Concentration of lanthanides in the phosphates of different origin [12].
\\n\\n
These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\\n\\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\\n\\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\\n\\n\\n\\n\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
IntechOpen and Knowledge Unlatched formed a partnership to support researchers working in engineering sciences by enabling an easier approach to publishing Open Access content. Using the Knowledge Unlatched crowdfunding model to raise the publishing costs through libraries around the world, Open Access Publishing Fee (OAPF) was not required from the authors.
\n\nInitially, the partnership supported engineering research, but it soon grew to include physical and life sciences, attracting more researchers to the advantages of Open Access publishing.
\n\n\n\nThese books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\n\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\n\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\n\n\n\n\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"9482",leadTitle:null,fullTitle:"Essential Oils - Bioactive Compounds, New Perspectives and Applications",title:"Essential Oils",subtitle:"Bioactive Compounds, New Perspectives and Applications",reviewType:"peer-reviewed",abstract:"Essential oils have been used for centuries by communities all over the world in various areas and for various purposes. These include uses in medicine, flavoring, perfumery, cosmetics, insecticides, fungicides, and bactericides, among others. They are natural and biodegradable substances, generally nontoxic or with low toxicity to humans and other animals. Therefore, constant research in these areas represents an alternative for new and more efficient drugs with less side effects as well as obtaining new products and supplies. This book provides a comprehensive overview of the diverse applications of essential oils in a variety of human activities with a focus on the most important evidence-based developments in the various fields of knowledge.",isbn:"978-1-83962-698-2",printIsbn:"978-1-83962-697-5",pdfIsbn:"978-1-83962-699-9",doi:"10.5772/intechopen.87266",price:119,priceEur:129,priceUsd:155,slug:"essential-oils-bioactive-compounds-new-perspectives-and-applications",numberOfPages:222,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"16d29ce9f4f9ea78b5d3789c8fd79b0c",bookSignature:"Mozaniel Santana de Oliveira, Wanessa Almeida da Costa and Sebastião Gomes Silva",publishedDate:"September 9th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/9482.jpg",numberOfDownloads:8807,numberOfWosCitations:29,numberOfCrossrefCitations:26,numberOfCrossrefCitationsByBook:2,numberOfDimensionsCitations:60,numberOfDimensionsCitationsByBook:3,hasAltmetrics:1,numberOfTotalCitations:115,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 15th 2019",dateEndSecondStepPublish:"November 5th 2019",dateEndThirdStepPublish:"January 4th 2020",dateEndFourthStepPublish:"March 24th 2020",dateEndFifthStepPublish:"May 23rd 2020",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",biography:"Mozaniel Santana de Oliveira graduated in Chemistry from the Federal University of Pará, Brazil. He obtained both a master’s and Ph.D. in Food Science and Technology from the same university. He has 12 years of professional experience. From 2010 to 2014, he worked on the chemistry of natural products at the Empresa Brasileira de Pesquisa Agropecuária (Embrapa), and from 2014 to 2018, he worked in the Postgraduate Program in Food Science and Technology at the Federal University of Pará, specifically with essential oils. Since 2020, he has been a researcher for the Institutional Training Program - PCI, at the institution Museu Paraense Emilio Goeldi, linked to the Ministério da Ciência, Tecnologia e Inovações of Brazil (MCTI), with studies focused on extraction, characterization chemistry, and applications of essential oils in several industrial segments, among them the food industry. Specifically, Dr. Oliveira has experience in engineering, food science and technology, pharmacology and drug discovery, medicinal chemistry, ethnopharmacology and ethnobotany, phytochemistry, methods of extraction of bioactive compounds, biotechnology of natural products, and allelopathy to find new natural herbicides to control invasive plants. He also has experience in the area of essential oil extraction using supercritical technology and conventional methods. Since 2020, he has supervised and co-supervised master’s and Ph.D. students in several graduate programs. Dr. Oliveira serves as a reviewer for thirty-one international scientific journals and is the academic editor of the journals Evidence-based Complementary and Alternative Medicine, Journal of Food Quality, Molecules, and Open Chemistry.",institutionString:"Museu Paraense Emílio Goeldi",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"287338",title:"Dr.",name:"Sebastião",middleName:"Gomes",surname:"Silva",slug:"sebastiao-silva",fullName:"Sebastião Silva",profilePictureURL:"https://mts.intechopen.com/storage/users/287338/images/10100_n.png",biography:"Dr. Sebastião Gomes Silva holds a Master’s degree in Organic\nChemistry from the Federal University of Pará and PhD in Organic Chemistry, also from the Federal University of Pará, Brazil.\nHe is currently a Class II professor of the state education network\nof the Pará state, Brazil, and External Collaborating Professor of\nthe Rural Education Course at the Abaetetuba Campus-UFPA.\nHe works in the Chemistry area, with emphasis on Chemistry of\nNatural Products, mainly in the following themes: extraction of essential oils with\nsupercritical fluids, hydrodistillation, simultaneous distillation and extraction,\nanalysis by gas chromatography/mass spectrometer, and search for of essential oil\napplications in industries.",institutionString:"Federal University of Pará",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Federal University of Para",institutionURL:null,country:{name:"Brazil"}}},coeditorTwo:{id:"195289",title:"MSc.",name:"Wanessa",middleName:null,surname:"Almeida Da Costa",slug:"wanessa-almeida-da-costa",fullName:"Wanessa Almeida Da Costa",profilePictureURL:"https://mts.intechopen.com/storage/users/195289/images/10099_n.png",biography:"Dr. Wanessa Almeida da Costa has a PhD in Natural Resources\nEngineering from the Federal University of Pará (UFPA), Brazil.\nShe also holds a MEng in Chemical Engineering also from the\nFederal University of Pará, Brazil. Currently, Dr. Wanessa Costa\nis part of the technical and administrative staff at UFPA, working as a laboratory technician (Chemical Area) at the Faculty of\nChemical Engineering. She has experience in Process Simulation,\nChemistry, and Food Science and Technology, working mainly in the areas of supercritical extraction; extraction of bioactive compounds of plant origin; applications\nin allelopathy, and transesterification processes in supercritical medium.",institutionString:"Federal University of Pará",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Federal University of Para",institutionURL:null,country:{name:"Brazil"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"371",title:"Phytochemistry",slug:"agricultural-and-biological-sciences-plant-biology-phytochemistry"}],chapters:[{id:"71354",title:"Algae Essential Oils: Chemistry, Ecology, and Biological Activities",doi:"10.5772/intechopen.91672",slug:"algae-essential-oils-chemistry-ecology-and-biological-activities",totalDownloads:881,totalCrossrefCites:1,totalDimensionsCites:5,hasAltmetrics:0,abstract:"This chapter focuses on the essential oils and volatile fractions of seaweed. It includes an introduction to the essentials and volatile fractions and the main chemical classes found. This part is completed by a presentation of the fundamental aspects of biodiversity and the chemodiversity of the marine environment followed by the taxonomy and systematics of marine macroalgae. The heart of this chapter concerns the chemistry of volatile products extracted from marine algae. It reports the specificities of the marine natural products chemistry in comparison to that of terrestrial organisms. The description of volatile compounds in seaweed is divided into two parts, the first reports the common compounds identified in main volatile fractions and the second cover the specific volatile components. These include C11 hydrocarbons, sulfur compounds, and halogenated hydrocarbons. These latter are playing a very important role in communication and chemical defense. The last part includes aspects of chemical ecology and biological activities of volatile products.",signatures:"Mohamed El Hattab",downloadPdfUrl:"/chapter/pdf-download/71354",previewPdfUrl:"/chapter/pdf-preview/71354",authors:[{id:"314411",title:"Prof.",name:"Mohamed",surname:"El Hattab",slug:"mohamed-el-hattab",fullName:"Mohamed El Hattab"}],corrections:null},{id:"71959",title:"Essential Oils",doi:"10.5772/intechopen.92216",slug:"essential-oils",totalDownloads:752,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Modern science has tended to use several natural substances that have little or no side effects in daily use or to treat many diseases. Among these materials are essential oils that represent one of the secondary metabolic products of many plants such as Terpenes and Terpenoids, Alkaloids, and the Phenolic compounds, which are extracted by special methods from different parts of the plants. Several applications were using the essential oils such as in the nutrition, cosmetic manufacture, and alternatives to synthetic medication that uses to treatment several infections and diseases as disinfection, as an anti-inflammatory, mouthwashes, as well as in cleaning and calm mood and pesticides. This review describes essential oils, methods of their extraction, and ways of utilization and their application.",signatures:"Lubna Abdul Muttalib Al-Shalah, Nada Khazal Kadhim Hindi and Israa Harjan Mohsen",downloadPdfUrl:"/chapter/pdf-download/71959",previewPdfUrl:"/chapter/pdf-preview/71959",authors:[{id:"307845",title:"Dr.",name:"Nada",surname:"Khazal Kadhim Hindi",slug:"nada-khazal-kadhim-hindi",fullName:"Nada Khazal Kadhim Hindi"}],corrections:null},{id:"71260",title:"Safety Profile of Essential Oils",doi:"10.5772/intechopen.91363",slug:"safety-profile-of-essential-oils",totalDownloads:880,totalCrossrefCites:6,totalDimensionsCites:12,hasAltmetrics:1,abstract:"Essential oils are complex mixtures of terpenes and phenylpropanoid compounds, present in multiple species of aromatic plants. They are extensively used in food and cosmetic industries in order to give flavor to food and drinks or as natural fragrances. Moreover, several compounds present in essential oils are important for the pharmaceutical industry due to their antioxidant, antimicrobial, anxiolytic or spasmolytic effects. Although many essential oils are generally recognized as safe, a series of adverse reactions have been reported after their use either by internal or external routes. The aim of this chapter is to increase the awareness of healthcare professionals concerning possible safety issues of essential oils. Common adverse effects of essential oils like sensitization and dermatitis but also more severe phenomena like neurotoxicity will be presented in detail, concerning their epidemiology, mechanism and clinical significance. A thorough understanding of the safety profile of essential oils is necessary for healthcare and food industry professionals in order to maximize their beneficial effects while minimizing the risk for the users.",signatures:"Oliviu Vostinaru, Simona Codruta Heghes and Lorena Filip",downloadPdfUrl:"/chapter/pdf-download/71260",previewPdfUrl:"/chapter/pdf-preview/71260",authors:[{id:"198574",title:"Dr.",name:"Oliviu",surname:"Vostinaru",slug:"oliviu-vostinaru",fullName:"Oliviu Vostinaru"},{id:"317806",title:"Dr.",name:"Simona Codruta",surname:"Heghes",slug:"simona-codruta-heghes",fullName:"Simona Codruta Heghes"},{id:"317807",title:"Dr.",name:"Lorena",surname:"Filip",slug:"lorena-filip",fullName:"Lorena Filip"}],corrections:null},{id:"72202",title:"Essential Oils’ Potential in Breast Cancer Treatment: An Overview",doi:"10.5772/intechopen.91781",slug:"essential-oils-potential-in-breast-cancer-treatment-an-overview",totalDownloads:971,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Essential oils are widely used in the pharmaceutical industry for their antimicrobial, antiviral, antifungal, antiparasitic, and insecticidal properties. Their anticancer activity has been increasingly explored as the natural constituents of essential oils play an important role in cancer prevention and treatment. The chemical composition of essential oils includes monoterpenes, sesquiterpenes, oxygenated monoterpenes, phenolic sesquiterpenes, and others. Several mechanisms of action such as antioxidant, antimutagenic, antiproliferative, enhancement of immune functions, modulation of multidrug resistance, and synergistic mechanism of volatile constituents are responsible for their chemotherapeutic properties. This review focuses on the activity of essential oils and their chemical composition in regard to breast cancer.",signatures:"Isadora de Fátima Braga Magalhães, Carla Junqueira Moraga Tellis, Kátia da Silva Calabrese, Ana Lucia Abreu-Silva and Fernando Almeida-Souza",downloadPdfUrl:"/chapter/pdf-download/72202",previewPdfUrl:"/chapter/pdf-preview/72202",authors:[{id:"223173",title:"Dr.",name:"Ana Lucia",surname:"Abreu-Silva",slug:"ana-lucia-abreu-silva",fullName:"Ana Lucia Abreu-Silva"},{id:"287290",title:"Dr.",name:"Fernando",surname:"Almeida-Souza",slug:"fernando-almeida-souza",fullName:"Fernando Almeida-Souza"},{id:"318732",title:"MSc.",name:"Isadora",surname:"De Fátima Braga Magalhães",slug:"isadora-de-fatima-braga-magalhaes",fullName:"Isadora De Fátima Braga Magalhães"},{id:"318733",title:"Dr.",name:"Carla Junqueira",surname:"Moraga Tellis",slug:"carla-junqueira-moraga-tellis",fullName:"Carla Junqueira Moraga Tellis"},{id:"318734",title:"Dr.",name:"Kátia",surname:"Da Silva Calabrese",slug:"katia-da-silva-calabrese",fullName:"Kátia Da Silva Calabrese"}],corrections:null},{id:"72167",title:"Terpenoids as Important Bioactive Constituents of Essential Oils",doi:"10.5772/intechopen.91426",slug:"terpenoids-as-important-bioactive-constituents-of-essential-oils",totalDownloads:1404,totalCrossrefCites:8,totalDimensionsCites:18,hasAltmetrics:0,abstract:"Plant and plant-derived natural products have a long and significant history in traditional medicine all over the world. Many studies in the recent past years focused on the benefic properties of essential oils (EOs) and their major components, terpenes and terpenoids (that are mostly monoterpenes and sesquiterpenes), and their biological properties. This chapter focuses on terpenoids as important bioactive constituents of EOs. It describes their uses, importance, extraction processes, and classification. The chapter provides an in-depth overview of the latest findings/research about terpenoids in EOs. It contains a well-prepared background, introduction, classification, chemical tests, bioactivities, as well as the characterization of terpenoids. It also discusses the bioactivities of EOs and that of terpenoids, with regard to their synergetic and/or their antagonistic effects.",signatures:"Fongang Fotsing Yannick Stephane and Bankeu Kezetas Jean Jules",downloadPdfUrl:"/chapter/pdf-download/72167",previewPdfUrl:"/chapter/pdf-preview/72167",authors:[{id:"224515",title:"Dr.",name:"Fongang Fotsing",surname:"Yannick Stéphane",slug:"fongang-fotsing-yannick-stephane",fullName:"Fongang Fotsing Yannick Stéphane"},{id:"227816",title:"Dr.",name:"Bankeu Kezetas",surname:"Jean Jules",slug:"bankeu-kezetas-jean-jules",fullName:"Bankeu Kezetas Jean Jules"}],corrections:null},{id:"72122",title:"Aromatherapy as Complementary Medicine",doi:"10.5772/intechopen.92021",slug:"aromatherapy-as-complementary-medicine",totalDownloads:772,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Aromatherapy is the practice of using the natural oils extracted from bark, flowers, stems, roots, leaves, or other parts of a plant to enhance psychological and physical well-being. It is a type of complementary medicine that uses volatile oils and other aromatic compounds with the aim of changing a person’s mind and mood. Volatile oils are hydrophobic in nature. Essential oils are extracted by different methods as steam distillation. Some evidence exists that volatile oils may have therapeutic potential. Volatile oils are often absorbed through the skin, where they travel through the bloodstream and might promote whole-body healing. Essential oils are showing a spread of applications, including pain treatments, enhancement of mood, and increased cognitive function. Essential oils are available in a large number, each with its own healing properties.",signatures:"Amira Ahmed Kamal El-din El-Anssary",downloadPdfUrl:"/chapter/pdf-download/72122",previewPdfUrl:"/chapter/pdf-preview/72122",authors:[{id:"221140",title:"Dr.",name:"Amira",surname:"El-Anssary",slug:"amira-el-anssary",fullName:"Amira El-Anssary"}],corrections:null},{id:"71872",title:"Volatile Compounds, Chemical Composition and Biological Activities of Apis mellifera Bee Propolis",doi:"10.5772/intechopen.92130",slug:"volatile-compounds-chemical-composition-and-biological-activities-of-em-apis-mellifera-em-bee-propol",totalDownloads:569,totalCrossrefCites:0,totalDimensionsCites:4,hasAltmetrics:1,abstract:"Propolis is a wax-like resin collected by bees from tree shoots and/or other botanical sources that is used as glue to seal cracks or open spaces in the hive. Its color varies from green to brown and reddish, depending on its botanical origin. Among the substances that can be found in propolis, low molecular weight compounds, such as monoterpenes and sesquiterpenes are the most common. Several biological activities are attributed to these classes of substances, such as antifungal, antibacterial, and others. The objective of this work was to evaluate the chemical composition of volatile compounds present in propolis samples and to analyze their correlation with biological