Open access peer-reviewed chapter

Chemical Composition of Essential Oil of Genus Pimenta (Myrtaceae): Review

Written By

Billmary Zuleyma Contreras-Moreno

Submitted: 02 December 2017 Reviewed: 26 April 2018 Published: 26 September 2018

DOI: 10.5772/intechopen.78004

From the Edited Volume

Potential of Essential Oils

Edited by Hany A. El-Shemy

Chapter metrics overview

1,389 Chapter Downloads

View Full Metrics

Abstract

Myrtaceae Juss., the name derived from the genus Myrtus communis, is considered the eighth largest flowering plant family and of considerable importance on the ecological and economic area (by its production of essential oils). The species that belong to Myrtaceae with primarily tropical and subtropical distribution, with a greater diversity in the southern hemisphere, dispersed mainly in the regions of South America, Central America, Asia, East and Southwest of Australia and with a low representation in Africa. The Myrtaceae family includes more than 5500 species and approximately 150 genera, the genus Pimenta being one of the representatives of medicinal interest, which comprises 15 species (+6 varieties) located mainly in tropical America. Due to its economic and pharmacological importance, its best known species are Pimenta dioica and P. racemosa. Pimenta species can produce a volatile content of 1–5% from fresh leaves. To date, studies of this genus have been focused mainly on the content of volatile essences, used in formulation of cosmetics, analysis of chemical composition, and biological activities, such as antimicrobial, antioxidant, insecticidal, and anti-inflammatory activity, eugenol being the main compound responsible for their biological potential.

Keywords

  • essential oil
  • chemical composition
  • chemotypes
  • eugenol
  • Pimenta

1. Introduction

Plants are considered as one of the main natural resources of secondary metabolites for medicinal use, due to their biological potential, either to attack deadly diseases, endemics, or diseases that affect living beings, so, according to the World Health Organization, nearly 80% of the population in developing countries use them for their primary health-care needs, either because of cultural tradition or because there are no other options, due to the high cost of medicines for these populations [1].

The diverse nature of chemical compounds produced by species of the family Myrtaceae has allowed to locate it as one of the families of greater medicinal use, since some of its species are used to treat respiratory affections [2, 3, 4, 5], to strengthen the gums, pains of tooth [3], gastrointestinal disorders [4, 6], skin conditions and snake bites [4, 5, 6], for rheumatic or muscular pain, neuralgia, migraine, nervous system disorders, fevers, diseases of the urinary system, diabetes [2, 4, 6], help in job of childbirth [7], and from the economic point of view by their wood and as a producer of spices and essential oils [8].

Genus Pimenta, one of the representatives of this family, comprises 21 species including several varieties, is typical of tropical America [9, 10], is considered of medicinal and economic interest, and is rich in a structural variety of volatile substances such as monoterpenes, sesquiterpenes, and phenylpropenes (present in the essential oils), can generate from fresh leaves, a content of volatile essences between 1 and 5% [11, 12].

Essential oils derived from plants, obtained by hydrodistillation, steam distillation, or by extraction with organic solvents, are complex mixture that may contain between 20 and 100 volatile substances of low-molecular weight belonging to different chemical classes, which are presented as liposoluble liquids at room temperature, generally colorless or pale yellow, light, hydrophobic (soluble in alcohol, non-polar or weakly polar solvents, waxes, and oils), and easily oxidizable by exposure to air, light, and heat [13], and they can be biosynthesized in different parts of the plant anatomy (in the leaves, in the flowers, in the fruits, in the pericarp of the fruit, in the seeds, in the bark, and in the rhizomes, whether they are stored in oil glands, glandular hairs, or dissolved in resins) [13, 14].

