Coriander oil specifications according to the FCC, 2003 [19].
FCC = Food Chemicals Codex.
Open access peer-reviewed chapter
Submitted: October 11th, 2017 Reviewed: May 14th, 2018 Published: September 26th, 2018
DOI: 10.5772/intechopen.78656
Coriander (Coriandrum sativum L.) is a very popular medicinal plant that belongs to Apiaceae family in taxonomic classification, which is widely used as a spice and also in pharmacy and in food industries. The plant used in folk medicine, especially in Egypt, it has been known as one of the earliest spices. Coriander (Cilantro, Kişniş, Chinese parsley, Coriandrum sativum) is extensively recognized in almost every recipe. The genus Coriander was represented in Flora of Turkey by two different species called C. sativum L. and C. tordylium (Fenzl) Bornm. It is mainly cultivated for the seeds (fruits) that contain essential oil, fatty acids, coumarins, flavonoids, and polyphenols. Nowadays, the fruits exhibit internally carminative, spasmolytic, and galactagogic effects in many disorders. The use of coriander in different forms includes a wide range of fresh and dried herbs. The current section focuses on coriander oil in different forms, including the plant, its terpenoid profile, and all the miracle effects of coriander together with future prospects.
Medicinal and aromatic plants have been very popular in all the time for the culinary, medicinal, and many other purposes. The plants and their secondary metabolites (phytochemicals) take part in increasingly in foods, in health, and in nutritive products. The essential oils are the most popular secondary metabolites of the plants, used for thousands of years (over 5000 years) regarding the variety of objectives, principally for their health benefits [1]. In the history, the term essential oil dated back to the sixteenth century and comes from the drug Quinta essentia, named by Swiss physician Paracelsus von Hohenheim of Switzerland. Essential oil or essence is referred to by this name due to their flammable principle. In many kinds of the literature, the essential oils have been defined [2]. Briefly, essential oils are secondary metabolites biosynthesized in different plant organs [3] obtained by mainly hydrodistillation from almost all parts of the aromatic plants growing temperate regions in the world, of the secretory special elements with volatile properties along with characteristic fragrances, as limpid and rarely colored, soluble, in organic solvents [4]. The chemical composition of the essential oils is quite complex including mostly terpenes (monoterpenes and partly sesquiterpenes formed by isoprene) and aromatic compounds derived from phenylpropane and phenolic constituents [3, 5]. The essential oils known as fragrant oils, steam volatile liquids, or semiliquids, ethereal oils are concentrated hydrophobic aromatic oil. The flavor (fragrance and flavor) of the essential oils is marvelous due to reflecting their corresponding sources as mean basically plant [3]. The physiological effects of the essential oils are not clear but can say that protect the plants against microorganisms, insects, or attract them for the pollination [5]. The conventional methods to obtain the essential oils are hydrodistillation, steam distillation, solvent extraction, Soxhlet extraction, cold pressing method, enfleurage, cohobation, and maceration. By the way, distillation is absolutely the most common method of obtaining essential oils. In addition, innovative techniques can be covered supercritical fluid extraction (SFE), microwave-assisted hydrodistillation (MAHD), ultrasound-assisted extraction (UAE), solvent-free microwave extraction (SFME) and microwave hydro diffusion and gravity (MHG) [3]. Analytical monographs have been published by European Pharmacopeia (EP), International Organization of Standardization (ISO), World Health Organization (WHO), Council of Europe (COE) to ensure good quality of essential oils. The essential oils are exhibited in many important biological activities [1, 2, 3, 4, 5] and discussed in many kinds of the literature but mainly antibacterial and antifungal activities are dominated [6]. Essential oils are also commercially important, especially in the pharmaceutical, agronomic, food, sanitary, and cosmetic and perfume industries. Moreover, essential oils are the main therapeutic agent in aromatherapy as it forms mixtures with vegetal oil in several forms [3, 7, 8]. Essential oils are classified as “Generally Recognized as Safe” (GRAS) by the Food and Drugs Administration (FDA); therefore, they are not counted as harmful and, due to their natural origin, are more widely endorsed by consumers than “synthetic” agents [6], if it is used reasonably and carefully. In fact, there are so many things to say regarding essential oils, but this section will be interested in coriander as aromatic plant and its essential oil. Hence, in this chapter, we discuss the essential oil of coriander, which is very important in many fields called as food, spice, cosmetic, and of course pharmaceutical. Therefore, you can find much information regarding coriander, which has great importance almost in every field. Consequently, the coriander will be handled with the latest articles in details according to an order.
