\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"5324",leadTitle:null,fullTitle:"Ambient Intelligence",title:"Ambient Intelligence",subtitle:null,reviewType:"peer-reviewed",abstract:"It can no longer be ignored that Ambient Intelligence concepts are moving away from research labs demonstrators into our daily lives in a slow but continuous manner. However, we are still far from concluding that our living spaces are intelligent and are enhancing our living style. Ambient Intelligence has attracted much attention from multidisciplinary research areas and there are still open issues in most of them. In this book a selection of unsolved problems which are considered key for ambient intelligence to become a reality, is analyzed and studied in depth. Hopefully this book will provide the reader with a good idea about the current research lines\r\nin ambient intelligence, a good overview of existing works and identify potential solutions for each one of these problems.",isbn:null,printIsbn:"978-953-307-078-0",pdfIsbn:"978-953-51-5883-7",doi:"10.5772/194",price:119,priceEur:129,priceUsd:155,slug:"ambient-intelligence",numberOfPages:146,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"a05278706b60124f3975fb674f783a08",bookSignature:"Felix Jesus Villanueva Molina",publishedDate:"March 1st 2010",coverURL:"https://cdn.intechopen.com/books/images_new/5324.jpg",numberOfDownloads:18681,numberOfWosCitations:54,numberOfCrossrefCitations:60,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:81,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:195,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"December 10th 2015",dateEndSecondStepPublish:"December 31st 2015",dateEndThirdStepPublish:"April 5th 2016",dateEndFourthStepPublish:"July 4th 2016",dateEndFifthStepPublish:"August 3rd 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"6504",title:"Dr.",name:"Felix Jesus",middleName:null,surname:"Villanueva",slug:"felix-jesus-villanueva",fullName:"Felix Jesus Villanueva",profilePictureURL:"https://mts.intechopen.com/storage/users/6504/images/system/6504.jpg",biography:"F. J. Villanueva received the Computer Eng. Diploma from the University of Castilla-La Mancha (UCLM) in 2001. In 2009 he obtained the PhD degree from the UCLM, where he is now working as Teaching Assistant. His research interests include wireless sensor networks, ambient intelligence and embedded systems.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Castile-La Mancha",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"569",title:"Intelligent System",slug:"human-computer-interaction-intelligent-system"}],chapters:[{id:"9893",title:"Integrating Ambient Intelligence Technologies Using an Architectural Approach",doi:"10.5772/8676",slug:"integrating-ambient-intelligence-technologies-using-an-architectural-approach",totalDownloads:2967,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"A. Paz-Lopez, G. Varela, S. Vazquez-Rodriguez, J. A. Becerra and R. J. Duro",downloadPdfUrl:"/chapter/pdf-download/9893",previewPdfUrl:"/chapter/pdf-preview/9893",authors:[null],corrections:null},{id:"9892",title:"Services Everywhere: an Object-Oriented Distributed Platform to Support Pervasive Access to HW and SW Objects in Ambient Intelligence Environments",doi:"10.5772/8675",slug:"services-everywhere-an-object-oriented-distributed-platform-to-support-pervasive-access-to-hw-and-sw",totalDownloads:2224,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Jesus Barba, Felix Jesus Villanueva, David Villa, Francisco Moya, Fernando Rincon, Maria Jose Santofimia and Juan Carlos Lopez",downloadPdfUrl:"/chapter/pdf-download/9892",previewPdfUrl:"/chapter/pdf-preview/9892",authors:[null],corrections:null},{id:"9895",title:"A Review of Indoor Localization Technologies: towards Navigational Assistance for Topographical Disorientation",doi:"10.5772/8678",slug:"a-review-of-indoor-localization-technologies-towards-navigational-assistance-for-topographical-disor",totalDownloads:7372,totalCrossrefCites:57,totalDimensionsCites:77,hasAltmetrics:0,abstract:null,signatures:"Jorge Torres-Solis, Tiago H. Falk and Tom Chau",downloadPdfUrl:"/chapter/pdf-download/9895",previewPdfUrl:"/chapter/pdf-preview/9895",authors:[null],corrections:null},{id:"9897",title:"Framework for Visual Analysis of User Behaviour in Ambient Intelligence Environment",doi:"10.5772/8680",slug:"framework-for-visual-analysis-of-user-behaviour-in-ambient-intelligence-environment",totalDownloads:2027,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Ivo Maly, Jan Curin, Pavel Slavik and Jan Kleindienst",downloadPdfUrl:"/chapter/pdf-download/9897",previewPdfUrl:"/chapter/pdf-preview/9897",authors:[null],corrections:null},{id:"9894",title:"Ambient Intelligence Interaction via Dialogue Systems",doi:"10.5772/8677",slug:"ambient-intelligence-interaction-via-dialogue-systems",totalDownloads:1989,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:1,abstract:null,signatures:"Porfirio Filipe and Nuno Mamede",downloadPdfUrl:"/chapter/pdf-download/9894",previewPdfUrl:"/chapter/pdf-preview/9894",authors:[null],corrections:null},{id:"9896",title:"Trust in Global Computing Systems as a Limit Property Emerging from Short Range Random Interactions",doi:"10.5772/8679",slug:"trust-in-global-computing-systems-as-a-limit-property-emerging-from-short-range-random-interactions",totalDownloads:2107,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Vasia Liagkou, Paul Spirakis, Yannis C. Stamatiou and Effie Makri",downloadPdfUrl:"/chapter/pdf-download/9896",previewPdfUrl:"/chapter/pdf-preview/9896",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6113",title:"Human Robot Interaction",subtitle:null,isOpenForSubmission:!1,hash:"9a29f8c78e1bb0d526244fc8549e9994",slug:"human_robot_interaction",bookSignature:"Nilanjan Sarkar",coverURL:"https://cdn.intechopen.com/books/images_new/6113.jpg",editedByType:"Edited by",editors:[{id:"80960",title:"Dr.",name:"Nilanjan",surname:"Sarkar",slug:"nilanjan-sarkar",fullName:"Nilanjan Sarkar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5113",title:"Augmented Reality",subtitle:null,isOpenForSubmission:!1,hash:"954d173e8f2d779038eab3d42ef6b159",slug:"augmented-reality",bookSignature:"Soha Maad",coverURL:"https://cdn.intechopen.com/books/images_new/5113.jpg",editedByType:"Edited by",editors:[{id:"7692",title:"Dr.",name:"Soha",surname:"Maad",slug:"soha-maad",fullName:"Soha Maad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6935",title:"Toward Super-Creativity",subtitle:"Improving Creativity in Humans, Machines, and Human - Machine Collaborations",isOpenForSubmission:!1,hash:"98c0eed8bde901e69239d5217d9be28d",slug:"toward-super-creativity-improving-creativity-in-humans-machines-and-human-machine-collaborations",bookSignature:"Sílvio Manuel Brito",coverURL:"https://cdn.intechopen.com/books/images_new/6935.jpg",editedByType:"Edited by",editors:[{id:"170935",title:"Ph.D.",name:"Sílvio Manuel",surname:"Brito",slug:"silvio-manuel-brito",fullName:"Sílvio Manuel Brito"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"65367",slug:"corrigendum-to-review-of-liquid-filled-optical-fibre-based-temperature-sensing",title:"Corrigendum to Review of Liquid-Filled Optical Fibre-Based Temperature Sensing",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65367.pdf",downloadPdfUrl:"/chapter/pdf-download/65367",previewPdfUrl:"/chapter/pdf-preview/65367",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65367",risUrl:"/chapter/ris/65367",chapter:{id:"63471",slug:"review-of-liquid-filled-optical-fibre-based-temperature-sensing",signatures:"Fintan McGuinness, Gabriel Leen, Elfed Lewis, Gerard Dooly, Daniel Toal\nand Dinesh Babu Duraibabu",dateSubmitted:"May 22nd 2018",dateReviewed:"August 1st 2018",datePrePublished:"November 5th 2018",datePublished:"April 24th 2019",book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"27036",title:"Dr.",name:"Daniel",middleName:null,surname:"Toal",fullName:"Daniel Toal",slug:"daniel-toal",email:"daniel.toal@ul.ie",position:null,institution:null},{id:"85846",title:"Prof.",name:"Elfed",middleName:null,surname:"Lewis",fullName:"Elfed Lewis",slug:"elfed-lewis",email:"Elfed.Lewis@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"259703",title:"Dr.",name:"Dinesh Babu",middleName:null,surname:"Duraibabu",fullName:"Dinesh Babu Duraibabu",slug:"dinesh-babu-duraibabu",email:"dineshbabu.duraibabu@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269578",title:"Dr.",name:"Gabriel",middleName:null,surname:"Leen",fullName:"Gabriel Leen",slug:"gabriel-leen",email:"Gabriel.Leen@ul.ie",position:null,institution:null},{id:"269579",title:"M.Sc.",name:"Fintan",middleName:null,surname:"McGuinness",fullName:"Fintan McGuinness",slug:"fintan-mcguinness",email:"Fintan.McGuinness@ul.ie",position:null,institution:null},{id:"269580",title:"Dr.",name:"Gerard",middleName:null,surname:"Dooly",fullName:"Gerard Dooly",slug:"gerard-dooly",email:"Gerard.Dooly@ul.ie",position:null,institution:null}]}},chapter:{id:"63471",slug:"review-of-liquid-filled-optical-fibre-based-temperature-sensing",signatures:"Fintan McGuinness, Gabriel Leen, Elfed Lewis, Gerard Dooly, Daniel Toal\nand Dinesh Babu Duraibabu",dateSubmitted:"May 22nd 2018",dateReviewed:"August 1st 2018",datePrePublished:"November 5th 2018",datePublished:"April 24th 2019",book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"27036",title:"Dr.",name:"Daniel",middleName:null,surname:"Toal",fullName:"Daniel Toal",slug:"daniel-toal",email:"daniel.toal@ul.ie",position:null,institution:null},{id:"85846",title:"Prof.",name:"Elfed",middleName:null,surname:"Lewis",fullName:"Elfed Lewis",slug:"elfed-lewis",email:"Elfed.Lewis@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"259703",title:"Dr.",name:"Dinesh Babu",middleName:null,surname:"Duraibabu",fullName:"Dinesh Babu Duraibabu",slug:"dinesh-babu-duraibabu",email:"dineshbabu.duraibabu@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269578",title:"Dr.",name:"Gabriel",middleName:null,surname:"Leen",fullName:"Gabriel Leen",slug:"gabriel-leen",email:"Gabriel.Leen@ul.ie",position:null,institution:null},{id:"269579",title:"M.Sc.",name:"Fintan",middleName:null,surname:"McGuinness",fullName:"Fintan McGuinness",slug:"fintan-mcguinness",email:"Fintan.McGuinness@ul.ie",position:null,institution:null},{id:"269580",title:"Dr.",name:"Gerard",middleName:null,surname:"Dooly",fullName:"Gerard Dooly",slug:"gerard-dooly",email:"Gerard.Dooly@ul.ie",position:null,institution:null}]},book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"8653",leadTitle:null,title:"Electromagnetic Materials and Devices",subtitle:null,reviewType:"peer-reviewed",abstract:"Electromagnetic materials can be widely found in daily life, especially in electronic devices. The high-frequency properties (permittivity or permeability) of these materials strongly depend on structure, composition, shape, and orientation. Therefore, this book intends to present readers with advances not only in materials science (including metamaterials), but also in measurements and novel functional applications that demand the special properties of electromagnetic materials.",isbn:"978-1-83880-101-4",printIsbn:"978-1-78985-226-4",pdfIsbn:"978-1-83880-102-1",doi:"10.5772/intechopen.79786",price:139,priceEur:155,priceUsd:179,slug:"electromagnetic-materials-and-devices",numberOfPages:362,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"0cc0489a203ae888b1105719a4e70ecd",bookSignature:"Man-Gui Han",publishedDate:"January 22nd 2020",coverURL:"https://cdn.intechopen.com/books/images_new/8653.jpg",keywords:null,numberOfDownloads:14444,numberOfWosCitations:10,numberOfCrossrefCitations:10,numberOfDimensionsCitations:31,numberOfTotalCitations:51,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 4th 2018",dateEndSecondStepPublish:"September 3rd 2018",dateEndThirdStepPublish:"November 2nd 2018",dateEndFourthStepPublish:"January 21st 2019",dateEndFifthStepPublish:"March 22nd 2019",remainingDaysToSecondStep:"4 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"250649",title:"Prof.",name:"Man-Gui",middleName:null,surname:"Han",slug:"man-gui-han",fullName:"Man-Gui Han",profilePictureURL:"https://mts.intechopen.com/storage/users/250649/images/system/250649.jpeg",biography:"Dr. Man-Gui Han obtained his PhD degree in Materials Science and Engineering from Iowa State University (USA) in 2004. Currently, he is a professor in the University of Electronic Science and Technology of China. He is also one of the journal editors of IEEE Transaction on Magnetics starting from 2012. Up to now, he has published more than 70 peer-reviewed journals papers in the fields of magnetic materials with especial interests in the high frequency properties and applications of magnetic materials. One of his research interests is to employ the Mössbauer spectroscopy to study magnetic materials. He has established his academic reputation by finding a giant magnetostrictive effect in Gd5(Si0.5Ge0.5)4, developing electromagnetic wave absorption materials, and the realisation of negative imaginary parts of high frequency permeability by spin transfer torque effect. He has given several invited talks in the international conferences in Germany, Russia, United Kingdoms and China.",institutionString:"University of Electronic Science and Technology of China",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Electronic Science and Technology of China",institutionURL:null,country:{name:"China"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"940",title:"Electromagnetism",slug:"metals-and-nonmetals-electromagnetism"}],chapters:[{id:"65188",title:"Dielectric Losses of Microwave Ceramics Based on Crystal Structure",slug:"dielectric-losses-of-microwave-ceramics-based-on-crystal-structure",totalDownloads:915,totalCrossrefCites:2,authors:[{id:"244302",title:"Prof.",name:"Hitoshi",surname:"Ohsato",slug:"hitoshi-ohsato",fullName:"Hitoshi Ohsato"},{id:"256733",title:"Dr.",name:"Jobin",surname:"Varghese",slug:"jobin-varghese",fullName:"Jobin Varghese"},{id:"256734",title:"Prof.",name:"Heli",surname:"Jantunen",slug:"heli-jantunen",fullName:"Heli Jantunen"}]},{id:"64649",title:"Dielectric Responses in Multilayer Cf/Si3N4 as High-Temperature Microwave-Absorbing Materials",slug:"dielectric-responses-in-multilayer-c-sub-f-sub-si-sub-3-sub-n-sub-4-sub-as-high-temperature-microwav",totalDownloads:454,totalCrossrefCites:0,authors:[{id:"268291",title:"Prof.",name:"Heng",surname:"Luo",slug:"heng-luo",fullName:"Heng Luo"}]},{id:"63648",title:"The Influence of the Dielectric Materials on the Fields in the Millimeter and Infrared Wave Regimes",slug:"the-influence-of-the-dielectric-materials-on-the-fields-in-the-millimeter-and-infrared-wave-regimes",totalDownloads:667,totalCrossrefCites:0,authors:[{id:"147585",title:"Dr.",name:"Zion",surname:"Menachem",slug:"zion-menachem",fullName:"Zion Menachem"}]},{id:"64404",title:"Phase-Shift Transmission Line Method for Permittivity Measurement and Its Potential in Sensor Applications",slug:"phase-shift-transmission-line-method-for-permittivity-measurement-and-its-potential-in-sensor-applic",totalDownloads:1494,totalCrossrefCites:2,authors:[{id:"266637",title:"Dr.",name:"Vasa",surname:"Radonic",slug:"vasa-radonic",fullName:"Vasa Radonic"},{id:"267175",title:"Dr.",name:"Goran",surname:"Kitic",slug:"goran-kitic",fullName:"Goran Kitic"},{id:"267177",title:"Dr.",name:"Norbert",surname:"Cselyuszka",slug:"norbert-cselyuszka",fullName:"Norbert Cselyuszka"},{id:"276920",title:"Dr.",name:"Vesna",surname:"Crnojevic-Bengin",slug:"vesna-crnojevic-bengin",fullName:"Vesna Crnojevic-Bengin"}]},{id:"64856",title:"Ferromagnetism in Multiferroic BaTiO3, Spinel MFe2O4 (M = Mn, Co, Ni, Zn) Ferrite and DMS ZnO Nanostructures",slug:"ferromagnetism-in-multiferroic-batio-sub-3-sub-spinel-mfe-sub-2-sub-o-sub-4-sub-m-mn-co-ni-zn-ferrit",totalDownloads:784,totalCrossrefCites:0,authors:[{id:"208866",title:"Dr.",name:"Kuldeep Chand",surname:"Verma",slug:"kuldeep-chand-verma",fullName:"Kuldeep Chand Verma"},{id:"210384",title:"Dr.",name:"Ravinder",surname:"Kotnala",slug:"ravinder-kotnala",fullName:"Ravinder Kotnala"},{id:"280741",title:"Prof.",name:"Navdeep",surname:"Goyal",slug:"navdeep-goyal",fullName:"Navdeep Goyal"},{id:"281067",title:"Mr.",name:"Ashish",surname:"Sharma",slug:"ashish-sharma",fullName:"Ashish Sharma"}]},{id:"67164",title:"High-Frequency Permeability of Fe-Based Nanostructured Materials",slug:"high-frequency-permeability-of-fe-based-nanostructured-materials",totalDownloads:155,totalCrossrefCites:0,authors:[{id:"250649",title:"Prof.",name:"Man-Gui",surname:"Han",slug:"man-gui-han",fullName:"Man-Gui Han"}]},{id:"66142",title:"Ferrite Materials and Applications",slug:"ferrite-materials-and-applications",totalDownloads:1874,totalCrossrefCites:2,authors:[{id:"274659",title:"Prof.",name:"Tsun-Hsu",surname:"Chang",slug:"tsun-hsu-chang",fullName:"Tsun-Hsu Chang"}]},{id:"65136",title:"Electromagnetic Wave Absorption Properties of Core-Shell Ni-Based Composites",slug:"electromagnetic-wave-absorption-properties-of-core-shell-ni-based-composites",totalDownloads:776,totalCrossrefCites:1,authors:[{id:"50983",title:"Dr.",name:"Rui",surname:"Zhang",slug:"rui-zhang",fullName:"Rui Zhang"},{id:"268784",title:"Dr.",name:"Biao",surname:"Zhao",slug:"biao-zhao",fullName:"Biao Zhao"}]},{id:"66851",title:"Electromagnetic Function Textiles",slug:"electromagnetic-function-textiles",totalDownloads:878,totalCrossrefCites:0,authors:[{id:"268727",title:"Dr.",name:"Hong",surname:"Xiao",slug:"hong-xiao",fullName:"Hong