Parameters used in this simulation.
Abstract
This chapter presents a new approach to realize quick maximum power point tracking (MPPT) for photovoltaics (PVs) bedded on roads. The MPPT device for the road photovoltaics needs to support quick response to the shadow flickers caused by moving objects. Our proposed MPPT device is a microconverter connected to a short PV string. For real-world usage, several sets of PV string connected to the proposed microconverter will be connected in parallel. Each converter uses an embedded learning algorithm inspired by the insect brain to learn the MPPs of a single PV string. Therefore, the MPPT device tracks MPP via the perturbation and observation method in normal circumstances and the learning machine learns the relationships between the acquired MPP and the temperature and magnitude of the Sun irradiation. Consequently, if the magnitude of the Sun beam incident on the PV panel changes quickly, the learning machine yields the predicted MPP to control a chopper circuit. The simulation results suggested that the proposed MPPT method can realize quick MPPT.
Keywords
- photovoltaics bedded on road
- embedded learning algorithm
- incremental learning
- insect brain
- modal regression on a fixed memory budget
- maximum power point tracking (MPPT)
- shadow flicker
- partial shading
- micro converter
1. Introduction
In recent years, renewal energy technologies have attracted considerable attention as they prevent degradation of the environment to a large extent. Photovoltaics (PVs) are one such technology. However, the drawbacks of photovoltaic systems are that they are unstable while generating electricity and that they require a wide area to catch a large amount of sunlight. One solution is to place photovoltaics on roads. As the total area covered by roadways in the world is extremely high, it is worth using it as PV sites. Still, objects moving on the road cause shadows. In particular, the shadow flickers on PV systems cause power conditioners connected to the PVs to behave in an unstable manner. Such unstable behavior forms the origin of degradation and greatly reduces the amount of electricity generated.
As shown in Section 2, PVs demonstrate highly nonlinear characteristics and its maximum power point cannot be analytically derived. Therefore, maximum power point tracking (MPPT) devices track MPP using various heuristics. As mentioned in previous survey papers [1, 2], the most preliminary technique for realizing MPPT is the perturbation and observation (P&O) method. P&O is a type of hill-climbing algorithm. The P&O method provides a perturbation to the current and the voltage and checks whether the output power increases. If the power has increased, the P&O method employs the same voltage change in the next step and vice versa. Although the P&O method is easy to implement within small embedded systems, there is no guarantee that the perturbed voltage is suitable for obtaining MPP. The incremental conductance (IncCond) [3] and the ripple correlation (RCC) methods [4] overcome this problem by estimating the gradient of the power curve. These two methods can be realized in analog circuits and can demonstrate quick convergence behaviors. Fuzzy logic control methods are also usually used for controlling the change in duty ratio for the chopper circuit. Fuzzy logic controllers can work appropriately even if its inputs are ambiguous, and they show a quick convergence behavior to the MPP. For example, a previous paper [5] demonstrated the use of fuzzy logic that yielded a change in the duty ratio from the difference between the current photovoltaic output voltage and the predicted MPP. Neural network-based MPPT methods are also proposed (e.g., [6]). The model predicts MPP and its corresponding maximum current using a pretrained neural network. The model cannot adjust its neural network for changing environments. In our previous study, a hybrid system involving the P&O method and an embedded learning machine was constructed [7]. The learning machine studies the MPP acquired by the P&O method when solar irradiation is stable. When solar irradiation changes quickly, the learning machine predicts MPP. However, these methods do not support MPPT under an inhomogeneous isolation condition, where the voltage-power curve has several local peaks.
Recently, a particle swarm optimization (PSO)-based MPPT method was proposed [8]. This method can estimate all local power peak points and select the best one. However, the resultant solutions are highly depending on the initial particles.
On the contrary, a previous study [9] demonstrated that a swing technique can acquire the voltage-power curve by scanning within a certain short interval. It shorts, the series-connected PV string and an inductor simultaneously observe the voltage and power until the output voltage reaches zero. Therefore, the device can detect MPP during the scan. However, it needs special hardware to realize the swing.
To overcome this problem, we use a quick converter connected to a PV string. The main challenge here is finding the MPP from the complex power-voltage curve.
In our previous study [7], we proposed a model that uses an incremental learning method based on general regression neural network. The method is used to obtain the magnitude of solar irradiation
In this chapter, we propose an MPPT converter that detects MPPs of solar panels with several clusters using a modal regression method on a fixed memory budget. To realize quick MPPT, the proposed method uses a learning machine on a fixed memory budget. The learning machine on a fixed budget is a small learning machine that can continue online learning on a fixed storage space. Therefore, it is suitable to be embedded to a small microcomputer. The learning on a budget should be executed on a system with a small amount of storage space with low computational power.
To this end, it is worth referencing the mechanisms of an insect’s brain. Although the precise mechanism of an insect’s small brain that is a source of their intelligence is not known, it is true that their sensory system is much smaller than that of humans. Therefore, the dimensions of their sensory inputs are small. As mentioned in Section 3.2, the storage space for recording the kernels is proportional to the number of input dimensions. From this insight, we should be able to reduce the input dimensions to reduce the storage space for the learning machine.
The rest of the chapter is organized as follows. Section 2 describes the photovoltaic properties, and Section 3 introduces an MPPT algorithm accelerated by a learning machine using a modal regression on a budget. Section 4 shows computer simulation results of the new MPPT algorithm, and Section 5 concludes this chapter.
2. Properties of photovoltaics
Photovoltaics are a type of current sources, whose current flow is determined by the strength of solar irradiation. A normal solar panel comprises several photovoltaic cells. These cells are usually connected in series, and the series-connected cells are then connected in parallel. Such solar panels show highly nonlinear characteristics and is usually modeled by using the following equation [10, 11]. Let us denote the output voltage and current from the photovoltaic as
where