The phytochemical constituents and pharmacological activities regarding the coriander and its essential oil have been investigated with the help of PubMed, Science Direct, Scopus, and Google. Generally, the latest articles were used when writing this review in this process.
The plant grows all over the world [13], but originally from the Mediterranean regions, cultivated mainly in the tropical areas such as Ukraine, Russia, Romania, Morocco, Mexico, India, and Argentina [14]. Especially in a cool and comparatively dry frost, the free climate at the optimum temperature of germination and early growth of coriander is 20-25 °C. It grows best in dry climates, but it can grow in any type of soil like light, well-drained, moist, loamy soil, and light to the heavy black soil [15].
The genus Coriandrum L. (Figure 1) has been represented by two species in Flora of Turkey called C. sativum L. and C. tordylium (Fenzl) Bornm. [10]. C. sativum L. is coriander, approximately 30–100 cm in height, with strong-smelling leaves. It is cultivated as a domestic plant. In addition, in commerce, coriander has two varieties such as C. sativum L. var. microcarpum DC, the small-fruited species called as oil-rich Russian coriander and C. sativum L. var. vulgare Alef., the larger-fruited species with low oil content called as Moroccan, Indian and some other Asiatic types [16, 17]. The coriander has been described as glabrous aromatic, herbaceous, erect annual plant with a pronounced taproot, and slender branching stems up to 20–70 cm in height. The leaves are lanceolate, green or dark green, glabrous on both surfaces and are variable in shape and lobed. The flowers are arisen in small umbels, white or light pink, asymmetrical, with the petals pointing away from the center. The coriander fruits are almost ovate globular dry schizocarp with two mericarps as usual and multiple longitudinal ridges on the surface possessing a sweet, slightly pungent, citrus-like flavor resembling sage [10, 17].
Coriander (The leaves and flowers from nature). Photo: M. Necat IZGI.
Dioscorides* wrote about
III. 63. κοριον The coriander: it has a cooling property, wherefore when plastered on with bread or barley groats, it cures erysipelas and shingles; with honey and raisins, it treats pustules that are most painful at night, testicular inflammations, and carbuncles; and with bruised corn, it dissolves scrofulous swellings of the glands and tumors. A small quantity of its seed drunk with grape syrup expels intestinal worms and furthers the production of semen, but if too much is taken, it dangerously disturbs the thinking process; this is why one must guard against drinking it to excess and continuously. Anointed with white lead or with litharge, and with vinegar and unguent of roses, the juice benefits surface tumors that are inflamed.
*Source: Beck LY, transl. Pedianius Dioscorides of Anazarbus. In: The Materia.
Medica: Ancient Scientific Texts and Studies, vol. 38 [in German]. Hildesheim,
Germany: Olms-Weismann.
