bueno-Silva B, Galvão LC, Duarte MC, Sartoratto A, Figueira GM, et al. Rosalen PL the effect of essential oils and bioactive fractions on Streptococcus mutans and Candida albicans biofilms: A confocal analysis. Evidence-based Complementary and Alternative Medicine. 2015;2015:871316. DOI: 10.1155/2015/871316
  61. 61. Veiga RS, De Mendonça S, Mendes PB, Paulino N, Mimica MJ, Lagareiro Netto AA, et al. Negrão V4, Marcucci MC. Artepillin C and phenolic compounds responsible for antimicrobial and antioxidant activity of green propolis and Baccharis dracunculifolia DC. Journal of Applied Microbiology. 2017 Apr;122(4):911-920. DOI: 10.1111/jam.13400
  62. 62. Soicke H, Leng-Peschlow E. Characterisation of flavonoids from Baccharis trimera and their antihepatotoxic properties. Planta Medica. 1987;53(1):37-39
  63. 63. Menezes AP, da Silva J, Fisher C, da Silva FR, Reyes JM, Picada JN, et al. Chemical and toxicological effects of medicinal Baccharis trimera extract from coal burning area. Chemosphere. 2016 Mar;146:396-404. DOI: 10.1016/j.chemosphere.2015.12.028
  64. 64. Gazim ZC, Rezende CM, Fraga SR, Svidzinski TI, Cortez DA. Antifungal activity of the essential oil from Calendula officinalis L. (asteraceae) growing in Brazil. Brazilian Journal of Microbiology. 2008 Jan;39(1):61-63. DOI: 10.1590/S1517-838220080001000015
  65. 65. Lovecka P, Lipov J, Thumova K. Macurkova a characterization of biologically active substances from Calendula officinalis. Current Pharmaceutical Biotechnology. 2017;18(14):1167-1174. DOI: 10.2174/1389201019666180226151910
  66. 66. Dörr JA, Bitencourt S, Bortoluzzi L, Alves C, Silva J, Stoll S, et al. In vitro activities of Ceiba speciosa (A.St.-Hil) Ravenna aqueous stem bark extract. Natural Product Research. 2018 May;24:1-4. DOI: 10.1080/14786419.2018.1478823
  67. 67. Vargas MS, Moreira FF, Cardoso MCK, Faoro D, Silva JSB, Machado MM. Análise do extrato aquoso das cascas de Ceiba speciosa (paineira) por cromatografia liquida de alta eficiência. anais do salao internacional de ensino, pesquisa e extensao. 2014;6(2):3-4
  68. 68. Berkan T, Ustünes L, Lermioglu F, Özer A. Antiinflammatory, analgesic and antipyretic effects of an aqueous extract of Erythraea centaurium. Planta Medica. 1991;57:34-37
  69. 69. Alves PM, Queiroz LM, Pereira JV, Pereira Mdo S. In vitro antimicrobial, antiadherent and antifungal activity of Brazilian medicinal plants on oral biofilm microorganisms and strains of the genus Candida. Revista da Sociedade Brasileira de Medicina Tropical. 2009 Mar-Apr;42(2):222-224
  70. 70. Galvao LCC, Furletti VF, Bersan SMF, Cunha MG, Ruiz ALTG, et al. Antimicrobial activity of essential oils against Streptococcus mutans and their antiproliferative effects. Evidence-Based Complementary and Alternative Medicine. 2012. DOI: 10.1155/2012/751435
  71. 71. Silva JP, Peres AR, Paixão TP, Silva AS, Baetas AC, Barbosa WL, Monteiro MC, Andrade MA. Antifungal activity of hydroalcoholic extract of Chrysobalanus icaco against oral clinical isolates of Candida species. Pharmacognosy Research. 2017 Jan-Mar;9(1):96-100. DOI: 10.4103/0974-8490.199772
  72. 72. Araújo Monteiro P, Maccari Zelioli ÍA, de Oliveira Sousa IM, Ruiz ALTG, Vendramini-Costa DB, Foglio MA, et al. Chemical composition and antiproliferative activity of Croton campestris A.St.-Hil. Essential oil. Natural Product Research. 2017 Nov;9:1-4. DOI: 10.1080/14786419.2017.1399377