Figure 1.
Equivalent circuit of a photovoltaic.
In Eq. (1),

Figure 2.
Single solar panel property. (

Figure 3.
An example of series-connected solar panel property. The irradiations for the four panels are 10, 80, 65, and 95%.
To extract maximum power, the voltage of the photovoltaic should be maximized. However, if the voltage is too high, the current decreases. Therefore, there is an optimal voltage value that maximizes the power. Such voltage is called the MPP and the power conditioner or converter connected to the PV tracks the MPP.
Another noticeable property is that the current flow of photovoltaics stops when it has a shadow. Thus, if a photovoltaic is connected to the other photovoltaics in series and it has a shadow, no power is outputted from the series-connected solar panels.
This problem is solved by connecting a bypass diode in parallel with each photovoltaic. Using this architecture, we can get some amount of power even if a part of the solar panels are under a shadow. However, in such a case, the voltage-power curve of the photovoltaics shows a nonlinear form. As the voltage-power curve has several peaks, the power conditioner cannot obtain the correct MPP only using a hill-climbing technique. The most reliable method to solve this problem is for the power conditioner/DC converter to acquire the current voltage-power curve and detect the global maximum point.
3. MPPT algorithm accelerated by learning machines
One way to realize a quick MPPT without involving any special device is to use a photovoltaic model to predict the MPP. Moreover, the apparent property of photovoltaic varies due to the accumulated dust on the solar panel surfaces. This means that the photovoltaic model is not stable, but is valid depending on the solar panel’s situation. To adjust to such changes in the property, an on-site learning machine should learn the MPP acquired by the P&O method to construct the PV model and apply prediction using the learning machine. In our previous work [7], we demonstrated that an incremental learning method on a budget on a microcomputer can manage the learning and prediction of MPPs. The learned results were applied only when solar irradiation changes drastically and the learning machine know the appropriate MPP that fits the current situation.
The previous system, however, cannot support the MPPT for series-connected PVs with bypass diodes, as shown in Figure 4. This is because even if the strength of solar irradiation is a certain stable value, there are several different solutions depending on the variety of the shadow patterns on the solar panels. To overcome this difficulty, we propose a new MPPT method in this chapter that is based on modal regression on a budget, which is a modal regression with a fixed number of kernels. Modal regression has the ability to approximate multivalued functions. Modal regression on a budget continues the learning with a fixed number of kernels so that it is suitable to be embedded in a small microcomputer. Therefore, it is able to record several different MPPs corresponding to the strength of solar irradiation. The proposed MPPT has a modified P&O method that enables tracking of MPPs from the voltage-power curve having several peaks using modal regression on a budget.