Xiao"},{id:"268729",title:"Dr.",name:"Jianying",surname:"Chen",slug:"jianying-chen",fullName:"Jianying Chen"},{id:"268732",title:"Prof.",name:"Meiwu",surname:"Shi",slug:"meiwu-shi",fullName:"Meiwu Shi"}]},{id:"64584",title:"Lightweight Electromagnetic Interference Shielding Materials and Their Mechanisms",slug:"lightweight-electromagnetic-interference-shielding-materials-and-their-mechanisms",totalDownloads:2365,totalCrossrefCites:3,authors:[{id:"268866",title:"Prof.",name:"Liying",surname:"Zhang",slug:"liying-zhang",fullName:"Liying Zhang"},{id:"268868",title:"Prof.",name:"Shuguang",surname:"Bi",slug:"shuguang-bi",fullName:"Shuguang Bi"},{id:"268869",title:"Dr.",name:"Ming",surname:"Liu",slug:"ming-liu",fullName:"Ming Liu"}]},{id:"64349",title:"Optical Propagation in Magneto-Optical Materials",slug:"optical-propagation-in-magneto-optical-materials",totalDownloads:861,totalCrossrefCites:0,authors:[{id:"267826",title:"Dr.",name:"Licinius",surname:"Alcantara",slug:"licinius-alcantara",fullName:"Licinius Alcantara"}]},{id:"64631",title:"Compact, Efficient, and Wideband Near-Field Resonant Parasitic Filtennas",slug:"compact-efficient-and-wideband-near-field-resonant-parasitic-filtennas",totalDownloads:934,totalCrossrefCites:0,authors:[{id:"267218",title:"Prof.",name:"Ming-Chun",surname:"Tang",slug:"ming-chun-tang",fullName:"Ming-Chun Tang"},{id:"276364",title:"MSc.",name:"Yang",surname:"Wang",slug:"yang-wang",fullName:"Yang Wang"},{id:"276543",title:"Dr.",name:"Ting",surname:"Shi",slug:"ting-shi",fullName:"Ting Shi"}]},{id:"65019",title:"Metal- and Dielectric-Loaded Waveguide: An Artificial Material for Tailoring the Waveguide Propagation Characteristics",slug:"metal-and-dielectric-loaded-waveguide-an-artificial-material-for-tailoring-the-waveguide-propagation",totalDownloads:895,totalCrossrefCites:0,authors:[{id:"270302",title:"Dr.",name:"Vishal",surname:"Kesari",slug:"vishal-kesari",fullName:"Vishal Kesari"}]},{id:"67256",title:"Terahertz Sources, Detectors, and Transceivers in Silicon Technologies",slug:"terahertz-sources-detectors-and-transceivers-in-silicon-technologies",totalDownloads:748,totalCrossrefCites:0,authors:[{id:"292754",title:"Dr.",name:"Zhuang",surname:"Li",slug:"zhuang-li",fullName:"Zhuang Li"},{id:"300621",title:"Dr.",name:"Rui",surname:"Cao",slug:"rui-cao",fullName:"Rui Cao"},{id:"300623",title:"Dr.",name:"Xiaohui",surname:"Tao",slug:"xiaohui-tao",fullName:"Xiaohui Tao"},{id:"300624",title:"Ms.",name:"Lihui",surname:"Jiang",slug:"lihui-jiang",fullName:"Lihui Jiang"},{id:"300625",title:"Ms.",name:"Dawei",surname:"Rong",slug:"dawei-rong",fullName:"Dawei Rong"}]},{id:"67347",title:"Semiconductor Surface State Engineering for THz Nanodevices",slug:"semiconductor-surface-state-engineering-for-thz-nanodevices",totalDownloads:652,totalCrossrefCites:0,authors:[{id:"189303",title:"Dr.",name:"Víctor Hugo",surname:"Méndez García",slug:"victor-hugo-mendez-garcia",fullName:"Víctor Hugo Méndez García"},{id:"294173",title:"Dr.",name:"Irving Eduardo",surname:"Cortes-Mestizo",slug:"irving-eduardo-cortes-mestizo",fullName:"Irving Eduardo Cortes-Mestizo"},{id:"301031",title:"Dr.",name:"Edgar",surname:"Briones",slug:"edgar-briones",fullName:"Edgar Briones"},{id:"301032",title:"Dr.",name:"Leticia Ithsmel",surname:"Espinosa-Vega",slug:"leticia-ithsmel-espinosa-vega",fullName:"Leticia Ithsmel Espinosa-Vega"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"424",title:"Ferroelectrics",subtitle:"Physical Effects",isOpenForSubmission:!1,hash:"d9d8a531dfb92ccd58e2a8b9a426dcd4",slug:"ferroelectrics-physical-effects",bookSignature:"Mickaël Lallart",coverURL:"https://cdn.intechopen.com/books/images_new/424.jpg",editedByType:"Edited by",editors:[{id:"10041",title:"Dr.",name:"Mickaël",surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"174",title:"Ferroelectrics",subtitle:"Material Aspects",isOpenForSubmission:!1,hash:"4489eb7544dc5c1014f4e1280e677371",slug:"ferroelectrics-material-aspects",bookSignature:"Mickaël Lallart",coverURL:"https://cdn.intechopen.com/books/images_new/174.jpg",editedByType:"Edited by",editors:[{id:"10041",title:"Dr.",name:"Mickaël",surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3210",title:"Advances in Ferroelectrics",subtitle:null,isOpenForSubmission:!1,hash:"4706ad2bc11c32090c362c0026f67d37",slug:"advances-in-ferroelectrics",bookSignature:"Aimé Peláiz Barranco",coverURL:"https://cdn.intechopen.com/books/images_new/3210.jpg",editedByType:"Edited by",editors:[{id:"14679",title:"Dr.",name:"Aimé",surname:"Peláiz-Barranco",slug:"aime-pelaiz-barranco",fullName:"Aimé Peláiz-Barranco"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1873",title:"Advanced Magnetic Materials",subtitle:null,isOpenForSubmission:!1,hash:"24a0c00844ead5d9264572db1b120866",slug:"advanced-magnetic-materials",bookSignature:"Leszek Malkinski",coverURL:"https://cdn.intechopen.com/books/images_new/1873.jpg",editedByType:"Edited by",editors:[{id:"115596",title:"Dr.",name:"Leszek",surname:"Malkinski",slug:"leszek-malkinski",fullName:"Leszek Malkinski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5514",title:"Magnetic Spinels",subtitle:"Synthesis, Properties and Applications",isOpenForSubmission:!1,hash:"c3c43611e3fb0a8ab988acc896eae935",slug:"magnetic-spinels-synthesis-properties-and-applications",bookSignature:"Mohindar Singh Seehra",coverURL:"https://cdn.intechopen.com/books/images_new/5514.jpg",editedByType:"Edited by",editors:[{id:"48086",title:"Prof.",name:"Mohindar",surname:"Seehra",slug:"mohindar-seehra",fullName:"Mohindar Seehra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"428",title:"Ferroelectrics",subtitle:"Characterization and Modeling",isOpenForSubmission:!1,hash:null,slug:"ferroelectrics-characterization-and-modeling",bookSignature:"Mickaël Lallart",coverURL:"https://cdn.intechopen.com/books/images_new/428.jpg",editedByType:"Edited by",editors:[{id:"10041",title:"Dr.",name:"Mickaël",surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"429",title:"Ferroelectrics",subtitle:"Applications",isOpenForSubmission:!1,hash:null,slug:"ferroelectrics-applications",bookSignature:"Mickaël Lallart",coverURL:"https://cdn.intechopen.com/books/images_new/429.jpg",editedByType:"Edited by",editors:[{id:"10041",title:"Dr.",name:"Mickaël",surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6198",title:"Magnetism and Magnetic Materials",subtitle:null,isOpenForSubmission:!1,hash:"ccf0a4d8e8e42ef4e29f805286ab43f9",slug:"magnetism-and-magnetic-materials",bookSignature:"Neeraj Panwar",coverURL:"https://cdn.intechopen.com/books/images_new/6198.jpg",editedByType:"Edited by",editors:[{id:"289829",title:"Dr.",name:"Neeraj",surname:"Panwar",slug:"neeraj-panwar",fullName:"Neeraj Panwar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"63539",title:"The Evolution of 3D Printing in AEC: From Experimental to Consolidated Techniques",doi:"10.5772/intechopen.79668",slug:"the-evolution-of-3d-printing-in-aec-from-experimental-to-consolidated-techniques",body:'\n3D printing can be nowadays considered a consolidated technology, at least in its technical aspects. However, the adoption of such manufacturing technique to architecture engineering and construction (AEC) is not widespread yet, as the sector is not yet completely ready for the introduction of innovative production methods, in comparison to other more innovative sectors. Some experimental case studies have been developed looking at possible applications of 3D printing in architecture and construction, but the gap to close is now related to a consolidated way of employing innovative manufacturing techniques.
\nThe historical evolution of architecture is closely linked to that of construction techniques. The combination of available techniques and workforce—in quantity and quality—has driven the sector since antiquity, and architects had to know and carefully consider them as a premise of their design. Moreover, while some techniques have emerged from within the field of architecture, in the effort of solving construction problems, very often it was the spillover of advancements in other fields of science and technology that determined the adoption of new production techniques in architecture.
\nWhile such combination of workforce skills and production techniques has been consistent throughout the centuries, there have been some radical paradigm changes in their combination. In particular, while a sort of batch production of some architectural elements was present since antiquity, as well as in gothic architecture—as for bricks, tiles, and column drums—starting with the industrial revolution, such production in series acquired a more industrial character, and the relevance of skilled labor started to decline, while mechanized processes took off as the most decisive factor in production costs and quality. Modularity, which previously was rather an ideal set of geometrical relationships and proportions related to orders, started to become a necessary way of streamlining the production in series of identical base components, the only way industrialization could lower production costs as well as assembly times and efforts. Architectural practices and theories had to reflect these needs, and especially with the Modern movement, the trend toward simplification and use of standardized elements became common practice. The case of ‘The Eames House, Case Study House 8’ by Charles and Ray is a paradigmatic example thereof: the building was even designed and assembled starting from ‘off-the-shelf’ standard pieces, while trying to create an individual architectural character. Production in this case was a given before the design, and not the result thereof. Fast forwarding in history, the use of building information modeling (BIM) software has connected this trend to the realm of the design in the virtual (software) environment, especially as it allows and even encourages the use of available and industrially pre-fabricated architectural elements, such as doors and windows, and also rebars, trusses, and the like.
\nOn the other hand, starting from the 1960s, the degree of geometric freedom and control over the produced elements started to increase through the use of computer-aided design (CAD) and computer-aided manufacturing (CAM) software, even though the constraints of a required standardization of elements continued to be present for a cost-effective production. Through Bézier curves and Non-Uniform Rational B-Spline (NURBS) modelers, it was now possible to create more organic and complex shapes. An early example thereof was the Renault ‘Unisurf’ software used to design and produce car parts. However, the process often required non–computer-controlled phases and the mass-production of standardized pieces.
\nIt was in the last 10–20 years that a more streamlined and integrated use of computer numerical controlled (CNC) machines started to allow for a new change in paradigm within the architectural field. While a few centuries ago, the spillover of industrialization techniques meant that standardization and simplification had to become the design approach to architectural projects because industrial production required identical elements to be mass-produced in order to lower the cost per unit, now it became possible to cost-effectively mass-produce elements that are different from one another, i.e., customized elements. It is the ‘mass-customization’ paradigm. The use of CAD/CAM software became the key tool in the hands of designers and architects to harvest this new production potential. In fact, the ‘virtual’ design within the software could be now transformed into something tangible driving the production machines directly from the computer and without the need for any ‘translator’ or skilled human intermediary. As in the First Industrial Revolution, workforce manual skills were not relevant anymore, but unlike under the previous paradigm, it was now not necessary or advantageous to reduce the complexity of the design elements and to embrace radical simplification. As we will see dealing with 3D printing techniques, it is worth noticing that this new approach started off as a convenient tool for fast prototyping, but due to technical advancements, it is potentially becoming a method for the production of final parts or even entire architectures, as it has already become a production technique in some fields of advanced engineering, such as aeronautics.
\nAdditive manufacturing (AM) is possibly the most disruptive production paradigm stemming from the adoption of CNC machines. It promises to transform a(ny) virtual shape designed in a software environment to a real-world object, as much as 2D printing is transforming virtual pixels into ink dots on a sheet. It requires that the object to be printed be ‘rasterized’ into discrete elements, which usually is performed through the use of Mesh geometries in the CAD environment. More often than not, additive manufacturing techniques are actually working by layered ‘slices’ (sections) of the desired object, so that the final shape results from the combination of subsequent, 2D designed, layers of material with a standard thickness.
\n1980–1981: Hideo Kodama (Nagoya Municipal Industrial Research Institute) invented and described two first additive manufacturing techniques based on photo-hardening of plastic polymers. This seminal work can be considered the ancestor of both photopolymerization and stereolithography. An application for patent was filed, but the inventor did not follow up within the required one-year deadline after application [1, 2].
\n1984: Jean-Claude André (CNRS), Alain le Méhauté (CGE/Alcatel) and Olivier de Witte (Cilas) filed an application for patent of stereolithography, i.e., an additive manufacturing method whereby a laser beam selectively hardens a UV-sensitive liquid resin, following a sequence of cross-sections of the object to be printed. The patent filing was abandoned, and Chuck Hull filed a patent, granted in 1986. The system was based on ultraviolet laser light beams hardening cross-section by cross-section a resin contained in a vat. The .stl file extension Hull adopted is still in use today for most AM. He also founded 3D Systems, a company manufacturing 3D printers.
\n1987: Carl R. Deckard invented at UT-Austin the selective laser sintering technique, based on high-power (usually pulsed) laser beam that selectively fuses powder particles along cross-sections of the desired shape. The powder can consist in plastic, metal, ceramic or glass, and is usually pre-heated in the bed just below the fusion point. A patent for a similar technique was filed in 1979 by R. F. Housholder, but it was not commercialized.
\n1989–1990: S. Scott Crump invented and patented the most popular 3D printing technique to date, especially for hobbyists and low-budget labs: fused deposition modeling (FDM). It consists in the deposition of fused material—most commonly plastic—layer by layer, according to a .stl file. The first machines were commercialized by Scott Crump’s company Stratasys starting from 1992, and a patent was granted (expired in 2009).
\n1993: MIT developed what, strictly speaking, was considered 3D printing. The technique consisted in the binding—layer by layer—of a bed of powder using an inkjet printer, hence the name. In 1993, yet another technique was introduced by Sanders Prototype, Inc., now Solidscape: the ‘dot-on-dot’ technique. It was based on polymer jetting with soluble supports, yielding very high-precision results. The models were originally printed in wax.
\n1995: The Fraunhofer Institute ILT, Aachen, invented the selective laser melting process. The process—which yields precise and mechanically strong outputs, given the use of metal alloys, and can handle nested and intricate geometries—consists in the melting, layer by layer, of metal powder by means of a laser beam. Selective laser sintering is a similar process, whereby metal powder is not completely fused, hence does not form as much of a coherent and homogeneous mass as an output.
\n1999: Bioprinting techniques were successfully experimented at Wake Forest Institute for Regenerative Medicine.
\n2004: Adrian Bowyer developed the RepRap open-source project, aimed at creating self-replicable 3D printers, in an effort to diffuse and democratize AM technology.
\n2008: Shapeways was launched in the Netherlands. It consists in an on-line service, allowing users to send 3D files to have objects printed and sent to the required address. The service uses various techniques and materials, which today include several precious metals.
\n2009: Makerbot created a DIY kit for 3D printers which will highly contribute to the diffusion of the technique in many households.
\n2011: The opportunities offered by 3D printing techniques as production rather than pure prototyping tools were made even clearer by the Southampton University Laser Sintered Aircraft (SULSA), an unmanned aircraft whose structure was printed, from the wings to the integral control surfaces by a laser sintering machine, with a resolution of 100 micrometers per layer. The unmanned aerial vehicle (UAV) could be assembled without tools, using ‘snap fit’ techniques.
\n2014: Airbus Operation GmbH filed a patent for 3D printing an entire airplane structure. The technique is interesting also due to the 4D-printing-like features: a study on materials deformation, especially with respect to each other, is used to further strengthen the structure, by exploiting the resulting forces.