  73. 73. Mendes de Toledo CE, Santos PR, Palazzo de Mello JC, Dias Filho BP, Nakamura CV, Ueda-Nakamura T. Antifungal Properties of crude extracts, fractions, and purified compounds from bark of Curatellaamericana L. (Dilleniaceae) against Candida species. Evidence-Based Complementary and Alternative Medicine. 2015;2015:673962. DOI: 10.1155/2015/673962
  74. 74. Lopes RH, Macorini LF, Antunes KÁ, Espindola PP, Alfredo TM, da Rocha PS, et al. Antioxidant and hypolipidemic activity of the hydroethanolic extract of Curatella Americana L leaves. Oxidative Medicine and Cellular Longevity. 2016;2016:9681425. DOI: 10.1155/2016/9681425
  75. 75. Daugsch A, Moraes CS, Fort P, Park YK. Brazilian red propolis--chemical composition and botanical origin. Evidence-Based Complementary and Alternative Medicine. 2008 Dec;5(4):435-441. DOI: 10.1093/ecam/nem057
  76. 76. Santos, VR. Alternative medicine for the treatment of oral microbial diseasis. In: Sakagami H. Alternative Medicine, Chapter 07. Croatia: IntechOpen; 2012
  77. 77. Doust AN, Drinnan AN. Floral development and molecular phylogeny support the generic status of Tasmannia (Winteraceae). American Journal of Botany. 2004 Mar;91(3):321-331. DOI: 10.3732/ajb.91.3.321
  78. 78. Meinhart AD, Damin FM, Caldeirão L, da Silveira TFF, Filho JT, Godoy HT. Chlorogenic acid isomer contents in 100 plants commercialized in Brazil. Food Research International. 2017 Sep;99(Pt 1):522-530. DOI: 10.1016/j.foodres.2017.06.017
  79. 79. Galheigo MR, Prado LC, Mundin AM, Gomes DO, Chang R, Lima AM, et al. Antidiarrhoeic effect of Eugenia dysenterica DC (Myrtaceae) leaf essential oil. Natural Product Research. 2016;30(10):1182-1185. DOI: 10.1080/14786419.2015.1043633
  80. 80. Vitek R, de Novais LMR, Torquato HFV, Paredes-Gamero EJ, de Carvalho MG, de Sousa PT Jr, et al. Chemical constituents and antileukemic activity of Eugenia dysenterica. Natural Product Research. 2017 Aug;31(16):1930-1934. DOI: 10.1080/14786419.2016.1261343
  81. 81. Holetz FB, Pessini GL, Sanches NR, Cortez DA, Nakamura CV, Filho BP. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem Inst Oswaldo Cruz. 2002 Oct;97(7):1027-31
  82. 82. Falcão TR, de Araújo AA, Soares LAL, de Moraes Ramos RT, Bezerra ICF, Ferreira MRA, de Souza Neto MA, Melo MCN, de Araújo RF Jr, de Aguiar Guerra ACV, de Medeiros JS, Guerra GCB. Crude extract and fractions from Eugenia uniflora Linn leaves showed anti-inflammatory, antioxidant, and antibacterial activities. BMC Complementary and Alternative Medicine. 2018 Mar 9;18(1):84. DOI: 10.1186/s12906-018-2144-6
  83. 83. Gallo FR, Multari G, Federici E, Palazzino G, Giambenedetti M, Petitto V, et al. Chemical fingerprinting of Equisetum arvense L. using HPTLC densitometry and HPLC. Natural Product Research. 2011 Aug;25(13):1261-1270. DOI: 10.1080/14786419.2011.558015
  84. 84. Gründemann C, Lengen K, Sauer B, Garcia-Käufer M, Zehl M, Huber R. Equisetum arvense (common horsetail) modulates the function of inflammatory immunocompetent cells. BMC Complementary and Alternative Medicine. 2014 Aug 4;14:283. DOI: 10.1186/1472-6882-14-283
  85. 85. Simmler C, Guido FP, Chen SN. Phytochemistry and biological properties of Glabridin. Fitoterapia. Author manuscript; available in PMC 2014 Oct 1. Fitoterapia. 2013 Oct;0:160-184
  86. 86. Najafi S, Koujan SE, Manifar S, Kharazifard MJ, Kidi S, Hajheidary S. Preventive effect of Glycyrrhiza glabra extract on oral mucositis in patients under head and neck radiotherapy: A Randomized Clinical Trial. Journal of dentistry (Tehran) 2017 Sep;14(5):267-274
