Valid species of the Far Eastern bats and their karyological studies.
Abstract
Recent studies based on morphologic and molecular genetic data have revealed quite a serious variety in the trans-Palearctic species, which brought about taxonomic status changes in 14 of 18 Russian Far Eastern bat species. Far Eastern bat status revisions resulted in species growth whose chromosome characteristics have been described either under other names or have not been studied at all. This paper has inventoried bat chromosome research in the Russian Far East and neighboring regions and has improved the accuracy of chromosome characteristics for 17 of 18 valid species today. For the first time, the karyotypes and their variation type for the valid bat species in the Russian Far East have been described.
Keywords
- Chiroptera
- karyotype
- chromosome
- nucleolar organizer regions
- heterochromatic material
1. Introduction
Till the middle of the twentieth century, most of the Russian bats were considered to belong to widespread Palearctic species. Since the mid-1960s, a gradual transition from the “wide” polytypic species concept appears to be replaced by the “narrow” monotypic one [1]. This is largely due to the improved morphological data processing methods [2, 3, 4] and the use of the molecular genetic [5, 6] and the karyological [7, 8, 9] methods in bat systematics. Many of the Far Eastern bat taxa were treated formerly as eastern subspecies within polytypical trans-Palearctic species. Recently, most of the Far Eastern subspecies have been elevated to a species rank, which resulted in taxonomic status changes of 14 Far Eastern bat species [5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. However, the taxonomic status of certain forms needs to be clarified [22]. Most of these species are restricted to Northeast Asia, with the western species distribution bordering the Trans-Baikal and the Altai regions [22, 23].
Karyotype features are essential diagnostic characteristics of many mammalian species [24, 25]. Even species with similar diploid number (2n) and chromosome morphology have been shown to differ significantly in distributional patterns of nucleolar organizer regions (NOR) [26, 27, 28, 29] and the amount and location of heterochromatic material on chromosomes [30, 31, 32, 33, 34].
Bats are characterized by high level of karyotype stability at the genus and low intraspecific chromosomal variability, e.g., in
The so-called
The position and number of the nucleolus organizer regions (NORs) and the amount and location of heterochromatic material (C-band) on chromosomes of many vespertilionid species have been shown to represent species-specific characteristics. The sequential staining methods (G-band; NOR; С-band) revealed karyological differences in species of the same karyotype [7, 8, 39, 41, 42, 43, 44, 45].
Chromosomal studies of the Far Eastern bats were initiated by N.N. Vorontsov [35] and continued by his colleagues and students [46, 47, 48, 49]. The conventional staining of 10 bat species karyotypes was described. Differential staining (NOR and С-band) was reported for two species,
Species composition revision of the Far Eastern bats caused an increase in the number of species, whose chromosomal characteristics were reported either under the wrong species names or were not studied at all.
The paper presents an inventory of available karyological data on bats from the Russian Far East and neighboring regions. It provides revision of specified chromosomal characteristics of 18 valid bat species from the Russian Far East. The karyotype descriptions of valid Far Eastern bat species and their chromosomal variability are given for the first time.
2. Karyotypes of Far Eastern bat
Table 1 shows valid Russian Far Eastern bat species. The columns represent species belonging to geographically various regions. The last one gives the species names describing the karyotypes. The table demonstrates the level of karyological knowledge available of certain bat species in every region studied. European and Northeastern Asian karyotype species have been studied to the fullest extent possible. Less data have been obtained regarding karyotype species in Siberia and the Russian Far East.
To illustrate the intrageneric and intraspecific variability of the Russian Far Eastern bat karyotypes based on data available, Table 2 is drawn, which made it possible to compare chromosome characteristics of a similar Far Eastern bat species from different geographic regions for the first time and to reveal availability or lack of this variability. For simplicity sake, three size groups have been introduced to analyze size variability of two-arm (M-SM) chromosomes: large, medium-sized, and small ones, with their respective karyotype numbers assigned. This allowed us to show the karyotype variability based on this feature. Besides, Table 2 also shows the previous study of the species by using different sequential staining methods for the chromosomes, thus making it possible to differentiate species with a similar chromosome formula.
Integrated data on the karyotypes, extent of their studies, and chromosome variability of the Russian Far Eastern bats are provided below.
2.1. Family Vespertilionidae Gray, 1821: common bats
2.1.1. Genus Myotis Kaup, 1829: mouse-eared bats
All
The amount and location of C-band in Eurasian
The genus

Figure 1.
Karyotype of
So, out of seven Far Eastern species,
2.1.2. Genus Plecotus Gray, 1866: Old World long-eared bats
The species of genus
There are two species of

Figure 2.