Interest in essential oils in recent years is based on the versatility of its use in different industrial areas (pharmaceutical, food, health, cosmetics, and perfumery), not only on the possibility of obtaining aromatic compounds (pleasant odor) but in its application as antioxidants, food preservatives, and medicines, and its application as protectors of crops and plants, incorporating them into the packaging material of the products, being less toxic than the synthetic antioxidants of greater use [14, 15, 16] or incorporated in dermocosmetic formulations aimed at the treatment and prevention of skin diseases mediated by oxidative stress [15, 17]. This is the case of essential oil obtained from Pimenta racemosa var. racemosa, which, for its aroma and antioxidant and antimicrobial activity, has been incorporated in perfumes, creams, formulations of aftershave lotions, soaps and hair treatments, as antifungal treatment for aquarium waters and flavorings of foods and products of confectionery, making it a very valuable ingredient for the cosmetic, pharmaceutical, and food industry [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].

Taking into account that essential oils represent a therapeutic alternative in natural products against several pathogens that threaten public health and individual health of patients, it would be interesting to establish for genus Pimenta, if the chemical composition of its volatile essences has among their major components chemotypes that can classify the oils of the different species that constitute it and be responsible for their biological potential. This chapter provides information on all documents on Pimenta species reported between 1921 and 2018 with chemical composition of essential oils.

Advertisement

2. Myrtaceae family

Myrtaceae Juss., the name derived from the genus Myrtus communis [26], which comes from the Mediterranean region [27], is considered within the angiosperms as one of the largest families in the world, occupying the eighth place of flowering plants and of considerable importance in the ecological and economic area (by its production of essential oils), corresponds to the subclass Rosidae and to the order Myrtales [28]; it contains more than 5500 species separated by taxonomists in two subfamilies, Psiloxyloideae and Myrtoideae, 17 tribes and approximately 150 genera [9, 29, 30, 31]; its species are often difficult to identify and classify, so a high probability of plants that still remain undescribed is estimated [32].

The species that belong to this family have a primarily tropical and subtropical distribution, with a greater diversity in the southern hemisphere, dispersed mainly in regions of South America, Central America, Asia, east and southwest of Australia, and with a low representation in Africa [8, 9, 16, 33], having mostly shrubs and trees predominantly woody, ericoids, with evergreen leaves. Venezuela has 20 native genera, five genera introduced with several species in cultivation [34], and about 246 species, of which 34 species (+2 varieties) are endemic to the country [35, 36].

This family is very old. It is believed that it originated in the Cretaceous period [31], diversifying widely over time from the most primitive forms of rainy and humid forests to specialized forms in semi-arid, very dry regions, highly influenced by seasonal changes [37]; its diverse nature of chemical compounds produced by species of the family Myrtaceae has allowed to locate it as one of the families of source of substances with pharmacological activities [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], as a producer of woods, spices, and essential oils [9].

Advertisement

3. Genus Pimenta

Genus Pimenta Lindley belongs to family Myrtaceae, subfamily Myrtoideae, and to Myrteae tribe, comprises 15 species (+6 varieties) [38], was described by John Lindley in 1821 as the type species “Pimenta officinalis.” Its name derives from the Latin pigmentum, “color” of the verb to paint, a name destined for spices, in association with the characteristics of the fruit of that type [40, 41]; it is characterized by fragrant shrubs or trees, with opposite leaves and glandular on both sides, simple hairs, more or less conspicuous collector nerve. Inflorescence in multiflora vertices, arranged in the upper armpits or subterminals, can have 3–15 flowers [9, 42]; its distribution is typical from tropical America [9, 38, 42, 43], being the majority of the species, native to the Caribbean and Central America, except the species P. pseudocaryophyllus(Gomes) Landrum LR, which is endemic from Brazil [39, 40, 44, 45]. In Venezuela, it is only represented by P. racemosa (Mill.) JW Moore (P. acris Kostel) and is distributed in Falcón, Federal District, Lara, Mérida, Nueva Esparta, Táchira, Sucre, and Zulia states [35].