  87. 87. Costa MCMF, Silva AG, Silva APS, Lima VLM, Bezerra-Silva PC, Rocha SKL, Navarro DMAF, Correia MTS, Napoleão TH, Silva MV, Paiva PMG. Essential oils from leaves of medicinal plants of Brazilian flora: Chemical composition and activity against Candida species. Medicines (Basel). Jun 2017;4(2)27:8. DOI: 10.3390/medicines4020027
  88. 88. Boniface PK, Baptista Ferreira S, Roland KC. Current state of knowledge on the traditional uses, phytochemistry, and pharmacology of the genus Hymenaea. Journal of Ethnopharmacology. 2017 Jul 12;206:193-223. DOI: 10.1016/j.jep.2017.05.024
  89. 89. Ferreres F, Grosso C, Gil-Izquierdo A, Valentão P, Andrade PB. Phenolic compounds from Jacaranda caroba (Vell.) A. DC.: Approaches to neurodegenerative disorders. Food and Chemical Toxicology. 2013 Jul;57:91-98. DOI: 10.1016/j.fct.2013.03.012
  90. 90. Yuan J, Gan T, Liu Y, Gao H, Xu W, Zhang T, et al. Composition and antimicrobial activity of the essential oil from the branches of Jacarandacuspidifolia Mart. Growing in Sichuan, China. Natural Product Research. 2018 Jun;32(12):1451-1454. DOI: 10.1080/14786419.2017.1346644
  91. 91. Queiroz e Silva SM, Pinheiro SM, Queiroz MV, Pranchevicius MC, Castro JG, Perim MC, Carreiro SC. In vitro activity of crude extracts of two plant species in the Cerrado on yeast of the Candida SPP variety. Cien Saude Colet. 2012 Jun;17(6):1649-1656
  92. 92. Bersan SM, Galvão LC, Goes VF, Sartoratto A, Figueira GM, Rehder VL, Alencar SM, Duarte RM, Rosalen PL, Duarte MC1. Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms. BMC Complementary and Alternative Medicine. 2014 Nov 18;14:451. DOI: 10.1186/1472-6882-14-451
  93. 93. Gasparetto JC, Martins CA, Hayashi SS, Otuky MF, Pontarolo R. Ethnobotanical and scientific aspects of Malva sylvestris L.: A millennial herbal medicine. The Journal of Pharmacy and Pharmacology. 2012 Feb;64(2):172-189. DOI: 10.1111/j.2042-7158.2011.01383.x
  94. 94. de Souza GC, Haas AP, von Poser GL, Schapoval EE, Elisabetsky E. Ethnopharmacological studies of antimicrobial remedies in the south of Brazil. Journal of Ethnopharmacology. 2004 Jan;90(1):135-143
  95. 95. Miranda RR, Silva GD, Duarte LP, Fortes IC, Filho SA. Structural determination of 3beta-stearyloxy-urs-12-ene from Maytenus salicifolia by 1D and 2D NMR and quantitative 13C NMR spectroscopy. Magnetic Resonance in Chemistry. 2006 Feb;44(2):127-131
  96. 96. Magalhães CG, Silva GDF, Duarte LP, Takahashi JÁ, SantosVR, Figueiredo RC, Vieira Filho SA. Maytenus salicifolia Reissek (Celastraceae): Evaluation of the activity of extracts and constituents against Helicobacter pylori and oral pathogenic microorganisms. Revista Virtual de Química. 2016;8(5):1524-1536
  97. 97. Agarwal V, Lal P, Pruthi V. Effect of plant oils on Candida albicans. Journal of Microbiology, Immunology and Infection. 2010;43(5):447-451
  98. 98. Oro D, Heissler A, Rossi EM, Scapin D, Boff E. Antifungal activity of natural compounds gainst Candida species isolated from HIV-positive patients. Asian Pacific Journal of Tropical Biomedicine. 2015;5(9):781-784
  99. 99. Akisue G. Secretions of Myroxylon peruiferum L.f. II. physical and chemical characterization of the balsam and qualitative analysis of various components. Revista de Farmácia e Bioquímica da Universidade de São Paulo. 1972;10(1):73-96