Karyotype of
G-staining, Q-banding, and Zoo-FISH of Siberian
So, all
2.1.3. Genus Barbastella Gray, 1821: barbastelles
Karyotype of
There is only one species of genus
2.1.4. Genus Pipistrellus Kaup, 1829: pipistrelles
The genus
There is one pipistrelles species inhabiting the Russian Far East, i.e.,
The distributional pattern of NORs is interstitial (intNORs). The large NOR was located in secondary constriction (SC) of five metacentric pairs consisting of 14 and 7 autosomal pairs of
The intraspecific variations of sex chromosomes in karyotype of especially
High intraspecific variability of heterochromatic material seems to be specific of the
Valid species | Formerly named in sources | |||||||
---|---|---|---|---|---|---|---|---|
Europe | Siberia | Russian Far East | Northeast Asia | |||||
E | No | No | J | |||||
No | FE | J | ||||||
No | No | J | ||||||
E | – | FE | J K | |||||
E | No | FE | K | |||||
No | ||||||||
E | No | No | K | |||||
S | FE | |||||||
E | S | FE | J | |||||
No | No | |||||||
No | J | |||||||
No | J C K | |||||||
E | S | FE | no | |||||
No | FE | J | ||||||
E | FE | K | ||||||
E | No | FE | J | |||||
No | J | |||||||
S | FE | J | ||||||
E | No | J C T M |
Valid species | Species named in sources | Reg | 2n | NFa | M-SM (large + medium + small) | ST | A | X | Y | NOR | Diff. stain. | N | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vespertilionidae Gray 1821—common bats | |||||||||||||
J | 44 | 50 | 3 + 0 + 1 | – | 17 | SM | – | – | C | 1f | [41] | ||
J | 44 | 50 | 3 + 0 + 1 | – | 17 | M | A | 11 cmc | C, G | 1m | [43] | ||
J | 44 | 52 | 5 + 0 + 0 | – | 16 | SM | A | – | – | 1m | [52] | ||
J | 44 | 52 | 3 + 0 + 2 | – | 16 | SM | A | – | – | 2m 1f | [53] | ||
J | 44 | 50 | 3 + 0 + 1 | – | 17 | SM | A | – | C, G | 10m 14f | [41] | ||
J | 44 | 50 | 3 + 0 + 1 | – | 17 | M-SM | – | – | C, G, Q | 5m 3f | [54] | ||
FE | 44 | 50 | 3 + 0 + 1 | – | 17 | SM | – | – | – | 1f | [47] | ||
J | 44 | 52 | 3 + 0 + 2 | – | 16 | M | A | 5 cmc | G | 2m 1f | [43] | ||
J | 44 | 50 | 3 + 0 + 2 | – | 16 | SM | A | – | C, G | 6m | [41] | ||
J | 44* | 50 | – | – | – | M-SM | SM | – | С | – | [55] | ||
J | 44 | 50 | 3 + 0 + 1 | – | 17 | M-SM | – | – | C, G, Q | 3m 4f | [54] | ||
J | 44 | 52 | 3 + 0 + 2 | – | 16 | M | ST | 13 cmc | C, G | 3m 4f | [43] | ||
FE | 44 | 50 | 3 + 0 + 1 | – | 17 | M | A | – | – | 1m | [46] | ||
J | 44 | 52 | 3 + 0 + 2 | – | 16 | SM | A | – | – | 2m 2f | [53] | ||
J | 44 + B | 52 | 3 + 0 + 2 | – | 16 | SM | A | – | – | 5m 5f | [56] | ||
K | 44 | 50 | 3 + 0 + 1 | – | 17 | SM | A | – | – | 2m 3f | [57] | ||
J | 44 | 52 | 3 + 0 + 2 | – | 16 | SM | A | – | C, G | 4m 6f | [41] | ||
J | 44 | 50 | 3 + 0 + 1 | – | 17 | M-SM | – | – | C, G, Q | 8m 2f | [55] | ||
J | 44 | 52 | 3 + 0 + 2 | – | 16 | M-SM | SM | – | C | – | [54] | ||
K | 44 | 52 | 3 + 0 + 2 | – | 16 | M-SM | M-SM | – | – | 5m | [58] | ||
J | 44 | 52 | 3 + 0 + 2 | – | 16 | M | A | 6 cmc | G | 7m 5f | [43] | ||
FE | 44* | 50 | 3 + 0 + 1 | – | 17 | M | A | – | – | 1m 2f | [47] | ||
K | 44 | 52 | 3 + 0 + 2 | – | 16 | M | A | – | – | 2m | [58] | ||
S | 44* | 50 | 3 + 0 + 1 | – | 17 | M | A | – | – | 2m | [47] | ||
FE | 44* | 50 | 3 + 1 + 0 | – | 17 | M | A | – | – | 1m 1f | [48] | ||
K | 44 | 50 | 3 + 0 + 1 | – | 17 | M-SM | A | – | – | 2m | [58] | ||
FE | 32 | 50 | 9 + 0 + 1 | – | 5 | SM | – | 4 | С | 1f | [47] | ||
S | 32 | 50 | 9 + 0 + 1 | – | 5 | SM | A | – | G, Q, FISH | 1m | [51] | ||
FE | 32 | 50 | 9 + 0 + 1 | – | 5 | SM | A | – | – | 1m | [49] | ||
J | 32 | 50 | 9 + 0 + 1 | – | 5 | SM | A | – | – | 2f | [53] | ||
J | 32* | – | – | – | – | – | – | – | – | 1m 1f | [59] | ||
J | 32 | 50 | 9 + 0 + 1 | – | 5 | M | A | 4 cmc | G | 1m 3f | [43] | ||
J | 32 | 50 | 10 | – | 5 | SM | А | – | – | 1m | [60] | ||
J | 32 | 50 | 10 | – | 5 | SM | A | – | – | – | [61] | ||