activities.",signatures:"Jorddy Neves Cruz, Adriane Gomes da Silva, Wanessa Almeida da Costa, Ely Simone Cajueiro Gurgel, Willison Eduardo Oliveira Campos, Renan Campos e Silva, Marcos Ene Chaves Oliveira, Antônio Pedro da Silva Souza Filho, Daniel Santiago Pereira, Sebastião Gomes Silva, Eloisa Helena de Aguiar Andrade and Mozaniel Santana de Oliveira",downloadPdfUrl:"/chapter/pdf-download/71872",previewPdfUrl:"/chapter/pdf-preview/71872",authors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"},{id:"195289",title:"MSc.",name:"Wanessa",surname:"Almeida Da Costa",slug:"wanessa-almeida-da-costa",fullName:"Wanessa Almeida Da Costa"},{id:"241345",title:"Dr.",name:"Antonio Pedro Da Silva",surname:"Souza Filho",slug:"antonio-pedro-da-silva-souza-filho",fullName:"Antonio Pedro Da Silva Souza Filho"},{id:"270636",title:"M.Sc.",name:"Jorddy Neves",surname:"Cruz",slug:"jorddy-neves-cruz",fullName:"Jorddy Neves Cruz"},{id:"282410",title:"Dr.",name:"Sebastião",surname:"Silva",slug:"sebastiao-silva",fullName:"Sebastião Silva"},{id:"282414",title:"Dr.",name:"Daniel Santiago",surname:"Pereira",slug:"daniel-santiago-pereira",fullName:"Daniel Santiago Pereira"},{id:"314348",title:"Dr.",name:"Adriane",surname:"Gomes Da Silva",slug:"adriane-gomes-da-silva",fullName:"Adriane Gomes Da Silva"},{id:"314367",title:"Dr.",name:"Willison",surname:"Eduardo Oliveira Campos",slug:"willison-eduardo-oliveira-campos",fullName:"Willison Eduardo Oliveira Campos"},{id:"314368",title:"Dr.",name:"Ely",surname:"Simone Cajueiro Gurgel",slug:"ely-simone-cajueiro-gurgel",fullName:"Ely Simone Cajueiro Gurgel"},{id:"314369",title:"Dr.",name:"Eloisa",surname:"Helena De Aguiar Andrade",slug:"eloisa-helena-de-aguiar-andrade",fullName:"Eloisa Helena De Aguiar Andrade"},{id:"314370",title:"Dr.",name:"Marcos",surname:"Ene Chaves Oliveira",slug:"marcos-ene-chaves-oliveira",fullName:"Marcos Ene Chaves Oliveira"}],corrections:null},{id:"72345",title:"Chemical Composition and Antibacterial Activity of the Essential Oil of Mesosphaerum suaveolens (Lamiaceae)",doi:"10.5772/intechopen.92704",slug:"chemical-composition-and-antibacterial-activity-of-the-essential-oil-of-em-mesosphaerum-suaveolens-e",totalDownloads:502,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Mesosphaerum suaveolens (Lamiaceae) is a medicinal plant commonly used in Brazil for the treatment of diseases related to the digestive tract and respiratory diseases, so we hypothesized that the essential oil of this species may have antibacterial activity. Thus, we aimed to evaluate the in vitro antibacterial and modulatory activity of the essential oil of M. suaveolens as well as to characterize its chemical composition. The identification of the constituents was performed by gas chromatography-flame ionization detector (GC-FID) and the antibacterial and modulating activity by the plate microdilution method. We found the oil had sesquiterpene β-caryophyllene as the major component. This compound may account for the antibacterial activity against Staphylococcus aureus strains, since the essential oil had a MIC of 64 μg/mL for the standard strain and 256 μg/mL for the multiresistant strain, demonstrated that the oil does not exhibit drug modulating activity. Thus, M. suaveolens oil has bioactive compounds which can be used in the preparation of drugs.",signatures:"José Weverton Almeida Bezerra, Felicidade Caroline Rodrigues, Ma Aparecida Barbosa Ferreira Gonçalo, Marcos Aurélio Figuereido dos Santos, Gledson Ferreira Macedo, Janete de Souza Bezerra, Priscilla Augusta de Sousa Fernandes, Emanoel Messias Pereira Fernando, Carlos Henrique Silva de Oliveira, Viviane Bezerra da Silva, Isabella Hevily Silva Torquato, Niwiarakelly da Silva Monte, Luciano Temoteo dos Santos and Henrique Douglas Melo Coutinho",downloadPdfUrl:"/chapter/pdf-download/72345",previewPdfUrl:"/chapter/pdf-preview/72345",authors:[{id:"314028",title:"Prof.",name:"José Weverton Almeida",surname:"Bezerra",slug:"jose-weverton-almeida-bezerra",fullName:"José Weverton Almeida Bezerra"},{id:"314029",title:"Prof.",name:"Felicidade Caroline",surname:"Rodrigues",slug:"felicidade-caroline-rodrigues",fullName:"Felicidade Caroline Rodrigues"},{id:"314033",title:"Prof.",name:"Janete De Souza",surname:"Bezerra",slug:"janete-de-souza-bezerra",fullName:"Janete De Souza Bezerra"},{id:"320914",title:"Prof.",name:"Ma Aparecida Barbosa Ferreira",surname:"Gonçalo",slug:"ma-aparecida-barbosa-ferreira-goncalo",fullName:"Ma Aparecida Barbosa Ferreira Gonçalo"},{id:"320915",title:"Prof.",name:"Marcos Aurélio Figuereido Dos",surname:"Santos",slug:"marcos-aurelio-figuereido-dos-santos",fullName:"Marcos Aurélio Figuereido Dos Santos"},{id:"320916",title:"Prof.",name:"Gledson Ferreira",surname:"Macedo",slug:"gledson-ferreira-macedo",fullName:"Gledson Ferreira Macedo"},{id:"320917",title:"Prof.",name:"Priscilla Augusta De Sousa",surname:"Fernandes",slug:"priscilla-augusta-de-sousa-fernandes",fullName:"Priscilla Augusta De Sousa Fernandes"},{id:"320918",title:"Prof.",name:"Emanoel Messias Pereira",surname:"Fernando",slug:"emanoel-messias-pereira-fernando",fullName:"Emanoel Messias Pereira Fernando"},{id:"320919",title:"Prof.",name:"Carlos Henrique Silva De",surname:"Oliveira",slug:"carlos-henrique-silva-de-oliveira",fullName:"Carlos Henrique Silva De Oliveira"},{id:"320920",title:"Prof.",name:"Viviane Bezerra Da",surname:"Silva",slug:"viviane-bezerra-da-silva",fullName:"Viviane Bezerra Da Silva"},{id:"320921",title:"Prof.",name:"Isabella Hevily Silva",surname:"Torquato",slug:"isabella-hevily-silva-torquato",fullName:"Isabella Hevily Silva Torquato"},{id:"320922",title:"Prof.",name:"Niwiarakelly Da Silva",surname:"Monte",slug:"niwiarakelly-da-silva-monte",fullName:"Niwiarakelly Da Silva Monte"},{id:"320923",title:"Prof.",name:"Luciano Temoteo Dos",surname:"Santos",slug:"luciano-temoteo-dos-santos",fullName:"Luciano Temoteo Dos Santos"},{id:"320924",title:"Dr.",name:"Henrique Douglas Melo",surname:"Coutinho",slug:"henrique-douglas-melo-coutinho",fullName:"Henrique Douglas Melo Coutinho"}],corrections:null},{id:"72267",title:"Essential Oil as Antimicrobial Agents: Efficacy, Stability, and Safety Issues for Food Application",doi:"10.5772/intechopen.92305",slug:"essential-oil-as-antimicrobial-agents-efficacy-stability-and-safety-issues-for-food-application",totalDownloads:1306,totalCrossrefCites:10,totalDimensionsCites:19,hasAltmetrics:0,abstract:"The use of natural antimicrobial compounds in food has gained much attention by the consumers and the food industry. This is primarily due to two major factors. First, the misuse and mishandling of antibiotics has resulted in the dramatic rise of a group of microorganisms including foodborne pathogens that are not only antibiotic resistant but also more tolerant to several food processing and preservation methods. In addition, increasing consumers’ awareness of the potential negative impact of synthetic preservatives on health versus the benefits of natural additives has generated interest among researchers in the development and use of natural products in foods. Essential oils are volatile, natural, complex compounds characterized by a strong odor and are formed by aromatic plants as secondary metabolites. The bioactivity properties of essential oils are generally determined by the major compounds present in them. They have been widely used for bactericidal, virucidal, fungicidal, antiparasitical, insecticidal, medicinal, and antioxidant applications. The biological activity of the oils can be compared with the activity of synthetically produced pharmacological preparations. Thus, essential oils are promising natural extracts that need further evaluation for possible application as supplement, preservatives, or antioxidants in food or pharmaceutical industries.",signatures:"Hamdy A. Shaaban",downloadPdfUrl:"/chapter/pdf-download/72267",previewPdfUrl:"/chapter/pdf-preview/72267",authors:[{id:"314303",title:"Prof.",name:"Hamdy A.",surname:"Shaaban",slug:"hamdy-a.-shaaban",fullName:"Hamdy A. Shaaban"}],corrections:null},{id:"72424",title:"Roles of Terpenoids in Essential Oils and Its Potential as Natural Weed Killers: Recent Developments",doi:"10.5772/intechopen.91322",slug:"roles-of-terpenoids-in-essential-oils-and-its-potential-as-natural-weed-killers-recent-developments",totalDownloads:776,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:1,abstract:"Weed control through the use of conventional chemical compounds presented by synthetic herbicides is a widely used and successful method to control weed by reducing the negative impact of weed and increase agricultural production gradually. However, although the losses in agricultural production arising from weed competition are decreased through the use of synthetic herbicides, the negative impacts of these compounds on the environment and human health have raised awareness and created grave concern of a number of parties to safeguard the environment and humans. The adverse effect of synthetic herbicides can still occur even if such herbicides are applied at the recommended rates. Control weed naturally presented by allelochemical compounds provides an attractive, alternative and safe way to control weed synthetic herbicides. Previous works indicated that terpenoids as the most important group of allelochemicals have shown to exhibit a good phytotoxic effect against a wide range of weed species by suppressing germination and reducing growth. This review was a highlight to detect the desirable phytotoxic effects of some terpenoid compounds as a major content in essential oils on various weed species and the possible uses as natural weed killers.",signatures:"Ahmed Abdulwahid Ali Almarie",downloadPdfUrl:"/chapter/pdf-download/72424",previewPdfUrl:"/chapter/pdf-preview/72424",authors:[{id:"314236",title:"Dr.",name:"Ahmed",surname:"Almarie",slug:"ahmed-almarie",fullName:"Ahmed Almarie"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3244",title:"Soybean",subtitle:"Bio-Active Compounds",isOpenForSubmission:!1,hash:"b21aa6107fce439bd06d53fbe0bc3c9e",slug:"soybean-bio-active-compounds",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/3244.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6385",title:"Potential of Essential Oils",subtitle:null,isOpenForSubmission:!1,hash:"3dc02ec3b9f324b4b571867aa4ee7f15",slug:"potential-of-essential-oils",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/6385.jpg",editedByType:"Edited by",editors:[{id:"54719",title:"Prof.",name:"Hany",surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7688",title:"Plant Physiological Aspects of Phenolic Compounds",subtitle:null,isOpenForSubmission:!1,hash:"16f7407afbf69173f4fa419b4338a6c8",slug:"plant-physiological-aspects-of-phenolic-compounds",bookSignature:"Marcos Soto-Hernández, Rosario García-Mateos and Mariana Palma-Tenango",coverURL:"https://cdn.intechopen.com/books/images_new/7688.jpg",editedByType:"Edited by",editors:[{id:"65790",title:"Prof.",name:"Marcos",surname:"Soto-Hernández",slug:"marcos-soto-hernandez",fullName:"Marcos Soto-Hernández"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6794",title:"Phytochemicals",subtitle:"Source of Antioxidants and Role in Disease Prevention",isOpenForSubmission:!1,hash:"de750b7a7b62ae27896c73a630c39cb3",slug:"phytochemicals-source-of-antioxidants-and-role-in-disease-prevention",bookSignature:"Toshiki Asao and Md Asaduzzaman",coverURL:"https://cdn.intechopen.com/books/images_new/6794.jpg",editedByType:"Edited by",editors:[{id:"106510",title:"Dr.",name:"Toshiki",surname:"Asao",slug:"toshiki-asao",fullName:"Toshiki Asao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7018",title:"Progress in Carotenoid Research",subtitle:null,isOpenForSubmission:!1,hash:"14ba5fb24fd6a28556e5b496fc87e9c8",slug:"progress-in-carotenoid-research",bookSignature:"Leila Queiroz Zepka, Eduardo Jacob-Lopes and Veridiana Vera De Rosso",coverURL:"https://cdn.intechopen.com/books/images_new/7018.jpg",editedByType:"Edited by",editors:[{id:"261969",title:"Dr.",name:"Leila",surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6530",title:"Terpenes and Terpenoids",subtitle:null,isOpenForSubmission:!1,hash:"104f235908f326361a3ab16891949b70",slug:"terpenes-and-terpenoids",bookSignature:"Shagufta Perveen and Areej Al-Taweel",coverURL:"https://cdn.intechopen.com/books/images_new/6530.jpg",editedByType:"Edited by",editors:[{id:"192992",title:"Prof.",name:"Shagufta",surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8753",title:"Tannins",subtitle:"Structural Properties, Biological Properties and Current Knowledge",isOpenForSubmission:!1,hash:"d18f8d68a470cabaa124ad01ea455859",slug:"tannins-structural-properties-biological-properties-and-current-knowledge",bookSignature:"Alfredo Aires",coverURL:"https://cdn.intechopen.com/books/images_new/8753.jpg",editedByType:"Edited by",editors:[{id:"175895",title:"Dr.",name:"Alfredo",surname:"Aires",slug:"alfredo-aires",fullName:"Alfredo Aires"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8077",title:"Phytochemicals in Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8db73d87975ed16ea4758f1aecb5bf27",slug:"phytochemicals-in-human-health",bookSignature:"Venketeshwer Rao, Dennis Mans and Leticia Rao",coverURL:"https://cdn.intechopen.com/books/images_new/8077.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8028",title:"Flavonoids",subtitle:"A Coloring Model for Cheering up Life",isOpenForSubmission:!1,hash:"6c33178a5c7d2b276d2c6af4255def64",slug:"flavonoids-a-coloring-model-for-cheering-up-life",bookSignature:"Farid A. Badria and Anthony Ananga",coverURL:"https://cdn.intechopen.com/books/images_new/8028.jpg",editedByType:"Edited by",editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"erratum-smart-grid-modernization-opportunities-and-ch",title:"Erratum: Smart Grid Modernization: Opportunities and Challenges",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/78599.pdf",downloadPdfUrl:"/chapter/pdf-download/78599",previewPdfUrl:"/chapter/pdf-preview/78599",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/78599",risUrl:"/chapter/ris/78599",chapter:{id:"76952",slug:"smart-grid-modernization-opportunities-and-challenges",signatures:"Saumen Dhara, Alok Kumar Shrivastav and Pradip Kumar Sadhu",dateSubmitted:"February 15th 2021",dateReviewed:"April 26th 2021",datePrePublished:"June 25th 2021",datePublished:"July 13th 2022",book:{id:"10597",title:"Electric Grid Modernization",subtitle:null,fullTitle:"Electric Grid Modernization",slug:"electric-grid-modernization",publishedDate:"July 13th 2022",bookSignature:"Mahmoud Ghofrani",coverURL:"https://cdn.intechopen.com/books/images_new/10597.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"183482",title:"Dr.",name:"Mahmoud",middleName:null,surname:"Ghofrani",slug:"mahmoud-ghofrani",fullName:"Mahmoud Ghofrani"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"236957",title:"Dr.",name:"Alok Kumar",middleName:null,surname:"Shrivastav",fullName:"Alok Kumar Shrivastav",slug:"alok-kumar-shrivastav",email:"alok5497@gmail.com",position:null,institution:null},{id:"329679",title:"Ph.D. Student",name:"Saumen",middleName:null,surname:"Dhara",fullName:"Saumen Dhara",slug:"saumen-dhara",email:"saumen.dhara.sd@gmail.com",position:null,institution:null},{id:"484419",title:"Dr.",name:"Pradip",middleName:null,surname:"Kumar Sadhu",fullName:"Pradip Kumar Sadhu",slug:"pradip-kumar-sadhu",email:"dummy+1132252332741312265566234465536568634647783432972354537413653255524126342342346983@intechopen.",position:null,institution:null}]}},chapter:{id:"76952",slug:"smart-grid-modernization-opportunities-and-challenges",signatures:"Saumen Dhara, Alok Kumar Shrivastav and Pradip Kumar Sadhu",dateSubmitted:"February 15th 2021",dateReviewed:"April 26th 2021",datePrePublished:"June 25th 2021",datePublished:"July 13th 2022",book:{id:"10597",title:"Electric Grid Modernization",subtitle:null,fullTitle:"Electric Grid Modernization",slug:"electric-grid-modernization",publishedDate:"July 13th 2022",bookSignature:"Mahmoud Ghofrani",coverURL:"https://cdn.intechopen.com/books/images_new/10597.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"183482",title:"Dr.",name:"Mahmoud",middleName:null,surname:"Ghofrani",slug:"mahmoud-ghofrani",fullName:"Mahmoud Ghofrani"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"236957",title:"Dr.",name:"Alok Kumar",middleName:null,surname:"Shrivastav",fullName:"Alok Kumar Shrivastav",slug:"alok-kumar-shrivastav",email:"alok5497@gmail.com",position:null,institution:null},{id:"329679",title:"Ph.D. Student",name:"Saumen",middleName:null,surname:"Dhara",fullName:"Saumen Dhara",slug:"saumen-dhara",email:"saumen.dhara.sd@gmail.com",position:null,institution:null},{id:"484419",title:"Dr.",name:"Pradip",middleName:null,surname:"Kumar Sadhu",fullName:"Pradip Kumar Sadhu",slug:"pradip-kumar-sadhu",email:"dummy+1132252332741312265566234465536568634647783432972354537413653255524126342342346983@intechopen.",position:null,institution:null}]},book:{id:"10597",title:"Electric Grid Modernization",subtitle:null,fullTitle:"Electric Grid Modernization",slug:"electric-grid-modernization",publishedDate:"July 13th 2022",bookSignature:"Mahmoud Ghofrani",coverURL:"https://cdn.intechopen.com/books/images_new/10597.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"183482",title:"Dr.",name:"Mahmoud",middleName:null,surname:"Ghofrani",slug:"mahmoud-ghofrani",fullName:"Mahmoud Ghofrani"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11693",leadTitle:null,title:"Cartilage - Recent Findings and Treatment",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tCartilage lesions of the knee are common and should be treated correctly if symptomatic. Until now, multiple (surgical) techniques have been described; however, there is no consensus on which one should be used. Also, treatment techniques using platelet-rich plasma, mesenchymal stem cells, and different king of growth hormones have been mentioned. In this book, the importance of other knee structures when treating these knee cartilage defects will be discussed as the meniscus, integrity of ligaments, and the importance of the alignment of the lower limb will be emphasized. The book will give an update on the different treatment approaches in knees with this (osteo-)chondral lesion.