The fruits contain sugars, alkaloids, flavones, resins, tannins, anthraquinones, sterols, and fixed oils [21, 22]. We can say that the most important constituents of coriander fruits are the essential oil and fatty oil [23]. The fatty acids in coriander fruits are petroselinic acid (
There is much work to be performed collected from different localities of coriander essential oil. Because of the fact that, the coriander is one of the most important essential oil-bearing spices in its leaves, flowers, stem, seeds, roots, and bark; however, the composition of the parts can be different. Its chemical composition undergoes changes during ontogenesis, which affects the aroma of the plant, and thus interestingly the coriander fruit (seed) aroma is completely different from the aroma of the herb. Immature fruits and leaves have an unpleasant odor called a “stink bug smell” which is due to the presence of trans-tridecen in the oil [17]. On the other hand, the fragrance in the mature fruits pleasantly is similar to citrus peel and sage [16, 17]. By the way, Burdock et al. have mentioned about specifications of coriander oil according to the Food Chemical Codex (FCC) as given below [19]:
Angular rotation | Between +8 and +15 |
Appearance | Colorless or pale yellow liquid |
Heavy metals (as Pb) | Passes test |
Identification | Infrared absorption spectrum |
Odor | Characteristic of coriander |
Solubility in alcohol | Passes test. 1 ml dissolves in 3 ml of 70% alcohol |
Specific gravity | Between 0.863 and 0.875 |
Refractive index | Between 1.462 and 1.472 at 20°C |
Coriander oil specifications according to the FCC, 2003 [19].
FCC = Food Chemicals Codex.
Coriander fruits contain about 0.2–1.5% of essential oil and 13–20% of vegetal oil (fixed oil); however, it has been recorded that some cultivars contain essential oil up to 2.6% [15, 25]. Another literature mentioned that coriander contains up to 1% essential oil where monoterpenoid linalool is the major compound (>50%), and limonene, camphor, and geraniol (Figure 2) are present in significant quantity [26]. Sometimes, the essential oil of the coriander obtained from the fruits was recorded approximately as 0.5–2.5%. It seems that different cultivars and regions have been present in a different ratio of the essential oil concentration. However, in the majority of studies the main component is defined as linalool (60-70%) [16, 17]; sometimes up to 87.54%. In addition, α-pinene, camphor and geraniol are also known as other important components and are responsible for the character of fragrance and aroma of the plant. The investigation on two coriander varieties (
The major constituents in the essential oil of coriander fruit: (a) linalool, (b) limonene, (c) camphor, and (d) geraniol.
In a study, the essential oil of coriander was obtained by supercritical water extraction, hydrodistillation, and Soxhlet extraction methods. The main component found was linalool (82.916%) chosen as the key component to find the best-operating conditions [20]. In fact, the parameters exhibit different impact to reach the volatile oil; pressure and temperature control influenced the yield and composition. In an example, supercritical CO2 fluid extraction to obtain the volatile oil from Italian coriander fruits was performed under different temperature conditions. A decrease in the particle size improved the volatiles’ yield so as to more ducts were destroyed during the milling process. Optimum supercritical fluid extraction conditions were found to be as follows: Pressure 90 bar, temperature 40°C, 1.10 kg/h and 0.6 mm. The compositions of each supercritical fluid extraction samples were analyzed by GC and GC/MS. The major components were linalool (65–79%), the others γ-terpinene (4–7%), camphor (3%), geranyl acetate (2–4%),
The vegetal oil (fixed oil/fatty oil) of coriander fruits, especially from French origin (23% yield), contain a high amount of monounsaturated fatty acids (1.8%); particularly petroselinic acid (73%) [22, 26]. The vegetable oil of coriander has been labeled as a Novel Food Ingredient (NFI), and it can be safely consumed as a food supplement by healthy persons, in maximum 600 mg/day dosages [22]. That is why, the essential oil of
The structure of petroselinic acid.