J | 32 | 50 | 9 + 0 + 1 | – | 5 | M | A | 5 cmc | G | 2m 1f | [43] | ||
J | 26 | 44 | 6 + 4 + 0 | – | 2 | A | M | – | – | 2m | [52] | ||
J | 26 | 44 | 6 + 4 + 0 | – | 2 | A | A | – | – | 3f | [53] | ||
J | 26 | 44 | 6 + 4 + 0 | – | 2 | A | A | G | 4m 3f | [62] | |||
J | 26* | – | – | – | – | – | – | – | – | 1m 1f | [59] | ||
J | 26 | 44 | 10 + 0 + 0 | – | 2 | A | A | – | C | – | [55] | ||
J | 26 | 44 | 6 + 4 + 0 | – | 2 | ST | – | – | C, G, Q | 3m 7f | [54] | ||
K | 26 | 44 | 8 + 0 + 0 | 2 | 2 | A | A | – | – | 1m | [58] | ||
J | 26 | 44 | 10 + 0 + 0 | – | 2 | A | A | 1 int | C, G | 7m 3f | [43] | ||
C | 26 | 44 | 10 + 0 + 0 | – | 2 | A | A | – | C, G | 9m 6f | [63] | ||
C | 26 | 44 | 10 + 0 + 0 | – | 2 | A | A | – | – | 2m 2f | [64] | ||
C | 26 | 44 | 10 + 0 + 0 | – | 2 | A | A | – | C, G | 1m 7f | [65] | ||
S | 38 | 50 | 6 + 0 + 1 | – | 11 | M | A | – | – | 2m | [35] | ||
E | 38 | 50 | 6 + 0 + 1 | – | 11 | M | – | – | G, Q | 1m 1f | [66] | ||
E | 38* | 50 | – | – | – | – | – | 2 int | – | 1m | [42] | ||
FE | 38* | 50 | 6 + 0 + 1 | – | 11 | M | – | – | – | 1f | [47] | ||
S | 38 | 50 | 6 + 0 + 1 | – | 11 | M | A | – | G, Q, FISH | 1m | [51] | ||
FE | 38 | 50 | 6 + 0 + 1 | – | 11 | M | A | – | – | 1m 1f | [49] | ||
FE | 38 | 50 | 6 + 0 + 1 | – | 11 | M | A | – | – | 3m 2f | [35] | ||
J | 38 | 50 | 6 + 0 + 1 | – | 11 | SM | A | – | – | – | [61] | ||
J | 38 | 50 | 6 + 0 + 1 | – | 11 | SM | A | – | C | 3m 7f | [67] | ||
J | 38 | 50 | 6 + 0 + 1 | – | 11 | M-SM | A | – | C | – | [55] | ||
J | 38 | 54 | 6 + 0 + 3 | – | 9 | SM | Dot | – | C, G | 5m 5f | [68] | ||
3m 5f | |||||||||||||
FE | 38* | 50 | 6 + 0 + 1 | – | 11 | M | A | – | – | 2m 2f | [47] | ||
J | 38 | 50 | 6 + 0 + 1 | – | 11 | M | A | 2 int | G | 3m 5f | [43] | ||
J | 38 | 50 | 6 + 0 + 1 | – | 11 | M | A | – | C, T, Q, FISH | 1m | [69] | ||
K | 44 | 50 | 3 + 0 + 1 | – | 17 | M | – | – | – | 2f | [57] | ||
FE | 44* | 50 | 3 + 0 + 1 | – | 17 | M | – | – | – | 1f | [47] | ||
K | 44 | 50 | 3 + 0 + 1 | – | 17 | M-SM | A | – | – | 3m | [58] | ||
J | 50 | 48 | – | – | – | – | – | – | – | 1f | [59] | ||
E | 50* | 48 | – | – | 24 | – | – | – | – | – | [70] | ||
FE | 50 | 48 | – | – | 24 | M | – | 1 int | С | 2f | [47] | ||
J | 50 | 48 | – | – | – | – | – | – | – | – | [71] | ||
J | 50 | 50 | – | 1 | 23 | M-SM | A | – | T, Q, FISH | 2m 1f | [69] | ||
FE | 50* | 48 | – | – | 24 | M | A | – | – | 1m 1f | [48] | ||
E | 50 | 48 | – | – | 24 | M-SM | – | 1 int | G | 1f | [44] | ||
J | 44 | 50 | 3 + 0 + 1 | – | 17 | M | A | – | – | 1m | [53] | ||
J | 44 | 58 | 3 + 0 + 1 | 4 | 13 | SM | A | – | – | – | [60] | ||
J | 44 | 56 | 3 + 0 + 1 | 3 | 14 | SM | A | – | C, G | 2m | [72] | ||
FE | 44 | 50 | 2 + 1 + 1 | – | 17 | SM | A | – | – | 1m | [47] | ||
S | 44 | 56 | 3 + 0 + 1 | 3 | 14 | SM | A | – | G, Q, FISH | 1m | [51] | ||
J | 44 | 60 | 3 + 0 + 2 | 4 | 12 | SM | A | – | – | – | [61] | ||
J | 44 | 50 | 3 + 0 + 1 | – | 17 | M | A | – | – | 1m | [59] | ||
J | 44 | 56 | 3 + 0 + 1 | 3 | 14 | SM | A | – | C, G | 1m 1f | [72] | ||
J | 44 | 56 | 3 + 0 + 1 | 3 | 14 | – | – | num. cmc | – | 1m 2f | [43] | ||
Miniopteridae Dobson 1835—Bent-winged Bats | |||||||||||||
J | 46 | 52 | 2 + 1 + 1 | – | 18 | SM | A | – | – | 3m 1f | [73] | ||
J | 46 | 52 | 2 + 1 + 1 | – | 18 | SM | A | – | – | 8m 6f | [53] | ||
M | 46 | 50 | 2 + 0 + 1 | – | 19 | SM | A | – | – | 1m 1f | [74] | ||
T | 46 | 52 | 2 + 1 + 0 | 1 | 18 | SM | A | – | – | 2m | [70] | ||
J | 46 | 50 | 2 + 0 + 1 | – | 19 | M | A | 1cmc 1int | G | 1m 1f | [43] | ||
T | 46 | 50 | 2 + 0 + 1 | – | 19 | SM | A | – | – | 1f | [75] | ||
C | 46 | 50 | 2 + 0 + 1 | – | 19 | SM | A | – | G, FISH | – | [76] | ||
C | 46 | 50 | 2 + 1 + 0 | – | 19 | SM | – | – | C, G | 1f | [77] | ||
C | 46 | 50 | 2 + 1 + 0 | – | 19 | SM | A | – | – | 1m | [65] |
Table 2.