Figure 4.
The photovoltaic circuit design bedded on road. Several solar panel strings with the MPPT converter are connected in parallel.
During the service, the proposed MPPT tracks the peaks by changing the initial search points. If an MPP is observed, the kernel density estimator (KDE) in the modal regression records the peak by adding a new kernel that records the current peak (see Figure 5). However, the microcomputer has limited storage space. Thus, if the number of kernels in the KDE equals the budget, one of the existing kernels will be replaced by the new kernel.

Figure 5.
Outline of the MPPT accelerated by the modal regression on a budget.
3.1. A perturbation and observation (P&O) method with changing initial point
Even if the system uses modal regression, it cannot be used before learning. Thus, it needs to obtain the MPPs first. To find several peaks, a modified P&O method is presented. The modified one searches the peak points roughly at first. For example, if the solar panel comprises
where
where
3.2. Modal regression on a budget for reasoning from too less sensory inputs
In general, if the device has too few sensors, the system cannot properly detect the current status. The partial shadow problem is one such problem. Therefore, if the device has illuminance sensors for each solar cell, it can accurately detect the status and can form complete relationships between the large number of sensory inputs and MPP. However, such strategy is impractical for real applications. Moreover, we should reduce the number of dimensions to construct an insect’s brain like compact learning machine. From a theoretical viewpoint, the system having too few sensory inputs should yield several possible solutions. Therefore, the system has to check the suitability of all possible solutions and choose the best solution. One way to solve this problem is to employ a quick search algorithm such as the PSO algorithm. However, PSO searches possible solutions for arbitrary initial setting of particles and wasted some time for the search. An alternative way to speed up the procedure is by implementing a learning machine to quickly obtain some good solution candidates. However, to realize such tasks, the learning machine has to have an ability to approximate multivalued functions. Such ability cannot be served by normal regression methods.
Modal regression approximates a multivalued function to search the local peaks of a given sample distribution. Modal regression comprises the KDE with a partial mean shift (PMS) method. We have already presented a minimum modal regression, which minimizes the number of kernels for the modal regression [12].
The model, however, does not support learning on a fixed budget. In this chapter, we propose an improved version of our previous work, which enables learning on a fixed budget.
3.2.1. Original modal regression method
Modal regression comprises KDE followed by the PMS. KDE is a variation of the Parzen window [13]. Let
where
Normally, the same number of kernels as that of the dataset is required. However, if the storage capacity of a target device is small, the number of kernels must be restricted. There are several ways to realize density estimation using a limited number of kernels. Traditionally, self-organizing feature maps or learning vector quantization methods approximate the distribution using a fixed number of templates.
As mentioned in a previous study [14], the KDE used in modal regression should approximate the number of peak points of the distribution, rather than the distribution itself. Let
then
where
Modal regression searches the peaks of the distribution model represented by the KDE. The PMS method realizes quick convergence to the nearest peak from the initial point. Let us denote the initial point as
3.2.2. Modal regression on a fixed budget
To embed the modal regression, we have to pay attention to how to reduce the number of kernels for the KDE. Especially, we have to fix the upper bound for the number of kernels. In this case, the aim of the KDE is to approximate the peaks in the distribution rather than approximating the distribution. From this viewpoint, we should prune redundant kernels that do not contribute to approximating the peaks.
In our previous work [12], we demonstrated that the kernel, which is linearly dependent on the other kernels, can be removed without changing existing peaks. To this end, before pruning, the pruned kernel should be projected to the space spanned by the other remaining kernels. However, preparing the gram matrix wastes huge memory space.
Moreover, in this practical application, we should pay attention to the concept drift phenomena, wherein the labels change over time. This is caused by environmental changes such as the accumulation of dust on the solar panels and the changes in properties of the solar panel materials. The learning methods should support these issues.
To overcome these difficulties, we propose a simplified version of the modal regression method on a fixed number of kernels.
To discuss the learning rule of the KDE, let us rewrite the kernel output value as the dot product of the two vectors of k
where
where
Eq. (10) enables us to represent the learning rule as
However, the proposed method restricts the number of kernels to a certain number as
satisfies the following condition
its kernel center is modified to be the mean vector of the original kernel center and the new sample as follows. The extension coefficient
The extension coefficient includes information on how many samples did the kernel learn. The extension coefficient is also reflected to a weighted PMS method in Eq. (20). However, if the kernel center does not satisfy the Eq. (14), one of the kernels should be replaced with the new tentative kernel. Therefore, if the new sample
where
where
where
The regression output is also delivered by the PMS method described in (8). In this model, the PMS method should account for the extension parameter
The weighted PMS should be repeated by substituting derived
where
3.2.3. An example of the modal regression outputs
The modal regression approximates multivalued functions. As an example, Figure 6 shows the regression output for 800 sets of third-order synthetic data with 50 kernels. We can observe that the proposed method partly approximates multivalued function.