Petroselinic acid (18,1n-12) is classified as a monounsaturated the major omega-12 fatty acid exists in coriander oil, is a positional isomer of octadecenoic acid (its double bond being in position 6 instead of 9). Petroselinic acid has been detected at a level between 68 and 83% in coriander oil [31], or between 65–70% and 80.9% [9]. In a study, changes in fatty acids during maturation of coriander fruits cultivated in the North-East of Tunisia (Charfine) were studied. At full maturity, the main fatty acids were petroselinic acid (80.9 ± 5.7%), followed by linoleic (13.6 ± 2.9%), palmitic (3.6 ± 0.1%), and stearic (0.7 ± 0.1%) acids. During maturation of coriander fruit, saturated and polyunsaturated fatty acids decrease significantly, and monounsaturated fatty acids increase. It is necessary to underline that coriander fruits at the first four stages of maturity have a healthy nutritional value and the last five stages were with important economic and industrial applications [32, 33]. Commercial production of vegetable oils from oil-rich materials is based on through two traditional processes like the mechanical expression and extraction. In this manner, the maximum yield was obtained with single screw extruder for a configuration allowing the strongest oil expression. Comparing with a mechanical press, the maximum yield was obtained by the Soxhlet extraction with 21.25%, and the oil quality was found high grade. The acid value was under 1.8 mg of KOH/g of oil and iodine values were tolerable (44 mg of iodine/100 g of oil). In the oil, nine fatty acids were identified, with petroselinic acid accounting for 74–77% of the total fatty acids, followed by linoleic (12–13%), oleic (4–6%), and palmitic acids (3%). Moreover,
The polyphenols are very important secondary metabolites in coriander fruits and leaves because of their strong biological activities. Generally, flavones, tannins, and anthraquinones have been mentioned as the fruits phenolic constituents [21]. In coriander leaves, some phenolic compounds could be tentatively characterized using LC/MS. The polyphenol profile between leaves and fruits have been detected, and quercetin-glucuronide (Figure 4) was found as the major compound in plant parts, leaves and fruits [36]. Moreover, coriander leaves contain high amounts of caffeic, ferulic, gallic, and chlorogenic acids [12].
The structure of the quercetin-glucuronide.
Commercial varieties of coriander were analyzed by HPLC/MS and evaluated for carotenoids as
The structure of
There are no recent articles regarding the isocoumarins from coriander. The isocoumarins, coriandrones A and B, together with coriandrin (Figure 6) and dihydrocoriandrin were isolated from the aerial parts of
The structure of coriandrin.
In the food industry, coriander is approved in food-use by the Food and Drug Administration (FDA in the USA), the Flavor and Extract Manufacturers Association and the Council of Europe. The plant can be mainly used as a spice, medicine, and raw material in food, beverage and pharmaceutical industries [16, 17]. Microwave-drying characteristics of coriander leaves were examined in designing and modeling heat and mass transfer processes during storage and other possible operations, necessary in food and chemical industry [42]. Moreover, the encapsulation (400 nm–7 μm) of the essential oil of coriander with chitosan obtained from the waste shells of crayfish (
In short, coriander fruits and its oil have been used for many diseases [13] such as for the treatment of rheumatism, gastrointestinal upsets, insomnia, flatulence, and joint pain in humans [49]. Moreover, coriander has a positive influence on lipid profile in plasma of rats [50]. The hydroalcoholic extract of the coriander fruits has exhibited anti-inflammatory, and anti-granuloma properties are reducing TNF-R1 expression on peritoneal macrophages in an experimental model [51]. The fruits of the plant are famous for carminative, diuretic effects and used in the treatment of cold, fever, nausea, and stomach disorders [16]. The fruit extract has been found as a strong analgesic agent than dexamethasone [52]. Laribi et al. discussed with all aspects regarding the pharmacological effects of coriander in a review [9]. In this manner, the most frequent effects of coriander will be debated in an order.
The antioxidant potencies of polyphenolic compounds from
The potency of the antioxidant activity of coriander is indeed attributed to its carotenoid content. Carotenoid extract of the coriander showed high antioxidant activity with an IC50 value of 14.29 ± 1.68 μg/mL, scavenging hydroxyl radicals and providing higher protection to DNA than by standard gallic acid (IC50 = 357.21 ± 4.29) [37]. It was seen that there was a synergistic action between the carotenoids compared to the crude extract [38]. Obviously, the aqueous or alcoholic extracts of the coriander have significant antioxidant capacity depending on the polyphenolic content. Carotenoids in coriander show higher antioxidant capacity in the extracts.