Far Eastern bats karyological data.
The chromosome image is not shown at the sources; “–“, no data.
2n | NFa | No. chromosomal arms | Reg. | Ref. | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||||||
26 | 44 | + | + | + | + | + | + | + | ○ | ○ | ○ | + | ○ | + | ● | J | [55] |
26 | 44 | + | + | + | + | + | ○ | ○ | ○ | ○ | + | + | ○ | + | – | J | [54] |
26 | 44 | + | + | + | + | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | – | J | [43] |
26 | 44 | + | + | + | + | + | ○ | + | ○ | + | + | + | + | + | ● | C | [63] |
26 | 44 | + | + | + | + | ○ | ○ | ○ | ○ | ○ | + | + | ○ | + | – | C | [65] |
Table 3.
Intraspecific variations of heterochromatic material in karyotypes of
The
2.1.5. Genus Vespertilio Linnaeus, 1758: particolored bats
All specimens of genus

Figure 3.
Karyotype of
2n | NFa | No. chromosomal arms | Ref. | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1/2 | 3/4 | 5/6 | 13/7 | 11/8 | 9/ 10 | 16/ 17 | 12 | 14 | *15 | 18 | 19 | 20 | 21 | 22 | *23 | 24 | 25 | |||||
38 | 50 | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | int | + | + | + | + | + | + | ● | ● | + | ● | [67] |
38 | 50 | ○ | ○ | + | ○ | + | ○ | + | + | + | + | ○ | + | + | + | + | + | ● | ● | + | ● | [55] |
38 | 54 | + int | + | + int | + | + | + | + | + | + | + int | + | + | + | + | + | + | ● | ● | + | ● | [68] |
38 | 50 | + | + | + int | + int | + | + | + | + | ○ | + int | + | + | + | + | + | + | ● | ● | + | ● | [69] |
Table 4.
Intraspecific variations of heterochromatic material in karyotypes of Japanese
The localization of telomeric sequences (TTAGGG)n was described by FISH for
While the chromosome characteristics of
2.1.6. Genus Hypsugo Kolenati, 1856: high pipistrelles
The diploid number and fundamental number of genus
There is only one
2.1.7. Genus Eptesicus Rafinesque, 1820: serotines
Karyotypes of all autosomes belonging to
There is only one

Figure 4.
Karyotype of
The amount and location of heterochromatic material in karyotype was described for
The chromosome characteristics of
2.1.8. Genus Murina Gray, 1842: tube-nosed bats
The karyotypes of tube-nosed bats do not differ from 2n = 44 [72, 80, 81], while NFa varies from 50 to 60 probably due to subtelocentric pairs produced by the pericentric inversions [7, 71, 79]. The distributional pattern of NORs is cmcNORs [43, 80]. There are two
The amount and location of heterochromatic material in
Karyotype of one specimen from Primorsky Velican cave (the Russian Far East) was clearly different from other
The amount and location of heterochromatic material in karyotype were shown for
The location of structural heterochromatin of
2.2. Family Miniopteridae Dobson, 1875: bent-winged bats
2.2.1. Genus Miniopterus Bonaparte, 1837: bent-winged bats
Karyotypes of bent-winged bats are clearly different from standard
There is one species of the monotypic family Miniopteridae found in the Russian Far East that is
The
One cmcNORs was shown to be located on 20 autosomal pair and one intNOR is located on chromosome 23 in the
So,
3. Conclusion
For the first time, the references’ analysis undertaken enabled us to demonstrate the extent of chromosome characteristics studied for bats from the Russian Far East. It also illustrated the nature of the intrageneric and intraspecific chromosome variability of the bats from the Russian Far East.
The data available enable us to suggest
Thus, one might make a conclusion that karyotypes of the majority bats from the Russian Far East and Siberia still remain to be studied. The bats from Northeastern Asia and Europe have their bats’ chromosome characteristics somewhat more fully explored, though we still have considerable gaps in our knowledge of karyotypes for certain bats’ species.
Acknowledgments
The reported study was funded by the Russian Foundation for Basic Research according to the research project № 18-34-00285.