Figure 6.
The response for the third-order data. The green curve is the response of the proposed model with 50 kernels.
3.3. Whole algorithm
Algorithms 1–4 are presented below. Note that

Algorithm 1.
Algorithm of the MPPT with modal regression. Note that

Algorithm 2.
Pseudo code for getting initial reference voltage.

Algorithm 3.
Flowchart for

Algorithm 4.
Flowchart for getting
The algorithm is roughly divided into two parts: one is the normal P&O part, and the other deals with searching for the reference voltage using the proposed modal regression. The second part is executed when the solar irradiation is changed abruptly.
To this end, the sensed solar irradiation is statistically analyzed by
3.4. Computational cost and required memory capacity
The computational cost for the MPPT with modal regression is mainly wasted by the modal regressor. Hence, let us consider the computational cost for the modal regression. Now, we assume that the number of kernels in the modal regressor is
The computational power required for the learning of the modal-regressor is the cost of executing (13), (14), and (16). Thus, it needs
The required memory capacity also depends on the number of kernels. Each kernel records the center of kernel
The boost converter step ups the voltage of the solar panel string and charges the battery. The MPPT unit, which includes the proposed method, sends the predicted MPP:
4. Computer simulation
The performance of the proposed MPPT was evaluated via a simulation. Particularly, the convergence speed to MPP is a very important property that should be evaluated. The simulated circuit comprises a short string of solar panels connected to a boost converter (see Figure 7).

Figure 7.
The circuit for the simulation.
The MPPT unit sends the reference voltage
For simplicity, the simulator of the boost converter simply updates
To realize the simulation, we constructed a simulator of photovoltaics and circuits as the Java application. The solar irradiation, temperature, and the properties of the solar panels are also represented in the thread of environment class (see Figure 8).