\nOverall, while the seminal ideas of the main additive manufacturing techniques dates back to the 1980s, further development and combination among techniques have gradually implied a shift in the potential use. In fact, while AM started as a means to rapid prototyping objects, especially for engineering—where the limited availability of materials and the lack of mechanical strength was not an issue—it now starts being adopted as a whole new way of producing final elements, given the improved quality of the output and the materials that can be used. Such opportunities could potentially disrupt the entire industrial processes and supply chain, enabling diffused fabrication facilities to such an extent that a so-called ‘0 Km factory’ paradigm could emerge. ‘Called microfactories, these diminutive factories drastically change how we produce large consumer goods for unique local needs’ [3].
\nFinally, it is worth noting that, having these techniques not reached the full maturity phase yet, it would be pointless to analyze all the alternative methods and machines which have been invented and adopted for the most diverse projects. It seems therefore more useful analyzing the main categories, trying to provide a taxonomy thereof, bearing in mind that research is currently blossoming in the field, often hybridizing techniques to reach specific goals.
\nDevising the ‘most appropriate’ classification criteria for additive manufacturing is not an easy task. Different approaches have in fact been taken into account in literature for classifying additive manufacturing processes. ‘In particular Karunakaran exposes different possible options. A first option is to take as the driving aspect the type of material printed by the machines, which can turn out to be problematic because some machines can print more than one material typology. A second option refers to the material matrix, thus the ability of printers to work with a monolithic, composite, or gradient matrix, in terms of materic composition and properties, but it may result too specific with respect to the scope of the research. Another possible classification is according the final application of printed objects, which ranges from the visualization model to the high-end engineering part; again here, some printers may be used for different purposes, and moreover this subdivision would not clarify the different classes of layer manufacturing technologies and their behaviours. Always according to Karunakaran, more subdivision options can be referring to number of materials involved, on the energy source (laser, EB or arc) used, on the Boolean nature of the manufacture (laminated, powder-bed or deposition) or differencing methods of joining particles, but these approaches are too generic or too specific, not allowing a proper classification of the processes. The approach used by Gibson, is to manage the additive manufacturing techniques according to the starting condition of the material before it is worked by the machines. He defines liquid polymers, discrete particle, molten material and solid sheet systems. Often machines can print different classes of materials, and for different final purposes, but each printer can handle just materials in specific initial states, therefore this criteria is defining a proper subdivision which highlights the characteristics of the material processing, defining advantages and disadvantages of every process category’ ([4], pp. 38–39).
\nWe decided to adopt as sorting criteria two main aspects, which are
Based on the chosen sorting criteria, the main available additive manufacturing techniques can be summarized as follows.
\nThese techniques share the common feature of a ‘printing head’ consisting in a moving nozzle that deposits layer upon layer of material.
\nThere are two main machine types: Gantry (or Cartesian) and Delta (Figure 1). Gantry is based on an extruder moving along the Cartesian X- and Y axes, while the plate is moving along the Z axis layer by layer. Delta systems, on the contrary, are based on three arms connected to universal joints at the base, which move within parallelograms, maintaining a lightweight end-effector in the right orientation. It yields faster and more accurate output, also given the lightweight traveling parts. While plastics are the main material used with this technique—specifically thermoplastics, especially ABS and PLA, and also nylon, PET, HIPS and TPU—ceramics, clay and cement were recently experimented with.
\nMain systems of deposition techniques (
As to the output, some aspects are noteworthy. First, the printed material tends to show anisotropic properties, and the strength in the z direction is usually much lower than in the x and y direction. Second, the printed objects show ‘stepping’, i.e., a nonsmooth, layered surface based on the slicing layers adopted for printing. Third, not any kind of geometrical shape can be produced with this technique: in fact, a maximum 45° of overhang, slanted parts can be produced without the creation of extra supports, which need to be later removed. Lastly, speed is a serious limitation for this technique to be used outside the boundaries of mere prototypation: a cube of 20 × 20 20 cm may require more than 24 h to be printed.
\nOther two less common machine types are the polar and the robotic arms. Polar machines work based on an angle and a length, and need only two motors, while the Gantry needs three. The robotic arm is not just a printing machine per se, but a printing head can be attached to a robotic arm. Potentially, it delivers much greater flexibility and printing dimension, especially if the arm is not fixed on the ground. Both techniques are quite experimental and not very widespread.
\nWhile not a consolidated technique, it has been experimented with by artists and researchers. It consists in the extension of the previously analyzed technique to the use of clay and similarly ‘wet’ materials. The main difference—though the process tends to vary for each experiment—is the absence of a heated print head, since the material does not have to be fused, while some kind of pressurized mechanism is usually present to force the muddy material through the nozzle.
\nThe possibility of using typical construction materials in architecture—such as clay and concrete—makes this technique promising for architectural projects. However, for the time being the quality of the outcomes in terms of ‘resolution’, precision and printable geometries is not yet sufficient for real projects outside the field of research.
\nThe experimental technique—developed in 1998 by Prof. Behrokh Khoshnevis at the University of Southern California in Los Angeles—combines the extrusion technique, applied to the object ‘surfaces’, to a filler material injected between the extruded faces, thus creating a solid core. The technique is suitable for the architectural scale, as it is much faster than comparable purely extrusion-based techniques, while ‘a wide choice of semi-fluid materials could be used, such as polymers, ceramics, composite wood materials, mortar, cement, concrete and other materials, that once deposited by a nozzle are able to quickly solidify and resist pressure from the weight of the structure itself. […] Currently, the Contour Crafting technology can build a 185 m2 house with all utilities for electrical and plumbing systems in less than 24 h’ (Figure 2) ([4], p. 119) .
\nContour crafting (
Similar to contour crafting, developed at Loughborough University in the United Kingdom since 2004, it is similar to contour crafting, but allows to control the resolution of the nozzle for the deposition of both bulk materials and fine detail within the same process.
\nIt encompasses a series of alternative experimental techniques that are either an adaptation of the semisolid material extrusion technique to low-melting-point metal, or the use of gas metal arc fusion welding robots.
\nUnlike the previously analyzed techniques, this series of techniques is based on the selective ‘bonding’ of grains of material previously disposed in an array. The advantage of this set of techniques lies in the almost infinite freedom of geometrical shapes it can produce, since no supports are needed and even nested shapes are printable in one step.
\nThe process consists in a multinozzle inkjet print head moving, layer by layer, on a ‘powder bed’, previously laid on the build platform. While a sweeper blade or roller evenly distributes the powder across the bed, the head selectively jets a binder solution, which solidifies the powder according to the section at stake. The bed is then lowered layer after layer. Different materials can be used as powder, including originally starch and gypsum plaster, while the binder—mostly water—can also contain dyes and other substances impacting on the physical properties of the powder (such as viscosity and surface tension). ‘The resulting plaster parts typically lack “green strength” and require infiltration by melted wax, cyanoacrylate glue, epoxy, etc. before regular handling’ ([4], pp. 53–55). The results of such technique tend to lack accuracy.
\nThe process is generically called ‘powder bed fusion’, and it uses high-power laser to bond together the particles of material. Similar to the binder jetting process, the process consists in the selective hardening/binding of a powder bed. However, in this technique, the hardening happens through a laser beam that follows the cross section of the relevant layer. The material is heated just below the boiling point (proper ‘sintering’) or above it (selective laser melting). The process is completed layer by layer.
\nThe main disadvantage of the process is the relatively high cost of the powerful lasers needed to print in materials other than composites, plastics and waxes, and the relatively weak mechanical performance of composite powders suitable for engineering applications. The advantages are numerous, ranging to the already mentioned geometrical freedom, to the fact it does not need much additional tooling after the object is printed. Moreover, the results can be very precise with high resolution (Figure 3).
\nExample of SLS production (
This technique, developed by Dr. Behrokh Khoshnevis and his team at the University of Southern California, tries to address the trade-offs between the cost of high-power lasers for sintering metal, and the weak mechanical performance of composite materials suitable for lower-power lasers. \'In fact the principal innovation behind the SIS technique is the prevention of selected regions of each powder layer from sintering, achieved by operating on the regions external to the part in each layer with a “sintering inhibitor”. A commercial piezoelectric print head is utilized to deposit a liquid chemical solution (inhibitor) at the periphery of the part for each layer. When all the layers have been treated, the entire part is removed from the machine and bulk sintered in a conventional sintering furnace. The inhibitor deposited at the part’s boundary decomposes into hard particles that impede the sintering process. The particles in this region are prevented from fusing, allowing for removal of inhibited boundary sections and revealing of the completed part. It is easiest to think of the part as if it were encased in a sacrificial mold’ ([4], p. 59).
\nThis technique is still experimental, but is promising due to the lower costs implied by the use of conventional print heads available on the market, while it manages to produce full-metal parts with strong mechanical performances.
\nAs seen, stereolithography was invented in the 1980s and consists in a technique whereby a laser beam selectively hardens a UV-sensitive liquid resin in a vat, following a sequence of cross-sections of the object to be printed. The vat is lowered every layer, until the whole object is printed. The technique was originally intended as a faster and cheaper way to create prototypes for engineers. In fact, the main advantage of such a technique is the high resolution achievable, since it is based on a laser beam. However, because a specific photopolymer resin is needed, it is costly and does not offer a wide array of materials to print with; even tough new materials are constantly added, and may allow the use of such technique not only for prototyping/molding, but also for final objects. In the process, supports are needed and must be removed after the process has ended. Cleaning and other post-processing is needed, including curing in UV-ovens, vanishing or blasting with glass beads.
\nThis technique is a low-cost version of stereolithography. It is based on the same principle of photopolymerization, but instead of a laser beam, it uses a video projector in order to harden the resin. A DLP projector is positioned above a resin vat and the resin is hardened layer by layer, as in the SLA. The results are similar to those of SLA, but here, a higher resolution can be achieved on a smaller projection surface, since the projected image has a fixed resolution (the projector’s). The process is cheaper and faster than SLA, since, respectively, it is based on common technology (the beamer) and it hardens each layer at once (Figure 4).
\nExample of SLA production (
This technique is a recent development of previous ones. Developed in 2000 by Objet Geometries (now merged with Stratasys), it combines a print-head spraying liquid photopolymers into very thin layers, and a UV lamp—positioned under the print-head nozzles—hardening each of said layers. Layers are created by lowering the work platform, while the head just moves along the Y axis, since it covers the X axis through a number of nozzles. Supports are needed, and printed with a gel-like material by a second row of nozzles. The process also allows the use of a combination between two materials with a varying gradient, thus allowing to locally customize the material properties (‘digital materials’). For instance, a mix of soft and hard parts could be printed together. The resolution of this process is also very high. The main drawback is the limitation to photopolymers as printing material, which is expensive and does not offer enough mechanical strength for some uses (Figures 5 and 6).
\nCarbon/Adidas 3D printed sole (
Carbon 3D printed lattice structure (
The technique—developed by the 2013-founded company Carbon—uses digital light projection, oxygen-permeable optics, and Carbon’s programmable liquid resins and allows printing ‘up to 100 times faster than other additive manufacturing processes. […] Carbon’s technology is inherently capable of printing high-resolution parts with an excellent surface finish and isotropic mechanical properties’. It allows ‘to print unique lattices that can replace materials such as foam in headsets, shoe midsoles, and seating applications. What is especially unique is Carbon’s ability to design and make tunable lattices depending on customer application needs. Engineers for the first time can 3D print multiple unique functional zones within the same monolithic part and tune the mechanical properties within each of these functional zones depending on the application requirements’ [5]. This technique is unique in the panorama of additive manufacturing, and it is being used by Adidas to print training shoes’ soles on an industrial scale with a variation in the material density throughout, so as to obtain the required local performances. It is then a good example of both the possibilities of 3D printing in the industrial production process of finished goods, as well as the revolutionary potential of obtaining different physical performances by controlling the density and structure of the material.
\n‘A team of scientists and engineers led by Lawrence Livermore National Laboratory (LLNL) has developed a process that uses hologram-like lasers to make complete objects in seconds inside a tank of liquid resin. Called volumetric 3D printing’ [6].
\nIn fact, ‘two limitations of additive manufacturing methods that arise from layer-based fabrication are slow speed and geometric constraints (which include poor surface quality). Both limitations are overcome in the work […], introducing a new volumetric additive fabrication paradigm that produces photopolymer structures with complex nonperiodic three-dimensional geometries on a time scale of seconds. We implement this approach using holographic patterning of light fields, demonstrate the fabrication of a variety of structures, and study the properties of the light patterns and photosensitive resins required for this fabrication approach. The results indicate that low-absorbing resins containing ~0.1% photoinitiator, illuminated at modest powers (~10–100 mW), may be successfully used to build full structures in ~1–10’ [7].
\n3D printing in AEC can be seen as an opportunity in many ways.
Direct/indirect (molds).
As we have seen, additive manufacturing is not yet in the stage of fully mature technology, and several new breakthroughs are emerging year after year. This means that there is still a great growth potential, but it also implies that there are still many limitations to overcome, and each currently available technique does not seem to answer many of the needs of industrial production. As to architecture, engineering and construction (AEC), such limitations seem even more problematic. The sheer scale of such endeavors is in fact limiting the kind of techniques that could be adopted to manufacture all or part of a building. Moreover, the requirements for specific physical and mechanical properties—often traditionally obtained through the use of multiple layers of different materials—and the sheer volume of material needed in order to achieve the required performances are other clear limiting factors.
\nTherefore, depending on the kind of elements to be produced—structural, finishes, etc.—different techniques can be most appropriate. For instance, extrusion of fuse material techniques does not seem appropriate to print huge structural elements, both due to the lack of physical properties and the (low) production throughput.
\nHowever, most techniques can be stretched beyond their intended range of production by adopting an indirect approach: for instance, even the said fuse material extrusion techniques can be used to create molds for reinforced concrete structural elements. While scale issues remain, speed and mechanical issues are overcome, since the real structure will consist of the concrete poured in the mold along with steel reinforcements. The main advantage is the opportunity to create, with relative ease, elements that follow complex geometries, which would otherwise be very difficult to achieve, and to do so with great accuracy. Example: ETH mesh-mold, 2014 (Figures 7 and 8) [8].
Modules/components, joints and monoliths.
Robotic mesh-molding technique: printed output (
Robotic mesh-molding technique: while printing (
Scale limitations remain one of the main bottlenecks for the use of additive manufacturing techniques in the realm of AEC.
\nThere are some experimental attempts to create and utilize printing machines that could directly deal with the architectural scale, and ‘print’ entire buildings as ‘monoliths’, i.e., as a unique piece printed at once, and therefore resulting in an almost seamless unique piece of material(s), possibly with isotropic properties.
\nAn example thereof is ‘D-Shape’, a company and technique developed in 2004 by the Italian engineer Enrico Dini, where fabrication is possible on an area of 6 by 6 m and limitless height. ‘Enrico Dini’s printing technique has the great advantage of providing support for overhanging geometries, as sand is selectively transformed to stone within a bed of untouched sand, allowing freeform 3D geometries to be produced. Limitations in this technology are today the strength of materials and printing resolution of approximately 5dpi (20 mm in the X and Y axis and 5 mm in the Z axis)’ (Figures 9 and 10) ([4], p. 116).
\nD-shape printed monolith (
D-shape printed monolith (
‘Contour crafting’ and ‘concrete printing’ by Loughborough University, as we already saw, are yet other techniques suitable for monolithic production. However, most of the pieces printed so far tend to lack the complexity of freeform 3D geometries, showing a variation along just two of the three axes, thus missing out what is supposed to be one of the main advantages of additive manufacturing. Moreover, concrete printing has been tested with a build volume of just 2 m × 2.5 m × 5 m, which would not fit the required scale for any substantial architectural endeavor.
\nBesides the specific limitation outlined for each ‘monolithic’ printing technique, a general criticality lies in the many different kinds of performances required in AEC: mechanical and structural, thermal, permeability to light and air, and the like. Such aspects are traditionally dealt with by a series of different ‘layers’ of elements made of different materials. Even a basic bearing brick wall does usually incorporate not only bricks, but also a binder, as well as possibly a damp-proof membrane, etc. Similarly, a reinforced concrete structure usually needs specific layers to deal with the propagation of sounds and vibrations, thermal bridges, and many other aspects. At the moment, it does not seem that additive manufacturing techniques can deal with such requirements effectively, or at least there are clear gaps that must be closed by the extensive use of other techniques. The trade-off between printing resolution and speed is another potential hindrance for this approach to become advantageous: in fact, usually in a building, there is a hierarchy among elements as to their functional relevance, and for some of them it is crucial to be produced with high accuracy and isotropy, while for others speed seems more relevant. Until techniques like concrete printing by Loughborough University—which allows for a change in nozzle resolution while printing, thus controlling the trade-off speed-resolution—will not be industrially feasible and reliable, this approach seems reserved to research projects. However, as we will see, in a future stage of technical development, we can imagine that not only speed and accuracy will be dealt with appropriately for the architectural scale, but also that printing with several materials while gaining control over the fine regulation of the material properties—e.g., density, isotropy and material combination—will make the production of monolithic structure not only advantageous, but even necessary for some advanced new ways of building (Figure 11).
\nConcrete printing (
Example of ‘monoliths’. MX3D bridge, ongoing. For their nature, bridges and other urban infrastructure may have the right scale for monolithic production. Moreover, they may not require the same number of different performances—notably, the thermal performances required in buildings to guarantee the indoor comfort—and thus may well be constituted by even a sole material. MX3D has chosen a small urban bridge in Amsterdam as an opportunity to showcase and test its 3D printing technology, based on ‘multiaxis 3D print technology’, a combination of 6-axes robotic arms and metal depositor-welders tipping the robotic arms. ‘The robots, which are tipped with welders, will construct the bridge in front of them as they go, literally printing welded steel in midair’ [9]. ‘The robot arms are similar to those used in the car industry and they can print metals and plastics from single extruders, as well as combinations of the two materials together’ [10]. Even though the originally planned on-site printing was dismissed to avoid congestion in a crowded area of the city, the printing method is claimed to be able to create the monolithic structure on site and with no supports/scaffolding, which would open interesting perspectives for the whole AEC field (Figures 12 and 13).