",isbn:"978-1-83768-204-1",printIsbn:"978-1-83769-984-1",pdfIsbn:"978-1-83768-205-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"90b8cac7c6b437387a540790d072699f",bookSignature:"Dr. Karl Almqvist, Dr. Ahmed Ebrahim El Hamaky and Dr. Taiceer Abdulwahab",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11693.jpg",keywords:"Defect, Cartilage Function, Subchondral Bone, Envelope of Function, Alignment, Knee Stability, Meniscal Function, Surgical Treatment, Microfracture, Use of Scaffolds, Debridement",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 4th 2022",dateEndSecondStepPublish:"July 7th 2022",dateEndThirdStepPublish:"September 5th 2022",dateEndFourthStepPublish:"November 24th 2022",dateEndFifthStepPublish:"January 23rd 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"An experienced researcher, specializing in sports medicine and knee pathologies, is currently involved in the development of innovative techniques for the treatment of cartilage lesions. Dr. Almqvist is an editorial board member at Sage Journals, Affiliated with the Orthocure Clinic, Dubai as an Orthopedic Consultant, Mediclinic City Hospital as a Consultant Orthopaedic surgeon, and is a member of ISAKOS.",coeditorOneBiosketch:"Dr. El Hamaky is a practitioner with over 11 years of experience in Orthopedic Surgery, is a member of the Egyptian Board of Orthopedic Surgery, a member of the AO Foundation, and was awarded his medical degree from the University of Cairo.",coeditorTwoBiosketch:"Dr. Taiceer Abdulwahab is an experienced practitioner, specializing in orthopedic surgery, trauma, and sports medicine, previously affiliated with The University of Bristol, The University of Edinburgh, The University of Warwick, and The University of Leicester, and is a member of the Royal College of Surgeons (MRCS) London, UK.",coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"251312",title:"Dr.",name:"Karl",middleName:null,surname:"Almqvist",slug:"karl-almqvist",fullName:"Karl Almqvist",profilePictureURL:"https://mts.intechopen.com/storage/users/251312/images/system/251312.jpg",biography:"Prof. Dr. Almqvist trained at the University of Ghent in Belgium and worked at the Ghent University Hospital where he was Head of Clinic, Department of Physical Medicine and Orthopaedic Surgery, prior to moving to Dubai in 2014. He also has considerable teaching experience and is an assistant professor in Physiotherapy and Orthopaedic Surgery at Ghent University. Karl Fredrik has published extensively and written a number of book chapters. He is a regular speaker at international meetings and is on the editorial board or is a reviewer for the major sports orthopedic journals.\r\nHe obtained his Ph.D. in 2001 (Human differentiated articular cartilage cells in biodegradable matrices – Preparative studies for their use in the repair of cartilage defects).\r\nKarl Fredrik is active in a number of orthopaedic organisations, and is the past Chairman of the Sports Committee of the International Society of Arthroscopy, Knee Surgery & Orthopaedic Sports Medicine as well as the past Chairman of the Cartilage Committee of the European Society of Sports Traumatology, Knee Surgery & Arthroscopy.\r\nThe main area of interest Karl Fredrik is knee surgery. His expertise covers the whole range of knee conditions from sports injuries to knee replacement.",institutionString:"Orthocure Dubai",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:{id:"452670",title:"Dr.",name:"Ahmed",middleName:null,surname:"Ebrahim El Hamaky",slug:"ahmed-ebrahim-el-hamaky",fullName:"Ahmed Ebrahim El Hamaky",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003N9dpTQAR/Profile_Picture_2022-03-04T13:32:24.jpg",biography:"An orthopedic surgeon with 11 years experience in orthopedic surgery, trained in highly specialized facilities in Egypt such as Al kasr al ainy University hospitals, Al Helal Orthopedic tertiary hospital, Air force specialized hospital. His interest and specialty are mainly sports medicine and surgery either shoulder or knee arthroscopic and primary arthroplasty surgeries. He shifted his career to Dubai Mediclinic City Hospital, Dubai.",institutionString:"Mediclinic City Hospital",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Mediclinic City Hospital",institutionURL:null,country:{name:"United Arab Emirates"}}},coeditorTwo:{id:"204153",title:"Dr.",name:"Taiceer",middleName:null,surname:"Abdulwahab",slug:"taiceer-abdulwahab",fullName:"Taiceer Abdulwahab",profilePictureURL:"https://mts.intechopen.com/storage/users/204153/images/system/204153.jpeg",biography:"Dr. Taiceer Abdulwahab, is an Orthopaedic Surgeon at Mediclinic City Hospital, Dubai, United Arab Emirates. He is also an Assistant Clinical Professor of Orthopaedic Surgery at Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai.\r\nHe is a Master of Surgery (ChM) in Trauma & Orthopaedic Surgery, degree obtained at the University of Edinburgh School of Medicine in partnership with the Royal College of Surgeons of Edinburgh, UK. He received his Master of Science (MSc) in Trauma & Orthopaedic Surgery degree from Warwick School of Medicine, University of Warwick, UK. He also received a Postgraduate Award (PGA) in Understanding Research & Critical Appraisal at the Warwick School of Medicine, University of Warwick, UK.\r\nDr. Abdulwahab obtained his primary medical qualification, Bachelor of Medicine & Bachelor of Surgery (MBChB) from the Bristol School of Medicine, University of Bristol, UK.\r\nDr. Taiceer Abdulwahab is a Member of the Royal College of Surgeons of England (MRCS).\r\nHe has presented at various international conferences including the International Congress for Joint Arthroplasty (ICJR) and the European College of Sports & Exercise Physicians (ECOSEP) with FIFA update, as well as published in peer-reviewed journals, Editor for a book titled 'Meniscus of the Knee', and investigator in several randomized controlled trials.\r\nHe is Trauma Doctor for the annual Emirates Rugby 7s.\r\nHe has a special interest in Sports Surgery (Arthroscopic Shoulder and Knee surgery).",institutionString:"Mediclinic City Hospital",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Mediclinic City Hospital",institutionURL:null,country:{name:"United Arab Emirates"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"466998",firstName:"Dragan",lastName:"Miljak",middleName:"Anton",title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/466998/images/21564_n.jpg",email:"dragan@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. A unique name with a unique work ethic right at your service."}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"63423",title:"Perspective of Obtaining Rare Earth Elements in Poland",doi:"10.5772/intechopen.80743",slug:"perspective-of-obtaining-rare-earth-elements-in-poland",body:'The group of rare earth elements (REE) is considered as 1 of 20 critical mineral raw materials important for the EU economy [1]. Due to the high demand for these metals, their resources are systematically exhausting. Actions aimed at ensuring continuity of REE supply, that is, exploration and exploitation of new deposits, reduction of consumption of these precious metals in technological processes and their recovery from waste, are very important from an economic point of view. The REE are widely used in the industry. For example, Nd, Pr, Sm, Tb, and Dy constitute the most important component of magnets used among others in mobile computers, mobile phones, cameras, electric motors, hybrid cars, and equipment for magnetic resonance; La, Ce, Pr, and Nd are used for the production of batteries of hybrid vehicles and hydrogen-absorbing alloys; Eu, Y, Tb, La, Dy, Ce, Pr, and Gd are a part of luminophores used in mobile phones, tablets, LED diodes, and energy-saving light bulbs; Ce, La, and Nd are added to the powders for polishing of screens of TV sets, monitors, tablets, mirrors, and computer processors (in the form of nanoparticles) [2]. The new applications of REE are still being found, and in the most of cases, it is impossible to replace them by other materials.
In Poland, the concentration of REE in minerals is rather low; their impact on the national economy is small. Potential sources of these metals are secondary materials such as phosphogypsum, the uranium tailings, and the waste electrical and electronic equipment (WEEE). In this chapter, the perspectives of recovery of REE from the Polish reserves are presented. The location of potential REE resources in Poland is shown on Figure 1.
The location of potential REE raw materials in Poland.
Natural resources of lanthanides in Poland were identified in alkaline intrusive Elk massif, Baltic sands, granite rock of Szklarska Poręba Huta quarry and Michałowice quarry (Karkonosze massif), pegmatites of Bogatynia (Sudety mountains), and Lower Silesia kaolinite [3, 4, 5, 6].
The Elk alkaline massif belongs to group of intrusive centers within the crystalline basement of the precambrian Baltic shield (northeastern Poland). It is composed mainly of syenite rocks such as nepheline syenite (E2, E3), fold-less syenite (E3), amphibola syenite (E4), monzogabbro (G1), and quartz syenite (K1, P1, P2). The whole massive is about 400 km2 in areal extent and the lanthanide-bearing rock is buried beneath 800–900 m of sedimentary rocks. For all rocks of Elk massif light REE enrichment has been found [3].
In the 1950s of the last century, a geological survey was carried out (seven drills has been digged, near the Elk city). It was showed that the concentration of lanthanides in this region is in the range of 207 up to 1224 ppm. The highest average concentration of lanthanides (963.9 ppm) is related to amphibola syenite, on a depth 950–1639 m, and the lowest one (354.7 ppm) is related to monzogabbro. The whole REE bearing layer is located on the depth 900–2500 m [3]. Distribution of the %REO (rare earth oxides) content depending on the depth of residual resources was shown on Figure 2. The calculation was done on the basis of the data published in the Geological Survey [3].
Distribution of %REO depending on the borehole depth (calculation based on data [
For all rocks of Elk massif light REE enrichment has been found and almost all samples have negative Eu anomaly [3].
The lanthanides mineralization has been also found in the Baltic marine sands, which are enriched in heavy metals, from the Odra and Slupsk Bank and from Hel Peninsula. All the samples were enriched in LLn2O3 (light lanthanides oxide). The highest REE (including Y and Sc) content is related to heavy minerals of Hel Peninsula sands (1371.2 ppm) and Odra Bank (up to 8787.7 ppm) [4].
In southwestern Poland (Sudety Mountains) REE occurrences are associated with uranium- and thorium-bearing rocks. In Szklarska Poręba Huta quarry, lanthanides are associated with Nb, Ta, and Li pegmatites and granites. The total concentration of %REO is 0.5 wt%, and prospective resources are estimated at 305 tonnes of these metals. In Markocice (near Bogatynia), REE content has been estimated at 150 tonnes, with average REO concentration of 1.5 wt%. In this area, lanthanides occur in metamorphic cover with the main REE bearing minerals such as zirconolite, gadolinite, fersonite-formanite, aeschynite, uraninite, monazite, zircon, and xenotime [5, 6].
The occurrence of lanthanides, which are adsorbed in kaolinite (Surmin, Czerwona Woda, and Turów), has been found in the area of Lower Silesia (southwestern Poland). The average concentration of lanthanides in this mineral is 288.7 ppm for Surmin, 106.9 ppm for Czerwona Woda, and 41.6 ppm for Turów. These clays are enriched in light lanthanides [7].
Uranium mining and uranium tailings are also rich sources of metals from the lanthanide group. Uranium mining residues in Poland were studied under various projects demonstrating the presence of REE and possibility of their extraction. The investigations were conducted in the Sudety region—Kowary (adit and sorting station), Radoniów (small and big dump), Kopaniec (dump), and in iron sulfide deposit in Rudki (“Staszic” mine) in the Holy Cross Mountains—where the soil and water from the mine pit lake and surrounding soils were analyzed. For waste materials from the Sudety region, the average concentration of Ln (excluding Tm) was as follows: Kowary adit, 64.9 ppm; sorting place, 95.9 ppm; Radoniów, 77.3 ppm (big dump) and 109.8 ppm (small dump); and Kopaniec dump, 103.9 ppm, with majority of light lanthanides (calculation based on data from [8]). For the Staszic post-mining objects, the average concentration of Ln was 993.3 ppm in water from open pit lake and 82.6 ppm in soils (calculation based on data [9]). All tested samples were enriched in medium lanthanides [9].
One of perspective secondary materials for recovery of REE is phosphate ores, which are used in the production of phosphoric acid. Phosphate ores can be divided into two main types according to their origin: sedimentary and igneous phosphate rocks. Sedimentary phosphate rocks (phosphorites) are found in Florida, Morocco, and the Middle East, while igneous phosphate rocks in the Kola Peninsula (Russia) and in Brazil [10]. The REE content in phosphate rocks depends on the type of rocks; in sedimentary phosphate rocks, it is 0.01–0.1 wt%, while in igneous phosphate rocks it is much richer (1–2 wt%). Apatite is the main phosphate mineral in most phosphate deposits [11]. These phosphate ores generally contain only 0.1–1% Me2O3, but they are present in huge quantities, c.a. 67 billion tonnes and are spread around the world; thus they have the potential to be an important source of REE. In apatite ores, REE either take the place of Ca2+ in the apatite itself or is presented as mineral inclusions in the ores. REE can be extracted from apatite ores during the production of phosphoric acid. In the technological process, c.a. 70% of REE present in the raw material is transferred to insoluble gypsum in precipitation process. In phosphoric fertilizer manufacturing process in Poland, phosphate rocks imported from Morocco, Tunisia, and Syria are used. The example concentration of lanthanides in these materials is presented in Table 1.