  100. 100. Gutiérrez RM, Mitchell S, Solis RV. Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. Journal of Ethnopharmacology. 2008;117(1):1-27. DOI: 10.1016/j.jep.2008.01.025
  101. 101. Paul S, Kalyani M, Kannan I. Antifungal activity, gas chromatographic-mass spectrometric analysis and in silico study of Punica Granatum peel extracts against fluconazole resistant strains of Candida species. Current Pharmaceutical Biotechnology. 2018;19(3):250-257. DOI: 10.2174/1389201019666180515104800
  102. 102. Holfing JF, Anibal PC, Obando-Pereda GA, Peixoto IAT, Furletti VF, Foglio MA. Antimicrobial potential of some plant extract against Candida species. Brazilian Journal of Biology. 2010;70(4):1065-1068
  103. 103. Leite VM, Pinheiro JB, Pisani MX, Watanabe E, de Souza RF, Paranhos Hde F, et al. In vitro antimicrobial activity of an experimental dentifrice based on Ricinus communis. Brazilian Dental Journal. 2014;25(3):191-196
  104. 104. Pinelli LA, Montandon AA, Corbi SC, Moraes TA, Fais LM. Ricinus communis treatment of denture stomatitis in institutionalised elderly. Journal of Oral Rehabilitation. 2013;40(5):375-380. DOI: 10.1111/joor.12039
  105. 105. Shinobu-Mesquita CS, Bonfim-Mendonça PS, Moreira AL, Ferreira IC, Donatti L, Fiorini A, et al. Cellular structural changes in Candida albicans caused by the hydroalcoholic extract from Sapindus saponaria L. Molecules. 2015;20(5):9405-9418. DOI: 10.3390/molecules20059405
  106. 106. Fiorini A, Rosado FR, Bettega EM, Melo KC, Kukolj C, Bonfim-Mendonça PS, et al. Candida albicans protein profile changes in response to the butanolic extract of Sapindus saponaria L. Revista do Instituto de Medicina Tropical de São Paulo. 2016;58:25. DOI: 10.1590/S1678-9946201658025
  107. 107. Santos MRG, Silva JHS, Caxito MLC. Brief review on the medicinal uses and antimicrobial activity of different parts of Schinus terebinthifolius raddi. International Journal of Pharmacy and Pharmaceutical Sciences. 2015;7(12):1-7
  108. 108. Brandão MGL, Cosenza GP, Moreira RA, Monte-mor RLM. Medicinal plants and other botanical products from the Brazilian official pharmacopoeia. Brazilian Journal of Pharmacognsosy. 2006;16(3):408-420
  109. 109. Santos VR, Gomes RT, Oliveira RR, Cortés ME, Brandão MGL. Susceptibility of oral pathogenic microorganisms to aqueous and ethanolic extracts of Stryphnodendron adstringens (barbatimão). International Journal of Dentistry. 2009;8(1):1-5
  110. 110. Morey AT, de Souza FC, Santos JP, Pereira CA, Cardoso JD, de Almeida RS, et al. Antifungal activity of condensed tannins from Stryphnodendron adstringens: Effect on Candida tropicalis growth and adhesion properties. Current Pharmaceutical Biotechnology. 2016;17(4):365-375
  111. 111. Hussein AA, Bozzi B, Correa M, Capson TL, Kursar TA, Coley PD, et al. Bioactive constituents from three Vismia species. Journal of Natural Products. 2003;66:858-860
  112. 112. Chagas RCR. Estudo fitoquimico de Vismia brasiliensis (Chisy) (Clusianaceae). Tese: UFLA; 2009. 253 p
  113. 113. Dantas FCP, Tavares MLR, Targino MS, da Costa AP, Dantas FO. Ziziphus joazeiro Mart.—Rhamnaceae: Características biogeoquímicas e importância no bioma Caatinga. Divulg Científica Tecnol IFPB. 2014;25(12):51-57
  114. 114. Bailão EFLC, Devilla IA, Conceição E C, Borges LL. Bioactive compounds found in Brazilian cerrado fruits. International Journal for Molecular Science. 2015;16(10):23760-23783. DOI: 10.3390/ijms161023760