\nRobotically printed metal bridge (
Robotically printed metal bridge (
Another approach to make the best out of additive manufacturing techniques, especially considering their limitations as of today, is then to use them on a lesser scale, focusing on the specific comparative advantages in creating parts of an architecture.
\nA first obvious method that has been widely adopted in AEC since antiquity, but especially after the industrialization of the production process, is the decomposition of architectures into modules or components. Such an approach requires that the geometrical subdivision be carefully studied, as discontinuities can constitute weak spots. Moreover, modules need interfaces to be connected to one another, which may imply the need of taking care of multiple layers being connected, while keeping the junction water- and air-tight.
\nExample: Brian Peters, 2014, 3D printed clay bricks.
\n‘Building Bytes is a project that goes beyond using new tools to make old products. Instead, it follows the additive logic of the printing path—rather than the conventional moulding or extrusion process—to make bricks that are otherwise impractical or impossible to make’ (Figure 14) [11].
\nClay printed modular structure (
A second area where additive manufacturing seems most suitable is the production of joints. Joints are particularly relevant in many contemporary AEC projects since they allow the creation of freeform, irregular geometries by connecting standardized elements. In other words, joints can ‘absorb’ the geometrical variation of the overall shape by ‘internalizing’ it in their spatial configuration. The relevance of additive manufacturing techniques then becomes clear, if we consider that it allows producing a number of alike but different elements (mass customization) at the same cost and in the same time than a series of identical ones.
\nThere is more to it: joints typically perform key structural functions, and thus are subject to intense stresses. While this aspect seems to rule out many 3D printing techniques due to the weakness of available materials to print with, the customization of each joint’s geometry to meet its specific performance targets can be a crucial success factor of additive manufacturing techniques, allowing optimization techniques such as topology optimization. It is in fact only 3D printing techniques that can give birth to topologically optimized objects with their highly organic and irregular shapes, including voids that would be often impossible to obtain with any other production technique.
\nExample: Arup, Optimized Structural Element (nodes), 2014–2015 (Figure 15).
\nTopologically optimized 3D printed metal nodes (
The engineering company has successfully produced building structural elements through additive manufacturing, which are an optimization of a standard node for a tensegrity structure. A paper showing the results of the study explains that: ‘Based on these initial results the design process was fine-tuned focusing on product integration and improved control of the optimization process. A full set of material tests was executed which should lead to a certification process required for specifying AM-produced products in the Building Industry’ [12].
\nThe ability of printing parts that are nested within each other opens up further relevant opportunities for the creation of movable joints. While with traditional techniques, such joints could be created only by welding together parts of the joint—which increases the risk of potential discontinuities and weaknesses—the new approach can produce more uniform pieces of isotropic material (Figure 16).
\nG. Rossi at ACTLab, 3D printed interlocking structure (credits Politecnico di Milano University).
Example: Master Thesis at ACTLab by G.Rossi, 3D printed interlocking structure.
From fast prototyping to ‘the real thing’.
The great hype lately surrounding 3D printing and additive manufacturing in general is not only due to the opportunity offered to create complex shapes under the direct control of computers—this has been the case for the last 50+ years in many industrial sectors, such as automotive—but is rather rooted in the now possible production of final construction elements instead of mere rapid prototyping. This evolution has required, and will further require, advancement as to the type of materials that can be printed with, as well as in the tolerances that can be achieved with every new technique, along with the overall quality of the output, including isotropy and other physical/mechanical characteristics.
\nWorking with a rapid prototyping paradigm usually implies that each prototype is tested and then mass-produced in a series of identical copies when the required performances are achieved. On the contrary, using additive manufacturing as a tool for production, it is now possible to create ‘final’ elements that are different from each other and are produced directly as they are simulated in the software. The tighter correspondence between the virtual modeling and the real output means that—while prototyping remains useful to have some hard data to back the simulations up—most simulations can be now close enough to the real behavior of the printed elements as well as of the overall performance of the structure with no need to prototype each and every element first. Moreover, while using additive manufacturing for prototyping and a different kind of production for the final elements can create a mismatch between the two, the direct use of 3D printing techniques for final production allows to directly harvest the benefits of the technique. The recalled example of Adidas 3D printing shoes’ soles is certainly an interesting reference as to the industrial potential of the technique, while the adoption of similar models in ABC at the moment is still mostly in the framework of research.
\nExample: GE, 2015, fully 3D printed mini jet engine.
\nThis project, which lies entirely within the field of engineering, shows how far additive manufacturing techniques have gone over the last few years. The engine, which could serve a radio-controlled small plane, has been 3D printed using the direct metal laser melting (DMLM) technique. It was then assembled by hand, and is fully working (Figure 17).
\nGE fully 3D printed working engine prototype (
\n
Mass-customization and the ideal match with parametric generative design within the computational design tools.
Additive manufacturing, being a production method transforming the ‘virtual’ 3D model into a real thing with a comparable cost per volume printed, allows for a wholly new approach to design and fabrication. While the First and Second Industrial Revolutions, as seen, required as much standardization as possible, it is now possible and often preferable to design each element specifically optimized for the function and position it holds within a structure. For instance, façade-shading elements need not be all equal if their position between the sun path and the spaces to shade is different.
\nIn order to exploit this potential fully, however, it would be impractical to design each element one by one: besides being time-consuming, it would possibly be also difficult to calculate and draw by hand what the right geometrical configuration of the said shading elements should be, since the sun path changes over time. Luckily, given the ‘direct’ creation of any shape from the 3D virtual model, it is enough to devise a system that allows the creation of a series of elements—e.g., our shading element, in the example—that are similar in design and function, but have the right measures for the specific place they are intended for. In other words, we need a tool that—given a set of geometrical and logical relationship between the required performance and the given constraints—could generate a series of optimized elements. Such a tool can be found in the computational design realm, specifically in generative algorithms, where the final shape is generated by the software based on the logical connection and operations between the provided inputs. ‘Form is differentiated from the fundamental principles organizing the different elements within the manufactured component. None of the components is considered as an ideal primary model; every element might differ in geometry and form as long as the intricate logical interrelations are accurate. The bigger the variation and the complexity, the higher is the value and the benefit of using an AM machine’ ([4], pp. 23-24).
\nThe output of a mass-customization process is then the creation of a series (mass) of industrially crafted objects, which are nonetheless tailored (customized) on the specific place and functions they must perform. If duly performed, such a process can yield specific performances while possibly costing as much as standard elements and using only the material needed.
\nExample: Politecnico di Milano, Expo 2020 Desert tectonics hypothesis. 3D printed external shading structure in HTPLA + Sand (Figure 18).
Nested and interlocked geometries otherwise impossible to be produced.
Politecnico di Milano, expo 2020 desert tectonics hypothesis (credits Politecnico di Milano University).
Besides movable joints, many other interlocking geometries can be now produced, which would have been at least very complex to craft without AM techniques. Chains, textile-like structures and the like are all examples of interlocking geometries that are usually obtained by knitting thread-like materials, or else require heavy hand crafting, as in the traditional chainmail.
\nExample: Gürcüm, 2017, textile-like structures.
\nThis study synthetizes the possibilities offered by AM in this area, discussing ‘the important properties of traditional fabrics that are to be expected of 3D printed structures namely physical properties like flexibility, bending and and drapability’ (Figure 19) [13].
Design from simple ‘shape-drawing’ to simulation based on material physics and static embedded fabrication constraints.
Example of textile-like 3D printed interlocking structure (credits Politecnico di Milano University).
Traditionally, drawing techniques have been used by architects to communicate their project to a series of other professional figures, such as engineers and site managers, in order to have it checked and realized. The shape of buildings and elements thereof was usually devised by the architect in the early design phases based on a rough understanding of the underlying physical characteristics and required performances, and would be further adapted in case the design proved to be impractical to realize. Things have now changed, since it is now possible to include within the design phase a simulation of the physical behavior of the specific shapes based on the specific material characteristics. Therefore, computational design techniques do not just ‘represent’ a pre-conceived idea of shape, but can allow to reach a shape as the result of a process that incorporates many performance and material constraints, including fabrication constraints.
\nExample: L. De Sanctis, 3D printed clay brick. The underlying idea of this project was \'to develop a customized design of a very traditional building component: a clay brick. The concept relies on the possibility to have a flexible system of tile modules, which could be site specific and ad hoc buildable with Additive Manufacturing (AM) in relation to the context. The design of the component is developed analytically with respect to a framework of requirements and performance typical of a clay component, with the addition of standard features of a wall system […] An algorithm developed with the use of Grasshopper and Python has been applied to determine the wall thicknesses and amount of material distributed, while optimizing structural performances of a design and considering production constraints. It has thus been identified as an ideal format (similar to what exists in trade), and compatible with printing constraints, a dimension of 250 × 250 × 120/125 mm. This dimension could also fit within exiting insulating EPS panels (500 × 1000 × 50 mm), integrated with electrical pipes of 8 mm or junction box of 120 × 100 × 70 mm. Another advantage of this system is the possibility of integration within any kind of form or structure, in relation to its use. Due to the necessity to preserve structural equilibrium within a wall, design of cantilevered parts of the brick has been performed within the mass quantity not superior to 40%\' (Figure 20) [14].
Optimized and multiperformative shapes as the result of topological optimization and multifactorial design constraints and analysis. Performative biomimicry.
L. De Sanctis, at ACTLab, 3D printed custom clay brick.
As seen, additive manufacturing allows the designers to potentially craft each and every element of an architecture all different from each other. Printing ‘topologically optimized’ elements seems one of the most valuable opportunities offered by AM. ‘Topological optimization is a mathematical approach that aims at optimizing material layout within a given design space, for a given set of loads and boundary conditions such that the resulting layout meets a prescribed set of performance targets. Topology optimization software systematically analyzes the stresses on these shapes and then removes the most superfluous material from the design. This process is repeated over and over by the software until the target amount of material is reached, and by the end the computer design leaves only a skeletal structure. The advantage of parts made with topology optimization is therefore that the same strength characteristics can be created with less material, and this yields a greater strength to weight ratio, an important property across most industries, from automotive, to aerospace, but also architecture and building construction’ ([4], p. 157). ‘As a practical example, structural rib elements in an Airbus wing designed with topology optimization saved over 500kg in structural weight, which translates to significant cost savings’ [15].
\nExample: R. Naboni at ACTLab, cellular solid lattice structure in pla.
\nThe project combines and applies the principle of topological optimization—deposing material only where it is needed for structural reasons—to a system of load-responsive interconnected struts made of polymeric material. The result is a custom lattice microstructure defined as functionally graded lattice structure, with spatially varying characteristics. ‘Algorithms for topology optimization of freeform shapes are employed to determine the material organization as well as a performative matrix […] The potential of this system relies on its implicit resistance and reduced use of material, combined with the possibility to adapt to any architectural shape. They are composed by an interconnected network of struts, pin-jointed or rigidly bonded at their connections. At one level, they can be analyzed using classical methods of mechanics, a typical space frames, on the other side, within a certain scale range, lattice can be considered as a material, with its own set of effective properties, allowing direct comparison with homogeneous materials. Mechanical properties of lattice materials are governed, in part, by those of the material from which they are made, but most importantly by the topology and relative density of the cellular structure. This methodology requires the description of custom algorithms to generate lattice structures parametrized on the base of a continuous feedback loop from a Topology Optimization and manage the additive process of materialization’ (Figure 21) [14].
\nR. Naboni at ACTLab, topologically optimized cellular lattice structure.
Example: Neri Oxman, 2014, Gemini Alpha Chaise Longue.
\nThe inner skin is made of three different rubber-like plastics, printed by a Stratasys’ new Objet500 so as to obtain 44 different composites. Each of these composites has a different rigidity and color, and is arranged in a way to cushion the user. The choice of shapes is also informed by their noise-cancelling properties. The chaise is supposed to create a silent and calm environment inside, through the combination of a concave shape reflecting sounds inwards and of the inner surface geometry and materiality, which scatters and absorbs the sound waves (Figure 22).
\nNeri Oxman, multiperformative 3D printed chaise-longue (
\n
Safety certification and accountability (given the ‘exotic’ nonstandard geometries and the extensive reliance upon software simulation).
One major issue with not only additive manufacturing, but in general any nonstandardized manufacturing, is the implied impossibility to test each and every item produced. This does not constitute a problem in case every set of produced items is exactly the same, since it is enough to test one for testing them all. However, it would not be feasible or at least in sharp contrast to the very same aim of mass-customization—adaptability at a cost comparable to that of standardized solutions—to test all produced items. As already noted, the solution which is usually adopted is to sample-test within the range of produced items, trying to select the right samples along the range. Such process has to rely on the implied correspondence between the virtual and the real, and therefore the specificities of each printing technique have to be accounted for in the software in order to properly simulate the real-world behaviors. For instance, the typical anisotropy of most extrusion-based printing, and the differences in physical/mechanical behaviors along different directions must be factored-in. The process also heavily relies on software-based automatic check about most required performances, e.g., mechanical. The software’s results will then depend both on the selection of data that are fed into it, as well as on the reliability of the software itself.
\nAll these issues raise questions about the accountability for any failure of the printed elements, and will probably require a whole new set of legal tools to sort out who is accountable in each case, and where to draw the line between unforeseeable circumstances, due diligence and lack thereof.
Optimization vis-à-vis resilience, future adaptation and available architectural langwuage.
Abandoning the paradigm of standardized production for embracing a more and more optimization-driven approach seems a great innovation in view of wasting less material and achieving more with less at the same time. Any structure where the quantity and the structure of the deposed material is optimized to the prospected performances seems like a perfect way to mimic nature and its efficient adaptive behaviors. However—at least until the output of additive manufacturing technique will be re-configurable—3D printed objects, unlike natural living beings, tend to be fixed once and for all, unless additions or modifications are purposively performed. However, such interventions
Moreover, also the sheer lack of standard ‘interfaces’ to join additional elements could be a limiting factor for the adaptation of the structure to new conditions over time. It is quite evident that adding a new row of bricks to a parallelepiped-shaped wall is a much lesser feat than to an Enrico Dini’s organic structure.
\nAll this implies that the short-term sustainability of an optimized 3D printed structure could be disadvantageous to the long-term adaptability and resilience of it. A 3D printed structure could be so costly and challenging to adapt, that it might be even cost-effective to tear it down and re-build from scratch. The obvious question is whether such an approach could prove more sustainable at all, and it is wise to imagine that designers and architects will have to include future adaptability within their design thought process, goals and constraints.
\nLastly, as regards the architectural language, the use of constraint-based, parametric generative design based on physical properties of materials could raise concerns about the risks of adopting an architectural ‘language’ as a mere by-product of the chosen design tools. This would also imply that—those tools and techniques being common among designers, and being physical laws constant in time—the formal output of all design processes by different designers and architects would tend to be really similar, if not identical, among each other and over time. This ‘end of history’, whenever had to become a reality, would of course contradict the essence of millennia of architectural development and the idea of evolution itself. However, it seems reasonable to believe that creativity can and will be shifted to setting the constraints, the performance goals and even the formal relationships that should characterize the space in the view of each architect.
\n\n
Multiscalar optimization: from the microscale of materials to the macroscale of architecture.
While, as seen, topological optimization techniques have been already widely used to fabricate a wide range of optimized components and objects in architecture and design, it is still at the level of research that similar optimization methods are adopted as to the microscale of materials. In fact, it is usually the case that topologically optimized shapes are printed with constant material density and composition. ‘Most such technologies, however, remain limited to producing single-material, constant-property prototypes from a restricted range of materials’ [16]. However, such dualism between the micro- and the macroscales could be surpassed in the near future, since 3D printed structures could be not only topologically optimized at the macroscale, but also at the microscale, both as to density and structure of material, and as to material composition or combination. This would resemble what happens in nature, where the microstructure of plants and other living beings tends to correspond to the required local performances. In fact, ‘Since many biological materials are made of fibrous heterogeneous compositions, their multi-functionality is typically achieved by mapping performance requirements to strategies of material structuring and allocation. The shape of matter is therefore directly linked to the influences of force acting upon it. Material is concentrated in regions of high strength and dispersed in areas where stiffness is not required’ [16].
\nSuch an opportunity would be a game-changer in AEC. A completely different design paradigm would be needed, since materiality would not be determined
Voxel-based materials (and printing techniques) would be, in this perspective, another important step forward in such a direction. ‘We expect digital materials and the 3D printing thereof to provide unprecedented control over all aspects of bulk materials in diverse fields ranging from micro scale biological tissue constructs to macro scale building projects. The ability to print multiple materials with incompatible processing characteristics and “smart” voxels with specific electrical, mechanical, or fluidic functionality will enable highly functional composite materials to be printed in a simple, robust fabrication process. Over the last few decades, many technologies have benefited enormously by the transition from analog to digital, and we expect the same for three-dimensional matter’ ([17], p. 246).
Multidimensional design: 4D printing and the inclusion of time and other dimensions to Euclidian geometries.