Lanthanides | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Yb |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Origin of phosphorite | Concentration, ppm | |||||||||||
Morocco | 90 | 38 | 14 | 62 | 13 | 3 | 18 | 3 | 18 | 4 | 14 | 13 |
Syria | 26 | 22 | 4 | 18 | 4 | 1 | 5 | 1 | 4 | 1 | 4 | 3 |
Tunisia | 64 | 100 | 13 | 55 | 11 | 3 | 12 | 2 | 9 | 2 | 6 | 5 |
Concentration of lanthanides in the phosphates of different origin [12].
Phosphogypsum is primarily CaSO4·2H2O, but it also contains impurities such as fluoride, heavy metals, and naturally occurring radionuclides such as 210Po, 226Ra, 234U, 238U, and 210Pb [13]. The composition of impurities within phosphogypsum can vary greatly depending on the source of the phosphate rock used in phosphoric acid production.
Phosphogypsum waste generated during production of phosphoric acid process in Poland is stored on the heaps in Police, Wizów, and Wiślinka near Gdańsk. It is estimated that every year, all plants in Poland produce about 2.2–2.6 mln tonnes of phosphogypsum. In Wizów, apatites originating from the Kola Peninsula (Russia) were processed. The phosphate rock coming from the Kola region contained an average 0.8–1.0 wt%. lanthanide oxides (as Ln2O3). Phosphogypsum waste generated in the Wizów Chemical Plant in southwestern Poland was stored on a huge heap in the vicinity of the plant. The phosphogypsum stored in Wizów mainly consists of calcium sulfate hemihydrate which undergoes physical and chemical changes during storage [14]. The analyses of the composition of this waste showed that the average content of lanthanides was in the range 0.3–0.7 wt%. (as Ln2O2). It was confirmed that this waste is a potential raw material for the manufacture of 6–10 kt of REE [15]. The phosphogypsum waste heap in Wiślinka (northern Poland) is located between the Martwa Wisła River and farm fields, close to the Gdańsk agglomeration. It contains about 16 million tonnes of phosphogypsum stored on 40 ha of land. The phosphogypsum waste heap is the result of production of phosphorite fertilizers by phosphoric fertilizer industries in Gdańsk. The concentration of lanthanides in phosphogypsum stored in Wiślinka is collected in Table 2.
Element | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Yb |
Concentration, ppm | 40 | 53 | 8 | 34 | 7 | 2 | 9 | 1 | 7 | 2 | 5 | 4 |
The concentration of lanthanides in phosphogypsum stored on Wiślinka heap [15]
Fly ash is considered as a potential future source of lanthanides and other valuable metals (e.g., uranium, thorium, aluminum, etc.).
Usually concentration of metals in solid fossil materials such as anthracite, hard coal, and lignite is not very high. During combustion or co-firing processes, a lot of valuable metals is concentrated several times in coal fly ash (CFA) [16, 17].
Poland is the second biggest consumer of coal in European Union countries. Polish energy mix has been shown in Figure 3. Almost 80% of electric energy comes from combustion of hard coal, lignite, and biomass [18].
Polish electricity production energy mix (in shares %).
Only 25% of CFA that comes from Polish coal-fired power plants is utilized, and 75% is disposed as a waste material. Fly ash is used mainly as an admixture for concretes and cements or for production of synthetic zeolites. In the fly ash, 81 metals have been analyzed, including REE, which concentration is much higher than in raw material.
Average concentration of lanthanides in coal and lignite is not very high (in Polish solid fossil fuel is approximately 100 ppm of Ln), but during combustion process the total concentration of lanthanides grows 3–4 times [16]. Assessment of Polish fly ash, which comes from combustion of solid materials (biomass, hard coal, and lignite), showed that concentration of REE (including Y and Sc) is in the range 101.1–443.3 ppm, always with majority of LL2O3 fraction [17, 19].
In view of the growing demand for rare earth elements (REE) and requirements of environmental protection, the treatment of waste electrical and electronic equipment becomes a very good secondary source of the REE in a modern economy. Recycling of the waste electrical and electronic equipment is also one of the possibilities of obtaining the rare earth metals and limiting their purchase from China. According to the European Commission, waste electrical and electronic equipment is one the fastest growing waste streams in the European Union, with almost 9 million tonnes produced in 2005 and probably will increase to more than 12 million tonnes by 2020 [20].
Also in Poland, a potential raw material of the rare earth elements is secondary material, which is a waste of electrical and electronic equipment (WEEE). In the recycling process of WEEE, developing an appropriate scheme for the management of WEEE by improvement of collection and treatment of electronics scrap is very essential. In Poland, the new WEEE Act has been in force from January 1, 2016 (dated September 11, 2015) [21], which transposes the European Directive WEEE 2 (No. 2012/19 / EU) [22]. The European Directive WEEE 2 introduces, among others, increased obligations to collect and process WEEE–65% of weight from 2021 and a new division into six groups of WEEE from 2018, as well as the obligation to collect WEEE free of charge in the place of delivery of new equipment. Stores also have the obligation to collect small WEEE without any quantitative restrictions if the dimensions do not exceed 25 cm. The European Directive WEEE 2 groups a total of 10 categories of waste electrical and electronic equipment (WEEE) [22]:
Large household appliances
Small household appliances
IT and telecommunications equipment
Consumer equipment
Lighting equipment
Electrical and electronic tools
Toys, leisure, and sports equipment
Medical devices
Monitoring and control instruments
Automatic dispensers
It is estimated that about 11 million tonnes of WEEE such as computers, laptops, TV sets, LCD glass panels, fridges and mobile phones, smartphones, batteries, car batteries, accumulators, fluorescence lamps, magnets, etc. are produced in Europe annually, which accounts for 22% of the total volume of WEEE generated in the world [1]. The largest growth rate among WEEE is seen in the use of IT and telecommunications devices, for example, mobile phones and laptops [1]. The recovering and processing of the WEEE have become very important because of the huge amount of the collected WEEE in Poland and in the European Union. Only 25% of the mass of WEEE produced in the EU-27 is stored and processed, and the remaining 75% is not processed. In Poland, an overall of 1.48 kg per capita of WEEE was collected in 2008 and 4.39 kg per capita in 2014; it is roughly 168,900 tonnes of WEEE. In 2021 Poland will be obliged to collect 11 kg per capita [23].
Based on the data of the Chief Inspectorate for Environmental Protection (CIEP), Poland, there are a lot of Polish Organisation of Electrical and Electronic Equipment Recovery (OEEER), for example, Elektroeko, the European Recycling Platform, AURAEKO, Biosystem Elektrorecykling, CCR RELECTRA, Electro-System, DROP, and TOM, which are responsible for meeting the collecting and recycling obligations on behalf of enterprises [23]. In Poland, there are also a number of companies collecting and processing WEEE, which cooperate with companies belonging to OEEER, for example, Elektrorecykling Sp. z o.o. [24], REMONDIS Electrorecycling Sp. z o.o. [25], Baterpol S.A. [26], and P.P.H.U. POLBLUME Zbigniew Miazga [27].
A total of 168,932 tonnes of WEEE was collected in the country, including 159,756 tonnes (94.56%) from households and 9175 tonnes (5.44%) from other sources in 2014. The largest volume of this waste is composed of large household appliances, 79,562 tonnes (47.09%), and IT and telecommunication equipment (e.g., computers, laptops, mobile phones, etc.), 24,965 tonnes (14.72%). The smallest part is composed of wastes of automatic dispensers, 115 tonnes (0.06%) [28].
In order to separate the individual REEs, at first they have to be recovered from the raw material such as REE ores or the WEEE, in hydrometallurgical process. The technological scheme of REE extraction from minerals usually consists of grinding and cracking mined ore, preliminary enrichment to produce mixed REO concentrates, and then further concentration, separation and purification of REE oxides. To concentrate the REE extracted from minerals, the methods such as flotation, gravity separation, electrostatic separation, or magnetic processes are used [2].
Various methods and solutions are used for the extraction of REE from solid materials. As lixiviants, inorganic acids, alkalines, electrolytes, and chlorine gas are used. The leaching reagent should be selected to fit specific characteristics of the source material, for example, acids are commonly used to extract REE from silicate ore mineral such as gadolinite, eudialite, and allanite, and the alkaline reagents and sulfuric acid are mainly used to leach REE from phosphate ore minerals like monazite and xenotime. Electrolyte solutions are used to extract of REE from ion adsorption clay deposits. The chlorination process can be used to treat majority of rare earth minerals.
The obtained solution is a mixture of various REE with other metals, present in the raw material. The separation of individual metals is one of the most major challenges in hydrometallurgy. Currently the solvent extraction is the most preferable method of purification due its continuous nature and possibility to handle large amounts of diluted post-leaching solution. Selection of the ligand used for forming the organic soluble metal-ligand complex can have profound effects on separation of metals and overall process efficiency and economics. Generally all three major classes of extractants: acidic, neutral, or basic extractants can be utilized for separating rare earths [29].
The extraction step is always followed by scrubbing. The organic phase from extraction step is contacted with scrubbing solution in order to remove any undesirable solutes that are entrained in the organic solution and improve the purity of valuable elements. Typically scrubbing is carried out by using water, dilute acid, or base solution. It is worth to note that a relatively high amount of valuable metals may pass to the scrubbing solution. For this reason, it should be recycled back to extraction stage and mixed with the feed aqueous solution.
The metals extracted to the organic phase should then be stripped back to aqueous phase for further recovery. The stripping is the reverse operation to the extraction. As a stripping solution, typically concentrated acid, alkaline, or salt solutions are used. Likewise extraction, stripping may be performed in a one-stage, two-stage, or multi-stage process [30].
REE can be separated using ion-exchange techniques. The separation of lanthanides can be achieved by using the combination of chelating eluents that are selective for individual lanthanides with resins that is characterized by little selectivity. The other possibility is the extractions with the chemically modified resins; among them are resins coated with extractant [31].
Several REE can be separated basing on their redox properties [31]. The example is cerium and europium which have been isolated on an industrial scale using reduction-oxidation reactions. Cerium (III) was oxidized to +4 that forms sparingly soluble oxides or hydrates. The precipitate was separated to give pure cerium solid (99% of purity) and cerium free liquor. Europium was reduced to +2 and precipitated as sulfate from mixed rare earth elements solution. The purity of europium obtained in this way was >99%.
The industrial process of purification of lanthanum, gadolinium, terbium, and dysprosium uses fractional crystallization techniques. This method is based on the different solubility of rare earth bromate, nitrate, and sulfate complexes. A lot of repetition of crystallization is necessary to obtain pure metal. For example, the lanthanide with 99.98% purity was obtained from a mixture of REE with using ammonium nitrate after 16 repetitions of crystallization ([31], and references therein).
Summarized, the separation of REE is the most difficult aspect of their production. The expanding global demand of these metals is the reason for the intensive increase of research in this field.
Initiating the nuclear power program in Poland generated interest in domestic uranium resources and the study of the recovery of uranium from Polish uranium ores [32, 33]. Most Polish uranium ores are black shale and sandstone-type deposits [34, 35]. Uranium is usually accompanied by other valuable metals, among them REE [36]. These metals could be recovered at the same time as uranium, to improve the economy of processing of low-grade uranium ores predominated in the country. The content of lanthanum in Polish ores is 31–62 ppm in dictyonema shales and 4–53 pm in Triassic sandstones. The studies performed in the scope of national projects have shown 66% efficiencies of leaching of La from dioctynemic shales by 10% H2SO4 at 80°C [36]. The leaching under elevated pressure (2, 3, 5, 7 bar) did not improve the efficiencies, however shortened the time of process from 8 to 2 hours. Zakrzewska-Koltuniewicz et al. developed the second-order regression models to predict the leaching efficiencies of valuable chemical elements. They carried out the statistically designed experiments to investigate the recovery of U, V, and Mo chemical elements and representative lanthanides like La and Yb from low-grade uranium ore using sulfuric acid as a leaching reagent [37]. Lanthanum can also be extracted from sandstones with high efficiency (80%) at temperature 60°C with 10% HCl [38].
Very interesting, the novel method used for processing Polish uranium ores was a leaching in the membrane contactor with helical flow equipped with tubular metallic membrane. In this process, lanthanum was co-extracted with uranium from dictyonema shales with 78% of efficiency [39]. The process was carried out at ambient temperature, and the yield of leaching was higher than obtained in the stationary reactor with heating and mixing. The additional advantage of using the membrane contactor is a possibility of conducting two processes: leaching and solid-liquid separation in one apparatus.
The post-leaching solution obtained from the separation of solid residue from liquid is a mixture of various metal ions. The further purification and separation of metals can be achieved by solvent extraction followed by stripping to aqueous phase or by ion exchange. By using solvent extraction, we cannot avoid some of the problems associated with this process. A third phase between aqueous and organic phases is often formed in solvent extraction process. It is related to the solubility of the metal-extractant complex in the organic solution. The formation of the third phase may cause many difficulties; first of all, it leads to organic solvent loss. The minimization of the formation of the third phase can be achieved by addition of a modifier to the organic phase [40] or by application of membrane contactors, a multistage mixer-settler arrangement with concurrent flow of two phases—aqueous and organic [41].
Ion exchange proved also itself as an effective separation method of metals from water solutions. Danko et al. proposed to use Dowex 1X10 and Dowex 50WX4 for valuable metals extraction from pregnant leach liquors from extraction of Polish ore. The recovery of lanthanides was 99% [42].
The process of the recovery of REE from phosphogypsum has been studied in Poland for over 30 years. As a leaching solution, a concentrated sulfuric acid, nitric acid, or their mixture have been applied. For separation of rare earth elements, different methods have been used: precipitation and extraction in liquid-liquid systems with the participation of an organic phase as well as crystallization methods, among others [43, 44]. Results of this work confirmed higher efficiency of leaching lanthanides from phosphogypsum by the application of nitric acid (c.a. 90%) than sulfuric acid (c.a. 60%). However, in the case of using nitric acid, an additional waste threatening the environment is generated.
The possibility of recovery of REE from phosphogypsum stored in Wizów heap with simultaneous recovery of P2O5 and production of anhydrite cement was also a subject of work [14]. The technology was examined at laboratory scale by the processing of 1 Mg/h of phosphogypsum. The technological flowsheet consisted of three steps: (i) leaching of lanthanide from the phosphogypsum using sulfuric acid at a concentration of 15%, (ii) crystallization of the rare earth concentrate (containing up to 25% Ln2O3) from the leach solution, and (iii) recrystallization of gypsum. In this way, insoluble high-quality anhydrite, phosphoric acid, and concentrate of rare earths concentrate containing more than 90% of oxides were products of the process. The composition of the rare earth concentrate is presented in Table 3.
Component | % | Component | % |
---|---|---|---|
La2O3 | 24.8 | Dy2O3 | 0.2 |
CeO2 | 50.5 | Tb4O7 | 0.1 |
Nd2O3 | 15.9 | Ho2O3 | <0.1 |
Sm2O3 | 1.9 | Er2O3 | <0.1 |
Gd2O3 | 0.9 | Tm2O3 | <0.1 |
Eu2O3 | 0.44 | Yb2O3 | <0.1 |
Y2O3 | 0.3 | Lu2O3 | <0.1 |
ThO2 | 0.2 |
The composition of the concentrate of REO [14]
The leaching of valuable metals from phosphogypsum stored in Wiślinka heap was also studied. The experiments were performed in laboratory scale. Lanthanum and other REEs were recovered with high efficiencies (Figure 4). Initially, the phosphogypsum was treated with 30% NaOH at 60°C, and then the solid residue was leached with 10% HCl at 60°C [12, 45].
The efficiencies of leaching REE from phosphogypsum stored in Wislinka heap, Poland.