References
- 1.
Strelkov PP. The crisis of the polytypic species concept as illustrated by the genus Plecotus . Plecotus et al. 2006;9 :3-7 - 2.
Tiunov MP. Bats of the Russian Far East. Vladivostok: Dal’nauka Press; 1997. 134 pp - 3.
Kruskop SV. Towards the taxonomy of the Russian Murina . Russian Journal of Theriology. 2005;4 (2):135-140. DOI: 10.15298/rusjtheriol.4.2.01 - 4.
Bulkina TM, Kruskop SV. Search for morphological differences between genetically distinct brown long-eared bats ( Plecotus auritus s. lato, Vespertilionidae). Plecotus et al. 2009;11-12 :3-13 - 5.
Matveev VA, Kruskop SV, Kramerov DA. Revalidation of Myotis petax Hollister, 1912 and its new status in connection withM. daubentonii (Kuhl, 1817) (Vespertilionidae, Chiroptera). Acta Chiropterologica. 2005;7 (1):23-37. DOI: 10.3161/1733-5329(2005)7[23:ROMPHA]2.0.CO;2 - 6.
Spitzenberger F, Strelkov PP, Winkler H, Haring E. A preliminary revision of the genus Plecotus (Chiroptera, Vespertilionidae) based on genetic and morphological results. Zoologica Scripta. 2006;35 (3):187-230. DOI: 10.1111/j.1463-6409.2006.00224.x - 7.
Volleth M, Heller KG. Phylogenetic relationships of vespertilionid genera (Mammalia: Chiroptera) as revealed by karyological analysis. Zeitschrift für Zoologische Systematik und Evolutionsforschung. 1994; 32 :11-34. DOI: 10.1111/j.1439-0469.1994.tb00467.x - 8.
Kearney TC, Volleth M, Contrafatto G, Taylor PG. Systematic implications of chromosome GTG-band and bacula morphology for southern African Eptesicus andPipistrellus and several other species of Vespertilioninae (Chiroptera: Vespertilionidae). Acta Chiropterologica. 2002;4 (1):55-76. DOI: 10.3161/001.004.0107 - 9.
Volleth M, Son NT, Wu Y, Li Y, Yu W, Lin LK, Arai S, Trifonov V, Liehr T, Harada M. Comparative chromosomal studies in Rhinolophus formosae andR. luctus from China and Vietnam: Elevation ofR. l. lanosus to species rank. Acta Chiropterologica. 2017;19 (1):41-50. DOI: 10.3161/15081109ACC2017.19.1.003 - 10.
Maeda K. Review on the classification of little tube-nosed bats, Murina aurata, group. Mammalia. 1980;44 (4):531-551. DOI: 10.1515/mamm.1980.44.4.531 - 11.
Horaček I, Hanak V. Comments on the systematics and phylogeny of Myotis nattereri (Kuhl, 1818). Myotis. 1984;21-22 :20-29 - 12.
Yoshiyuki M. A Systematic Study of the Japanese Chiroptera. Tokyo: National Science Museum; 1989. p. 242 - 13.
Horaček I. Status of Vesperus sinensis Peters, 1880 and remarks on the genus Vespertilio. Vespertilio. 1997;2 :59-72 - 14.
Horaček I, Hanak V, Gaisler J. 2000. Bats of the Palearctic : A taxonomic and biogeographic review. In: Proceedings of the 8th European Bat Research Symposium (EBRS'00); January 2000; Krakow. Krakow: Institute of Systematics and Evolution of Animals PAS; 2000. pp. 11-157. DOI: 10.13140/2.1.4099.2643 - 15.
Kawai K, Nikaido M, Harada M, Matsumura S, Lin LK, Wu Y, Hasegawa M, Okada N. The status of the Japanese and east Asian bats of the genus Myotis (Vespertilionidae) based on mitochondrial sequences. Molecular Phylogenetics and Evolution. 2003;28 (2):297-307. DOI: 10.1016/S1055-7903(03)00121-0 - 16.
Tian L, Liang B, Maeda K, Metzner W, Zhang S. Molecular studies on the classification of Miniopterus schreibersii (Chiroptera: Vespertilionidae) inferred from mitochondrial cytochrome b sequences. Folia Zoologica. 2004;3 (53):303-311 - 17.
Kawai K, Kondo N, Sasaki N, Fukui D, Dewa H, Satô M, Yamaga Y. Distinguishing between cryptic species Myotis ikonnikovi andM. brandtii gracilis in Hokkaido, Japan: Evaluation of a novel diagnostic morphological feature using molecular methods. Acta Chiropterologica. 2006;8 (1):95-102. DOI: 10.3161/1733-5329(2006)8[95:DBCSMI]2.0.CO;2 - 18.
Benda P, Dietz C, Andreas M, Hotovy J, Lucan RK, Maltby A, Meakin K, Truscott J, Vallo P. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean and Middle East. Part 6. Bats of Sinai (Egypt) with some taxonomic, ecological and echolocation data on that fauna. Acta Societatis Zoologicae Bohemicae. 2008; 72 :3-103 - 19.
Artyushin IV, Bannikova AA, Lebedev VS, Kruskop SV. Mitochondrial DNA relationships among North Palaearctic Eptesicus (Vespertilionidae, Chiroptera) and past hybridization between Common Serotine and Northern Bat. Zootaxa. 2009;2262 :40-52. DOI: 10.11646/zootaxa.2262.1.2 - 20.