The shift toward a new production paradigm, where the change in material and material properties is seamlessly possible could open even further opportunities in AEC. In particular, the right combination of materials and material structures can be exploited—according to virtual simulation in the software—to engineer elements, which would behave differently vis-à-vis external conditions, thus determining a change in the overall shape. In other words, the designer could aim for a change of the object shape over time, triggered by some external physical parameters, such as humidity, or temperature change. Similar techniques, which at the moment are still very limited and experimental, have been called 4D printing, with time being the fourth dimension. A pioneering research on the topic has been conducted at MIT’s Self-Assembly Lab by Skylar Tibbits, with a specific interest in creating self-assembling shapes [18]. Further research looks at the natural world, especially to the botanical world, in view of creating self-adapting structures: ‘Inspired by these botanical systems, we printed composite hydrogel architectures that are encoded with localized, anisotropic swelling behaviour controlled by the alignment of cellulose fibrils along prescribed four-dimensional printing pathways. When combined with a minimal theoretical framework that allows us to solve the inverse problem of designing the alignment patterns for prescribed target shapes, we can programmably fabricate plant-inspired architectures that change shape on immersion in water, yielding complex three-dimensional morphologies’ [19].
\nThe use of elements that change over time, adapting to environmental parameters and without any energy requirements or sensors/actuators, could have a profound impact on architecture. For instance, it is easy to imagine a façade, which would adapt to sun and humidity and provide optimal internal comfort without the need of a complex, fragile and expensive system of sensors and actuators.
\nAs an example thereof, a prototype of a hygroscopic element that opens and closes reacting to air humidity has been 3D printed and successfully tested by a team of researchers. It could constitute a self-adapting, tunable façade element that does not need neither sensors, nor actuators or energy sources other than the mere change in the environmental conditions. The ‘research aims to enhance wood’s anisotropic and hygroscopic properties by designing and 3D printing custom wood grain structures to promote tunable self-transformation. […] A differentiated printing method promotes wood transformation solely through the design of custom-printed wood fibers. Alternatively, a multimaterial printing method allows for greater control and intensified wood transformations through the precise design of multimaterial prints composed of both synthetic wood and polymers. The presented methods, techniques, and material tests demonstrate the first successful results of differentiated printed wood for self-transforming behavior, suggesting a new approach for programmable material and responsive architectures’ (Figures 23 and 24) [20].
Correspondence virtual-real as implicit requirement for a reliable simulation and appraisal of mass-customized, i.e., nonstandard, elements. Applicability of artificial intelligence as possible solution to the impasse of safety certification of nonstandard elements, as well as performance tuning.
Correa et al., 4D printed adaptive component: when closed (
Correa et al., 4D printed adaptive component: when open (
The tighter the correspondence between what is being simulated in the virtual realm and what is actually manufactured through 3D printing makes it possible to make assumptions about the performances of the produced pieces. In fact, through sample testing along the range of outcomes, it is possible to validate the virtual simulations about the whole series being manufactured with an acceptable margin of error, possibly with no need to test a sample for each and every shape. Moreover, a feedback loop can help in further perfecting the accuracy of the simulations, attuning them to the specific material and printing machine.
The reclamation of the continuous variation in architecture as both biomimicry—hence efficient multiperformative holistic solution—and as an expressive potential.
Allowing architects to design structures which could be continuously changing from the micro- to the macroscale, without having to repeat standardized identical elements, would enable architecture to overcome one of the main criticisms that has been raised since the dawn of industrialization: the loss of those ever-changing spatial qualities which natural refuges—such as caves—and hand-made architecture embedded. Some author ([21], p. 81) noted that ‘the “informal” of caves, their anti-geometric character, is transmitted to the “barbaric” culture of the proto-Italian settlement, from Pantalica to Barumini, continuing until our times in the grandiose stone complex of Matera’. Those characters would correspond to those spaces human beings evolved in, and that therefore are programmed to appreciate. Notoriously, the issue of standardization in industrialized architecture was already raised more than a century ago, when authors such as John Ruskin criticized the lack of differentiation among industrially produced architectures, preferring the richness of the nuances provided by historical patina and handwork. ‘[…] The forms and mode of decoration of all the features were universally alike; not servilely alike, but fraternally; not with the sameness of coins cast from one mould, but with the likeness of the members of one family’ [22]. The new production techniques, along with parametric design tools, could mimic nature and hand-making also under this respect, creating a spatial experience more nuanced along a continuum of varying shape and materiality. However, as already noted, this becomes a further challenge for the architects, who need to rethink even their own role and tasks in order to make full and best use of such opportunities.
\nExample: Digital Grotesque—Hansmeyer, Dillenburger, Zurich, 2013.
\nThis case study does not purport all the advanced materiality and scale-free features we are discussing, but is noteworthy as it shows the degree of continuously varying detailing along a shape. ‘Digital Grotesque has been designed through an algorithmic procedure called “mesh-grammars”, which procedure consists of rules that articulate the structure out of a primitive input form, by recursively splitting surfaces. The process allows for highly specific local conditions with complex topologies to be generated. […] The resulting form, consisting of a mesh of 260 million individual facets, has a resolution and level of detail that would be impossible to specify using traditional means, whether drawn by hand or mouse. It provides a glimpse of the potentials of additive manufacturing’ (Figure 25) [23].
\nHansmeyer Dillenburger, digital grotesque (
While additive manufacturing has been around in its main techniques already for some 40+ years now, and cannot be considered an immature technology, it is still undergoing a significant innovation process, often through the hybridization of established base-techniques. Furthermore, in its use—especially within the AEC field—its disruptive potential has yet to be exploited and harvested outside the experimental research or pilot projects.
\nWhile waiting for ‘the ultimate’ technique, some limitations of additive manufacturing can be dealt with through a series of smart strategies. One of these consists in limiting its use to only the parts that need customization, so as to overcome the slower production speed still often associated with AM: very often, it is the nodes that can embed the nonstandard, varying part of the overall geometries, thus allowing for the standardization of all other elements. Another strategy consists in the use of such techniques as an indirect means to support other techniques, as it is the case with 3D printed molds to help create freeform concrete structures. In any case, as it is already the case in some fields like engineering, also within AEC it seems that now additive manufacturing techniques can slowly be adopted not only for rapid prototyping of models and components, or as a mere support technique to other more established techniques, but also to produce functional elements within the final, built structures, or even fully functional entire structures.
\nThe adoption of AM techniques in AEC seems likely to bear some lasting consequences going beyond the ‘technical’ aspects. In fact, similar to how the invention of press systems changed the role of writers and their professional position, or the recording of sounds created a wholly new environment for musicians, so could additive manufacturing produce a lasting impact on the entire world of AEC, especially as regards the role of the architects and the expressive potentialities opened to them.
\nOn the one hand, it is possible to hypothesize more cost-effective outcomes just by the reduced use of materials and working hours granted by the use of these techniques, as for instance topological optimization, form-finding and other computational design techniques. However, such an approach requires that the architects be aware of the underlying geometrical and physical issues and material properties, both in order to create the final shapes—e.g., as a result of constraint-based design approaches—and in view of ‘guaranteeing’ safety and durability/resilience.
\nOn the other hand, it is now possible for architects to regain a wide degree of autonomy (lost with industrialization) as to the creation of nonstandardized elements and custom ‘materials’, yet within an industrial mass-customized production process. In other words, while the immediate opportunities opened up by AM techniques seem linked just to faster and cheaper production of possibly unconventional and nonstandardized shapes, the greatest opportunities in AEC could lie in the freedom for architects to explore and imagine new languages and solutions that could be at the same time multiperformative in nature, considering multiple constraints and functions, and spatially inspiring.
\nIn recent decades, formation of nanowires and nanotubes has an attractive literature which emphasizes towards material growth. Amongst numerous materials containing organic and inorganic, nanotubes show versatile properties due to promising candidates such like carbon nanotubes, contributing a great part in potential applications relevant to disciplinary medicinal chemistry [1, 2]. Foundation of fullerenes [3] was extracted from carbon nanotubes (CNTs) that explore fabrication on a macroscopic level, thereby exhibiting continuous evolution [4]. The cylindrical shape of CNT is caused by rolling up of graphitic sheets; length is measured in micrometer scale while maximum diameter is taken as 100 nm. CNT also appears in bundle shape to form prominently complex nature structure [5]. Hexagon rings are in arranged form on which metallic nature or semiconducting behavior of CNT is evaluated. CNT belongs to the properties towards robust applications like fillers; bio-sensors are amongst nanotechnological pillars in exciting fields [6, 7]. However, some limitations such as insolubility and non-manipulation in solvents play role for creating hindrance to CNT use as solute in organic solvents as well as aqueous media. Dispersion of CNT may be carried out through sonication; however, precipitation is also occurred caused by the interruption of the process followed by the mechanism. Moreover, numerous studies also showed that CNT might react with a variety of chemical compounds [8, 9, 10, 11, 12, 13, 14, 15, 16, 17].
Innovative nanodevices are greatly desired in research work and it may be met only by CNT best fabricating processing that is obtained by the synthesis of complex nature composites [18, 19, 20]. Furthermore, CNTs become highly reliable when chemical reactions are carried out to incorporate them in soluble activities into different systems such as organic or inorganic and biological accordingly. Thus, CNTs solubility approach in chemical reactions opens new routes for introducing promising materials [21, 22]. Unidirectional CNT structures may be prepared by modified approaches and their structural study is done by following group study containing three categories, first is that various chemical groups are incorporated on the surface of CNTs via covalent bonding, secondly non-covalent wrapping of functional groups and thirdly endohedral fulfillment of cavity. Many citations in this study have been appreciated due to which it is rapidly increasing by worth in literature, while this review presents a limited approach providing useful information in all citations followed in this study [23, 24, 25, 26]. It has been systematically studied that CNTs may be prepared by employing synthesis methods containing arc discharge approach or chemical-vapor-deposition and laser-ablation technique [27, 28].
In arc discharge approach temperature is kept greater than 3000°C. This temperature is indispensable to evaporate carbon atoms to form a plasma state, in this way CNTs are shaped as single-walled as well as multi-walled structures. In this process, catalytic agent may or may not be involved during the formation of multi-walled carbon nanotubes (MWCNTs). However, inclusion of catalytic agent is mandatory to create individual single-walled carbon nanotubes (SWCNTs). The catalytic agents like Cobalt, Nickel, and Iron may be used as mandatory steps to complete the reactions reasonably [29, 30, 31, 32]. In chemical-vapor-deposition (CVD) approach methane, ethylene, etc. are incorporated as hydrocarbon sources necessary to carry out reactions successfully. As far as laser-ablation approach is concerned, evaporation process of graphite occurs in a furnace at a temperature of 1200°C. Moreover, graphite appears as dominant material to produce species with converting ratio at maximum level. Moreover, biomaterial targets are achieved depending on degree of purity level, that is why macroscopic approach is carried out for the improved quality of carbon materials owing to achieve some characteristics like length and alignment [33]. It has been reported that MWCNTs were collected first time by Iijima (by employing arc-discharge approach), and this approach is too old that was adopted for carbon fibers synthesis [34, 35]. Subsequently, an in-situ emulsion of polymerization was presented by Khan et al. [36] in 2016 to synthesize carbon nanotubes (CNTs) in the form of composites, which was completed by employing a colloidal system to fabricate nanostructured brush.
Nanotubes may be categorized into SWCNTs as well as MWCNTs (see Figure 1). A comparison between both SWCNT and MWCNT is demonstrated in Table 1 [38, 41].
Molecular representations of SWCNT (top left) and MWCNT (top right) with typical transmission electron micrographs below [
SWCNT | MWCNT |
---|---|
Single-layer of graphene. | Multiple layers of graphene |
Catalyst is required for synthesis. | Can be produced without catalyst. |
Bulk synthesis is difficult as it requires proper control over growth and atmospheric condition. | Bulk synthesis is easy. |
Not fully dispersed, and form bundled bundled formation. | Homogeneously dispersed with no apparent structures. |
Resistivity usually in the range of 10−4 – 10−3 Ω.m | Resistivity usually in the range of 1.8 × 10−5 – 6.1 |
Purity is poor. Typical SWCNT content in as-prepared samples by chemical vapor deposition (CVD) method is about 30–50 wt%. However high purity up to 80% has been reported by using arc discharge synthesis method. | Purity is high. Typical MWCNT content in as-prepared samples by CVD method is about 35–90 wt%. |
A chance of defect is more during functionalization. | A chance of defect is less especially when synthesized by an arc-discharged method. |
Characterization and evaluation are easy. | It has a very complex structure |
It can be easily twisted and are more pliable. | It cannot be easily twisted. |
SWCNT comprised of carbon atoms from graphene sheet containing benzene rings in hexagonal shape as illustrated in Figure 2a. Cylindrical graphene sheets comprising honeycomb lattice are visualized in single-atomic graphitic-layer of crystalline nature, while MWCNT is in stacked form of graphene sheets that are rolled up into cylinders having same centers. The composition of nanotube molecules contains a million atoms having length of tens micrometers and diameters are comparable with 0.7 nm value [41]. SWCNTs containing 10 atoms often lie along the circumference of tube-like structure with one-atom-thick thickness. A length to diameter ratio of carbon nanotubes is measured about 1000 (large aspect ratio), giving rise to be considered as unidirectional structures [43]. MWCNTs structure is formed by various single-walled tubes that are stacked in concentric cylinders inside each other. The MWCNTs are identified as nanostructures showing the outer diameter is (15 nm or less) while structures having a diameter more than 15 nm are considered as nanofibers, not nanotubes. CNTs are different from carbon-fibers owing to not a single (molecule) yet strand layers sheets of graphitic nature [43, 44, 45, 46].
(a) Unrolled single-layer graphene sheet showing the geometry of the SWCNT, (b-d) Examples of the three types of nanotube sidewall; zigzag, armchair, and chiral (A color version of this figure can be viewed online) [
Depending upon the two aforesaid basic structures, carbon nanotubes may be categorized into three varieties as an armchair, zigzag, and chiral carbon nanotubes. The structure of a variety of carbon nanotubes depends on the formation of rolled up graphitic cylinders during synthesis process. The main focus is selection of rolling-axis relative to hexagonal graphitic network of sheets as well as radius of closing cylindrical network of nanotubes that are raised in various types of SWCNTs. In this structure, chiral vector contains 𝑛 and 𝑚 indices corresponding to two unit vectors directing along two-axis in graphene crystal lattice structure. In case of m = 0 zigzag-type nanotube, but when n = m the armchair nanotube is obtained while other configurations are attributed to chiral type nanotubes accordingly. In addition, SWCNTs with armchair structure, zigzag, and chiral structures have been illustrated in Figure 2b–d. Moreover, a further detailed structure may be visualized in literature reviews [7, 43, 47, 48].
Mechanical properties may drastically be raised, caused by the electrostatic forces between sp2 carbon–carbon-bonds. Previously no material has been yet found to display the collective mechanical, electronic, and thermal properties up till now. Densities of materials have been observed below 1.3 g/cm3 value (one-sixth stainless steel). Young’s moduli measured material stiffness that was greater than 1 TPa and is considered approximately 5x higher than that of stainless steel [49, 50]. However, uniqueness of materials still depends upon strength that makes them apart from others. Furthermore, carbon nanotubes are those materials that showed the strongest stiffness in the history of mankind. The tensile strength of carbon nanotubes measured so far is up to 63 GPa that is considered about 50 times greater than that of stainless steel [51]. However, carbon nanotubes that are identified as the weakest one show only several GPa strength [52]. As far as chemical, environmental stability, thermal conductivity etc. are compared to diamond. Owing to such attractive properties along with lightness of carbon nanotubes opens new routes towards variety of applications particularly in the field of aerospace [40, 53, 54, 55].
Carbon nanotubes highly exhibit electronic properties as compared to other materials. On comparing with copper carbon nanotubes show an extraordinary electrical conductivity. The most notable fact here is metallic as well as semiconducting nature of carbon nanotubes. The rolled-up structure comes forward to break up symmetric shape of the planar system. In this way, different directions are observed attributing to hexagonal lattice of carbon material and also axial direction is disturbed. Axial direction and unit vectors describe hexagonal lattice, therefore, depending on electrical properties carbon nanotubes may have nature of metal or semiconducting material. Amongst other nanotubes, semiconducting nanotubes may have band gap inversely with diameter. Band gap range was found between (1.8–0.18 eV) relative to small diameter tubes as well as very wide SWCNT respectively [56, 57]. Consequently, various nanotubes may belong to higher conductivity as compared to copper metal, while some others relative to silicon have a more conducting nature. There is a still promising interest in fabrication of nanoscale electronic devices by active use of nanotubes. Various areas of technology need carbon nanotubes to prepare advanced materials. Thus carbon nanotubes are already frequently used in those areas of research. Some outcomes of nanotubes are flat-panel displays, fuel cells, scanning probe microscopes, and sensing fabricated devices [58].
Electronic properties owing to SWNTs have been theoretically studied in early decades. SWNTs may be predicted metallic or semiconductors based on parameters that are followed in structure formation of the nanotubes [35]. As far as metallic and semiconducting nature of nanotubes is concerned, one third belongs to metallic whereas two-third relates to semiconducting nanotubes concerning selected indices (n, m). The aforesaid model is identified as π tight-binding model related to zone-folding scheme. Tight-binding data is based on (σ and π) bands that produce the curvature of σ and π bands. This bending behavior indicates a very small gap lying between metallic and semiconducting nanotubes [59, 60].
Electrical properties of carbon nanotubes show electrical transport impact that becomes an interesting area of various possible applications attributing to fabricate electronic devices at nanoscale basis. Nanotubes are classified as one-dimensional conductor owing to which attractive microscopic phenomena are observed at low temperatures. Phenomena are likewise single-electron charging, superconductivity, and resonant tunneling. On the other hand, high temperature based tunneling conductance expresses power-law suppression that is evaluated as a function of (temperature and bias voltage) consistent with one-dimensional Luttinger liquid. Scattering mechanism is raised by optical or zone-boundary-phonons in metal-like nanotubes. Scattering along with coherent-backscattering phenomena has resulted in the form of low-temperature phenomena. Probe measurements were two-type as well as four-type in transport experiments performed with respect to MWNTs [61], isolated SWNTs, and SWNT bundles respectively [62, 63].
