Abstract
The chapter is concerned with the application of distributed discrete-time linear Kalman filtering with decentralized structure of sensors in fault residual generation. Two variants of distributed Kalman filtering algorithms are introduced, giving the incidence of equivalent functional realization structure of fault residual filters. The obtained solutions use Kalman filter innovations in a nonstandard way to generate residuals with significantly higher dynamic signal range. The obtained results, offering structures for fault detection filter realization, are illustrated with a numerical example to note the effectiveness of the approach.
Keywords
- linear noisy systems
- Kalman filtering
- innovation sequences
- fault residual filters
- distributed computing
1. Introduction
The castigatory principal aspect for designing a fault-tolerant control (FTC) structure is a functionality of diagnostic operations that solve the fault detection and isolation (FDI) tasks. These techniques most commonly use residuals generated by fault detection filters (FDF), followed by the residual signal evaluation within decision functions. Guarantying adequate sensitivity to faults, the accessory objective is to create residuals with minimal sensitivity to noises. Kalman filtering is an optimal state estimation process applied to a dynamic system that involves random noises, giving a linear, unbiased, and minimum error variance recursive algorithm to optimally estimate the unknown state of a dynamic system from noisy data taken from sensors [1, 2].
Practically, a bank of Kalman filters is used to achieve sensor and actuator fault detection applied to a steady-state system, while the statistical characteristics of the system are not required to be known after a fault has occurred [3, 4]. In these methods, the faults are assumed to be known, and the Kalman filters are designed for such kind of sensor or actuator faults. Another approach based on Kalman filtering is the analysis of the innovation sequence, since faults displace its zero mean and change its covariance matrix [5]. The associated problem is quick detection of changes in these parameters from their nominal values. Evidently, research in Kalman filter based-FDI is the subject of wide range of other publications (see, e.g., [6, 7, 8, 9] and the reference therein). Other applications can be found in [10].
The state estimation obtained by the Kalman filter prediction-correction equations at every time instant can be solved almost optimally and substantially faster by applying a distributed approach [11, 12, 13, 14]. With this setup can be exploited the fact that the correction error can be decaying exponentially with time instant sequence to reach the optimal values [15, 16, 17, 18].
The chapter exploits a variant of distributed methods to apply the distributed correction stage filtering equations on each sensor level as well as an approach based on quasi-parallel central computation. Benefiting from the distributed Kalman filtering algorithm, two residually equivalent signal structures are presented for the discrete-time linear noisy systems.
The outline of this chapter is as follows: Section 1 delineates the problem and draws the basic starting points of solutions. Dealing with the discrete-time noisy systems description, the equations describing Kalman filters for uncorrelated measurement and system noises are traced out in Section 2, to delineate distributed approaches in Kalman filter design, suitable for supporting the fault residual generation, presented in Section 3. Section 4 gives a numerical example, illustrating the properties of the proposed method, and Section 5 presents some concluding remarks.
Throughout the chapter, the notations are narrowly standard in such a way that
2. Discrete-time linear Kalman filter
In this section, one version of the Kalman filtering concept is applied for the discrete-time linear multi inputs and multi outputs (MIMO) plants with the system and output noises of the form
where
where
is the Kronecker delta-function and the covariance matrices
It is assumed that the deterministic system initial state
and that the system and measurement noises are uncorrelated, i.e.,
Determining the optimal system state vector estimate,
The discrete-time Kalman filter equations can be algebraically manipulated into a variety of forms [6, 16, 20]. From the point of view of distributed filtration, it is necessary to achieve such form of the equation for calculating the Kalman gain
Exploiting the Sherman-Morrison-Woodbury formula of the form [21].
where square invertible matrices
yields, since the covariance matrices are positive definite,
where
Then, evidently,
Premultiplying the left side by
and comparing (17) and (24), it can be seen that
Thus, (25) implies (16). This concludes the proof.
Note, since
Corollary 1.
which can be proved recursively as follows
which is identical to (16).
and using the Sherman-Morrison-Woodbury formula, Eq. (27), it follows
3. Fault residual generation using distributed Kalman filtering
The obtained equations, Eqs. (16) and (17), allow the use of the open form of the Kalman filter equations if
Writing separately,
then, (7)–(11), (16), and (27) imply
It is evident from the above given formulation that the relation of (40) gives the possibility to compute corrections from the data obtained at all sensor nodes.
Prescribing that
Eqs. (52) and (53) can be separated as
and using (47), (54) gives (50), and (55) implies (51).
Substituting (53) in (39) yields
and, evidently, (56) implies (48) and (49). This concludes the proof. □
In principle, it is possible to define the residue generation by results of the local system state correction at Kalman filtration at the time instant
where
Substituting (66), rearranging and postmultiplying the left side by
respectively. Since (69) gives
with a simple elimination after inserting (72), (71) gives
Combining (49) and (51) results in
which can be written as
Pre-multiplying the left side of (44) by
and considering (76), relation (75) takes the form
Thus, the substitution of (73) into (77) gives
and with the notation
(78) implies (62). This concludes the proof.
4. Illustrative examples
4.1. Example 1
To eliminate specific system dependencies, the Schur discrete-time linear strictly positive system [23] is used for demonstration of the Kalman filtering technique in residual signals construction. The considered system can be put in the system class (1)–(4), with the sampling period
while the system matrix parameters are
Since the discrete-time stochastic linear strictly positive system is stable, the system control law in simulations is defined for the forced mode control as
and the initial conditions for the Kalman filter are
Using the given initial conditions, Figures 1 and 2 display the residuals obtained by the residual filter generated by the distributed Kalman filter defined in (46)–(51), reflecting single actuator and sensor faults, starting at the time instant