The antimicrobial activity of the coriander has been arisen from the essential oil content. The essential oil of coriander has been exhibited potent antimicrobial activity against oral pathogens, and a dental gel formulation [59]. Moreover, the aqueous extract of coriander was found to have potency against acne-inducing bacteria (MIC values are 1.7 mg/mL for
In many articles, we can find the antidiabetic effects regarding the coriander. In fact, coriander has been confirmed as an antidiabetic remedy. The studies have confirmed the antihyperglycemic effect of coriander in streptozotocin-diabetic mice. The mechanism of action of the antihyperglycemic action of the aqueous extract of the coriander fruits is connected with stimulation of insulin secretion, enhancement of glucose uptake and metabolism by muscle. In general, the effect is generated by one or more components existed in the extract. Therefore,
The aqueous extract of coriander fruits has an anxiolytic activity and may possess sedative and muscle relaxant effects dose-dependently in mice. Its utility in clinical applications may be similar to that of diazepam. The effect of coriander at a dose of 100 mg/kg in mice was found almost equivalent to that of 0.3 mg/kg diazepam on the plus-maze test. According to the studies on animal and on human, 7.5 g dry extract of coriander fruit may be suggested as effective dose for a 75 kg adult man. This corresponds to an infusion of approximately 20 g of coriander fruit in 100 mL water, considering the yield of the extract in the range of the coriander doses, tentatively used in traditional medicine. However, the effect of the extract in a clinical application was not determined to reach the optimum therapeutic dose for a human [49]. For example, the aqueous extract of coriander fruits (200, 400, and 600 mg/kg per day), alcohol extracts (400 and 600 mg/kg per day), and essential oil (600 mg/kg per day) increased pentobarbital-induced sleeping time. In a mouse study, coriander fruits (50, 100, and 200 mg/kg) was compared with diazepam (0.5 mg/kg) in animal models of anxiety. Coriander fruits were almost recorded equivalent to diazepam as an anxiolytic at the two higher doses [12].
The hydro-methanolic extract of coriander fruits has been found cardioprotective potential. This effect should be attributable to its high polyphenol content in the fruits likewise. The preventive effect of coriander on cardiac damage has been investigated by isoproterenol induced cardiotoxicity model in male Wistar rats and found that the methanolic extract of the fruits prevent myocardial infarction by inhibiting myofibrillar damage on rats [72]. The coriander fruits caused a significant decrease in all cholesterol-associated lipids, while the extract reduced high-density lipoprotein (HDL) cholesterol; the extract also improved the cardioprotective indices. Coriander fruits also reduced dyslipidemia in rabbits. All blood-fat values improved significantly with the coriander diet. It means that the extracts have beneficial profits on cardioprotective effect [12].
The anthelmintic activities (
Coriander is a potential herb to protect the body against absorption of heavy metals and other dietary toxins. Moreover, the herb can be able to prevent the formation of gastric ulcers and
The long chain fatty acids are potentially beneficial in antiaging products for local use, helping to restore barrier properties of the epidermis and prevent moisture loss. Therefore, the long chain fatty acids can be considered as potential antiaging agents. Coriander fruit oil is very rich in these types of the fatty acids. The studies done as a topical treatment for a variety of skin conditions with coriander-fruit oil and as a component of herbal sunscreens seem very impressive [12]. The oil may contain ceramides of petroselinic acid as well. The extract also functions as an anti-irritant and helps to maintain skin texture and tone. A specially prepared extract from coriander fruits such as Umbelliferin® (INCI:
The biochemical effect of coriander fruits on lipid parameters in 1,2-dimethylhydrazine induced colon cancer has been studied in rats. The concentrations of cholesterol and cholesterol to phospholipid ratio declined while the level of phospholipid increased significantly in 1,2-dimethylhydrazine control group compared to the coriander administered group. Fecal dry weight, fecal neutral sterols, and bile acids showed a sharp increase in the coriander-fed group compared with the DMH-administered group. Thus, it seems that the coriander plays a protective role in the lipid metabolism of colon cancer [75]. Although there are not many studies on the anticancer effect of coriander, there are some studies based on antioxidant effect.