Initially, electrical resistance was measured towards unique MWNT below T = 20 mK, Langer et al. determined [61], whereas magnetic field shows a logarithmic conductance trend at declining temperature whereas saturation level was identified at the temperature below T ~ 0.3 K. However, when magnetic field impact was measured and found perpendicular towards tube axis, at that time magneto-resistance measurements were also observed. Furthermore, temperature effect on conductance in magnetic field was also observed that was found inconsistent with two-dimensional weak-localization.
Atomic-vibrations into carbon nanotubes were successfully evaluated by employing force-constant models (zone-folding-approximation) [64], also for concrete structure of nanotubes [65], ranging (tight-binding-models) [66, 67, 68, 69] and finally, ab-initio models were also observed [70]. To measure vibrational eigenfrequencies, experiments were performed by using light resonant Raman scattering in case of laser-light-energy when energy measurements are very close to available electronic transitions. Resonance limitations are entirely different for all types of nanotubes; therefore Raman spectroscopy presents results to display various nanotubes structures that exist in the nanotube specimen. Currently, Raman spectroscopy measured parallel polarized light relevant to MWNTs [71], SWNTs [72, 73] and cross-polarized-light on isolated SWNTs [74].
Phonons were used to measure specific heat as well as thermal conductivity of carbon nanotube systems. When temperature was kept low enough, acoustic phonons were observed indicating dominant role of phonon contribution in the nanotube systems. Linear specific heat measurements and thermal conductivity yield at or above 1 K but below room-temperature [75, 76], whereas 0.62 T specific heat identifies temperature at or below 1 K [77]. Linear temperature was evaluated depending on linear k-vector and modes of vibration of acoustic phonons such as longitudinal and twist like vibrations [78]. Transverse acoustic phonons are relative to specific heat exhibits dependence behavior attributing to specific heat at or below 1 K along with quadratic k-vector trend [79]. Thermoelectric measurement power (TEMP) for nanotube systems presents active and direct information about carrier types along with conductivity mechanisms [80, 81, 82, 83].
High-quality carbon nanotubes are considered to be superior quality materials and proved to be main pillar towards promising and versatile applications, various synthesis routes are employed to achieve feasible application of CNTs as described in Figure 3. Superior quality indicates that density of structural defects is significantly less over length scale between 1 to 10 microns along tube-axes. Carbon nanotubes synthesis is rapidly increasing in research field but still, challenges are prevailing. Those challenges are required to resolve with respect to synthesis of CNT. The main challenges are of four types regarding nanotube synthesis [84]. First is mass-production scale, containing low-cost based synthesis with large-scale synthetic routes to produce high-quality SWCNTs nanotubes. Second is a selective production scale that raises control over structural defects and changes electronic properties relevant to produced nanotubes. Third is Organization level regarding control over location along with specific orientation towards produced nanotubes on specific substrate. Fourth is mechanism level that presents all procedures followed during growth of nanotubes in synthetic processes. But growth mechanism is considered still controversial because alternative mechanisms may be employed during fabrication of CNTs [27, 85, 86].
Currently used methods for CNTs synthesis [
Different techniques have been systematically employed to develop and produce SWNTs as well as MWNTs showing various structural and morphological characters in laboratory quantities. Methods commonly followed are three in number to synthesize CNTs, first is arc discharge [87, 88], second is laser ablation [66, 89] and third is chemical vapor deposition [67, 68, 69, 90, 91]. Catalysts are considered basic elements that are selected as source of carbon towards nanotubes formation, having sufficient energy. A significant feature of all methods followed for CNTs fabrication is to enhance energy for carbon source producing fragments of carbon atoms that may recombine to yield SWNTs or MWNTs. The main goal is source of energy that is electricity and heat from an arc discharge and CVD respectively or high-intensity-light for laser ablation.
Amongst various methods that were allowed regarding SWNTs synthesis, arc-discharge or laser-ablation methods contributed relatively on large-scale basis (Figure 4). Subsequently, carbons atoms in a gaseous state are condensed caused by evaporation process of solid-state carbon atoms [92]. While growing single-wall-nanotubes (SWCNTs) in arc-discharge system, metallic catalyst is mandatorily required to incorporate for speed-up desired chemical reactions [93]. On the other hand, superior-quality (SWCNTs) are successfully fabricated (1–10 g scale) by using a laser oven approach [94]. Besides aforementioned method wave, CO2-laser system was also employed regarding industrial-scale production of SWCNTs [95]. However, costly equipment as well as high energy consumption requirement makes them unfavorable approaches towards production of nanotube materials. Through employing arc ablation or laser methods only powder type specimens of carbon materials into bundle-shape form are controllably produced. The most common characteristic relevant to arc-discharge and laser-ablation approaches indicates higher energy need to induce carbon atoms to rearrange forming CNTs. Favorable temperature is prominently 3000 ∘C (or higher value) that is considered more beneficial for fine crystallization growth of CNTs at this level since products are obtained with attractive graphite-alignment. Moreover basic needs of the systems such as vacuum-conditions, repeated graphite-target substitution create barriers towards production of CNTs on an industrial scale [96].
Schematic diagram showing the Arc discharge method [
CVD approach presents carbon compounds decomposition in gaseous state where metallic nanoparticles are used as catalysts resulting in nucleation sites available for initial growth of carbon nanotubes (CNTs). Main drawback found in previous both methods was lack of large-scale fabrication of carbon materials, but CVD approach has presented preferred route towards carbon nanotubes production at large scale [97, 98, 99]. In this work, carbon is extracted from hydrocarbon source or some other carbon generating source. These chemical reactions are only successfully performed by using catalysts at or below 1200 ∘C temperature. Resultantly, CNT structure involved parameters like wall number, length, alignment, and diameter that have proven controllable CVD process. In addition, CVD approach has greater scope and advantages over other methods showing mild operation with low cost and selective process. The previous twelve years period describe that various approaches have presented promising industrial-scale synthesis of carbon nanotubes. All approaches indicate that CVD methods are main pillars of large scale production of nanotubes. Among various methods, main approaches are five in numbers that have proven to be successful large-scale yield [100].
Methane(CH4) chemical vapor deposition (CVD) approach has been reported in 1998 showing bulky synthesis of SWCNTs by employing CVD method directly from CH4 at temperature level (900 ∘C) [101, 102]. But Su
High-Pressure carbon monooxide (HPCO) approach presented catalytic-decomposition of CO through CO (a carbon source) at high pressure towards SWCNTs fabrication [104]. Aforesaid catalysts were used in decomposition process in the form of a gas phase state collected from organometallic-catalyst that was used as a precursor.
In CO-CVD approach CO gas plays role to feed gas. On comparing with previously prepared samples with same methane catalyst, amorphous carbon rate was drastically reduced. In addition, the use of Co-Mo catalyst was considered an additional advancement in previously employed CO-CVD approach [105]. This approach incorporates Co/Mo bimetallic catalyst along with fluidized CVD-reactor during production of SWCNTs at large scale. The main benefit that arises from controllable use of fluidized CVD reactors was that they stop continuous addition as well as removal of solid-like particles during operation without stopping reactor work.
Alcoholic CVD approach has been presented by Maruyama
Currently Plasma Enhanced Chemical Vapor Deposition (PECVD) approach has been used widely towards fabrication of MWCNTs and SWCNTs carboneous compounds [107, 108, 109]. Moreover reactive species present in plasma-system may seriously affect growth of carbon nanotubes with small diameter, thereby creating implications for diameter control along with selective etching attributing to metallic SWCNTs growth.
Both laser ablation and arc discharge approaches have the same principles with similar mechanisms. However, they are not similar with respect to energy sources that are adopted to complete reactions. A laser is main source of desired energy for laser ablation method and Figure 5 is showing schematic experimental setup. The schematic structure contains quartz tube with graphitic block. Graphite block is heated at 1200°C temperature by using high-power-laser whereas metal particles are incorporated catalysts [110]. Argon gas is controllably used in stream form during reaction process. Graphite lying in quartz is systematically vaporized by functioning of laser. Argon present in chamber removes vapors of carbon by condensation process towards downstream cooler quartz-walls. Condensation process is completed in the presence of both SWCNTs and metallic nanoparticles (see Figure 5). Literature reveals that laser power may strongly affect CNTs diameter. On increasing laser pulse power rate a very thin diameter carbon nanotube is collected [40]. On other hand, some other reports give more information in favor of laser pulses that they behave like great potential, owing to be capable to provide SWCNTs in large amount [89, 111]. Reports indicate pure and superior quality production of SWCNTs in this case. Curved graphene sheets are observed showing position of carbon atoms in condense phase state caused by set up created by metal-catalyst to fabricate condensed carbon nanotubes.
Schematic structure showing the laser ablation method.
In this case, carbon atoms rearrange them for formation of ring shape and in this way, electronegative properties become dominant to play role in preventing open edge from sealing [110]. Furthermore, there are main benefits relative to this method that indicate metallic impurities less in amount but high in yield owing to vaporization tendency creating at tube end of metallic atoms at closing position. However main drawback of technique is observed with respect to synthesis aspect of nanotubes that they are not regularly straight rather indicate degree of branching to some extent. In addition this technique involves high-quality graphitic rods with high-power laser rate. However, in this case, CNTs are produced but not greater than arc-discharge technique. Carbon-2019 for “PEER REVIEW” describes high-power-laser when metal particles are incorporated as mandatory catalysts in reaction process [110]. Argon gaseous stream is continuously used during reaction mechanism. Graphitic quartz is passed through vaporization process using a laser, argon media captures carbon vapors that result in condensed downstream towards cooler-walls of quartz but still SWCNTs with metallic-particles are located in condensation process. Laser power may also clearly affect CNTs diameter. Furthermore, diameter becomes comparatively narrowed on increasing laser pulse rate [30]. Other studies reported that ultrafast laser pulses are of great potential, and are capable to produce larger quantities of SWCNTs [112]. SWCNTs collected by this technique are observed owing to high-purity and superior-quality in nature. Location sites where carbons atoms initiate condensation process may set up curved shape graphene sheet along with metal-catalyst atoms. In this way condensed nanotubes are properly obtained showing peculiar properties. Moreover, carbon atoms merge to form specific rings, thereby raising electronegative properties relative to metallic atoms that become capable to prevent open-edge from closing [113].
The main benefit belongs to followed method, in this case, metallic impurities are observed relatively less in amount but with high yield that is caused by vapors formation tendency belonging to metallic atoms from tube end when closed once in a time. However main drawback relative to this technique indicates irregularity in straight shape for synthesized nanotubes whereas degree of branching occurs to some extent. Furthermore, pure graphitic rods are involved in this procedure along with high laser power rate. Resultantly production of CNTs was not in great amount as compared to arc- discharge method.
Carbon nanotubes have the ability to be more investigated, and it is possible to drive further advancements by using CNTs in different fields. The findings obtained in the synthesis, functionalization, and structure of CNTs have contributed significantly to promising developments in various fields. However, further perfections in synthesis protocols are needed to obtain highly durable CNTs for preferred applications. For an instant, catalyst size is directly influenced on diameter of CNT during CVD reaction. So, further analysis should also be undertaken to discover more effective methods of processing precisely uniform-sized catalyst particles in order to ensure the production desired diameter of SWCNTs; but CNTs are costly than other carbon nanomaterials. Efforts should be proceeded to look for modern, cost-effective, and plentiful carbon sources, so that cost of CNTs can be lowered to an acceptable amount.
You have been successfully unsubscribed.
",metaTitle:"Unsubscribe Successful",metaDescription:"You have been successfully unsubscribed.",metaKeywords:null,canonicalURL:"/page/unsubscribe-successful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"19,16"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11588",title:"Autism",subtitle:null,isOpenForSubmission:!0,hash:"0c5043c6174db167599cb3f762e8bba8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11588.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11694",title:"Preterm Birth",subtitle:null,isOpenForSubmission:!0,hash:"32122a528d743d1f8843ac6b1c9cd564",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11694.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11713",title:"Chiropractic Medicine",subtitle:null,isOpenForSubmission:!0,hash:"b4e556ae0275a66d0c662a53aac5cb92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11713.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11727",title:"Bronchitis",subtitle:null,isOpenForSubmission:!0,hash:"bde0bf7ccc8a2c1798f43ab5b56d338c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11727.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11818",title:"Uveitis",subtitle:null,isOpenForSubmission:!0,hash:"f8c178e6f45ba7b500281005b5d5b67a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11818.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11838",title:"Football Science",subtitle:null,isOpenForSubmission:!0,hash:"e69975f96f195be8093194346f8bbe58",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11838.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11843",title:"Abortion Access",subtitle:null,isOpenForSubmission:!0,hash:"e07ed1706ed2bf6ad56aa7399d9edf1a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11843.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11850",title:"Systemic Sclerosis",subtitle:null,isOpenForSubmission:!0,hash:"df3f380c5949c8d8c977631cac330f67",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11850.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:41},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:18},{group:"topic",caption:"Engineering",value:11,count:44},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:13},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:106},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:8},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:117},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4389},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"697",title:"Microfluidics",slug:"microfluidics",parent:{id:"112",title:"Biomedical Engineering",slug:"engineering-biomedical-engineering"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:64,numberOfWosCitations:96,numberOfCrossrefCitations:41,numberOfDimensionsCitations:90,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"697",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5099",title:"Advances in Microfluidics",subtitle:"New Applications in Biology, Energy, and Materials Sciences",isOpenForSubmission:!1,hash:"bd857fbb862f64969eb6ba55b35f5ff4",slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",bookSignature:"Xiao-Ying Yu",coverURL:"https://cdn.intechopen.com/books/images_new/5099.jpg",editedByType:"Edited by",editors:[{id:"24996",title:"Dr.",name:"Xiao-Ying",middleName:null,surname:"Yu",slug:"xiao-ying-yu",fullName:"Xiao-Ying Yu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1792",title:"Advances in Microfluidics",subtitle:null,isOpenForSubmission:!1,hash:"113adf95d3ba8f7aaf46998603cc3a8b",slug:"advances-in-microfluidics",bookSignature:"Ryan T. Kelly",coverURL:"https://cdn.intechopen.com/books/images_new/1792.jpg",editedByType:"Edited by",editors:[{id:"111896",title:"Dr.",name:"Ryan",middleName:null,surname:"Kelly",slug:"ryan-kelly",fullName:"Ryan Kelly"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"51263",doi:"10.5772/64347",title:"High and Efficient Production of Nanomaterials by Microfluidic Reactor Approaches",slug:"high-and-efficient-production-of-nanomaterials-by-microfluidic-reactor-approaches",totalDownloads:2622,totalCrossrefCites:5,totalDimensionsCites:15,abstract:"This chapter overviews different approaches for the synthesis of nanostructured materials based on alternative methodologies to the most conventional and widespread colloidal wet chemical route and with a great potential applicability to large-scale and continuous production of nanomaterials. Their major outcomes, current progress in synthesis of micro and nanostructures by using microfluidics techniques and potential applications for the next future are reviewed throughout three different sections. Emphasis is placed on nanomaterials production basics, nanomaterials production techniques and microfluidic reactors (types, materials, designs). The integration of nanoparticle and microreactor technologies delivers enormous possibilities for the further development of novel materials and reactors. In this chapter, recent achievements in the synthesis of nanoparticles in microfluidic reactors are stated. A variety of strategies for synthesizing inorganic and polymeric nanoparticles are presented and compared, including continuous flow, gas–liquid segmented flow and droplet-based microreactors",book:{id:"5099",slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences"},signatures:"Victor Sebastian Cabeza",authors:[{id:"177071",title:"Dr.",name:"Victor",middleName:null,surname:"Sebastian",slug:"victor-sebastian",fullName:"Victor Sebastian"}]},{id:"52959",doi:"10.5772/65773",title:"Overview of Materials for Microfluidic Applications",slug:"overview-of-materials-for-microfluidic-applications",totalDownloads:2541,totalCrossrefCites:1,totalDimensionsCites:10,abstract:"For each material dedicated to microfluidic applications, inherent microfabrication and specific physico‐chemical properties are key concerns and play a dominating role in further microfluidic operability. From the first generation of inorganic glass, silicon and ceramics microfluidic devices materials, to diversely competitive polymers alternatives such as soft and rigid thermoset and thermoplastics