Figure 1.
Residual responses to single faults: (a) the first actuator and (b) the second actuator.

Figure 2.
Residual responses to single faults: (a) the first sensor and (b) the second sensor.
Evidently, the residual trajectories indicate that the proposed residual filter generates directional signals in the event of single sensor faults, and has a significantly higher dynamic signal range in the event of single faults of the actuators, as compared to the residual presented using the standard Kalman filter.
4.2. Example 2
To produce another example that demonstrates achievable performances of the presented design method, the sign-indefinite Schur discrete-time linear system is used, where [24]
Figures 3 and 4 present the residual responses of the residual filter based on distributed Kalman filtering, from which it is clear that the used principle, especially when compared to the achievable responses with the alternative system presented in Example 1, is operational. Evidently, the residual filter behavior is also acceptable for the system parameters in this example and the system noise environment. The step-like single faults start and continue from the time instant

Figure 3.
Residual responses to single faults: (a) the first actuator and (b) the second actuator.

Figure 4.
Residual responses to single faults: (a) the first sensor and (b) the second sensor.
4.3. Example 3
Following the above-mentioned procedures, Example 3 verifies their effectiveness for the linear discrete-time system with the parameters
where
where
which provides Schur matrix
Note, the steady states of
The single fault effects in residuals, when using the proposed algorithm of distributed Kalman filtering (46)–(51) with setting