Zielinski et al. studied the recovery of lanthanides from Kola apatite used for the phosphoric acid production in Polish phosphoric fertilizer factory [46]. It was found that a stage of the hydration of hemihydrate provides the best conditions for the recovery of lanthanides. In this stage for the removal of lanthanides, a solvent extraction has been applied and consequently a precipitation-stripping process for the removal of lanthanides from the solvent has been employed. As a result, a concentrate enriched with lanthanides has been obtained in which lanthanides were recovered with an efficiency of 80–85%. The similar results were obtained by the El-Didamony et al. in the studies of reduction in the concentration of radionuclides in phosphogypsum by using suitable organic extractants. This process was accompanied by reduction in the concentration of REE up to 80.1% [47, 48, 49].
The possibilities of separation of rare earth elements from phosphoric acid solution have been also investigated [50]. A strongly basic ion-exchange resin with quaternary ammonium functional groups (Dowex 1) has been used for this purpose. The effect of temperature and resin cross-linking on the column performance and the ion-exchange reactions of phosphate complexes of several rare earths were determined. It was found that the resolution increases with increase of temperature, and the best separation was obtained at temperature of 85°C.
A separation of lanthanides form phosphoric acid through a crystallization process has been also investigated [51]. The effect of temperature and H3PO4 concentration on lanthanide solubility was tested. As a result of the experiments, highly crystalline solids of lanthanide phosphates were obtained.
A complete strategy of recycling of waste electrical and electronic equipment consists of policies of waste management, research and development in new methods of processing, and challenges in elaboration of new technologies. For many countries, mainly those having limited access to mineral resources of REE, the development and improvement of the recycling processes of valuable metals from WEEE are significant aspects from the economic and environmental point of view. In Poland, obtaining a concentrate of REE from the discussed secondary raw material on an industrial scale is currently an economic issue. Unfortunately, about 70% of collected WEEE waste is processed in China [52].
In general, waste electrical and electronic equipment (WEEE) is a mixture of different materials and can consist of steel, printed circuit boards, batteries, permanent magnets, hard drives, plastic, aluminum foils, phosphors, photovoltaic materials, cables, separators, active materials, carbon, organic binders, organic solvents, salts, additives, valuable metals, etc. Very important steps for the hydrometallurgical recovery of metals from a wide range of WEEE are mechanical pretreatment and dismantling.
Usually, a recycling of different types of waste electrical and electronic equipment is very complex because of the complexity of the material; the content of metals, for example, low-grade or high-grade material; the solubility and/or thermal stability; etc. Recovery of REE from WEEE using pyrometallurgical treatment is energy demanding, and often, the final products that are obtained require another processing to get pure compounds of the material [53]. As an alternative to pyrometallurgical processes, the metallurgical industry has been examining for hydrometallurgical treatment, due to some benefits related to hydrometallurgical processing, mainly for low-grade and chemically difficult streams [53].
Rare earth elements are used in the production of metal alloys (25%), catalysts (16%), permanent magnets (23%), polishing materials (11%), glass (7%), and materials containing phosphors (7%). The applications of these metals should provide the opportunities for strategic recycling and material recovery after their use. Recycling of spent fluorescent lamps can be a useful secondary source of Y, Eu, and Tb, and recycling of permanent magnets, which are used in water and wind energy as well as in HEV and EV vehicles, can become an important source of secondary acquisition of Nd, Pr, Dy, and Tb [54, 55, 56].
The amount of REE depends significantly on the type of waste electrical and electronic equipment (WEEE) and can range from several hundred ppm to several dozen percents. Particularly rich in rare earth elements are wasted permanent magnets of type Fe14Nd2B (about 24% of Nd) or Sm2Co5. Some magnets of this type include additionally about 5% of Dy [1].
Usually, the processes of obtaining rare earth from permanent magnets are preceded by pretreatment, which includes such operations as mechanical disassembly of waste, physical separation, grinding to the proper grain size, thermal treatment, pyrometallurgy, hydrometallurgy, etc. Methods are adequate to the particular type of waste electrical and electronic equipment. The basic technologies include such unit processes as rare earth recovery through thermal or hydrometallurgical processing. For example, the recovery process of the neodymium from the Fe14Nd2B magnet scrap consists of the extraction of neodymium with liquid magnesium, the separation of the liquid phase from the solid phase, and the evaporation of liquid magnesium. After these operations, the obtained final product contains about 96% of Nd [57].
The recycling and separation processes of Nd and Dy from permanent magnet scrap has been also studied by a hydrometallurgical method using liquid emulsion membranes in an integrated process [58]. In this method, the removal of ions is the result of processes taking place in one apparatus, that is, the production of liquid emulsion membranes and extraction. The extraction process involves the steps of transporting metal ions of Nd and Dy through the membrane phase of the emulsion to the phase of internal droplets, where they are separated by the extraction.
Nickel-metal hydride batteries (NiMH) that are used in the production of hybrid vehicles are another secondary source of valuable rare earth elements. The typical NiMH car batteries contain approximately 3 kg of REE, 11 kg of nickel, and 1.5 kg of cobalt. A hydrometallurgical technology has been carried out for the recovery of valuable metals from spent car NiMH batteries in a continuous countercurrent solvent extraction process using a mixer-settler system in a pilot plant scale [59].
At the Institute of Mechanised Construction and Rock Mining, Warsaw, Poland, a method for recovery of yttrium and europium from used phosphors was developed, that is the subject of the patent PL-200095, 2008 [60, 61]. Acidic leaching, hydrolytic precipitation, and/or solvent extraction methods have been used in the recovery of Eu and Y from waste fluorescent lamps containing ~0.3% Eu and 7% Y. The best results of leaching efficiency were reached in 3 M HCl or 3 M HNO3 at 80°C, about 90% for Eu, and 95% for Y [62].
A mixture of fluorescent lamps of a different kind was processed for the recovery of REE especially Y and Eu [63].
The high efficiency of oxide containing 99.96% REE (94.61% yttrium, 5.09% europium, and 0.26% of the other REE) was reached in solution with 35 vol% Cyanex 923 in kerosene using mixer-settler systems of three extraction and four stripping stages.
Due to the depletion of natural resources, increased environmental pollution, and dependence on suppliers from China, the recovery of valuable metals from WEEE is currently of great importance. Broadly understood economic development and new technologies in the electrical and electronic market are beneficial for people, but they also harm the surrounding environment and, consequently, all of us. Therefore, the intensively developing industry of recovery of metals from secondary sources has many positive aspects such as less hazardous waste, reduction of greenhouse gas emissions and CO2, or a reduction in the use of natural resources and thus reducing the destruction of the natural environment.
Despite the small amount of recycling of REE, the worldwide production of these metals currently exists at about 130,000 metric tonnes of REO equivalent content per year, with the 2014 REE market worth about US$2051 million [64]. A large amount of REE is used in the production of catalysts, glass, lighting, and in the metallurgy industry, 59% in 2011, and the remaining 41% in new increasing markets such as magnets, batteries, and ceramics [64].
Development of modern technologies both in the field of electronics and green motorization is heavily dependent on rare earth elements. Also in Poland, the constantly growing consumption of REE is observed. Poland does not actually have its own REE natural deposits. The demand for these metals is mainly covered by import from China, West Europe, and USA. Alternative sources can be rich hard coal resources and a large share of fossil fuels in energy production. No wider studies on the occurrence of REE have been conducted in the country so far, for example, for the assessment of the hard coal deposits and power fly ashes as reasonable sources of lanthanides. Fragmentary data not allow to determine the full volume of REE in Polish hard coal.
A prospective direction in obtaining REE from domestic resources can be processing of WEEE. In recent years the interest of small entrepreneurs in this subject is noticeable. Many small companies have been established, dealing primarily with the collection and segregation of electric and electronic waste materials. With the help of national assets and money from EU structural funds, many innovative projects in the field of metal recycling are carried out. Innovative REE recovery projects can meet the expectations of satisfying the demand for these valuable, irreplaceable metals in today’s life.
The studies were supported by the Ministry of Science and Higher Education, Poland, financial resources for science in the years 2017–2019 granted for the implementation of the international project cofinanced IAEA Research Contract No: 18542.
The ever-increasing population growth of the world has resulted in putting more and more pressure on a piece of arable land demanding higher and higher production. The world statistics shows reduction of per capita arable land from 0.23 ha in 2000 to 0.19 ha in 2015. While the per capita arable land in North America is still 0.55 ha, the numbers for South Asia and East Asia- Pacific are 0.12 ha and 0.11 ha respectively (5–6 times lower than that of North America) [1]. The shrinkage of arable land compels the farmers to go for over dose of fertiliser application which is a main source of many kind of pollutions and emission. Food sector contributes to around quarters (26%) of the global greenhouse gas (GHG) emission out of which solely crop production practices cause
Sub-region | Food and fibre | Biodiversity | Land degradation |
---|---|---|---|
Moderately resilient | Highly vulnerable | Moderately vulnerable | |
Highly vulnerable | Moderately vulnerable | Highly vulnerable | |
Moderately resilient | Highly vulnerable | Moderately vulnerable | |
Highly vulnerable | Highly vulnerable | Highly vulnerable | |
Highly vulnerable | Highly vulnerable | Highly vulnerable | |
Highly vulnerable | Highly vulnerable | Highly vulnerable |
Sectoral vulnerability in food, land and biodegradation in sub-continents of Asia.
According to IPCC (Intergovernmental Panel on Climate Change) 2014 [3] record, the scenario of GHG emission is very critical in Asia as Asian agriculture causes an average of 44% of global agricultural GHG emission (Table 2).
Carbon pool | Carbon changes | Rate of carbon increase in the atmosphere | |
---|---|---|---|
Fossil fuel use | Land Use | ||
750 Gt | + 5.5 Gt yr.−1 | +1.6 Gt yr.−1 | +3.3 Gt yr.−1 |
Carbon pool size and changes due to human activities [4].
The agricultural GHG emission contributors such as enteric fermentation and paddy rice cultivation are the major source of methane emission whereas the major sources of nitrous oxide emission are application of manures and fertilisers. The worldwide contribution of paddy rice cultivation towards GHG emission (CH4) is 11%. For higher crop production farmers rely on synthetic fertiliser application which is a rapidly growing source of emission having the increase rate of around 37% since 2001 [5]. Along with that the use of large number of machineries are the source of CO2 emission due to burning of fossil fuel. The imbalanced fertilisation is another reason for the release of soil carbon to the atmosphere (Figure 1).
Contribution of various agricultural sectors towards GHG emission in Asia. See [
To meet the daily food requirements, the agricultural stakeholders must make two kind of assessments in order to understand the impact of climate change on food and crop production i.e., mitigation and adaptation. Mitigation will reduce the emission of GHG from agricultural sources whereas adaptation will enable the agricultural sectors to perform well in the existing climate change situation through modified management and production systems. Both the approaches can be regulated through various policies e.g., ensuring the economic value of carbon and its sequestration will be an important development in the agriculture sector [7]. The adaptive-mitigation techniques to capture carbon in soil in organic form is a potential factor for controlling CO2 emission as well as a factor for improving soil quality and health.
Carbon storage in terrestrial system is important as soil can hold three times more carbon than vegetations that they support. The Soil carbon pool which is the largest reactive carbon in terrestrial ecosystem [8], is estimated to be 2500 Pg (1015) up to 1 mt depth, of which soil organic carbon is about 1500 Pg. This stock accounts for about 3.2 times the size of atmospheric carbon pool and 4 times that of biotic pool [6, 9]. Thus, capturing the carbon from agricultural lands in stable form can reduce CO2 content of the atmosphere.
Again, the global distribution of carbon and its storage potential is highly influenced by climatic conditions such as temperature and precipitation [10]. The higher decomposition rate controlled by higher oxidation of organic matter result in lower Soil Organic Carbon (SOC) in the tropics as compared to higher SOC of cooler regions. Though all the parts of Asian croplands contain moderate amount of carbon, and all together they account for about 25% of global cropland carbon [11]. But the regions of South Asia with low level of SOC and with serious degradation problems are global highest in carbon storage per hectare basis (0.62–1.28 t C/ha/yr) over 2.9 million km2 of land which all together turns out to be 2.2 to 4.5 Pg C storage/yr. in South Asia [11]. Thus, the management practices which are proved to be potential drivers of SOC enrichment must be encouraged as mitigative measure in agricultural soils.
Soil Organic carbon (SOC) is the controlling factor for soils physical, chemical, biological and ecological functionality and wellbeing. Not only soil’s health and productive capacity but soil carbon can also mitigate hazardous climate change. Quality and quantity of SOC; its dynamics/turnover is the main governing factor of soils ecosystem functions. A huge loss (50 to 75% and with magnitude of loss of around 30 to 60 Mg C/ha) of antecedent soil C pool has occurred due to land conversion, cultivation and erosion associated with it in most agricultural ecosystems [12]. Generally, agricultural soils contain considerably less SOC than soils under natural vegetation, hence, these lands are deprived of C than their ecological potential.
Carbon management practices (CMP) aim to sequester i.e., to capture and secure storage of carbon that would otherwise be emitted to, or remain, in the atmosphere. In other words, CMP is enhancing and/or maintaining soil carbon not allowing it to escape out to the atmosphere. In agricultural fields, addition of biomass carbon and organic manure is a direct approach but stabilisation of the soil carbon is through its physico-chemical property. Physical mechanism includes formation of organo-mineral complexes, encapsulation in microaggregates within macroaggregates, deeper placement of carbon in the soil profile away from natural and anthropogenic perturbation zone [12]. At the same time, the producer must seek for those practices which will promote sequestration of SOC in croplands without compromising the provision of ecosystem services such as food, fodder, fibre or other agricultural products. Thus, it is very crucial to understand the mechanism of carbon stabilisation by improving the mean residence time (MRT) and by offsetting anthropogenic emissions [13] which is vary according to the climatic condition and soil properties and also on existing soil carbon content of the particular region. For example, the same management practice which are proved to increase SOC can result in high amount of loss and unintended consequences in those soils which are already saturated with organic carbon [14] (Table 3).
Attributes | Mechanism |
---|---|
Physical stability | Depth distribution, Aggregate stabilisation, Organic macromolecules. |
Chemical recalcitrance | Charred materials, Interaction with cations, Hydrophobicity, Complexation with clay minerals, intermolecular interaction. |
Biotic mechanisms | Recalcitrant fractions, Structural composition, Condensation reaction. |
Mechanism of increasing MRT of SOC for its stabilisation.
A 4% increase in global agricultural soil carbon pool up to 1 m depth, 2–3 Gt C can be sequestered annually which would drawdown global anthropogenic GHG emission by 20–35% [15] but practicality has many constraints. For example, in countries with low (inherent) SOC like India, high rate of decomposition due to high temperature and the removal of crop residues does not allow this concept to work well [16]. Due to a greater surface area and charge density, organic matter can react with soil particles to form organo-mineral complexes. The mean residence time of carbon fractions are functions of their turnover rate which is dependent on the degree of protection within soil matrix [17]. Chemical protection involves formation of some recalcitrant compounds [18] like non- acid hydrolysable carbon fraction, aromatic compounds, double chained hydrocarbons and hydrophobic compounds which are not easily decomposed by microorganisms.
Change in soil carbon is a balance sheet of carbon input and output through mineralisation, loss, other emissions etc. [10]. So, the key for sequestering SOC is increasing carbon inputs and reducing carbon outputs. Cropping system biomass productivity has primary control over this carbon input through proper fertiliser, land, water management practices based on exiting soil and climatic condition. Integrated and balanced fertiliser application positively affect both above ground and below ground biomass and crop productivity. This adds more amount of organic matter to the soil directly in the form of straw returns, roots, exudates and organic manures directly. The organic carbon present in soil is very much prone to oxidation if neither biochemically protected (depends on its composition) not physically protected (in soil aggregates). So, researches focus on those practices which are helpful to protect pre-existing soil aggregates and/or to promote the genesis of new soil aggregates or to achieve both objectives of CMP.