Kruskop SV, Borisenko AV, Ivanova NV, Lim BK, Eger JL. Genetic diversity of northeastern Palaearctic bats as revealed by DNA barcodes. Acta Chiropterologica. 2012; 14 (1):1-14. DOI: 10.3161/150811012X654222 - 21.
Ruedi M, Csorba G, Lin LK, Chou CH. Molecular phylogeny and morphological revision of Myotis bats (Chiroptera: Vespertilionidae) from Taiwan and adjacent China. Zootaxa. 2015;3920 (1):301-342 - 22.
Kruskop SV. Order Chiroptera. In: Pavlinov IY, Lissovsky AA, editors. The Mammals of Russia: A Taxonomic and Geographic Reference. Moscow: KMK Sci. Press; 2012. 604 p - 23.
Tiunov MP. Distribution of the bats in Russian Far East (Problems and questions). In: Proceedings of the Japan-Russia Cooperation Symposium on the Conservation of the Ecosystem; 2011; Okhotsk. Sapporo. 2011. pp. 359-369 - 24.
Vorontsov NN. The importance of chromosomal sets for mammalian taxonomy. Bulletin of the Moscow Society of Naturalists. 1958; 6 (2):5-36 - 25.
Matthey R. The chromosome formulae of eutherian mammals. In: Cytotaxonomy and Vertebrate Evolution. London: Academic Press; 1973. pp. 531-616 - 26.
Korablev VP. Localization of nucleolar organizer regions in mammals. In: Questions of Evolutionary Zoology and Mammalian Genetics. Vladivostok. 1987. pp. 37-44 - 27.
Sánchez A, Burgos M, Jiménez R, Díaz de la Guardia R. Variable conservation of nucleolus organizer regions during karyotypic evolution in Microtidae. Genome. 1990; 33 (1):119-122 - 28.
Boeskorov GG, Kartavtseva IV, Zagorodnyuk IV, Belyanin AN, Lyapunova EA. Nucleolus organizer regions and B-chromosomes of wood mice (Mammalia, Rodentia, Apodemus). Russian Journal of Genetics. 1995; 31 (2):185-192 - 29.
Kartavtseva IV. Karyosystematics of Wood and Field Mice (Rodentia: Muridae). Vladivostok: Dal’nauka Press; 2002. 144 p - 30.
Hsu TC, Arrighi FE. Distribution of constitutive heterochromatin in mammalian chromosomes. Chromosoma. 1971; 34 (3):243-253. DOI: 10.1007/BF00286150 - 31.
White MJD. Animal Cytology and Evolution. 3rd ed. Cambridge: Cambridge University Press; 1973. 961 p - 32.
Prokofyeva-Belgovskaya AA. Heterochromatic regions of chromosomes: Structure and functions. Biology Bulletin Reviews. 1977; 38 (5):735-757 - 33.
Prokofyeva-Belgovskaya AA. Heterochromatic Regions of Chromosomes. Moscow: Nauka; 1986. 431 p - 34.
Korobitsyna KV, Korablev VP. The intraspecific autosome polymorphism of Meriones tristrami Thomas, 1892 (Gerbillinae, Cricetidae, Rodentia). Genetica. 1980;52-53 (1):209-221. DOI: 10.1007/BF00121829 - 35.
Vorontsov NN, Radjabli SI, Volobuev VT. The comparative karyology of the vespertilionid bats, Vespertilionidae (Chiroptera). In: Vorontsov NN, editor. The Mammals (Evolution, Karyology, Taxonomy, Fauna). Novosibirsk: Nauka Press; 1969. pp. 16-21 - 36.
Baker RJ. Karyotypic trends in bats. In: Biology of Bats. Vol. 1. New York: Academic Press; 1970. pp. 65-95 - 37.
Baker RJ, Bickham JW. Karyotypic evolution in bats: Evidence of extensive and conservative chromosomal evolution in closely related taxa. Systematic Zoology. 1980; 29 (3):239-253. DOI: 10.1093/sysbio/29.3.239 - 38.
Baker RJ, Qumsiyeh MB, Hood CS. Role of chromosomal banding patterns in understanding mammalian evolution. In: Genoways HH, Current Mammalogy. Boston: Springer; 1987. pp. 67-96. DOI: 10.1007/978-1-4757-9909-5_2 - 39.
Volleth M, Heller KG. Variations on a theme: Karyotype comparison in Eurasian Myotis species and implications for phylogeny. Vespertilio. 2012;16 :329-350 - 40.
Bickham JW. Banded karyotypes of 11 species of American bats (genus Myotis ). Cytologia. 1979;44 :789-797. DOI: 10.1508/cytologia.44.789 - 41.
Harada M, Yoshida TH. Karyological study of four Japanese Myotis bats (Chiroptera, Mammalia). Chromosoma (Berlin). 1978;65 :283-291. DOI: 10.1007/BF00327623 - 42.
Volleth M. Differences in the location of nucleolus organizer regions in European vespertilionid bats. Cytogenetics and Cell Genetics. 1987; 44 :186-197. DOI: 10.1159/000132371 - 43.