Figure 5.
Residual responses to single faults: (a) the actuator and (b) the sensor.
From the figures, we find that the fault responses are satisfactory by using the proposed method also for this system and noise environment.
Analyzing all examples, exactly the same responses are reached using the same parameters as before and assuming the same fault patterns if the residuals are evaluated exploiting formulas (57)–(64) or (46)–(51). It is given by the equivalent principles of distributed computing that are bound by the equivalent relationships (44) and (62), respectively. As a result, in this particular point of view, the proposed distributed algorithm has only one common matrix component,
5. Concluding remarks
Realization forms for fault detection residual structures, based on distributed Kalman filtering destined for noisy discrete-time linear systems, were derived in this chapter. The main idea deals with introducing a distributed sensor measurement noise corrector step of a Kalman filter, applied in such a way to be locally uncorrelated with other sensor measurements. Two different algorithmic supports, a parallel decentralized Kalman filter and a locally distributed Kalman filter, are constructed to generate fault residuals. Both solutions are discussed in detail to demonstrate the condition of their equivalency. The problem accomplishes the manipulation in the manner giving guaranty of asymptotic stability of a local fault residual detection filter. Simulated example is included to illustrate the applicability of the proposed methods, encouraging the results that are obtained. Note, since the Kalman filter is based on the nominal system parameters
From the point of cloud-based distributed systems, to combine appropriately the network and computational resources, a locally distributed Kalman filter seems to be naturally adaptable, also with cross-correlated sensor noises. Of course, no theoretical justification for this affirmation is presented in the chapter. This is seen as an area for future research by the authors.
Acknowledgments
The work presented in this chapter was supported by VEGA, the Grant Agency of the Ministry of Education and the Academy of Science of Slovak Republic, under Grant No. 1/0608/17. This support is very gratefully acknowledged.
References
- 1.
Hassan MF, Salut G, Singh MG, Titli A. A decentralized computational algorithm for the global Kalman filter. IEEE Transactions on Automatic Control. 1978; 23 (2):262-268 - 2.
Song E, Zhu Y, Zhou J, You Z. Optimal Kalman filtering fusion with cross-correlated sensor noises. Automatica. 2007; 43 (8):1450-1456 - 3.
Hajiyev C, Caliskan F. Sensor/actuator fault diagnosis based on statistical analysis of innovation sequence and robust Kalman filtering. Aerospace Science and Technology. 2000; 4 (6):415-422 - 4.
Hu J, Xiao L. Multi-sensor fault diagnosis of aircraft engine based on Kalman filter group. In: Proceedings of 2016 Chinese Intelligent Systems Conference, Vol. 1; 22–23 October 2016; Xiamen, China; Lecture Notes in Electrical Engineering 404. Singapore: Springer Science + Business Media; 2016. pp. 363-379 - 5.
Mehra RK, Peschon J. An innovations approach to fault detection and diagnosis in dynamic systems. Automatica. 1971; 7 (512):637-640 - 6.
Petersen IE, Savkin AV. Robust Kalman Filtering for Signals and Systems with Large Uncertainties. Boston: Birkhäuser; 1999. 207 p - 7.
Kobayashi T, Simon DL. Evaluation of an enhanced bank of Kalman filters for in-flight aircraft engine sensor fault diagnostics. Transactions of the ASME. 2005; 127 (3):497-502 - 8.
Xue W, Guo YQ. Application of Kalman filters for the fault diagnoses of aircraft engine. In: Kordic V, editor. Kalman Filter. In Tech: Rijeka; 2010. pp. 349-362 - 9.
Liu X, Xue N, Yuan Y. Aircraft engine sensor fault diagnostics using an on-line OBEM update method. PLoS One. 2017; 12 (2):1-23 - 10.
Zhu Y, Zhou J, Shen X, Song E, Luo Y. Networked Multisensor Decision and Estimation Fusion Based on Advanced Mathematical Methods. Boca Raton: CRC Press; 2013. 437 p - 11.
Duda Z. State estimation in a decentralized discrete time LQG control for a multisensor system. Archives of Control Sciences. 2017; 27 (1):29-39 - 12.
Filasová A, Krokavec D. On distributed discrete-time Kalman filtering in large linear time-invariant systems. In: Proceedings of the 21st International Conference on Process Control PC; 6–9 June 2017; Štrbské Pleso, Slovakia. 2017. pp. 291-296 - 13.
Mahmoud MS. Decentralized Control and Filtering in Interconnected Dynamical Systems. Boca Raton: CRC Press; 2017. 612 p - 14.
Govaers F. Distributed Kalman filter. In: Serra GL, editor. Kalman Filters. Theory for Advanced Applications. London: IntechOpen; 2018. 314 p - 15.
Speyer JL. Computation and transmission requirements for a decentralized Linear-Quadratic-Gaussian control problem. IEEE Transactions on Automatic Control. 1979; 24 (2):266-269 - 16.
Berg TM, Durrant-Whyte HF. General decentralized Kalman filters. In: Proceedings of the American Control Conference, Vol. 2; 29 June–1 July 1994; Baltimore, USA. 1994. pp. 2273-2274 - 17.
Zhu Y. Multisensor Decision and Estimation Fusion. New York: Kluwer Academic Publishers; 2003. 236 p - 18.
Marelli D, Zamani M, Fu M, Ninness B. Distributed Kalman filter in a network of linear systems. Systems & Control Letters. 2018; 119 :71-77 - 19.
Chui CK, Chen G. Kalman Filtering with Real-Time Applications. Berlin: Springer-Verlag; 2009. 230 p - 20.
Krokavec D. Decentralized optimal filtering of the large-scale system state. In: Proceedings of the 2nd IFAC Workshop New Trends in Design of Control Systems; Smolenice, Slovakia, 7–10 September 1997; Volumes 30(21). 1997. pp. 445-450 - 21.
Horn RA, Johnson CR. Matrix Analysis. New York: Cambridge University Press; 2013. 644 p - 22.
Bryson AE, Ho YC. Applied Optimal Control. Optimization, Estimation, and Control. New York: Taylor & Francis; 1975. 482 p - 23.
Krokavec D, Filasová A. Stabilization of discrete-time LTI positive systems. Archives of Control Sciences. 2017; 27 (4):575-594 - 24.
Xue D, Chen Y, Atherton DP. Linear Feedback Control. Analysis and Design with MATLAB. Philadelphia: Society for Industrial and Applied Mathematics; 2007. 370 p - 25.
Canto B, Canto R, Kostova S. Stabilization of positive linear discrete-time systems by using a Brauer’s theorem. The Scientific World Journal. 2014; 2014 :1-6