The species of this genus are used in several countries including Barbados, Brazil, China, Cuba, Dominican Republic, England, Haití, India, Kerala, Mangalore, Mexico, Middle East, Taiwan, USA, and Venezuela [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56], in various areas, whether to build agricultural tools, houses, or living fences because of the resistance of its wood against termites, industrially for the production of condiments, flavors, perfumes, and cosmetics, or in the treatment of various pathologies of traditional medicine such as fever, rheumatism, toothache, abdominal pain, pneumonia, colds, pectoral angina, diarrhea, incontinence, stroke, anti-inflammatory, and analgesic properties [10, 12, 15, 57, 58, 59]. Among pharmacological effects reported for different Pimenta species include anticancer, antidermatophytic, antihemorrhagic bleeding, anti-inflammatory, antimicrobial, antimutagenic, antinociceptive, antioxidant, antipyretic, central nervous system depressant, cobra venom, hypoglycemic, hypotensive, inhibitor of histone acetyl transferase enzyme, inhibitor of enzyme histidine carboxylase, and insect repellent [10, 12, 15, 59].

Chemistry studies of Pimenta species have led to the identification of a variety of secondary metabolites of the type: tannins, phenolic compounds, flavonoids, and a structural variety of volatile substances such as monoterpenes, sesquiterpenes, and phenylpropenes (present in essential oils), which could generate a content of volatile essences from fresh leaves between 1 and 5% [12, 13]. Essential oils of P. racemosa can present characteristic, aromatic, and pleasant odors, due to their major components; for example, a lemon smell due to the neral/geranial content (72%), an aniseed odor due to the presence of methylchavicol/methyleugenol (81%), and clove odor due to the presence of chavicol/eugenol (73%) [60].

Furthermore, the best-known species of this genus, due to its economic and pharmacological importance, are P. dioica (L.) Merrill and P. racemosa (Mill.) J. W. Moore [40, 41].

Advertisement

4. Chemical composition of essential oils of the genus Pimenta

Essential oils, also called essences, volatile oils, or etheric oils [13, 61], are from a chemical point of view complex mixtures of volatile substances that comprise between 20 and 100 or more components at various concentrations; in general, there are two or three major compounds, which are in concentrations between 20 and 70% in comparison with the other components of the oil that may be present in lower amounts or even in traces [14]. They are described frequently only as a product of “vegetable raw materials” [61, 62]; this oils are lipophilic, usually odoriferous, yellow pale, or colorless when recently extracted and liquid at room temperature [61]; they are oxidized by exposure to air, light, and heat [13] and produced by the plants as defense mechanism, signaling, or as part of their secondary metabolism [61, 63, 64]; they can be biosynthesized in different parts of the plant anatomy (in the leaves, in the flowers, in the fruits, in the pericarp of the fruit, in the seeds, in the bark, and in the rhizomes, whether stored in glands of oils, glandular hairs, or dissolved in resins) [13, 14], and almost always, they are endowed with aromas pleasant as the case of species from genus Pimenta with aromas at lemon, anise, or clove [60].

The composition of essential oils contributes significantly to the determination of the pharmacological potential attributed to the plant species (indicated mainly by the major compounds) and is constantly being transformed, due to factors external to the biology of the plants (edaphic or environmental) and/or intrinsic to the biology of plants (physiological and genetic) [14, 65, 66].

Essential oils of Pimenta are characterized by the presence of monoterpenes, sesquiterpenes, and phenylpropanoids, and due to medicinal and economic interest, many researchers in different latitudes of the planet have been dedicated to carrying out studies to their chemical composition (Table 1), using basically three methods of extraction: steam distillation, hydrodistillation, and supercritical CO2 extraction, with gas chromatography coupled to mass spectrometry (GC-MS) as analysis technique.