Ono T, Obara Y. Karyotypes and Ag-NOR variations in Japanese vespertilionid bats (Mammalia: Chiroptera). Zoological Science. 1994; 11 (3):473-484 - 44.
Volleth M, Bronner G, Gopfert MC, Heller KG, von Helversen O, Yong HS. Karyotype comparison and phylogenetic relationships of Pipistrellus -like bats (Vespertilionidae; Chiroptera; Mammalia). Chromosome Research. 2001;9 :25-46. DOI: 10.1023/A:1026787515840 - 45.
Volleth M, Heller KG, Fahr J. Phylogenetic relationships of three “Nycticeiini” genera (Vespertilionidae, Chiroptera, Mammalia) as revealed by karyological analysis. Mammalian Biology—Zeitschrift für Säugetierkunde. 2006; 71 (1):1-12. DOI: 10.1016/j.mambio.2005.09.001 - 46.
Volobuev VT, Strelkov PP. The karyotypes identity in the genus Myotis . Russian Journal of Zoology. 1971;4 (12):1892-1894 - 47.
Korablev BP, Yakimenko LV, Tiunov MP. Karyotypes of bats in the Russian far east. In: Kryukov AP, Chelomina GN, Pavlenko MV, editors. The Present-Day Approached to Studies of Variability: Collection of Scientific Papers. Vol. 1989. Vladivostok: The Far Eastern Branch Academy of Sciences of the USSR; 1989. pp. 95-98 - 48.
Kartavtseva IV, Dokuchayev NE. Studying chromosomes of two types of bats in Kamchatka. In: Proceedings of the Biological Diversity of Siberian Animals; 28-30 October 1998; Tomsk. Tomsk: Del’taplan; 1998. pp. 67-68 - 49.
Kartavtseva IV, Gorobeiko UV, Tiunov MP. The current status of chromosomal investigations of bats (Chiroptera) from the Russian far east. Russian Journal of Zoology. 2014; 93 (7):887-900. DOI: 10.7868/S0044513414070083 - 50.
Arslan A, Zima J. Karyotypes of the mammals of Turkey and neighbouring regions: A review. Folia Zoologica -Praha-. 2014; 63 (1):1-62. DOI: 10.25225/fozo.v63.i1.a1.2014 - 51.
Kulemzina AI, Nie W, Trifonov VA, Staroselec Y, Vasenkov DA, Volleth M, Yang F, Graphodatsky AS. Comparative chromosome painting of four Siberian Vespertilionidae species with Aselliscus stoliczkanus and human probes. Cytogenetic and Genome Research. 2011; 134 :200-205. DOI: 10.1159/000328834 - 52.
Tsuchiya K, Harada M, Yosida TH. Karyotypes of four species of bats collected in Japan. Annual Report of National Institute of Genetics (Japan). 1972; 2 :50-51 - 53.
Harada M. Chromosomes of nine chiropteran species in Japan. La Kromosomo. 1973; 91 :2885-2895 - 54.
Ando K, Harada M, Uchida TA. A karyological study on five Japanese species of Myotis andPipistrellus , with special attention to composition of their C-band materials. Journal of the Mammalogical Society of Japan. 1987;12 (1-2):25-29 - 55.
Ando K, Tagawa T, Uchida TA. The C-banding pattern of 6 Japanese species of vespertilionine bats (Mammalia: Chiroptera). Experientia. 1980; 36 :653-653. DOI: 10.1007/BF01970118 - 56.
Obara Y, Tomiyasu T, Saitoh K. Chromosome studies in the Japanese vespertilionid bats: I. Karyotypic variation in Myotis macrodactylus Temminck. Japanese Journal of Genetics. 1976;51 (3):201-206. DOI: 10.1266/jjg.51.201 - 57.
Park SR, Won PO. Chromosomes of Korean bats. Journal of the Mammalogical Society of Japan. 1978; 7 :199-203. DOI: 10.11238/jmammsocjapan1952.7.199 - 58.
Yoo DH, Yoon MH. A karyotypic study on six Korean vespertilionid bats. Korean. Journal of Zoology. 1992; 35 (4):489-496 - 59.
Tsuchiya K. A contribution to the chromosome study in Japanese mammals. Proceedings of the Japan Academy. 1979; 55B (4):191-195. DOI: 10.2183/pjab.55.191 - 60.
Uchida TA, Ando K. Karyotype analysis in Chiroptera (I): Karyotype of the eastern barbastelle , Barbastella leucomelas darjelingensis and comments on its phylogenetic position. Science Bulletin of the Faculty of Agriculture. Kyushu University. 1972;26 (1/4):393-398. DOI: 10.15017/23098 - 61.
Ando K, Tagawa T, Uchida TA. Considerations of karyotypic evolution within Vespertilionidae. Experientia. 1977; 33 :877-879. DOI: 10.1007/BF01951257 - 62.
Obara Y, Tomiyasu T, Saitoh K. Chromosome studies in the Japanese vespertilionid bats: G-banding pattern of Pipistrellus abramus Temminck. Proceedings of the Japan Academy. 1976;52 (7):383-386 - 63.
Lin LK, Motokawa M, Harada M. Karyological study of the house bat Pipistrellus abramus (Mammalia: Chiroptera) from Taiwan with comments on its taxonomic status. The Raffles Bulletin of Zoology. 2002;50 (2):507-510 - 64.