materials, to finally various paper, biodegradable and hydrogel materials; this chapter will review their advantages and drawbacks regarding their microfabrication perspectives at both research and industrial scale. The chapter will also address, the evolution of the materials used for fabricating microfluidic chips, and will discuss the application‐oriented pros and cons regarding especially their critical strategies and properties for devices assembly and biocompatibility, as well their potential for downstream biochemical surface modification are presented.",book:{id:"5099",slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences"},signatures:"Emmanuel Roy, Antoine Pallandre, Bacem Zribi, Marie‐Charlotte\nHorny, François Damien Delapierre, Andrea Cattoni, Jean Gamby\nand Anne‐Marie Haghiri‐Gosnet",authors:[{id:"45172",title:"Prof.",name:"Anne-Marie",middleName:null,surname:"Haghiri-Gosnet",slug:"anne-marie-haghiri-gosnet",fullName:"Anne-Marie Haghiri-Gosnet"}]},{id:"29682",doi:"10.5772/34690",title:"Hydrodynamic Focusing in Microfluidic Devices",slug:"hydrodynamic-focusing-in-microfluidic-devices",totalDownloads:7461,totalCrossrefCites:7,totalDimensionsCites:9,abstract:null,book:{id:"1792",slug:"advances-in-microfluidics",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics"},signatures:"Marek Dziubinski",authors:[{id:"101230",title:"Prof.",name:"Marek",middleName:"Stanislaw",surname:"Dziubinski",slug:"marek-dziubinski",fullName:"Marek Dziubinski"}]},{id:"29686",doi:"10.5772/38072",title:"Smart Microfluidics: The Role of Stimuli- Responsive Polymers in Microfluidic Devices",slug:"smart-microfluidics-the-role-of-stimuli-responsive-polymers-in-microfluidic-devices",totalDownloads:4627,totalCrossrefCites:3,totalDimensionsCites:9,abstract:null,book:{id:"1792",slug:"advances-in-microfluidics",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics"},signatures:"Simona Argentiere, Giuseppe Gigli, Mariangela Mortato Irini Gerges and Laura Blasi",authors:[{id:"12979",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Gigli",slug:"giuseppe-gigli",fullName:"Giuseppe Gigli"},{id:"115443",title:"Dr.",name:"Simona",middleName:null,surname:"Argentiere",slug:"simona-argentiere",fullName:"Simona Argentiere"},{id:"115444",title:"Dr.",name:"Laura",middleName:null,surname:"Blasi",slug:"laura-blasi",fullName:"Laura Blasi"},{id:"138512",title:"Dr.",name:"Mariangela",middleName:null,surname:"Mortato",slug:"mariangela-mortato",fullName:"Mariangela Mortato"},{id:"138513",title:"Dr.",name:"Irini",middleName:null,surname:"Gerges",slug:"irini-gerges",fullName:"Irini Gerges"}]},{id:"51264",doi:"10.5772/64284",title:"Microfluidics in CO2 Capture, Sequestration, and Applications",slug:"microfluidics-in-co2-capture-sequestration-and-applications",totalDownloads:1990,totalCrossrefCites:5,totalDimensionsCites:7,abstract:"The abnormal climate change has made the reduction of CO2 emission that received worldwide attention. The integration of CO2 capture-sequestration application for enhanced oil recovery (EOR) technology will be the new trend. Several scholars have applied microfluidics in CO2 capture, oil and gas analysis, and CO2 sequestration. The mass transfer process for CO2 capture can be intensified owing to the large specific surface/volume ratio and high contact area in microchannels. The small amount of feeding volumes of oil and gas samples and the quick response for the analysis make the microfluidics a promising tool for the oil and gas analysis. Moreover, microfluidics can reveal the transport mechanism at microscale for multiphase interfacial phenomena in microchannels within porous media during the CO2 flooding process in line with the pressure, temperature, and material properties of the rock within the oil reservoir. This chapter will elaborate the progress of the application of microfluidic technology in the utilization of CO2, including the mechanism of mass transfer for CO2 in microreactors, the advantages of microfluidics in oil and gas analysis, and the fundamentals of microfluidics in CO2 flooding, oil recovery improvement, and CO2 sequestration.",book:{id:"5099",slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences"},signatures:"Taotao Fu",authors:[{id:"177065",title:"Associate Prof.",name:"Taotao",middleName:null,surname:"Fu",slug:"taotao-fu",fullName:"Taotao Fu"}]}],mostDownloadedChaptersLast30Days:[{id:"51263",title:"High and Efficient Production of Nanomaterials by Microfluidic Reactor Approaches",slug:"high-and-efficient-production-of-nanomaterials-by-microfluidic-reactor-approaches",totalDownloads:2622,totalCrossrefCites:5,totalDimensionsCites:15,abstract:"This chapter overviews different approaches for the synthesis of nanostructured materials based on alternative methodologies to the most conventional and widespread colloidal wet chemical route and with a great potential applicability to large-scale and continuous production of nanomaterials. Their major outcomes, current progress in synthesis of micro and nanostructures by using microfluidics techniques and potential applications for the next future are reviewed throughout three different sections. Emphasis is placed on nanomaterials production basics, nanomaterials production techniques and microfluidic reactors (types, materials, designs). The integration of nanoparticle and microreactor technologies delivers enormous possibilities for the further development of novel materials and reactors. In this chapter, recent achievements in the synthesis of nanoparticles in microfluidic reactors are stated. A variety of strategies for synthesizing inorganic and polymeric nanoparticles are presented and compared, including continuous flow, gas–liquid segmented flow and droplet-based microreactors",book:{id:"5099",slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences"},signatures:"Victor Sebastian Cabeza",authors:[{id:"177071",title:"Dr.",name:"Victor",middleName:null,surname:"Sebastian",slug:"victor-sebastian",fullName:"Victor Sebastian"}]},{id:"52333",title:"Advances in Low Volume Sample Analysis Using Microfluidic Separation Techniques",slug:"advances-in-low-volume-sample-analysis-using-microfluidic-separation-techniques",totalDownloads:1733,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"During the last decades, a great interest has been shown for miniaturised separation techniques. The use of microfluidic techniques fulfills the constant needs for increasing sample throughput and analysis sensitivity, while reducing costs and sample volume consumption. In this chapter, three microfluidic separation techniques will be addressed: capillary electrophoresis, gas chromatography and liquid chromatography. A special attention will be paid to miniaturised liquid chromatography, with a deep investigation of its advantages compared with classical liquid chromatography. Sample preparation adapted to low volumes (a few µl) will also be discussed.",book:{id:"5099",slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences"},signatures:"Virginie Houbart and Marianne Fillet",authors:[{id:"177056",title:"Prof.",name:"Marianne",middleName:null,surname:"Fillet",slug:"marianne-fillet",fullName:"Marianne Fillet"}]},{id:"29687",title:"Robust Extraction Interface for Coupling Droplet-Based and Continuous Flow Microfluidics",slug:"robust-extraction-interface-for-coupling-droplet-based-and-continuous-flow-microfluidics",totalDownloads:2274,totalCrossrefCites:0,totalDimensionsCites:1,abstract:null,book:{id:"1792",slug:"advances-in-microfluidics",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics"},signatures:"Xuefei Sun, Keqi Tang, Richard D. Smith and Ryan T. Kelly",authors:[{id:"111896",title:"Dr.",name:"Ryan",middleName:null,surname:"Kelly",slug:"ryan-kelly",fullName:"Ryan Kelly"},{id:"111900",title:"Dr.",name:"Xuefei",middleName:null,surname:"Sun",slug:"xuefei-sun",fullName:"Xuefei Sun"},{id:"135791",title:"Dr.",name:"Richard",middleName:null,surname:"Smith",slug:"richard-smith",fullName:"Richard Smith"},{id:"135792",title:"Dr.",name:"Keqi",middleName:null,surname:"Tang",slug:"keqi-tang",fullName:"Keqi Tang"}]},{id:"51262",title:"Electroosmotic Flow Pump",slug:"electroosmotic-flow-pump",totalDownloads:2494,totalCrossrefCites:0,totalDimensionsCites:4,abstract:"Electroosmotic flow (EOF) pumping has been widely used to manipulate fluids such as liquid sample reagents in microfluidic systems. In this chapter, we will introduce the research progress on EOF pumps in the fields of microfluidic science and technology and briefly present their microfluidic applications in recent years. The chapter focuses on pump channel materials, electrodes, and their fabrication techniques in microfluidics.",book:{id:"5099",slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences"},signatures:"Meng Gao and Lin Gui",authors:[{id:"176994",title:"Prof.",name:"Lin",middleName:null,surname:"Gui",slug:"lin-gui",fullName:"Lin Gui"},{id:"177064",title:"Ph.D.",name:"Meng",middleName:null,surname:"Gao",slug:"meng-gao",fullName:"Meng Gao"}]},{id:"51878",title:"Application of Microfluidics in Stem Cell Culture",slug:"application-of-microfluidics-in-stem-cell-culture",totalDownloads:2178,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"In this chapter, we review the recent developments, including our studies on the microfabricated devices applicable to stem cell culture. We will focus on the application of pluripotent stem cells including embryonic stem cells and induced pluripotent stem cells. In the first section, we provide a background on microfluidic devices, including their fabrication technology, characteristics, and the advantages of their application in stem cell culture. The second section outlines the use of micropatterning technology in stem cell culture. The use of microwell array technology in stem cell culture is explored in the third section. In the fourth section, we discuss the use of the microfluidic perfusion culture system for stem cell culture, and the last section is a summary of the current state of the art and perspectives of microfluidic technologies in stem cell culture.",book:{id:"5099",slug:"advances-in-microfluidics-new-applications-in-biology-energy-and-materials-sciences",title:"Advances in Microfluidics",fullTitle:"Advances in Microfluidics - New Applications in Biology, Energy, and Materials Sciences"},signatures:"Shinji Sugiura, Kohji Nakazawa, Toshiyuki Kanamori and Kiyoshi\nOhnuma",authors:[{id:"83549",title:"Dr.",name:"Kiyoshi",middleName:null,surname:"Ohnuma",slug:"kiyoshi-ohnuma",fullName:"Kiyoshi Ohnuma"},{id:"177083",title:"Dr.",name:"Shinji",middleName:null,surname:"Sugiura",slug:"shinji-sugiura",fullName:"Shinji Sugiura"},{id:"177084",title:"Prof.",name:"Kohji",middleName:null,surname:"Nakazawa",slug:"kohji-nakazawa",fullName:"Kohji Nakazawa"},{id:"177085",title:"Dr.",name:"Toshiyuki",middleName:null,surname:"Kanamori",slug:"toshiyuki-kanamori",fullName:"Toshiyuki Kanamori"}]}],onlineFirstChaptersFilter:{topicId:"697",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"May 19th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:4,paginationItems:[{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:7,paginationItems:[{id:"11476",title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",hash:"8d41fa5f3a5da07469bbc121594bfd3e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 24th 2022",isOpenForSubmission:!0,editors:[{id:"335401",title:"Prof.",name:"Margherita",surname:"Mori",slug:"margherita-mori",fullName:"Margherita Mori"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11460",title:"Pluralistic Approaches for Conservation and Sustainability in Biodiversity",coverURL:"https://cdn.intechopen.com/books/images_new/11460.jpg",hash:"ab014f8ed1669757335225786833e9a9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 22nd 2022",isOpenForSubmission:!0,editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 2nd 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81298",title:"Roles of Extracellular Vesicles in Cancer Metastasis",doi:"10.5772/intechopen.103798",signatures:"Eman Helmy Thabet",slug:"roles-of-extracellular-vesicles-in-cancer-metastasis",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81246",title:"Role of Carotenoids in Cardiovascular Disease",doi:"10.5772/intechopen.102750",signatures:"Arslan Ahmad, Sakhawat Riaz, Muhammad Shahzaib Nadeem, Umber Mubeen and Khadija Maham",slug:"role-of-carotenoids-in-cardiovascular-disease",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}}]},subseriesFiltersForOFChapters:[{caption:"Plant Physiology",value:13,count:5,group:"subseries"},{caption:"Human Physiology",value:12,count:13,group:"subseries"},{caption:"Cell Physiology",value:11,count:25,group:"subseries"}],publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1},{group:"subseries",caption:"Bioinspired Technology and Biomechanics",value:8,count:2},{group:"subseries",caption:"Bioinformatics and Medical Informatics",value:7,count:9}],publicationYearFilters:[{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:3}],authors:{paginationCount:302,paginationItems:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/198499/images/system/198499.jpeg",biography:"Dr. Daniel Glossman-Mitnik is currently a Titular Researcher at the Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua, Mexico, as well as a National Researcher of Level III at the Consejo Nacional de Ciencia y Tecnología, Mexico. His research interest focuses on computational chemistry and molecular modeling of diverse systems of pharmacological, food, and alternative energy interests by resorting to DFT and Conceptual DFT. He has authored a coauthored more than 255 peer-reviewed papers, 32 book chapters, and 2 edited books. He has delivered speeches at many international and domestic conferences. He serves as a reviewer for more than eighty international journals, books, and research proposals as well as an editor for special issues of renowned scientific journals.",institutionString:"Centro de Investigación en Materiales Avanzados",institution:{name:"Centro de Investigación en Materiales Avanzados",country:{name:"Mexico"}}},{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",biography:"Dr. Mirza Hasanuzzaman is a Professor of Agronomy at Sher-e-Bangla Agricultural University, Bangladesh. He received his Ph.D. in Plant Stress Physiology and Antioxidant Metabolism from Ehime University, Japan, with a scholarship from the Japanese Government (MEXT). Later, he completed his postdoctoral research at the Center of Molecular Biosciences, University of the Ryukyus, Japan, as a recipient of the Japan Society for the Promotion of Science (JSPS) postdoctoral fellowship. He was also the recipient of the Australian Government Endeavour Research Fellowship for postdoctoral research as an adjunct senior researcher at the University of Tasmania, Australia. Dr. Hasanuzzaman’s current work is focused on the physiological and molecular mechanisms of environmental stress tolerance. Dr. Hasanuzzaman has published more than 150 articles in peer-reviewed journals. He has edited ten books and written more than forty book chapters on important aspects of plant physiology, plant stress tolerance, and crop production. According to Scopus, Dr. Hasanuzzaman’s publications have received more than 10,500 citations with an h-index of 53. He has been named a Highly Cited Researcher by Clarivate. He is an editor and reviewer for more than fifty peer-reviewed international journals and was a recipient of the “Publons Peer Review Award” in 2017, 2018, and 2019. He has been honored by different authorities for his outstanding performance in various fields like research and education, and he has received the World Academy of Science Young Scientist Award (2014) and the University Grants Commission (UGC) Award 2018. He is a fellow of the Bangladesh Academy of Sciences (BAS) and the Royal Society of Biology.",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",country:{name:"Bangladesh"}}},{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",biography:"Kusal K. Das is a Distinguished Chair Professor of Physiology, Shri B. M. Patil Medical College and Director, Centre for Advanced Medical Research (CAMR), BLDE (Deemed to be University), Vijayapur, Karnataka, India. Dr. Das did his M.S. and Ph.D. in Human Physiology from the University of Calcutta, Kolkata. His area of research is focused on understanding of molecular mechanisms of heavy metal activated low oxygen sensing pathways in vascular pathophysiology. He has invented a new method of estimation of serum vitamin E. His expertise in critical experimental protocols on vascular functions in experimental animals was well documented by his quality of publications. He was a Visiting Professor of Medicine at University of Leeds, United Kingdom (2014-2016) and Tulane University, New Orleans, USA (2017). For his immense contribution in medical research Ministry of Science and Technology, Government of India conferred him 'G.P. Chatterjee Memorial Research Prize-2019” and he is also the recipient of 'Dr.Raja Ramanna State Scientist Award 2015” by Government of Karnataka. He is a Fellow of the Royal Society of Biology (FRSB), London and Honorary Fellow of Karnataka Science and Technology Academy, Department of Science and Technology, Government of Karnataka.",institutionString:"BLDE (Deemed to be University), India",institution:null},{id:"243660",title:"Dr.",name:"Mallanagouda Shivanagouda",middleName:null,surname:"Biradar",slug:"mallanagouda-shivanagouda-biradar",fullName:"Mallanagouda Shivanagouda Biradar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243660/images/system/243660.jpeg",biography:"M. S. Biradar is Vice Chancellor and Professor of Medicine of\nBLDE (Deemed to be University), Vijayapura, Karnataka, India.\nHe obtained his MD with a gold medal in General Medicine and\nhas devoted himself to medical teaching, research, and administrations. He has also immensely contributed to medical research\non vascular medicine, which is reflected by his numerous publications including books and book chapters. Professor Biradar was\nalso Visiting Professor at Tulane University School of Medicine, New Orleans, USA.",institutionString:"BLDE (Deemed to be University)",institution:{name:"BLDE University",country:{name:"India"}}},{id:"289796",title:"Dr.",name:"Swastika",middleName:null,surname:"Das",slug:"swastika-das",fullName:"Swastika Das",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/289796/images/system/289796.jpeg",biography:"Swastika N. Das is Professor of Chemistry at the V. P. Dr. P. G.