Plant species (origin) Part of plant used Extraction method Main compounds (area %) Reference
P. adenoclada (Cuba) Leaves Hydrodistillation Caryophyllene oxide (15.4), α-muurolol (9.4), humulene epoxide II (7.6), trans-sabinol (5.6), β-pinene (5.3) [67]
P. dioica (Jamaica) Leaves Steam distillation Eugenol (66.38–79.24), β-caryophyllene (0.97–7.10) [68]
P. dioica (México) Berries Steam distillation Methyl-eugenol (48.3), myrcene (17.7), eugenol (17.3), β-caryophyllene (6.2) [69]
P. dioica (México) Berries Hydrodistillation Methyl-eugenol (62.7), myrcene (16.5), eugenol (8.3), 1,8-cineole (4.1) [69]
P. dioica (México) Berries Supercritical CO2 extraction Methyl-eugenol (67.9), eugenol (14.9), myrcene (6.0), β-caryophyllene (5.2) [69]
P. dioica (Cuba) Leaves Hydrodistillation Eugenol (34.14), 1,8-cineole (14.69), α-humulene (10.12), γ-cadinene (5.49) [70]
P. dioica (Australia) Leaves Supercritical CO2 extraction Eugenol (77.9), β-caryophyllene (5.1), squalene (4.1) [71]
P. dioica (Australia) Leaves Hydrodistillation Eugenol (45.4), β-caryophyllene (8.9), α-cadinol (5.9), α-humulene (5.4) [71]
P. dioica (Antilles) Leaves Commercial (Robert et Fils, Montréal, QC, Canada) Eugenol (47.78), myrcene (26.76), geraniol (10.40) [72, 73]
P. dioica (Jamaica) Leaves Commercial (Kurt Kitzing Co., Wallerstein, Germany, 800675) Eugenol (76.02), methyl eugenol (7.14), β-caryophyllene (6.47) [19]
P. dioica (Jamaica) Leaves Hydrodistillation Eugenol (79.81–83.68) [74]
P. dioica (Jamaica) Berries Commercial (Oshadhi Ltd., Cambridge, UK) Eugenol (86.44), β-caryophyllene (7.70), methyl eugenol (3.87) [75]
P. dioica (Jamaica) Leaves Commercial (Kurt Kitzing Co., Wallerstein, Germany, 800116) Eugenol (76.0) [76]
P. dioica Berries Steam distillation Methyl-eugenol (62.7), eugenol (8.3), 1,8-cineole (4.1) [77]
P. dioica (Brazil) Fruits Hydrodistillation Eugenol (76.98), β-pinene (6.52), limonene (4.09) [78]
P. dioica (Mexico) Fruits Hydrodistillation Methyl-eugenol (48.7), eugenol (16.3), myrcene (17.1) [79]
P. dioica (USA) Leaves Hydrodistillation Eugenol (62.1), methyl-eugenol (22.9) [80]
P. dioica (India) Leaves Hydrodistillation Eugenol (47.80–55.35) [81]
P. dioica (India) Leaves Hydrodistillation Eugenol (68.4), chavicol (10.4), methyl-eugenol (6.1), 1-octen-3-ol (2.7) [82]
P. dioica (México) Leaves Hydrodistillation Eugenol (94.86), α-terpineol (2.45) [83]
P. dioica (Sri Lanka) Leaves Hydrodistillation Eugenol (85.33), β-caryophyllene (4.36), 1,8-cineole (4.19) [84]
P. dioica (India) Fruits Commercial (Plant Lipids Ltd. India) Eugenol (35.42), methyl-eugenol (28.02), β-caryophyllene (8.66), β-Mirtsen (8.55), 1,8-cyneole (5.62) [85]
P. guatemalensis (Costa Rica) Leaf Hydrodistillation Eugenol (72.8), β-caryophyllene (8.2), terpinolene (3.0). [86]
P. guatemalensis (Costa Rica) Fruits Hydrodistillation Eugenol (74.7), caryophyllene oxide (3.3). [86]
P. haitiensis (Dominican Republic) Leaves Steam distillation Methyl-chavicol (11.65–41.10), 1,8-cineole (11.35–16.63), linalool (16.03–17.81), trans-anethol (6.76–8.70), methyl-eugenol (0.61–24.39), [87]