  115. 115. Rocha RS, Kassuya CA, Formagio AS, Mauro Mde O, Andrade-Silva M, Monreal AC, et al. Analysis of the anti-inflammatory and chemopreventive potential and description of the antimutagenic mode of action of the Annona crassiflora methanolic extract. Pharmaceutical Biology. 2016;54(1):35-47. DOI: 10.3109/13880209.2015.1014567
  116. 116. Mota GS, Sartori CJ, Miranda I, Quilhó T, Mori FA, Pereira H. Bark anatomy, chemical composition and ethanol-water extract composition of Anadenanthera peregrina and Anadenanthera colubrina. PLoS One. 2017 Dec 27;12(12):e0189263. DOI: 10.1371/journal.pone.0189263 eCollection 2017
  117. 117. Santos VR, Chaim FA. Antimicrobial efficacy of Brazilian Azadirachta indica (neem) extract and mouthwash against oral pathogens microorganisms. Anais 29° Congresso Brasileiro de. Microbiología. 2017;1(1):122-122
  118. 118. Raja Ratna Reddy Y, Krishna Kumari C, Lokanatha O, Mamatha S, Damodar Reddy C. Antimicrobial activity of Azadirachta indica(neem) leaf, bark and seed extracts. Internatinal Research Journal of Phytochemistry. 2013;3(1):1-4
  119. 119. Kitamura H, Saito N, Fujimoto J, Nakashima KI, Fujikura D. Brazilian propolis ethanol extract and its component kaempferol induce myeloid-derived suppressor cells from macrophages of mice in vivo and in vitro. BMC Complementary and Alternative Medicine. 2018;18(1):138. DOI: 10.1186/s12906-018-2198-5
  120. 120. Vieira ML, Johann S, Hughes FM, Rosa CA, Rosa LH. The diversity and antimicrobial activity of endophytic fungi associated with medicinal plant Baccharis trimera (Asteraceae) from the Brazilian savannah. Canadian Journal of Microbiology. 2014;60(12):847-856. DOI: 10.1139/cjm-2014-0449
  121. 121. Duarte MC, Figueira GM, Sartoratto A, Rehder VL, Delarmelina C. Anti-Candida activity of Brazilian medicinal plants. Journal of Ethnopharmacology. 2005;97(2):305-311
  122. 122. Laribi B, Kouki K, M'Hamdi M, Bettaieb T. Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia. 2015 Jun;103:9-26. DOI: 10.1016/j.fitote.2015.03.012
  123. 123. Fontenelle ROS, Morais SM, Brito EHS, Brilhante RSN, Cordeiro RA, Nascimento NRF, Kerntopf MR, Sidrim JJC, Rocha MFG. Antifungal activity of essential oils of Croton species from the Brazilian Caatinga biome (Article). Journal of Applied Microbiology. May 2008;104(5):1383-1390
  124. 124. Oliveira-Tintino CDM, Pessoa RT, Fernandes MNM, Alcântara IS, da Silva BAF, de Oliveira MRC, et al. Anti-inflammatory and anti-edematogenic action of the Croton campestris A. St.-Hil (Euphorbiaceae) essential oil and the compound β-caryophyllene in in vivo models. Phytomedicine. 2018 Mar 1;41:82-95. DOI: 10.1016/j.phymed.2018.02.004
  125. 125. Siqueira AB, Rodriguez LR, Santos RK, Marinho RR, Abreu S, Peixoto RF, Gurgel BC. Antifungal activity of propolis against Candida species isolated from cases of chronic periodontitis (Article). Brazilian Oral Research. 2015;29(1):1-6
  126. 126. Santos Junior EM, Santos VR. Antimicrobial activity of mouthwash- brazilian red propolis content against oral microorganisms. Asian Academic Research Journal of Multidisciplinary. 2017;5(4):83-93
  127. 127. Santos VR, Pinto LSFS., Araujo e Ribeiro BCB, Kubo I. Drug enhancement, synergism and antifungal activity of miconazole associated polygodial against Candida albicans. International Journal of Research—GRANTHAALAYAH. 2017;5(11):95-101