Figure 8.
Sequence diagram of the simulator.
For simplicity, the strength of solar irradiation and temperatures varies for a certain scenario, but the effect of the specific heat of the solar panel material was not considered.
The solar panel is a homogeneous two cluster panel such that it has two peaks under partial shadow conditions. The MPPT with modal regression is also represented by the MPPT thread class. The chopper circuit with the feedback controller is assumed to control the output voltage from the solar panel to
We have compared the proposed method with the existing models under partial shadow conditions. For this comparison, the following three models were prepared: MPPT with the modal regression, the P&O method by changing initial points described in Section 3.1, and MPPT with PSO. There are various PSO-based MPPT methods [8, 17]. In this simulation, we prepared a model that is based on the model proposed in [17] because it has a similar architecture to ours. The PSO-based MPPT method used in this simulation executes the PSO optimization when solar irradiation changes is occurred. The condition for detecting solar irradiation changes was the same as the method described in Section 3.3. The detailed parameters used in this simulation are listed in Table 1.
0.1 | |
0.9 | |
0.001 | |
3 | |
Time interval for changing | 1 [ms] |
Time interval for changing solar irradiation | 250 [ms] |
Scaling factor | 0.3 |
Number clusters ( | 3 |
Table 1.
We evaluated the electric power generation behavior of each model. If the generated power is higher than the others, the model finds MPP faster than the others.
Figure 9 shows a snapshot of the behavior of our proposed MPPT. In this situation, the power-voltage curve of the solar panel has two peak points. The activated kernel centers of the modal-regression at this situation are shown as the two green points1. The proposed method set choose one of them as the start point for the MPPT. After that, the modal regression output was used for the initial point for starting the P&O procedure. As a result, the proposed method finds the MPP faster than the P&O method. The quick search ability is suitable for generating electricity under changing irradiation. In Figure 10, the green, blue, and purple curves show the

Figure 9.
An example of snapshot of the maximum power tracking of the proposed method. The green points are the center points of the proposed modal regressor, namely the initial MPP candidates (see

Figure 10.
An example of
The magnified Figure 11 shows that the power generation of our proposed method quickly aliased immediately after the change in solar irradiation, whereas the extended P&O method gradually converges to the power of the proposed method. The PSO-based MPPT shows the less power generation than the other methods. In the case of PSO, the results are greatly affected by the initial points of the particles. In this simulation, we have set the initial points by uniform random voltages in