P. haitiensis (Dominican Republic) Leaves Hydrodistillation Methyl-chavicol (19.94–32.83), 1,8-cineole (17.62–33.14), linalool (15.97–16.32), methyl-eugenol (0–14.95), trans-anethole (4.66–8.50) [87]
P. jamaicensis (Jamaica) Leaves Steam distillation Eugenol (61.79), 1,8-cineole (43.94–49.43), α-terpineol (0.34–18.02), limonene (10.33), 4-terpineol (6.37–7.17), p-cymene (2.25–10.25), β-caryophyllene (5.77) [88]
P. obscura (Jamaica) Leaves Steam distillation 1,8-cineole (16.84–25.11), ρ-cymene (10.97–11.33), α-terpineol (6.71–8.13), limonene (5.31), β-eudesmol (5.29), 4-terpineol (4.92–9.80), α-phellandrene (6.33), Ledol (13.47), palustrol (7.64) [89]
P. pseudocaryophyllus var. pseudocaryophyllus (Brazil) Leaves Hydrodistillation Geranial (34.26), neral (27.85), linalol (5.18), geraniol (4.82), β-caryophyllene (4.40) [90]
P. pseudocaryophyllus (Brazil) Leaves (Cardoso isle) Hydrodistillation Eugenol (71.9) [91]
P. pseudocaryophyllus
(Brazil)
Leaves (Paranapiacaba) Hydrodistillation Methyl-eugenol (94.6) [91]
P. pseudocaryophyllus (Brazil) Leaves Hydrodistillation Eugenol (92.59) [92]
P. pseudocaryophyllus
(Brazil)
Leaves Hydrodistillation Chavibetol (70.9), methyl-eugenol (20.7), o-cymene (2.8) [93]
P. pseudocaryophyllus (Brazil) Leaves (Brazilian) Hydrodistillation (E)-methyl-isoeugenol (78.0–93.6), methyl-eugenol (3.1–18.1) [11]
P. pseudocaryophyllus (Brazil) Leaves (São Gonçalo do Abaeté) Hydrodistillation Geranial (36.5–47.2), neral (21.4–33.6), β-caryophyllene (0–6.1), caryophyllene oxide (0–13.5) [11]
P. pseudocaryophyllus (Brazil) Leaves Hydrodistillation Chavibetol (50.2–70.9), methyl-eugenol (15.4–20.7) [94]
P. pseudocaryophyllus (Brazil) Leaves Hydrodistillation Geranial (37.3–46.6), neral (25.8–28.7), spathulenol (0–6.1), caryophyllene oxide (0–5.5), β-caryophyllene (0–8.0), Bicyclogermacrene (0–5.7) [95]
P. pseudocaryophyllus (Brazil) Leaves Hydrodistillation (E)-methyl-isoeugenol (5.0–94.3), (β-caryophyllene (8.5–26.6), elemicin (5.8–11.7), δ-cadinene (0–9.2), α-copaene (0–5.7), (E)-asarone (0–65.5) [95]
P. pseudocaryophyllus (Brazil) Leaves (citral) Hydrodistillation Geranial (36.49), neral (27.59),
caryophyllene oxide (8.88)
[96]
P. pseudocaryophyllus (Brazil) Leaves Hydrodistillation (E)-methyl-isoeugenol (93.9) [96]
P. pseudocaryophyllus (Brazil) Leaves Commercial (Lazlo Aromatologia Ltda., Brazil) Eugenol (88.6), β-caryophyllene (4.8) [97]
P. racemosa Leaves Steam distillation Contenido de fenol (65–73) [98]
P. racemosa Leaves Commercial Eugenol (33.8), myrcene (21.3), 1,8-cineole (9.7), chavicol (8.9) [99]
P. racemosa (Colombia) Leaves Steam distillation Eugenol (96) [100]
P. racemosa Leaves (Bay) Steam distillation Eugenol (56.2), chavicol (21.6), myrcene (13.9) [101]
P. racemosa Leaves (anise) Steam distillation Methyl-eugenol (43.1), methyl-chavicol (31.6), myrcene (12.0) [101]
P. racemosa Leaves (lemon) Steam distillation Geranial (53.2), neral (32.6) [101]
P. racemosa Leaves Hydrodistillation Eugenol (56.9), myrcene (18.4), chavicol (12.2) [101]
P. racemosa Leaves Commercial Eugenol (45.5), myrcene (29.1), chavicol (12.0) [101]