  128. 128. Correia AF, Silveira D, Fonseca-Bazzo YM, Magalhães PO, Fagg CW, da Silva EC, et al. Activity of crude extracts from Brazilian cerrado plants against clinically relevant Candida species. BMC Complementary and Alternative Medicine. July 2016;16(1):11, Article number 203. DOI: 10.1186/s12906-016-1164-3
  129. 129. Lazarini JG, Sardi JCO, Franchin M, Nani BD, Freires IA, Infante J, et al. Bioprospection of Eugenia brasiliensis, a Brazilian native fruit, as a source of anti-inflammatory and antibiofilm compounds. Biomedicine & Pharmacotherapy. 2018;102:132-139. DOI: 10.1016/j.biopha.2018.03.034
  130. 130. Santos JFS, Rocha JE, Bezerra CF. Do Nascimento Silva MK, de Matos YMLS, de Freitas TS, dos Santos ATL, da Cruz RP, Machado AJT, Rodrigues THS, de Brito ES, Sales DL, de Oliveira Almeida W, da Costa JGM, Coutinho HDM, Morais-Braga MFB. Chemical composition, antifungal activity and potential anti-virulence evaluation of the Eugenia uniflora essential oil against Candida spp. Food Chemistry. 2018 Sep 30;261:233-239. DOI: 10.1016/j.foodchem.2018.04.015
  131. 131. Pellati D, Fiore C, Armanini D, Rassu M, Bertoloni G. In vitro effects of glycyrrhetinic acid on the growth of clinical isolates of Candida albicans. Phytotherapy Research. 2009 Apr;23(4):572-574. DOI: 10.1002/ptr.2693
  132. 132. PallagA FGA, OlteanuD CS, Baldea JT, MicleO VL, MarianE SO, Cenariu M, et al. Equisetum arvense L. extract induces antibacterial activity and modulates oxidative stress, inflammation, and apoptosis in endothelial vascular cells exposed to hyperosmotic stress. Oxidative Medicine and Cellular Longevity. 2018;2018:3060525. DOI: 10.1155/2018/3060525
  133. 133. Najafi S, Koujan SE, Manifar S, Kharazifard MJ, Kidi S, Hajheidary S. Preventive effect of Glycyrrhiza Glabra extract on Oral mucositis in patients under head and neck radiotherapy: A randomized clinical trial. Journal of Dentistry (Tehran). 2017 Sep;14(5):267-274
  134. 134. de Morais SR, Oliveira TL, de Oliveira LP, Tresvenzol LM, da Conceição EC, Rezende MH, et al. Essential oil composition, antimicrobial and pharmacological activities of Lippia siDOIdes Cham. (Verbenaceae) from São Gonçalo do Abaeté, Minas Gerais, Brazil. Pharmacognosy Magazine. 2016 Oct-Dec;12(48):262-270
  135. 135. Schwarcz KD, Bajay MM, Macrini CM, Salazar VL, Souza AP, Pinheiro JB, et al. Microsatellite markers for the Cabreúva tree, Myroxylon peruiferum (Fabaceae), an endangered medicinal species from the Brazilian Atlantic Forest. Genetics and Molecular Research. 2014 Mar 26;13(3):6920-6925. DOI: 10.4238/2014.March.26.1
  136. 136. Morais-Braga MFB, Sales DL, Carneiro JNP, Machado AJT, Dos Santos ATL, de Freitas MA, et al. Psidium guajava L. and Psidium brownianum Mart ex DC.: Chemical composition and anti-Candida effect in association with fluconazole. Microbial Pathogenesis. 2016 Jun;95:200-207. DOI: 10.1016/j.micpath.2016.04.013
  137. 137. Oliveira JR, de Castro VC, das Graças Figueiredo Vilela P, Camargo SE, Carvalho CA, Jorge AO, de Oliveira LD. Cytotoxicity of Brazilian plant extracts against oral microorganisms of interest to dentistry. BMC Complementary and Alternative Medicine. 2013 Aug 15;13:208. DOI: 10.1186/1472-6882-13-208
  138. 138. Salles MM, Badaró MM, Arruda CN, Leite VM, Silva CH, Watanabe E, et al. Antimicrobial activity of complete denture cleanser solutions based on sodium hypochlorite and Ricinus communis: A randomized clinical study. Journal of Applied Oral Science. 2015 Nov-Dec;23(6):637-642. DOI: 10.1590/1678-775720150204