Important carbon management practices are:
conservation agriculture (CA),
Cover crop
Crop rotation and diversification
Integrated and balanced nutrition (use of organic amendments viz. Crop residue, FYM, Compost, Biochar)
This is the technology of a set of management practices which aims at conserving the natural resources and biodiversity in the crop land and are characterised by the three principles e.g., i) No/minimum soil disturbance, ii) permanent organic cover or cover crops, and iii) crop diversification. Each principle individually and combinedly contribute towards carbon enrichment in soil. Build-up of carbon in soil can be successful through increased input, reduced decomposition and loss or both. Cultivation of previously uncultivated land can lead to 20%–40% loss in the native carbon in the initial years following initial cultivation [19]. Restoring that carbon in soil through addition and protection can be a potential carbon management practice. Every input like fertiliser, pesticide and irrigation has a carry a ‘hidden carbon cost, thus optimising their quantity in a crop management practice should be estimated in the carbon balance sheet [20]. Historically, excessive cultivation operations like tillage can expose SOC for decomposition by microbes which further may cause many land degradation problems such as erosion and soil structural decline. Enhanced soil disturbance triggers carbon losses from soil system via increased decomposition and erosion of SOM. All these ultimately adds to the atmosphere as CO2 fluxes or to the water resource [21]. Soil carbon levels of agricultural soils are lower than corresponding soils under natural vegetation or fallow that indicates the potential for soil carbon storage. In agricultural systems, soil carbon levels tend to be variable and dependent on management practices. Reducing soil disturbance can reduce rate of oxidation of organic matter and provide protection to the microbial habitat. Rate of decomposition can also be reduced by introducing slowly decomposing residues in the rotation. Intensifying crop rotation, legumes and green manure crops in crop cycle, elimination of fallow period, cover crop and residue mulch enhances soil carbon input in the form of both above ground and below ground biomass. The principles of conservation agriculture rotate around the concept of biomass addition and its protection through less soil disturbance. Soil C level and its composition under no-tillage and stubble retention (SOC = 2.5%) was more than the same soil under 3 pass tillage and stubble burning (SOC = 1.5%) after 19 years [4]. Reduced tillage increases the potential of soil c sequestration over conventional tillage practices as described in Figure 2. The concept of achieving steady state carbon status in cultivated soil through maximisation of organic input (residues, root biomass, organic amendments) is depicted in Figure 3. Conservation agriculture technology can be a potential method for conserving soil moisture, supplying plant nutrient and mitigate pathogen, peat and weed infestation there by cutting off fertiliser, pesticide requirement. Every input like fertiliser, pesticide and irrigation has a carry a ‘hidden carbon cost, thus optimising their quantity in a crop management practice should be estimated in the carbon balance sheet [23]. A study conducted by [20] Sapkota et al. (2015) in the Indo-Gangetic region showed that conventional rice- wheat cropping system has 27% higher GHG emission (in terms of CO2 equivalence) as compared to zero tilled rice- wheat crop rotation with residue mulching [23]. Sapkota et al. (2014) found the carbon dioxide efflux so also the global warming potential of wheat (through life cycle analysis) for its unit production under conventional tillage based practice is 10 times higher than no tillage based production. Introduction of legume in crop rotation and residue addition to the soil help reducing fertiliser requirement and energy need in arable systems. Considering the fact that, the annual global fertiliser leads to an annual release of 300 Tg of CO2 into the atmosphere during fertiliser manufacturing process [24], any management practice that will reduce the chemical fertiliser requirement with optimised output is highly environment friendly. They also explained that the release of every 2.6–3.7 kg CO2 per every 1 Kg of synthesised N, is produced from fossil fuel thus causing a net contribution to atmospheric amount of CO2 [24].
Changes in SOC content in cultivated soil as a result of tillage pattern over years [
Mechanism of achieving steady state SOC through input addition. Adopted from [
While the carbon sequestration in soil will occur at a certain point of time (until saturation) depending upon the soil type, reduction in emission owing to less energy requirement, fossil fuel consumption and machinery use will continue until the practice is carried out [25]. Zero tillage cuts the fuel consumption for land preparation so also CO2 emission. (Erenstein and Laxmi 2008) [26] found that adoption of ZT in wheat- maize system of the IGP could save an average of 36 L diesel ha–1 which is equivalent to a reduction in 93 kg CO2 emission ha−1 yr.−1 Sapkota et al. (2015) [20].
The carbon stock–enhancing effect of SOC management practice of conservation is possible due to reduced disturbance which is the prime factor in maintaining soils physical stability. This physical wellness of a soil system has positive effect on microbial habitat, their activities and the natural ecosystem functions of soil like nutrient cycling, buffering capacity, cation exchange etc.
The first principle is no tillage which is growing crops in soil without causing soil disturbance except for sowing or reduced tillage that is significant reduction of soil disturbance through less frequent passes of tillage, tillage in specific portion of the field which is in form of strip or ridge and shallower depth of tillage. Second principle aims at keeping a permanent organic cover on the soil surface in the form of residue mulch, growing cover crops both of which addresses many aspects of soil protection in the form of hindrance towards water, wind erosion, improved soil aggregation, enrichment of substate for microbial growth and functionality and many other chemical properties such as nitrogen fixation, carbon sequestration, etc. the third principle i.e. crop diversification is an essential tool for promoting better soil health as it has a role in allowing nutrient uptake of differently rooted crops from different depths, promoting microbial diversity, reducing disease and pest infestation there by allowing a better plant growth and biomass addition.
Soil particles are bound together by temporary (i.e., fungal hyphae and roots) and transient binding agents (i.e., microbial- and plant-derived polysaccharides through organic matter decomposition) [27]. In presence of these agents, aggregation is promoted and with time the microbially restructured carbohydrate molecules get attached with finer soil particles like clay and silt which is a stable form as compared to particulate organic matter (POM). With elimination of soil disturbance (tillage), soil organic matter gets strongly bound to clay particles in the form of macroaggregates and microaggregates within the macroaggregates. Again, microaggregates within the macroaggregates constitute a secure habitat soil microorganism, soil disturbance destroys the microbial habitat, affects its activity. In non-disturbed soil, the particulate organic matter present in macroaggregates get to be predominantly stabilised within microaggregates owing to the slow turnover rate [28]. On the other hand, a higher turnover of POM is seen due to tillage because they get exposed to rapid microbial attack preventing its incorporation into microaggregates as fine POM. In short, tillage leads to carbon loss through breakdown of C-rich macroaggregates and a decrease in microaggregate formation. Research has shown that 90% of total difference in SOC in soils of varying type and climate is due to the microaggregate-associated C fraction [29]. Thus, a slower turnover of this fraction in zero tillage allows greater protection and stabilisation of coarse POM over time through mineral-bound C decomposition product formation in the microaggregates-within-macroaggregates promoting long-term soil C sequestration in agricultural soils. The process of aggregate formation and protection under no tillage system is shown in the right flowchart whereas, disruption due to tillage is described in the left (Figure 4), The bold lines are implicative of higher amount.
Aggregate formation in a no-tillage as well as conventional tillage system. Adopted from [
Not only microbial habitat, but also macrofauna population is promoted under no tillage practices in absence of physical abrasion and habitat destruction as happens under conventional tillage practices.
Availability of protected habitat and higher C- input directly influence microbial population in a positive way. Generally, in tillage induced environment there is dominance of
Mechanism operated in soils under CA practice for enhancing C-pool size.
The main social issue with farmers of IGP are, less time interval between harvesting of kharif crop and sowing of succeeding crop, fodder requirement of domestic animals, use of crop residue as a source of energy for domestic purpose. Mostly farmers adopt the simple way of residue management i.e., residue burning which is undoubtfully a huge source of CO2. In that case, may the carbon addition be very small due to residue return to the field that would otherwise have been emitted to the atmosphere, is a sure shot CO2 efflux mitigation principle (Powlson et al., 2016) [34] (Figure 6, Table 4).
Macro and micro aggregate formation in soil through binding agents. Adopted from [
The intercrops or catch crops can be grown in field instead of keeping the land fallow before sowing of the next fallow crop. A
Monoculture is a technique that favour strong outbreak of diseases and pests. Again, due to same root architecture in every season, plants access nutrient from a specific depth. These affect plant growth and production. On the other hand, the stratified root architecture associated with crop diversification allows plants to uptake nutrients from various depths of the soil. Rhizosphere provides suitable environment for microbial diversity and proliferation in different level of the soil. Crop diversification has been shown to reduce the emergence and damage of such pests and diseases. This promotes better above ground as well as below ground biomass production in crop plant by which crop diversification directly contributes to carbon enrichment in soil. Crop rotation or mixed cultivar use instead of single genotype are found to improve resilience towards climate change extremities, pest, disease occurrence, enhance yield stability and reduce fertiliser footprint which ultimately cuts contribution of crop production towards CO2 emission. A study conducted by Hu et al. (2016) [42] showed that there is 46% less soil respiration and 10% less emission in wheat- maize intercropping as compared to maize monoculture in north-west China. In case of intensive cropping systems, minimum one legume crop is necessary for soil carbon stabilisation along with other soil quality benefits. Legume plants are characterised by deeper root system, high leaf shedding, higher root exudates accelerate rhizospheric activity [43]. The quality and quantity of both root exudates and microbial polysaccharides (rich in lignopolyphenol complexes) promote macro and meso aggregate associated carbon storage in “rotation with legume” system than “cereal- cereal” system which is a good indicator of carbon sequestration [44, 45]. A life cycle-assessment (LCA) review conducted by Clune et al. (2017) [46] from 2000 to 2015 around the world highlighted that pulses have a very low Global Warming Potential (GWP) values (0.50–0.51 kg CO2 eq kg−1 which makes inclusion of a pulse crop in crop rotation, a win-win situation.
Pulse cultivation has other beneficial effect on soil environment viz.; pulses during summer can conserve moisture because soil covering through litterfall protects soil surface from atmospheric temperature. Not only the exudate or biomass quality but the management practices associated with crop rotation (irrigation, fertiliser dose, nitrogen fixation, amount of residue recycled for different crop rotations) cause variation on biomass input into a system. Legume crops acquire their N from biological nitrogen fixation (except for starter dose of nitrogen fertiliser) rather than from the soil as nitrate a slight decrease in pH of soil occurs. The reduction in soil pH in neutral and alkaline soil environments promote microbial activity in root zone and increase the nutrient availability [45]. Therefore, pulse in rotation enhances the macroaggregates rather than cereal- cereal system. Though the results of legume in rotation are strong for higher carbon management, a cereal- cereal rotation improve the passive carbon pool because higher carbon: nitrogen ratio of such crop residues [45]. Cereal in a rotation has also found to be important in environmental aspect as per a study conducted by Senbayram et al. (2016) [47] who found that monocropped faba beans lead to three times higher cumulative N2O emissions than that of unfertilized wheat whereas faba bean wheat intercropping could lower the cumulative N2O emissions by 31% as compared to N-fertilised wheat.
Proliferated root condition under diversified cropping system supports a hierarchy of aggregate formation (macroaggregates followed by microaggregates within macroaggregates). Plant roots are residues bind the individual soil particles together to form macroaggregates then fine root hairs grow into these aggregates. The organic acids, enzymes, and other C-rich compounds exuded by these roots support higher microbial populations and act as the nucleation centre for microaggregate formation [48, 49]. The microbially altered organic compounds get polymerised and are then strongly bound to finer particles (silt & clay) inside of the macroaggregates. These newly formed occluded microaggregates are C and N enriched [48, 49].
With increase in demand of food per capita per unit land area, farmers are adopting higher fertiliser application in hope of getting higher yield. But in contrast the expectation, over use of chemical fertiliser result in severe soil degradation which is a major contributor towards soil carbon loss and higher GHG emission. As a correction measure to such issue, many scient have looked for the role of integrated (chemical+ organic) and balanced fertilisation on GHG emission reduction and soil carbon enrichment. As per a study conducted in subtropical north-western states of India, application of organics along with chemical fertilisers reduces the gaseous N losses as compared to fertiliser nitrogen alone in rice-wheat system [50]. Addition of organics no doubt acted as the primary source of denitrification, but the carbon balance was still positive. The higher yielding cropping systems created a scenario of higher CO2-C consumed by crops for photosynthesis than the total flux of CO2-C from rice-wheat system even with the use of organics thus making it a sink of atmospheric CO2-C [50].
Integrated nutrient management (INM) technology improves the physical, chemical and biological activity of the soil, which leads to a healthy plant population and higher yield. Organic treatments like FYM, sulphitation press mud (SPM), green gram residue (GR) and rice-wheat crop residues (CR) may consistently increase biomass yields and increase C inputs in soil. The strong influence from increasing C stock through long-term balanced fertilisation under rice–wheat cropping system was found by Nayak et al., 2012 [51]. Organic material incorporation improved soil aggregation and structural stability and resulted in higher C content in macroaggregates, thereby improved C sequestration potential in soils. However, the C accumulation in aggregates may determine by the kind and source of organic inputs. Thus, study by Das
Organic amendment like FYM, vermicompost, biochar etc. have higher humification rate constant but less decomposition rate thus, improve the amount and stability of SOC through their addition. An incubation study by Naher et al., 2020 [54] described that carbon mineralisation rate was 0.011 tonne year−1 for INM followed by balanced fertiliser and control which in turn enhance the scope for SOC sequestration in soil for sustainable rice production.
A study conducted by Bharali et al. (2018) [55] in the north-eastern India showed that addition of organics (Azolla compost or green manure) along with chemical fertilisers resulted in higher emission worth of higher global warming potential however, the carbon efficiency ratio and amount of fixed carbon in terms of grain yield was found to be higher and lower in case of Azolla compost as compared to chemical fertiliser alone. Likewise, in case of NPK + green manure, there is 64% higher emission over the control, a lower carbon efficiency ratio but higher total C fixed in a form of grain carbon (Table 5). Though INM is not a direct solution for reducing C efflux, the extra organics added may result in more emission as compared to sole chemical fertiliser addition, it also contributes to sufficiently higher C fixation in the form of grain C which ultimately shows to have a positive carbon balance due to INM.
Treatments | Carbon efficiency ratio | Global warming potential (kg CO2 ha−1) | % increase in yield over control | % increase in emission over control |
---|---|---|---|---|
NPK | 13.82 ± 0.82 | 540.60 ± 21.25 | — | — |
NPK + Green manure | 9.94 ± 0.24 | 887.40 ± 12.11 | 10.70 | 64.15 |
NPK+ Azolla compost | 16.90 ± 0.25 | 625.20 ± 13.03 | 27.43 | 15.66 |
LSD (T) | 0.634 | 21.068 |
Effect of INM on emission and yield.
A review done by Wu and Ma (2015) [56] shows the effect on INM on different soil properties and crop growth in countries of Asia is summarised in Table 6.
Soil attributes | Soil functions |
---|---|
Soil physical properties | Organic amendments support aggregate formation, aeration, higher water holding capacity |
Nutrition supply | Release of nutrient over a long period of time, improved use efficiency, higher SOC, more aggregate SOC, reduce phosphate fixation, reduced the mining of K from the soil |
Soil reactions | Increase CEC, buffering, rhizospheric elemental transformation |
Soil biological property | Microbial species diversity, soil enzymes, microbial biomass C (MBC), slow establishment and persistence of pathogens |
Agronomic properties | Better root establishment, higher grain, straw production |
Effect of INM on various soil properties for better soil health and crop production.
A meta-analysis conducted by Waqas et al. (2020) [57] all over China to study the effect of balanced, imbalanced, integrated, sole fertilisation and their combinations on yield sustainability (YSI), yield variability index (YVI) suggest that balanced and integrated fertilisation has highest YSI and lowest YVI and balanced chemical fertilisation has less YVI as compared to sole organics addition or imbalanced chemical fertilisation. The result supports the fact that integrated and balanced fertilisation supports carbon addition through higher above ground and below ground biomass production. Even imbalanced+ organic fertilisation and organic fertilisation alone can increase SOC due to direct addition of stabilised carbon through organic amendments. Organic amendments are also supply additional nutrients (N, P, S, etc.) into the soil which are responsible for production of fine fraction of soil organic matter [58]. The direct and indirect carbon input through integrated fertiliser management is a great adoptive measure as carbon management practice. In general, cold temperature promotes carbon sequestration due to low rate of organic matter decomposition but in higher temperature region with higher productivity and consequently increased biomass carbon input into soil [59], SOC can be improved through stable aggregate formation.