P. racemosa (Jamaica) Leaves Commercial (Kurt Kitzing Co., Wallerstein, Germany, 800116) Eugenol (45.60), myrcene (24.97), chavicol (9.31) [20]
P. racemosa (Cuba) Leaves Hydrodistillation terpinen-4-ol (20.7), 1,8-cineole (20.4), eugenol (10.7), chavicol (10.1), α-terpineol (10.0), ρ-cymene (8.0) [102]
P. racemosa (Benin) Leaves Hydrodistillation Eugenol (55.7–61.9), myrcene (12.5–22.3), chavicol (8.0–15.3) [103]
P. racemosa (Jamaica) Leaves Commercial (Kurt Kitzing Co. Wallerstein, Germany, 800116) Eugenol (45.6) [76]
P. racemosa (Nigeria) Aerial part Hydrodistillation Germacrene D (10.6), β-elemene (8.8), germacreno A (7.3), selin-11-en-4-α-ol (6.3), δ-cadinene (5.9), β-caryophyllene (5.8), germacreno B (5.3), α-copaene (5.2) [22]
P. racemosa (Benin) Leaves Hydrodistillation Eugenol (52.7), myrcene (29.4), chavicol (9.3) [23]
P. racemosa (USA) Leaves Hydrodistillation Eugenol (64.0), myrcene (14.6) [80]
P. racemosa (India) Leaves Hydrodistillation Eugenol (72.9–92.9), myrcene (0–9.6), chavicol (0–7.7) [104]
P. racemosa (Jamaica) Leaves Hydrodistillation Eugenol (64), myrcene (14.6), chavicol (7.7), β-caryophyllene (4.9) [105]
P. racemosa var. racemosa (Dominican Republic) Leaves Steam distillation Eugenol (44.41–68.93), myrcene (0–16.17), chavicol (0–15.51), methyl-eugenol (0–11.88), β-caryophyllene (0–7.24) [106]
P. racemosa var. racemosa (Guadeloupe) Leaves (bay) Hydrodistillation Eugenol (56.1), chavicol (17.1), myrcene (6.4), linalool (6.0) [60]
P. racemosa var. racemosa (Guadeloupe) Leaves (lemon) Hydrodistillation Geranial (40.3), neral (31.7), limonene (5.3), myrcene (4.6) [60]
P. racemosa var. racemosa (Guadeloupe) Leaves (anise) Hydrodistillation Methyl-eugenol (48.1), methyl-chavicol (32.8), myrcene (12.8), linalol (6.0) [60]
P. racemosa var. racemosa (Benin) Leaves Hydrodistillation Eugenol (52.7), myrcene (26.6), chavicol (6.3) [107]
P. racemosa var. racemosa (Venezuela) Leaves Hydrodistillation Eugenol (48.7), limonene (13.6), 1,8-cineole (12.7) [108]
P. racemosa var. racemosa (Venezuela) Leaves (light oil) Hydrodistillation Eugenol (60.4) myrcene (11.7), chavicol (6.0), limonene (5.4), linalool (4.4) [12, 15, 59]
P. racemosa var. racemosa (Venezuela) Leaves (heavy oil) Hydrodistillation Eugenol (82.9), chavicol (9.3) [12, 15, 59]
P. racemosa var. grisea (Dominican Republic) Leaves Steam distillation Trans-methyl-isoeugenol (85.08–86.32), methyl-eugenol (0–92.60), geraniol (0–85.52) [106]
P. racemosa var. grisea (Dominican Republic) Leaves Hydrodistillation 4-metoxi-isoeugenol (75.23) [50, 109]
P. racemosa var. hispaniolensis (Dominican Republic) Leaves Steam distillation Methyl-eugenol (7.08–63.88), methyl-chavicol (5.13–22.61), 1,8-cineole (17.57–37.96), 4-terpineol (16.21–28.98), timol (0–44.02), γ-terpinene (0–16.67), ρ-cymene (0–8.59) [106]
P. racemosa var. ozua (Dominican Republic) Leaves Steam distillation 1,8-cineole (47.24–55.93), 4-terpineol (5.05–15.67), α-terpineol (6.68–15.12), limonene (9.32–30.07) [106]
P. racemosa var. terebinthina (Dominican Republic) Leaves Hydrodistillation α-Terpineol acetato (27.0), α-terpineol (20.0), 4-metoxi-eugenol (12.6), terpinen-4-ol (5.95) [50, 109]