Figure 11.
The magnified power curves. Note that the power curve has changed immediately after the change of irradiation.
Time interval for changing solar insolation | Method | Averaged electricity power |
---|---|---|
250 ms | MPPT with modal regression (5 kernels) | 151.2 W |
MPPT with modal regression (10 kernels) | 151.9 W | |
Extended P&O | 150.3 W | |
MPPT with PSO (5 particles) | 127.1 W | |
MPPT with PSO (10 particles) | 128.2 W | |
200 ms | MPPT with modal regression (10 kernels) | 151.4 W |
Extended P&O | 149.4 W |
Table 2.
Comparison of averaged electricity power generated during the first 200 [s]. The time interval for solar irradiation change were 250 and 200 [ms].
5. Conclusion
In this chapter, we proposed a new MPPT method accelerated by modal regression on a budget, which approximates multivalued functions. The modal regression on a budget is a simplified version of our previously proposed method, namely limited modal regression [12].
The proposed MPPT method comprises an irradiation sensor, temperature sensor, and modal regression on a budget. We assume that the irradiation sensor gets the averaged strength of irradiation of all solar panels. In the case for MPPT of PV strings, the device has to obtain the highest local peak point from the several peak points in the voltage-power curve. Therefore, the MPPT device with the incomplete sensory input has to approximate a multivalued function between the sensory inputs and the MPP.
Normally, modal regression estimates provide sample distribution and yield local peak points that are related to the specified input.
The modal regression on a budget can approximate such relationships between the sensory inputs and the MPP’s. The proposed MPPT method is a combination of modal regression on a budget and a modified (extended) P&O method. The modified P&O method obtains the MPPs even if there are several local peak points. The obtained MPPs are recorded in the modal regressor.
The proposed method was evaluated by computer simulation under partial shadow conditions. The simulation results suggest that the MPPT with modal regressor obtain an MPP faster than other existing methods such as the MPPT with PSO. This property is suitable for electricity generation using the solar panels bedded on roads.
Acknowledgments
This study is sponsored and supported by KYODO Corporation, Toyota-city, Aichi-ken.
References
- 1.
Bendib B, Belmili H, Krim F. A survey of the most used mppt methods: Conventional and advanced algorithms applied for photovoltaic systems. Renewable and Sustainable Energy Reviews. 2015; 45 :637-648 - 2.
Esram T, Chapman PL. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Transactions on Energy Conversion. 2007; 22 (2):439-449 - 3.
Boehringer AF. Self-adapting dc converter for solar spacecraft power supply. IEEE Transactions on Aerospace and Electronic Systems. 1968; AES-4 (1):102-111 - 4.
Esram T, Kimball JW, Krein PT, Chapman PL, Midya P. Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control. IEEE Transactions on Power Electronics. 2006; 21 (5):1282-1291 - 5.
Veerachary M, Senjyu T, Uezato K. Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied pv system using fuzzy controller. IEEE Transactions on Industrial Electronics. 2003; 50 (4):749-758 - 6.
Akkaya R, Kulaksiz AA, Aydogdu O. Dsp implementation of a pv system with ga-mlp-nn based mppt controller supplying bldc motor drive. Energy Conversion and Management. 2007; 48 :210-218 - 7.
Yamauchi K. Incremental learning on a budget and its application to quick maximum power point tracking of photovoltaic systems. Journal of Advanced Computational Intelligence and Intelligent Informatics. 2014; 18 (4):682-696 - 8.
Liu C-L, Luo Y-F, Huang J-W, Liu Y-H. A pso-based mppt algorithm for photovoltaic systems subject to inhomogeneous insolation. In: The 6th International Conference on Soft Computing and Intelligent Systems. 2012. pp. 721-726 - 9.
Noguchi T, Togashi S, Nakamoto R. Short-current pulse-based maximum-power-point tracking method for multiple photovoltaic-and-converter module system. IEEE Transactions on Industrial Electronics. 2002; 49 (1):217-223 - 10.
Tan YT, Kirschen DS, Jenkins N. A model of pv generation suitable for stability analysis. IEEE Transactions on Energy Conversion. 2004; 19 (4):748-755 - 11.
Bellia H, Youcef R, Fatima M. A detailed modeling of photovoltaic module using matlab. NRIAG Journal of Astronomy and Geophysics. 2014; 3 :53-61 - 12.
Koichiro Y, Vanamala Narashimha B. Minimum modal regression. In Maria De Marsico, Gabriella Sanniti di Baja, and Ana Fred, editors, ICPRAM2018 7th International Conference on Pattern Recognition Applications and Methods, pages 448‐455, 2018 - 13.
Parzen E. On estimation of a probability density function and mode. Annals of Mathematical Statistics. 1962; 33 (3):1065-1076 - 14.
Sasaki H, Ono Y, Sugiyama M. Modal regression via direct log-density derivative estimation. In: Hirose A, Ozawa S, Doya K, Ikeda K, Lee M, Liu D, editors. Neural Information Processing –23rd International Conference, ICONIP 2016–, Volume Part II. Springer-Verlag; 2016 - 15.
Lee D, Noh SH, Min SL, Choi J, Kim JH, Cho Y, Sang KC. Lrfu: A spectrum of policies that subsumes the least recently used and least frequently used policies. IEEE Transactions on Computers. 2001; 50 (12):1352-1361 - 16.
Silverman BW. Density Estimation for Statistics and Data Analysis. CRC Press; 1986 - 17.
Rajasekar N, Vysakh M, Thakur HV, Mohammed Azharuddin S, Muralidhar K, Paul D, Jacob B, Balasubramanian K, Sudhakar Babu T. Application of modified particle swarm optimization for maximum power point tracking under partial shading condition. Energy Procedia. 2014; 61 :2633-2639
Notes
- The activated kernel centroids without the power element were pointed as the green points. However, the height of the green points have been set to a certain fixed value for easy seeing.