There is no more study on diuretic effect of coriander to mention in this compilation. In a study, the aqueous extract of coriander fruits was implemented by continuous intravenous infusion (120 min) at two doses (40 and 100 mg/kg) under anesthetize conditions. A diuretic-Furosemide (10 mg/kg) has been used as the standard drug. In the assay, water and electrolyte excretion (sodium, potassium, and chloride) were measured in urine, and glomerular filtration ratio (equal to creatinine clearance) was determined. The crude aqueous extract of coriander fruits increased diuresis, excretion of electrolytes, and glomerular filtration rate in a dose-dependent way; but furosemide was found more potent as a diuretic and saluretic. By the way, the mechanism of action of the plant extract appears to be similar to that of furosemide. In Moroccan pharmacopeia, the coriander is listed and indicated that the aqueous extract of coriander fruits has diuretic and saluretic activity verifying the use of coriander as a diuretic plant [11].
All parts of this herb are in use as a flavoring agent (culinary purposes) and/or as traditional remedies for the treatment of different ailments in the folk medicine on different civilizations [15, 76] especially in digestive disorders. The fruits of this herb are very popular as a spice in Mediterranean countries [9]. Hippocrates (460–377 BC) used coriander in ancient Greek Medicines. Decoction and tincture of powdered fruits of
In the United States, coriander has recently been studied for its cholesterol-lowering effects [16]. Moreover, in some parts of Europe, coriander has traditionally been referred to as an “antidiabetic” plant [16, 78]. In Pakistan, the whole plant part is used for the treatment of flatulence, dysentery, diarrhea, cough, stomach complaints, jaundice, and vomiting. In Turkey, it is noted that the fruit infusions are useful in indigestion and as an appetizer [9]. However, in history, it is mentioned that coriander has an aphrodisiac effect as many other spices [78].
In traditional medicine, the usual dose of fruit powder is from 1 to 5 g, three times per day. This translates to a 43–71 mg/kg dose for a 70 kg individual [12]. Most of the traditional usages of the coriander have been supported by scientific data as mentioned in the text. This point is very important that the plant has been integrated between traditional and scientific usages.
Coriander fruits at a dose of 750 mg/kg caused no mortality in rats, and LD50 (lethal dose that kills 50% of test subjects) for the oil was found 4.13 g/kg. However, high doses of coriander fruits (500 mg/kg) inhibited implantation in female rats significantly and had a small abortifacient (but no teratogenic) effect on the rats. In the Ames test, a dried leaf extract produced a mutagenic effect [12]. By the way, coriander juice extracts were neither toxic nor mutagenic in the range of concentrations tested (50–1000 μL/coincubation flask); the chlorophyll content in whole juice extracts was 0.0325 μg/mL [79].
The new attraction for natural products like essential oils is important to develop a better understanding of their mode of biological action for new applications in human health, agriculture, and the environment. The essential oils could find many applications as an ingredient in different industries, like the cosmetic, the pharmaceutical, and the food industries. Updates on coriander usefulness, based upon the scientific studies, have been given in this compilation, with emphasis on its essential oils. The coriander as an aromatic plant is an edible herb, famous spice, and nontoxic to humans. The healing properties of coriander can be attributed to exceptional phytochemicals. Considering these potentials of coriander and its biomolecules can be significant along with a tremendous future. The essential oil of coriander is also rich in beneficial phytonutrients, and the fruits have a health-supporting reputation that is almost on the top of the list of the healing spices besides many other traditional health benefits mostly supported by scientific reports. The other uses of coriander are amazing, but information on their possible benefits remains ambiguous. By the way, exciting essential and fatty oil combination in a magical proportion in the fruit composition makes the plant still worthy of future investigations and utilization. Finally, it is strongly recommended that coriander is an incredibly safe herb, and it would be beneficial to increase coriander use in diet.
Submitted: October 11th, 2017 Reviewed: May 14th, 2018 Published: September 26th, 2018
© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.