  139. 139. Foss SR, Nakamura CV, Ueda-Nakamura T, Cortez DA, Endo EH, Dias Filho BP. Antifungal activity of pomegranate peel extract and isolated compound punicalagin against dermatophytes. Annals of Clinical Microbiology and Antimicrobials. 2014 Sep 5;13:32. DOI: 10.1186/s12941-014-0032-6
  140. 140. Naz R, Bano A. Antimicrobial potential of Ricinus communis leaf extracts in different solvents against pathogenic bacterial and fungal strains. Asian Pacific Journal of Tropical Biomedicine. 2012;2(12):944-947
  141. 141. Suurbaar J, Mosobil R, Donkor AM. Antibacterial and antifungal activities and phytochemical profile of leaf extract from different extractants of Ricinus communis against selected pathogens. BMC Research Notes. 2017 Dec 1;10(1):660. DOI: 10.1186/s13104-017-3001-2
  142. 142. Tsuzuki JK, Svidzinski TI, Shinobu CS, Silva LF, Rodrigues-Filho E, Cortez DA, et al. Antifungal activity of the extracts and saponins from Sapindus saponaria L. Anais da Academia Brasileira de Ciências. 2007 Dec;79(4):577-583
  143. 143. Johann S, Silva DL, Martins CVB, Zani CL, Pizzolatti MG, Resende MA. Inhibitory effect of extracts from Brazilian medicinal plants on the adhesion of Candida albicans to buccal epithelial cells(article). World Journal of Microbiology and Biotechnology. November 2008;24(11):2459-2464
  144. 144. Bernardes NR, Araújo MH, Borges IFJC, Almeida FM, Amaral EP, Lasunskaia EB, et al. Nitric oxide production, inhibitory, antioxidant and antimycobacterial activities of the fruits extract and flavonoid content of Schinus terebinthifolius. Revista Brasileira de Farmacognosia. 2014;24:644-650
  145. 145. de Freitas ALD, Kaplum V, Rossi DCP, da Silva LBR, Melhem MSC, Taborda CP, et al. Proanthocyanidin polymeric tannins from Stryphnodendron adstringens are effective against Candida spp. isolates and for vaginal candidiasis treatment. Journal of Ethnopharmacology. 2018 Apr 24;216:184-190. DOI: 10.1016/j.jep.2018.01.008
  146. 146. Brito SM, Coutinho HD, Talvani A, Coronel C, Barbosa AG, Vega C, et al. Analysis of bioactivities and chemical composition of Ziziphus joazeiro Mart. using HPLC-DAD. Food Chemistry. 2015 Nov 1;186:185-191. DOI: 10.1016/j.foodchem.2014.10.031
  147. 147. Noronha VR, Araujo GS, Gomes RT, Iwanaga SH, Barbosa MC, Abdo EN. Ferreira e Ferreira E, Viana Campos AC, Souza AA, Abreu SR, Santos VR. Mucoadhesive propolis gel for prevention of radiation-induced oral mucositis. Current Clinical Pharmacology. 2014;9(4):359-364
  148. 148. Pina GM, Lia EN, Berretta AA, Nascimento AP, Torres EC, Buszinski AF, et al. Efficacy of propolis on the denture stomatitis treatment in older adults: A multicentric randomized trial. Evidence-based Complementary and Alternative Medicine. 2017;2017:8971746. DOI: 10.1155/2017/8971746
  149. 149. Noronha VRAS, Abdo EN, Persio FPCL, Santos VR. Propolis gel versus benzydamine in preventing oral mucositis for patients irradiated in head and neck: A preliminary study. Oncology Journal | Cancer Reports and Reviews. 2017;1(2):24
  150. 150. Santos VR, Oliveira CF, Abreu Rosa FH, Araujo ACS, Ribeiro TG, Faraco AAG, Lopes MTP, Castilho RO. A new red propolis mucoadhesive gel: Antimicrobial activity against some oral pathogen. Alternative and Integrative Medicine. 2017;4(3):129. DOI: 10.4172/2327-5162.S1.011. Abstract

Written By

Vagner Rodrigues Santos and Elizete Maria Rita Pereira

Submitted: 19 April 2018 Reviewed: 09 July 2018 Published: 05 November 2018