Sole and continuous use of chemical fertilisers inhibit the micro-organisms and their biochemical compositions, which reduced the aggregate formation. But the fresh organic matter added through organic amendments supply promote microbial polysaccharide formation (water soluble and hydrolysable substrate) that also promote aggregate formation. In completely no fertiliser condition, higher root extraction causes shattering of macroaggregates and breaking up soil structure [60].
Biochar as an organic amendment is also a great choice because the carbon-rich material has many organic functional groups to which act as bridge to form strong complexes with soil and is also helpful to increase soil aggregation through charged surface, porous structure and high cation exchange capacity [61].
Biochar amendments has two mechanisms of improving SOC dynamics (1) promoting soil aggregation thereby physical protection of bound SOC (2) Negative priming by means of higher recalcitrant organic substrate pool having low decomposition rate [62] (Tables 7 and 8).
Treatment | Carbon mineralisation rate (t yr−1) | Carbon stock (t ha−1 year−1) | Carbon sequestration (kg ha−1 year−1) |
---|---|---|---|
Fertiliser control | 0.009 | 10.95 | −213 |
Balanced fertiliser | 0.010 | 17.30 | −72.15 |
INM | 0.011 | 26.30 | 127.86 |
Carbon sequestration in soil with rice–rice–fallow cropping sequence for 10 years [54].
Country | Control | NPK | INM | Reference |
---|---|---|---|---|
New Delhi, India | 7.53 | 8.50 | [63] | |
Kanpur, India | 3.73 | 4.59 | [45] | |
Bangladesh | 9.8 | 13.3 | [64] | |
China | 13.81 | 13.40 (Only N) | [65] |
Total organic carbon (TOC) content under INM and chemical fertilisation practice in various regions of Asia (TOC given in g/kg).
Bold letters are to make the values distinctly visible from treatment details only.
In the degraded land Soil organic carbon acts as the centre of soil health through positive regulation of soil physical, chemical, biological and ecological functions. The integrated management practice like conservation agriculture does not only add carbon to the soil directly but also reduce fossil fuel CO2 emission, oxidation of SOC. Cover crops and crop diversity are beneficial for combating disease- pest occurrence, support healthy above ground and below ground biomass production. Legume in a crop rotation supports aggregate formation and stabilisation and ultimately protects the aggregate associated carbon through chemical polymerisation and physical occlusion. INM is beneficial over imbalanced chemical or sole chemical fertiliser application. Though biochar is another effective amendment for carbon sequestration in agricultural land, the higher carbon foot print associated with its production technique (CO2 production during pyrolysis and more CO2 emission from amended plots) can offset it as a climate change mitigative- adoptive practice. Soil C sequestration is not a permanent solution for all climate change related issues but is a holistic approach to restore degraded soil, reduce erosion, increase agronomic yields and reduce CO2 emission into the atmosphere at the same time. Thus, careful selection of carbon management practice according to climatic and soil condition is necessary for making it agriculturally and environment friendly.
This is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to Straive, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11662},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22333},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33644}],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11369",title:"RNA Viruses Infection",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11610",title:"New Insights in Herbicide Science",subtitle:null,isOpenForSubmission:!0,hash:"eb3830b8176caf3d1fd52c32313c5168",slug:null,bookSignature:"Ph.D. Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/11610.jpg",editedByType:null,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11814",title:"Liposomes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"62d8542d18b8cddcf507f7948b2ae74b",slug:null,bookSignature:"Dr. Rajeev K. Tyagi",coverURL:"https://cdn.intechopen.com/books/images_new/11814.jpg",editedByType:null,editors:[{id:"269120",title:"Dr.",name:"Rajeev",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11778",title:"Correctional Facilities and Correctional Treatment - International Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"a933550a6966a04e4677a4c0aea8f5b2",slug:null,bookSignature:"Prof. Rui Abrunhosa Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11778.jpg",editedByType:null,editors:[{id:"198691",title:"Prof.",name:"Rui",surname:"Abrunhosa Gonçalves",slug:"rui-abrunhosa-goncalves",fullName:"Rui Abrunhosa Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11709",title:"Type 1 Diabetes Mellitus",subtitle:null,isOpenForSubmission:!0,hash:"cc0e61f864a2a8a9595f4975ce301f70",slug:null,bookSignature:"Dr. Shilpa Mehta and Dr. Resmy Palliyil Gopi",coverURL:"https://cdn.intechopen.com/books/images_new/11709.jpg",editedByType:null,editors:[{id:"342545",title:"Dr.",name:"Shilpa",surname:"Mehta",slug:"shilpa-mehta",fullName:"Shilpa Mehta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11889",title:"Sexual Disorders and Dysfunctions",subtitle:null,isOpenForSubmission:!0,hash:"b988fda30a4e2364ee9d47e417bd0ba9",slug:null,bookSignature:"Dr. Dhastagir Sultan Sheriff",coverURL:"https://cdn.intechopen.com/books/images_new/11889.jpg",editedByType:null,editors:[{id:"167875",title:"Dr.",name:"Dhastagir Sultan",surname:"Sheriff",slug:"dhastagir-sultan-sheriff",fullName:"Dhastagir Sultan Sheriff"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11867",title:"Echocardiography",subtitle:null,isOpenForSubmission:!0,hash:"d9159ce31733bf78cc2a79b18c225994",slug:null,bookSignature:"Dr. Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/11867.jpg",editedByType:null,editors:[{id:"191888",title:"Dr.",name:"Gabriel",surname:"Cismaru",slug:"gabriel-cismaru",fullName:"Gabriel Cismaru"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11903",title:"Covalent Organic Frameworks",subtitle:null,isOpenForSubmission:!0,hash:"8125f3f415f5d2fa9583abde0143602d",slug:null,bookSignature:"Prof. Yanan Gao and Dr. Fei Lu",coverURL:"https://cdn.intechopen.com/books/images_new/11903.jpg",editedByType:null,editors:[{id:"171387",title:"Prof.",name:"Yanan",surname:"Gao",slug:"yanan-gao",fullName:"Yanan Gao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11513",title:"Gas Sensors",subtitle:null,isOpenForSubmission:!0,hash:"8eeb7ab232fa8d5c723b61e0da251857",slug:null,bookSignature:"Dr. Soumen Dhara and Dr. Gorachand Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/11513.jpg",editedByType:null,editors:[{id:"196334",title:"Dr.",name:"Soumen",surname:"Dhara",slug:"soumen-dhara",fullName:"Soumen Dhara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:22},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:15},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:37},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:8},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:241},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"128",title:"Environmental Design",slug:"environmental-design",parent:{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"},numberOfBooks:4,numberOfSeries:0,numberOfAuthorsAndEditors:48,numberOfWosCitations:9,numberOfCrossrefCitations:38,numberOfDimensionsCitations:46,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"128",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11175",title:"Nearly Zero Energy Building (NZEB)",subtitle:"Materials, Design and New Approaches",isOpenForSubmission:!1,hash:"7e4718f36725ff9ce60b349b7681d7cc",slug:"nearly-zero-energy-building-nzeb-materials-design-and-new-approaches",bookSignature:"David Bienvenido-Huertas",coverURL:"https://cdn.intechopen.com/books/images_new/11175.jpg",editedByType:"Edited by",editors:[{id:"320815",title:"Dr.",name:"José David",middleName:null,surname:"Bienvenido Huertas",slug:"jose-david-bienvenido-huertas",fullName:"José David Bienvenido Huertas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9916",title:"Zero-Energy Buildings",subtitle:"New Approaches and Technologies",isOpenForSubmission:!1,hash:"03b533ca4c0a7f4f0307e4e4ec474594",slug:"zero-energy-buildings-new-approaches-and-technologies",bookSignature:"Jesús Alberto Pulido Arcas, Carlos Rubio-Bellido, Alexis Pérez-Fargallo and Ivan Oropeza-Perez",coverURL:"https://cdn.intechopen.com/books/images_new/9916.jpg",editedByType:"Edited by",editors:[{id:"172801",title:"Dr.",name:"Jesus Alberto",middleName:null,surname:"Pulido Arcas",slug:"jesus-alberto-pulido-arcas",fullName:"Jesus Alberto Pulido Arcas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7650",title:"Different Strategies of Housing Design",subtitle:null,isOpenForSubmission:!1,hash:"a7228ca821b354d974a45eac0ca0eff8",slug:"different-strategies-of-housing-design",bookSignature:"Ayşem Berrin Çakmaklı",coverURL:"https://cdn.intechopen.com/books/images_new/7650.jpg",editedByType:"Edited by",editors:[{id:"220974",title:"Dr.",name:"Aysem",middleName:"Berrin",surname:"Cakmakli",slug:"aysem-cakmakli",fullName:"Aysem Cakmakli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5692",title:"Sustainable Home Design by Applying Control Science",subtitle:null,isOpenForSubmission:!1,hash:"83bab2850ca5c3aea1dd9c25cd2aee8c",slug:"sustainable-home-design-by-applying-control-science",bookSignature:"Kazutoshi Fujihira",coverURL:"https://cdn.intechopen.com/books/images_new/5692.jpg",editedByType:"Authored by",editors:[{id:"69662",title:"BSc.",name:"Kazutoshi",middleName:null,surname:"Fujihira",slug:"kazutoshi-fujihira",fullName:"Kazutoshi Fujihira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}}],booksByTopicTotal:4,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"71492",doi:"10.5772/intechopen.90466",title:"Fly Ash as a Cementitious Material for Concrete",slug:"fly-ash-as-a-cementitious-material-for-concrete",totalDownloads:849,totalCrossrefCites:5,totalDimensionsCites:6,abstract:"This paper presents a review on fly ash as prime materials used for geopolymer. Due to its advantages of abundant resources, less in cost, great workability and high physical properties, fly ash leads to achieving high mechanical properties. Fly ash is considered as one of the largest generated industrial solid wastes or so-called industrial by-products, around the world particularly in China, India, and USA. The characteristics of fly ash allow it to be a geotechnical material to produce geopolymer cement or concrete as an alternative of ordinary Portland cement. Many efforts are made in this direction to formulate a suitable mix design of fly ash-based geopolymer by focusing on fly ash as the main prime material. The physical properties, chemical compositions, and chemical activation of fly ash are analyzed and evaluated in this review paper. Reference has been made to different ASTM, ACI standards, and other researches work in geopolymer area.",book:{id:"9916",slug:"zero-energy-buildings-new-approaches-and-technologies",title:"Zero-Energy Buildings",fullTitle:"Zero-Energy Buildings - New Approaches and Technologies"},signatures:"Aissa Bouaissi, Long Yuan Li, Mohd Mustafa Al Bakri Abdullah, Romisuhani Ahmad, Rafiza Abdul Razak and Zarina Yahya",authors:null},{id:"73729",doi:"10.5772/intechopen.93500",title:"Solar Energy and Its Purpose in Net-Zero Energy Building",slug:"solar-energy-and-its-purpose-in-net-zero-energy-building",totalDownloads:614,totalCrossrefCites:3,totalDimensionsCites:5,abstract:"The Net Zero Energy Building is generally described as an extremely energy-efficient building in which the residual electricity demand is provided by renewable energy. Solar power is also regarded to be the most readily available and usable form of renewable electricity produced at the building site. In contrast, energy conservation is viewed as an influential national for achieving a building’s net zero energy status. This chapter aims to show the value of the synergy between energy conservation and solar energy transfer to NZEBs at the global and regional levels. To achieve these goals, both energy demand building and the potential supply of solar energy in buildings have been forecasted in various regions, climatic conditions, and types of buildings. Building energy consumption was evaluated based on a bottom-up energy model developed by 3CSEP and data inputs from the Bottom-Up Energy Analysis System (BUENAS) model under two scenarios of differing degrees of energy efficiency intention. The study results indicate that the acquisition of sustainable energy consumption is critical for solar-powered net zero energy buildings in various building styles and environments. The chapter calls for the value of government measures that incorporate energy conservation and renewable energy.",book:{id:"9916",slug:"zero-energy-buildings-new-approaches-and-technologies",title:"Zero-Energy Buildings",fullTitle:"Zero-Energy Buildings - New Approaches and Technologies"},signatures:"Mostafa Esmaeili Shayan",authors:[{id:"317852",title:"Ph.D.",name:"Mostafa",middleName:null,surname:"Esmaeili Shayan",slug:"mostafa-esmaeili-shayan",fullName:"Mostafa Esmaeili Shayan"}]},{id:"67105",doi:"10.5772/intechopen.86279",title:"Social Innovation and Environmental Sustainability in Social Housing Policies: Learning from Two Experimental Case Studies in Italy",slug:"social-innovation-and-environmental-sustainability-in-social-housing-policies-learning-from-two-expe",totalDownloads:1026,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"This chapter critically examines approaches and solutions developed by social housing to sustainably respond to the housing emergency plaguing contemporary cities and Italian cities in particular. In a broader perspective, we also investigate how housing has become ‘difficult’ in Europe and the poorest segments of the population run the risk of having their right to housing dramatically denied. Analysing housing in terms of its procedural dimension, we focus on two Italian case studies that evoke a new way of inhabiting the city, cases in which high standards characterised social housing and yet remain accessible to all. The Sharing hotel residence in Turin and Zoia social housing in Milan combine housing with other socially innovative measures in a framework of sustainability and avant-garde construction. These are significant examples that speak to issues such as temporariness, flexibility and the coordination of measures. These two cases both pursued objectives having to do with social, planning, architectural and environmental quality, albeit each in their own way. There are by now numerous examples of social housing in Europe and these have recently attracted growing interest in Italy as well; in this country, however, such projects represent valid instances of experimentation but are not at all widespread.",book:{id:"7650",slug:"different-strategies-of-housing-design",title:"Different Strategies of Housing Design",fullTitle:"Different Strategies of Housing Design"},signatures:"Rossana Galdini and Silvia Lucciarini",authors:[{id:"281246",title:"Dr.",name:"Silvia",middleName:null,surname:"Lucciarini",slug:"silvia-lucciarini",fullName:"Silvia Lucciarini"},{id:"282958",title:"Prof.",name:"Rossana",middleName:null,surname:"Galdini",slug:"rossana-galdini",fullName:"Rossana Galdini"}]},{id:"57401",doi:"10.5772/intechopen.71325",title:"Basic Schemes: Preparations for Applying Control Science to Sustainable Design",slug:"basic-schemes-preparations-for-applying-control-science-to-sustainable-design",totalDownloads:1254,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"It is the ultimate goal for humankind to deal with various problems and achieve sustainability. Control science can be applied to all goal-oriented tasks and has already produced remarkable results. Accordingly, applying control science to the task of achieving sustainability is a rational and reliable approach. In order to apply control science to sustainability issues, our first study has shown the “basic control system for sustainability” as well as the “model of sustainability.” After that, in order to identify system components of practical control systems for promoting sustainable design, we have devised “two-step preparatory work for sustainable design.” The two steps of this preparatory work are “determining the relationships between the standard human activities and sustainability” and “sustainability checkup on human activities as an object.”",book:{id:"5692",slug:"sustainable-home-design-by-applying-control-science",title:"Sustainable Home Design by Applying Control Science",fullTitle:"Sustainable Home Design by Applying Control Science"},signatures:"Kazutoshi Fujihira",authors:[{id:"69662",title:"BSc.",name:"Kazutoshi",middleName:null,surname:"Fujihira",slug:"kazutoshi-fujihira",fullName:"Kazutoshi Fujihira"}]},{id:"72850",doi:"10.5772/intechopen.92725",title:"Computational Analysis of a Lecture Room Ventilation System",slug:"computational-analysis-of-a-lecture-room-ventilation-system",totalDownloads:868,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"The level of Indoor Air Quality (IAQ) has become a big topic of research, and improving it using passive ventilation methods is imperative due to the cost saving potentials. Designing lecture buildings to use less energy or Zero Energy (ZE) has become more important, and analysing buildings before construction can save money in design changes. This research analyses the performance (thermal comfort [TC]) of a lecture room, investigate the use of passive ventilation methods and determine the energy-saving potential of the proposed passive ventilation method using Computational Fluid Dynamics (CFD). Results obtained showed that air change per hour at a wind velocity of 0.05 m/s was 3.10, which was below standards. Therefore, the lecture hall needs external passive ventilation systems (Solar Chimney [SC]) for improved indoor air quality at minimum cost. Also, it was observed that the proposed passive ventilation (SC) system with the size between 1 and 100 m3, made an improvement upon the natural ventilation in the room. There was a 66.69% increase after 10 years in the saving of energy and cost using Solar Chimney as compared to Fans, which depicts that truly energy and cost were saved using