\nHalakatti College of Engineering and Technology, BLDE (Deemed\nto be University), Vijayapura, Karnataka, India. She obtained an\nMSc, MPhil, and PhD in Chemistry from Sambalpur University,\nOdisha, India. Her areas of research interest are medicinal chemistry, chemical kinetics, and free radical chemistry. She is a member\nof the investigators who invented a new modified method of estimation of serum vitamin E. She has authored numerous publications including book\nchapters and is a mentor of doctoral curriculum at her university.",institutionString:"BLDEA’s V.P.Dr.P.G.Halakatti College of Engineering & Technology",institution:{name:"BLDE University",country:{name:"India"}}},{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248459/images/system/248459.png",biography:"Akikazu Takada was born in Japan, 1935. After graduation from\nKeio University School of Medicine and finishing his post-graduate studies, he worked at Roswell Park Memorial Institute NY,\nUSA. He then took a professorship at Hamamatsu University\nSchool of Medicine. In thrombosis studies, he found the SK\npotentiator that enhances plasminogen activation by streptokinase. He is very much interested in simultaneous measurements\nof fatty acids, amino acids, and tryptophan degradation products. By using fatty\nacid analyses, he indicated that plasma levels of trans-fatty acids of old men were\nfar higher in the US than Japanese men. . He also showed that eicosapentaenoic acid\n(EPA) and docosahexaenoic acid (DHA) levels are higher, and arachidonic acid\nlevels are lower in Japanese than US people. By using simultaneous LC/MS analyses\nof plasma levels of tryptophan metabolites, he recently found that plasma levels of\nserotonin, kynurenine, or 5-HIAA were higher in patients of mono- and bipolar\ndepression, which are significantly different from observations reported before. In\nview of recent reports that plasma tryptophan metabolites are mainly produced by\nmicrobiota. He is now working on the relationships between microbiota and depression or autism.",institutionString:"Hamamatsu University School of Medicine",institution:{name:"Hamamatsu University School of Medicine",country:{name:"Japan"}}},{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",biography:"Mohammed Khalid received his B.S. degree in chemistry in 2000 and Ph.D. degree in physical chemistry in 2007 from the University of Khartoum, Sudan. He moved to School of Chemistry, Faculty of Science, University of Sydney, Australia in 2009 and joined Dr. Ron Clarke as a postdoctoral fellow where he worked on the interaction of ATP with the phosphoenzyme of the Na+/K+-ATPase and dual mechanisms of allosteric acceleration of the Na+/K+-ATPase by ATP; then he went back to Department of Chemistry, University of Khartoum as an assistant professor, and in 2014 he was promoted as an associate professor. In 2011, he joined the staff of Department of Chemistry at Taif University, Saudi Arabia, where he is currently an assistant professor. His research interests include the following: P-Type ATPase enzyme kinetics and mechanisms, kinetics and mechanisms of redox reactions, autocatalytic reactions, computational enzyme kinetics, allosteric acceleration of P-type ATPases by ATP, exploring of allosteric sites of ATPases, and interaction of ATP with ATPases located in cell membranes.",institutionString:"Taif University",institution:{name:"Taif University",country:{name:"Saudi Arabia"}}},{id:"63810",title:"Prof.",name:"Jorge",middleName:null,surname:"Morales-Montor",slug:"jorge-morales-montor",fullName:"Jorge Morales-Montor",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/63810/images/system/63810.png",biography:"Dr. Jorge Morales-Montor was recognized with the Lola and Igo Flisser PUIS Award for best graduate thesis at the national level in the field of parasitology. He received a fellowship from the Fogarty Foundation to perform postdoctoral research stay at the University of Georgia. He has 153 journal articles to his credit. He has also edited several books and published more than fifty-five book chapters. He is a member of the Mexican Academy of Sciences, Latin American Academy of Sciences, and the National Academy of Medicine. He has received more than thirty-five awards and has supervised numerous bachelor’s, master’s, and Ph.D. students. Dr. Morales-Montor is the past president of the Mexican Society of Parasitology.",institutionString:"National Autonomous University of Mexico",institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"217215",title:"Dr.",name:"Palash",middleName:null,surname:"Mandal",slug:"palash-mandal",fullName:"Palash Mandal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217215/images/system/217215.jpeg",biography:null,institutionString:"Charusat University",institution:null},{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",biography:"Leszek Szablewski is a professor of medical sciences. He received his M.S. in the Faculty of Biology from the University of Warsaw and his PhD degree from the Institute of Experimental Biology Polish Academy of Sciences. He habilitated in the Medical University of Warsaw, and he obtained his degree of Professor from the President of Poland. Professor Szablewski is the Head of Chair and Department of General Biology and Parasitology, Medical University of Warsaw. Professor Szablewski has published over 80 peer-reviewed papers in journals such as Journal of Alzheimer’s Disease, Biochim. Biophys. Acta Reviews of Cancer, Biol. Chem., J. Biomed. Sci., and Diabetes/Metabol. Res. Rev, Endocrine. He is the author of two books and four book chapters. He has edited four books, written 15 scripts for students, is the ad hoc reviewer of over 30 peer-reviewed journals, and editorial member of peer-reviewed journals. Prof. Szablewski’s research focuses on cell physiology, genetics, and pathophysiology. He works on the damage caused by lack of glucose homeostasis and changes in the expression and/or function of glucose transporters due to various diseases. He has given lectures, seminars, and exercises for students at the Medical University.",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",country:{name:"Poland"}}},{id:"173123",title:"Dr.",name:"Maitham",middleName:null,surname:"Khajah",slug:"maitham-khajah",fullName:"Maitham Khajah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/173123/images/system/173123.jpeg",biography:"Dr. Maitham A. Khajah received his degree in Pharmacy from Faculty of Pharmacy, Kuwait University, in 2003 and obtained his PhD degree in December 2009 from the University of Calgary, Canada (Gastrointestinal Science and Immunology). Since January 2010 he has been assistant professor in Kuwait University, Faculty of Pharmacy, Department of Pharmacology and Therapeutics. His research interest are molecular targets for the treatment of inflammatory bowel disease (IBD) and the mechanisms responsible for immune cell chemotaxis. He cosupervised many students for the MSc Molecular Biology Program, College of Graduate Studies, Kuwait University. Ever since joining Kuwait University in 2010, he got various grants as PI and Co-I. He was awarded the Best Young Researcher Award by Kuwait University, Research Sector, for the Year 2013–2014. He was a member in the organizing committee for three conferences organized by Kuwait University, Faculty of Pharmacy, as cochair and a member in the scientific committee (the 3rd, 4th, and 5th Kuwait International Pharmacy Conference).",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"195136",title:"Dr.",name:"Aya",middleName:null,surname:"Adel",slug:"aya-adel",fullName:"Aya Adel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/195136/images/system/195136.jpg",biography:"Dr. Adel works as an Assistant Lecturer in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. Dr. Adel is especially interested in joint attention and its impairment in autism spectrum disorder",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"94911",title:"Dr.",name:"Boulenouar",middleName:null,surname:"Mesraoua",slug:"boulenouar-mesraoua",fullName:"Boulenouar Mesraoua",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94911/images/system/94911.png",biography:"Dr Boulenouar Mesraoua is the Associate Professor of Clinical Neurology at Weill Cornell Medical College-Qatar and a Consultant Neurologist at Hamad Medical Corporation at the Neuroscience Department; He graduated as a Medical Doctor from the University of Oran, Algeria; he then moved to Belgium, the City of Liege, for a Residency in Internal Medicine and Neurology at Liege University; after getting the Belgian Board of Neurology (with high marks), he went to the National Hospital for Nervous Diseases, Queen Square, London, United Kingdom for a fellowship in Clinical Neurophysiology, under Pr Willison ; Dr Mesraoua had also further training in Epilepsy and Continuous EEG Monitoring for two years (from 2001-2003) in the Neurophysiology department of Zurich University, Switzerland, under late Pr Hans Gregor Wieser ,an internationally known epileptologist expert. \n\nDr B. Mesraoua is the Director of the Neurology Fellowship Program at the Neurology Section and an active member of the newly created Comprehensive Epilepsy Program at Hamad General Hospital, Doha, Qatar; he is also Assistant Director of the Residency Program at the Qatar Medical School. \nDr B. Mesraoua's main interests are Epilepsy, Multiple Sclerosis, and Clinical Neurology; He is the Chairman and the Organizer of the well known Qatar Epilepsy Symposium, he is running yearly for the past 14 years and which is considered a landmark in the Gulf region; He has also started last year , together with other epileptologists from Qatar, the region and elsewhere, a yearly International Epilepsy School Course, which was attended by many neurologists from the Area.\n\nInternationally, Dr Mesraoua is an active and elected member of the Commission on Eastern Mediterranean Region (EMR ) , a regional branch of the International League Against Epilepsy (ILAE), where he represents the Middle East and North Africa(MENA ) and where he holds the position of chief of the Epilepsy Epidemiology Section; Dr Mesraoua is a member of the American Academy of Neurology, the Europeen Academy of Neurology and the American Epilepsy Society.\n\nDr Mesraoua's main objectives are to encourage frequent gathering of the epileptologists/neurologists from the MENA region and the rest of the world, promote Epilepsy Teaching in the MENA Region, and encourage multicenter studies involving neurologists and epileptologists in the MENA region, particularly epilepsy epidemiological studies. \n\nDr. Mesraoua is the recipient of two research Grants, as the Lead Principal Investigator (750.000 USD and 250.000 USD) from the Qatar National Research Fund (QNRF) and the Hamad Hospital Internal Research Grant (IRGC), on the following topics : “Continuous EEG Monitoring in the ICU “ and on “Alpha-lactoalbumin , proof of concept in the treatment of epilepsy” .Dr Mesraoua is a reviewer for the journal \"seizures\" (Europeen Epilepsy Journal ) as well as dove journals ; Dr Mesraoua is the author and co-author of many peer reviewed publications and four book chapters in the field of Epilepsy and Clinical Neurology",institutionString:"Weill Cornell Medical College in Qatar",institution:{name:"Weill Cornell Medical College in Qatar",country:{name:"Qatar"}}},{id:"282429",title:"Prof.",name:"Covanis",middleName:null,surname:"Athanasios",slug:"covanis-athanasios",fullName:"Covanis Athanasios",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/282429/images/system/282429.jpg",biography:null,institutionString:"Neurology-Neurophysiology Department of the Children Hospital Agia Sophia",institution:null},{id:"190980",title:"Prof.",name:"Marwa",middleName:null,surname:"Mahmoud Saleh",slug:"marwa-mahmoud-saleh",fullName:"Marwa Mahmoud Saleh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/190980/images/system/190980.jpg",biography:"Professor Marwa Mahmoud Saleh is a doctor of medicine and currently works in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. She got her doctoral degree in 1991 and her doctoral thesis was accomplished in the University of Iowa, United States. Her publications covered a multitude of topics as videokymography, cochlear implants, stuttering, and dysphagia. She has lectured Egyptian phonology for many years. Her recent research interest is joint attention in autism.",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259190/images/system/259190.png",biography:"Dr. Naqvi is a radioanalytical chemist and is working as an associate professor of analytical chemistry in the Department of Chemistry, Government College University, Faisalabad, Pakistan. Advance separation techniques, nuclear analytical techniques and radiopharmaceutical analysis are the main courses that he is teaching to graduate and post-graduate students. In the research area, he is focusing on the development of organic- and biomolecule-based radiopharmaceuticals for diagnosis and therapy of infectious and cancerous diseases. Under the supervision of Dr. Naqvi, three students have completed their Ph.D. degrees and 41 students have completed their MS degrees. He has completed three research projects and is currently working on 2 projects entitled “Radiolabeling of fluoroquinolone derivatives for the diagnosis of deep-seated bacterial infections” and “Radiolabeled minigastrin peptides for diagnosis and therapy of NETs”. He has published about 100 research articles in international reputed journals and 7 book chapters. Pakistan Institute of Nuclear Science & Technology (PINSTECH) Islamabad, Punjab Institute of Nuclear Medicine (PINM), Faisalabad and Institute of Nuclear Medicine and Radiology (INOR) Abbottabad are the main collaborating institutes.",institutionString:"Government College University",institution:{name:"Government College University, Faisalabad",country:{name:"Pakistan"}}},{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",country:{name:"Hungary"}}},{id:"277367",title:"M.Sc.",name:"Daniel",middleName:"Martin",surname:"Márquez López",slug:"daniel-marquez-lopez",fullName:"Daniel Márquez López",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/277367/images/7909_n.jpg",biography:"Msc Daniel Martin Márquez López has a bachelor degree in Industrial Chemical Engineering, a Master of science degree in the same área and he is a PhD candidate for the Instituto Politécnico Nacional. His Works are realted to the Green chemistry field, biolubricants, biodiesel, transesterification reactions for biodiesel production and the manipulation of oils for therapeutic purposes.",institutionString:null,institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",country:{name:"Argentina"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",biography:"Francisco Javier Martín-Romero (Javier) is a Professor of Biochemistry and Molecular Biology at the University of Extremadura, Spain. He is also a group leader at the Biomarkers Institute of Molecular Pathology. Javier received his Ph.D. in 1998 in Biochemistry and Biophysics. At the National Cancer Institute (National Institute of Health, Bethesda, MD) he worked as a research associate on the molecular biology of selenium and its role in health and disease. After postdoctoral collaborations with Carlos Gutierrez-Merino (University of Extremadura, Spain) and Dario Alessi (University of Dundee, UK), he established his own laboratory in 2008. The interest of Javier's lab is the study of cell signaling with a special focus on Ca2+ signaling, and how Ca2+ transport modulates the cytoskeleton, migration, differentiation, cell death, etc. He is especially interested in the study of Ca2+ channels, and the role of STIM1 in the initiation of pathological events.",institutionString:null,institution:{name:"University of Extremadura",country:{name:"Spain"}}},{id:"217323",title:"Prof.",name:"Guang-Jer",middleName:null,surname:"Wu",slug:"guang-jer-wu",fullName:"Guang-Jer Wu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217323/images/8027_n.jpg",biography:null,institutionString:null,institution:null},{id:"148546",title:"Dr.",name:"Norma Francenia",middleName:null,surname:"Santos-Sánchez",slug:"norma-francenia-santos-sanchez",fullName:"Norma Francenia Santos-Sánchez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/148546/images/4640_n.jpg",biography:null,institutionString:null,institution:null},{id:"272889",title:"Dr.",name:"Narendra",middleName:null,surname:"Maddu",slug:"narendra-maddu",fullName:"Narendra Maddu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272889/images/10758_n.jpg",biography:null,institutionString:null,institution:null},{id:"242491",title:"Prof.",name:"Angelica",middleName:null,surname:"Rueda",slug:"angelica-rueda",fullName:"Angelica Rueda",position:"Investigador Cinvestav 3B",profilePictureURL:"https://mts.intechopen.com/storage/users/242491/images/6765_n.jpg",biography:null,institutionString:null,institution:null},{id:"88631",title:"Dr.",name:"Ivan",middleName:null,surname:"Petyaev",slug:"ivan-petyaev",fullName:"Ivan Petyaev",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Lycotec (United Kingdom)",country:{name:"United Kingdom"}}},{id:"423869",title:"Ms.",name:"Smita",middleName:null,surname:"Rai",slug:"smita-rai",fullName:"Smita Rai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424024",title:"Prof.",name:"Swati",middleName:null,surname:"Sharma",slug:"swati-sharma",fullName:"Swati Sharma",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"439112",title:"MSc.",name:"Touseef",middleName:null,surname:"Fatima",slug:"touseef-fatima",fullName:"Touseef Fatima",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424836",title:"Dr.",name:"Orsolya",middleName:null,surname:"Borsai",slug:"orsolya-borsai",fullName:"Orsolya Borsai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",country:{name:"Romania"}}},{id:"422262",title:"Ph.D.",name:"Paola Andrea",middleName:null,surname:"Palmeros-Suárez",slug:"paola-andrea-palmeros-suarez",fullName:"Paola Andrea Palmeros-Suárez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Guadalajara",country:{name:"Mexico"}}}]}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80895",title:"Heart Rate Variability as a Marker of Homeostatic Level",doi:"10.5772/intechopen.102500",signatures:"Moacir Fernandes de Godoy and Michele Lima Gregório",slug:"heart-rate-variability-as-a-marker-of-homeostatic-level",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Moacir",surname:"Godoy"},{name:"Michele",surname:"Gregório"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80433",title:"Heart Autonomic Nervous System: Basic Science and Clinical Implications",doi:"10.5772/intechopen.101718",signatures:"Elvan Wiyarta and Nayla Karima",slug:"heart-autonomic-nervous-system-basic-science-and-clinical-implications",totalDownloads:50,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80316",title:"Central Control of the Larynx in Mammals",doi:"10.5772/intechopen.102009",signatures:"Manuel Víctor López-González, Marta González-García, Laura Carrillo-Franco, Amelia Díaz-Casares and Marc Stefan Dawid-Milner",slug:"central-control-of-the-larynx-in-mammals",totalDownloads:36,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80402",title:"General Anesthesia and Autonomic Nervous System: Control and Management in Neurosurgery",doi:"10.5772/intechopen.101829",signatures:"Irina Alexandrovna Savvina, Anna Olegovna Petrova and Yulia Mikhailovna Zabrodskaya",slug:"general-anesthesia-and-autonomic-nervous-system-control-and-management-in-neurosurgery",totalDownloads:58,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80035",title:"Healthy Lifestyle, Autonomic Nervous System Activity, and Sleep Status for Healthy Aging",doi:"10.5772/intechopen.101837",signatures:"Miki Sato, Feni Betriana, Ryuichi Tanioka, Kyoko Osaka, Tetsuya Tanioka and Savina Schoenhofer",slug:"healthy-lifestyle-autonomic-nervous-system-activity-and-sleep-status-for-healthy-aging",totalDownloads:60,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80175",title:"Signaling Pathways Regulating Axogenesis and Dendritogenesis in Sympathetic Neurons",doi:"10.5772/intechopen.102442",signatures:"Vidya Chandrasekaran",slug:"signaling-pathways-regulating-axogenesis-and-dendritogenesis-in-sympathetic-neurons",totalDownloads:68,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Vidya",surname:"Chandrasekaran"}],book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"80176",title:"Impacts of Environmental Stressors on Autonomic Nervous System",doi:"10.5772/intechopen.101842",signatures:"Mayowa Adeniyi",slug:"impacts-of-environmental-stressors-on-autonomic-nervous-system",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79655",title:"The Autonomic Nervous System, Sex Differences, and Chronobiology under General Anesthesia in In Vivo Experiments Involving Rats",doi:"10.5772/intechopen.101075",signatures:"Pavol Svorc Jr and Pavol Svorc",slug:"the-autonomic-nervous-system-sex-differences-and-chronobiology-under-general-anesthesia-in-in-vivo-e",totalDownloads:91,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"79194",title:"Potassium in Solid Cancers",doi:"10.5772/intechopen.101108",signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli",slug:"potassium-in-solid-cancers",totalDownloads:119,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78820",title:"Potassium Homeostasis",doi:"10.5772/intechopen.100368",signatures:"Shakuntala S. Patil and Sachin M. Patil",slug:"potassium-homeostasis",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"78193",title:"Potassium and Cardiac Surgery",doi:"10.5772/intechopen.99735",signatures:"Shawn Kant, Frank W. Sellke and Jun Feng",slug:"potassium-and-cardiac-surgery",totalDownloads:176,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/63539",hash:"",query:{},params:{id:"63539"},fullPath:"/chapters/63539",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()