Wu Y, Harada M, Li Y. Karyology of seven species bats from Sichuan, China. Acta Theriologica Sinica. 2004; 4 (1):30-35 - 65.
Wu Y, Motokawa M, Li YC, Harada M, Chen Z, Lin LK. Karyology of eight species of bats (Mammalia: Chiroptera) from Hainan Island, China. International Journal of Biological Sciences. 2009; 5 :659-666. DOI: 10.7150/ijbs.5.659 - 66.
Volleth M. Chromosomal homologies of the genera Vespertilio ,Plecotus andBarbastella (Chiroptera: Vespertilionidae). Genetica. 1985;66 :231-236. DOI: 10.1007/BF00128044 - 67.
Obara Y, Saitoh K. Chromosome studies in the Japanese vespertilionid bats: IV. Karyotypes and C-banding pattern of Vespertilio orientalis . The. Japanese Journal of Genetics. 1977;52 (2):159-161. DOI: 10.1266/jjg.52.159 - 68.
Harada M, Ando K, Uchida TA, Takada S. Karyotypic evolution of two Japanese Vespertilio species and its taxonomic implication (Chiroptera: Mammalia). Caryologia. 1987;40 (3):175-184. DOI: 10.1080/00087114.1987.10797821 - 69.
Ono T, Yoshida MC. Differences in the chromosomal distribution of telomeric (TTAGGG)n sequences in two species of the vespertilionid bats. Chromosome Research. 1997; 5 :203-212. DOI: 10.1023/A:1018403215999 - 70.
McBee K, Bickham JW, Yehbutra S, Nabhitabhata J, Schlitter DA. Standard karyology of nine species of vespertilionid bats (Chiroptera: Vespertilionidae) from Thailand. Annals of Carnegie Museum. 1986; 55 (5):95-116 - 71.
Ono T, Yoshida MC. Banded karyotype of Eptesicus nilssonii parvus (Mammalia: Chiroptera). Chromosome Information Service. 1995;59 :9-21 - 72.
Harada M, Ando K, Uchida TA, Takada S. A karyological study on two Japanese species of Murina (Mammalia: Chiroptera). Journal of the Mammalogical Society of Japan. 1987;1-2 :15-23. DOI: 10.11238/jmammsocjapan1987.12.15 - 73.
Tsuchiya K. Chromosomes of two insectivorous bat species from Japan. Journal of the Mammalogical Society of Japan. 1971; 5 (3):114-116 - 74.
Harada M, Kobayashi T. Studies on the small mammal fauna of Sabah, East Malaysia. II. Karyological analysis of some Sabahan mammals. Contributions from the Biological Laboratory. 1980; 26 :83-95 - 75.
Lin LK, Motokawa M, Harada M. Karyology of ten vespertilionid bats (Chiroptera: Vespertilionidae) from Taiwan. Zoological Studies. 2002; 41 (4):347-354 - 76.
Ao L, Gu X, Feng Q, Wang J, O’Brien PC, Fu B, Mao X, Su W, Wang Y, Volleth M, Yang F, Nie W. Karyotype relationships of six bat species (Chiroptera, Vespertilionidae) from China revealed by chromosome painting and G banding comparison. Cytogenetic and Genome Research. 2006; 115 (2):145-153. DOI: 10.1159/000095235 - 77.
Li N, Ao L, He SY, Gu XM. G-bands and C-bands in 3 species of Vespertilionidae. Chinese Journal of Zoology. 2007; 42 (2):96-101 - 78.
Selezneva TA, Tiunov MP. Barbastella leucomelas (Cretzschmar, 1826)—A new species for the fauna of the Russian Far East. In: Proceedings of VIII Meeting of Theriological Society; 31 January—2 February 2007; Moscow. Moscow: KMK Scientific Press Ltd; 2007. p. 443 - 79.
Bickham J. Chromosomal variation and evolutionary relationships of vespertilionid bats. Journal of Mammalogy. 1979; 60 (2):350-363. DOI: 10.2307/1379807 - 80.
Volleth M. Karyotype analysis of Murina suilla andPhoniscus atrox from Malaysia (Chiroptera: Murininae, Kerivoulinae). Lynx (Praha). 2006;37 :275-284 - 81.
Son NT, Csorba G, Tu VT, Thong DV, Wu Y, Harada M, Oshida T, Endo H, Motokawa M. A new species of the genus Murina (Chiroptera: Vespertilionidae) from the Central Highlands of Vietnam with a review of the subfamily Murininae in Vietnam. Acta Chiropterologica. 2015;17 (2):201-232. DOI: 10.3161/15081109ACC2015.17.2.001 - 82.
Francis CM, Eger JL. A review of tube-nosed bats ( Murina ) from Laos with description of two new species. Acta Chiropterologica. 2012;14 (1):15-38. DOI: 10.3161/150811012X654231 - 83.
Wu Y, Motokawa M, Li YC, Harada M, Chen Z, Yu WH. Karyotype of Harrison’s tube-nosed bat Murina harrisoni (Chiroptera: Vespertilionidae: Murininae) based on the second specimen recorded from Hainan Island, China. Mammal Study. 2010;35 (4):277-279. DOI: 10.3106/041.035.0407 - 84.
Gu XM. The karyotypes of six species of bats from Guizhou. Chinese Journal of Zoology. 2006; 41 (5):112-116