passive ventilation systems rather than mechanical ventilation systems.",book:{id:"9916",slug:"zero-energy-buildings-new-approaches-and-technologies",title:"Zero-Energy Buildings",fullTitle:"Zero-Energy Buildings - New Approaches and Technologies"},signatures:"Abayomi Layeni, Collins Nwaokocha, Olalekan Olamide, Solomon Giwa, Samuel Tongo, Olawale Onabanjo, Taiwo Samuel, Olabode Olanipekun, Oluwasegun Alabi, Kasali Adedeji, Olusegun Samuel, Jagun Zaid Oluwadurotimi, Olaolu Folorunsho, Jacob Adebayo and Folashade Oniyide",authors:null}],mostDownloadedChaptersLast30Days:[{id:"71982",title:"Net-Zero Energy Buildings: Principles and Applications",slug:"net-zero-energy-buildings-principles-and-applications",totalDownloads:2288,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Global warming and climate change are rising issues during the last couple of decades. With residential and commercial buildings being the largest energy consumers, sources are being depleted at a much faster pace in the recent decades. Recent statistics shows that 14% of humans are active participant to protect the environment with an additional 48% sympathetic but not active. In this chapter, net-zero energy buildings design tools and applications are presented that can help designers in the commercial and residential sectors design their buildings to be net-zero energy buildings. Case studies with benefits and challenges will be presented to illustrate the different designs to achieve a net-zero energy building (NZEB).",book:{id:"9916",slug:"zero-energy-buildings-new-approaches-and-technologies",title:"Zero-Energy Buildings",fullTitle:"Zero-Energy Buildings - New Approaches and Technologies"},signatures:"Maher Shehadi",authors:null},{id:"57400",title:"Case Study: Detached House Designed by Following the Control System",slug:"case-study-detached-house-designed-by-following-the-control-system",totalDownloads:1578,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"The previous chapter has demonstrated the control system for promoting sustainable housing design in which the sustainable design guidelines and sustainability checklist are incorporated. Following this control system, we have actually designed and constructed a detached house. To be concrete, the homeowner and the architects of the housing manufacture have designed the home’s parts, or elements, so that as much as possible the elements’ variables meet their desired values. The sustainable design guidelines and sustainability checklist have been readily accepted because the material and spatial elements are equivalent to real parts of the home. After the home started to be used, we have obtained external evaluations of the home’s sustainability performance. For example, CASBEE for Detached Houses, a comprehensive assessment system, has readily ranked the house in the highest “S.” An energy-saving performance assessment has shown that this home has reduced energy consumption by over 70%, as compared with the average home. On the other hand, the reactions of the occupants and visitors have indicated the comfort, healthiness and safety of this house. Furthermore, this home has received a sustainable housing award, especially due to its extremely high sustainability and energy-saving performance.",book:{id:"5692",slug:"sustainable-home-design-by-applying-control-science",title:"Sustainable Home Design by Applying Control Science",fullTitle:"Sustainable Home Design by Applying Control Science"},signatures:"Kazutoshi Fujihira",authors:[{id:"69662",title:"BSc.",name:"Kazutoshi",middleName:null,surname:"Fujihira",slug:"kazutoshi-fujihira",fullName:"Kazutoshi Fujihira"}]},{id:"67084",title:"Comprehensive Strategy for Sustainable Housing Design",slug:"comprehensive-strategy-for-sustainable-housing-design",totalDownloads:1385,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Sustainable housing needs to be designed to maximize occupants’ well-being and minimize the environmental load. The pursuit of combining these two different aspects toward sustainability is a goal-oriented task. The science of control can be applied to all goal-oriented tasks. Therefore, applying control science, we have been progressing in research on sustainable housing design. Our previous study has produced the control system for promoting sustainable housing design in which sustainable design guidelines and sustainability checklist are incorporated. Based on these accomplished results, this study has comprehensively visualized the process of producing and revising the sustainable design guidelines and sustainability checklist. Following this visualized process, also this study has concretely shown the production and revision processes of the sustainable design guidelines. The study results suggest that the comprehensive visualization can make these processes more manageable and help system designers to produce and revise the guidelines more efficiently. Furthermore, these results have led to indicating how to adjust the guidelines to different countries or regions as well as changing situations over time.",book:{id:"7650",slug:"different-strategies-of-housing-design",title:"Different Strategies of Housing Design",fullTitle:"Different Strategies of Housing Design"},signatures:"Kazutoshi Fujihira",authors:[{id:"69662",title:"BSc.",name:"Kazutoshi",middleName:null,surname:"Fujihira",slug:"kazutoshi-fujihira",fullName:"Kazutoshi Fujihira"}]},{id:"65804",title:"Effects of Street Geometry on Airflow Regimes for Natural Ventilation in Three Different Street Configurations in Enugu City",slug:"effects-of-street-geometry-on-airflow-regimes-for-natural-ventilation-in-three-different-street-conf",totalDownloads:1420,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Efficient natural ventilation is dependent on the micro climate conditions of an urban environment. This is affected by ambient wind flow, radiation and air temperatures. The airflow within the urban street can be cultivated into two regions. The first is a recirculation region, which forms in the near wake of each building. The Second is a ventilated region downstream of the recirculation region, formed when the street is sufficiently wide. The development of the flow into these two regions depends on geometry. This chapter looks at the impacts of street geometry on these regions of airflow cultivation in three different street configurations in high density residential settlements in Enugu city. It utilized schematic analysis of airflow regimes to identify the behaviors of flow in these street configurations relative to the height and width ratios of the street canyon. This schematic analysis can be utilized in preliminary design studies by city and building designers for justifying street dimensions and configurations in tropical regions where natural ventilation is paramount.",book:{id:"7650",slug:"different-strategies-of-housing-design",title:"Different Strategies of Housing Design",fullTitle:"Different Strategies of Housing Design"},signatures:"Jideofor Anselm Akubue",authors:[{id:"139659",title:"Dr.",name:"Akubue",middleName:"Jideofor",surname:"Anselm",slug:"akubue-anselm",fullName:"Akubue Anselm"}]},{id:"66000",title:"Fundamentals of Natural Ventilation Design within Dwellings",slug:"fundamentals-of-natural-ventilation-design-within-dwellings",totalDownloads:982,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Along with acoustical and lighting comfort, indoor air quality (IAQ) and thermal comfort upon households are essential to maintain a proper indoor environment, therefore ensuring a welfare toward the occupants. Nevertheless, sometimes, these features are neglected by building designers and constructers, causing problems such as the so-called sick building syndrome (SBS) and thermal discomfort, among others. Although there are short-term solutions such as purifiers, extractors, fans, and air conditioning, eventually these methods become not sustainable activities that consume energy and emit polluting gases such as chlorofluorocarbons. One alternative to this is natural ventilation, understood as the airflow throughout a building caused by changes of pressures naturally produced. In this chapter, the role of the early-stage building design as well as the correct occupant behavior is presented as essential to develop a naturally ventilated dwelling, which is an excellent alternative to achieve proper levels of indoor environment in a sustainable manner.",book:{id:"7650",slug:"different-strategies-of-housing-design",title:"Different Strategies of Housing Design",fullTitle:"Different Strategies of Housing Design"},signatures:"Ivan Oropeza-Perez",authors:[{id:"282172",title:"Dr.",name:"Ivan",middleName:null,surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}]}],onlineFirstChaptersFilter:{topicId:"128",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"August 2nd, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:33,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:42,paginationItems:[{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},overviewPagePublishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:{name:"Kobe College",institutionURL:null,country:{name:"Japan"}}}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:49,paginationItems:[{id:"83087",title:"Role of Cellular Responses in Periodontal Tissue Destruction",doi:"10.5772/intechopen.106645",signatures:"Nam Cong-Nhat Huynh",slug:"role-of-cellular-responses-in-periodontal-tissue-destruction",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"83073",title:"Dental and Orofacial Trauma Impacts on Oral-Health-Related—Quality of Life in Children: Low- and Middle-Income Countries",doi:"10.5772/intechopen.105845",signatures:"Yolanda Malele-Kolisa, Nazia Khan, Mpho P. Molete, Maphefo D. Thekiso and Mzubanzi Mabongo",slug:"dental-and-orofacial-trauma-impacts-on-oral-health-related-quality-of-life-in-children-low-and-middl",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82938",title:"Trauma from Occlusion: Practical Management Guidelines",doi:"10.5772/intechopen.105960",signatures:"Prashanth Shetty, Shweta Hegde, Shubham Chelkar, Rahul Chaturvedi, Shruti Pochhi, Aakanksha Shrivastava, Dudala Lakshmi, Shreya Mukherjee, Pankaj Bajaj and Shahzada Asif Raza",slug:"trauma-from-occlusion-practical-management-guidelines",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82608",title:"Early Management of Dental Trauma in the Era of COVID-19",doi:"10.5772/intechopen.105992",signatures:"Khairul Bariah Chi Adam, Haszelini Hassan, Pram Kumar Subramaniam, Izzati Nabilah Ismail, Nor Adilah Harun and Naziyah Shaban Mustafa",slug:"early-management-of-dental-trauma-in-the-era-of-covid-19",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82767",title:"Teeth Avulsion",doi:"10.5772/intechopen.105846",signatures:"Manal Abdalla Eltahir, Randa Fath Elrahman Ibrahim and Hanan Alharbi",slug:"teeth-avulsion",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82288",title:"Dental Emergency and Conditions",doi:"10.5772/intechopen.105495",signatures:"Navneet Kaur",slug:"dental-emergency-and-conditions",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"81961",title:"Antioxidants as an Adjuncts to Periodontal Therapy",doi:"10.5772/intechopen.105016",signatures:"Sura Dakhil Jassim and Ali Abbas Abdulkareem",slug:"antioxidants-as-an-adjuncts-to-periodontal-therapy",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}}]},subseriesFiltersForOFChapters:[{caption:"Prosthodontics and Implant Dentistry",value:2,count:23,group:"subseries"},{caption:"Oral Health",value:1,count:26,group:"subseries"}],publishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",slug:"benzimidazole",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Pravin Kendrekar and Vinayak Adimule",hash:"e28c770013e7a8dd0fc37aea6aa9def8",volumeInSeries:34,fullTitle:"Benzimidazole",editors:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:14}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:9},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:{name:"Association for Computing Machinery",country:{name:"United States of America"}}},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"310576",title:"Prof.",name:"Erick Giovani",middleName:null,surname:"Sperandio Nascimento",slug:"erick-giovani-sperandio-nascimento",fullName:"Erick Giovani Sperandio Nascimento",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y00002pDKxDQAW/ProfilePicture%202022-06-20%2019%3A57%3A24.788",biography:"Prof. Erick Sperandio is the Lead Researcher and professor of Artificial Intelligence (AI) at SENAI CIMATEC, Bahia, Brazil, also working with Computational Modeling (CM) and HPC. He holds a PhD in Environmental Engineering in the area of Atmospheric Computational Modeling, a Master in Informatics in the field of Computational Intelligence and Graduated in Computer Science from UFES. He currently coordinates, leads and participates in R&D projects in the areas of AI, computational modeling and supercomputing applied to different areas such as Oil and Gas, Health, Advanced Manufacturing, Renewable Energies and Atmospheric Sciences, advising undergraduate, master's and doctoral students. He is the Lead Researcher at SENAI CIMATEC's Reference Center on Artificial Intelligence. In addition, he is a Certified Instructor and University Ambassador of the NVIDIA Deep Learning Institute (DLI) in the areas of Deep Learning, Computer Vision, Natural Language Processing and Recommender Systems, and Principal Investigator of the NVIDIA/CIMATEC AI Joint Lab, the first in Latin America within the NVIDIA AI Technology Center (NVAITC) worldwide program. He also works as a researcher at the Supercomputing Center for Industrial Innovation (CS2i) and at the SENAI Institute of Innovation for Automation (ISI Automação), both from SENAI CIMATEC. He is a member and vice-coordinator of the Basic Board of Scientific-Technological Advice and Evaluation, in the area of Innovation, of the Foundation for Research Support of the State of Bahia (FAPESB). He serves as Technology Transfer Coordinator and one of the Principal Investigators at the National Applied Research Center in Artificial Intelligence (CPA-IA) of SENAI CIMATEC, focusing on Industry, being one of the six CPA-IA in Brazil approved by MCTI / FAPESP / CGI.br. He also participates as one of the representatives of Brazil in the BRICS Innovation Collaboration Working Group on HPC, ICT and AI. He is the coordinator of the Work Group of the Axis 5 - Workforce and Training - of the Brazilian Strategy for Artificial Intelligence (EBIA), and member of the MCTI/EMBRAPII AI Innovation Network Training Committee. He is the coordinator, by SENAI CIMATEC, of the Artificial Intelligence Reference Network of the State of Bahia (REDE BAH.IA). He leads the working group of experts representing Brazil in the Global Partnership on Artificial Intelligence (GPAI), on the theme \"AI and the Pandemic Response\".",institutionString:"Manufacturing and Technology Integrated Campus – SENAI CIMATEC",institution:null},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:'"Politechnica" University Timişoara',institution:null},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"426586",title:"Dr.",name:"Oladunni A.",middleName:null,surname:"Daramola",slug:"oladunni-a.-daramola",fullName:"Oladunni A. Daramola",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Federal University of Technology",country:{name:"Nigeria"}}},{id:"357014",title:"Prof.",name:"Leon",middleName:null,surname:"Bobrowski",slug:"leon-bobrowski",fullName:"Leon Bobrowski",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Bialystok University of Technology",country:{name:"Poland"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"354126",title:"Dr.",name:"Setiawan",middleName:null,surname:"Hadi",slug:"setiawan-hadi",fullName:"Setiawan Hadi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Padjadjaran University",country:{name:"Indonesia"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"332603",title:"Prof.",name:"Kumar S.",middleName:null,surname:"Ray",slug:"kumar-s.-ray",fullName:"Kumar S. Ray",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Statistical Institute",country:{name:"India"}}},{id:"415409",title:"Prof.",name:"Maghsoud",middleName:null,surname:"Amiri",slug:"maghsoud-amiri",fullName:"Maghsoud Amiri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Allameh Tabataba'i University",country:{name:"Iran"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}}]}},subseries:{item:{id:"17",type:"subseries",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11413,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",slug:"attilio-rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",slug:"yanfei-(jacob)-qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},onlineFirstChapters:{paginationCount:18,paginationItems:[{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82709",title:"Fatty Acid Metabolism as a Tumor Marker",doi:"10.5772/intechopen.106072",signatures:"Gatot Nyarumenteng Adhipurnawan Winarno",slug:"fatty-acid-metabolism-as-a-tumor-marker",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82583",title:"Leukaemia: The Purinergic System and Small Extracellular Vesicles",doi:"10.5772/intechopen.104326",signatures:"Arinzechukwu Ude and Kelechi Okeke",slug:"leukaemia-the-purinergic-system-and-small-extracellular-vesicles",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82531",title:"Abnormal Iron Metabolism and Its Effect on Dentistry",doi:"10.5772/intechopen.104502",signatures:"Chinmayee Dahihandekar and Sweta Kale Pisulkar",slug:"abnormal-iron-metabolism-and-its-effect-on-dentistry",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:39,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80485",title:"Potential Marker for Diagnosis and Screening of Iron Deficiency Anemia in Children",doi:"10.5772/intechopen.102792",signatures:"Yulia Nadar Indrasari, Siti Nurul Hapsari and Muhamad Robiul Fuadi",slug:"potential-marker-for-diagnosis-and-screening-of-iron-deficiency-anemia-in-children",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"79693",title:"Ferroptosis: Can Iron be the Last or Cure for a Cell?",doi:"10.5772/intechopen.101426",signatures:"Asuman Akkaya Fırat",slug:"ferroptosis-can-iron-be-the-last-or-cure-for-a-cell",totalDownloads:109,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"3",title:"Bacterial Infectious Diseases",scope:"