Table 1.

Main compounds of essential oils from genus Pimenta (L).

The subsequent text is reflected in Table 1; the chemical composition for species of genus Pimenta is analyzed by GC-MS and reported in the study consulted from 1921 to the present. All the information collected was organized taking into account plant species, origin, part of plant used, extraction method, and main compounds (area %).

According to the data reported in Table 1, the important qualitative and quantitative differences in the chemical composition of the essential oils of genus Pimenta can be estimated; the leaves have been the most studied part of the plant, followed by fruits and aerial parts. The conventional technique and the most used was the hydrodistillation using Clevenger apparatus. Of all the known species from genus Pimenta in South America, only P. pseudocaryophyllus, P. racemosa, and P. dioica have been collected. GC/MS analysis demonstrated the presence of volatile compounds with a content higher than 20% (area peak), such as eugenol (P. dioica, P. haitiensis, P. jamaicensis, P. pseudocaryophyllus, and P. racemosa), methyleugenol (P. dioica, P. haitiensis, P. pseudocaryophyllus, P. racemosa, P. racemosa var. grisea, P. racemosa var. hispaniolensis, and P. racemosa var. racemosa), 1,8-cineole (P. dioica, P. haitiensis, P. jamaicensis, P. obscura, P. pseudocaryophyllus, P. racemosa, P. racemosa var. hispaniolensis, P. racemosa var. ozua, and P. racemosa var. racemosa), and myrcene (P. dioica, P. racemosa, P. racemosa var. hispaniolensis, and P. racemosa var. Racemosa). It can also be seen that these compounds are mainly derivatives of phenylpropanoids and monoterpenes.

Advertisement

5. Conclusions and future perspectives

According to the study, the analysis of the chemical composition of the essential oils of Pimenta species collected in 16 countries revealed a high content of phenolic compounds, highlighting eugenol and methyl-eugenol as the major constituents. When comparing the major compounds of the essential oils among the 12 analyzed species of genus Pimenta, it is evident that there are variations between different species and between the same species with different origin. In addition, taking into account that eugenol can be considered a chemotaxonomic marker for the species P. dioica, P. haitiensis, P. jamaicensis, P. pseudocaryophyllus, and P. racemosa and that essential oils with a high content of eugenol exhibit antimicrobial, antioxidant, and insecticide activities, it can be said that the essential oils of the genus Pimenta have a therapeutic potential for the treatment of many pathologies. Therefore, the economic importance of essential oils from genus Pimenta around the world is unquestionable.

References

  1. 1. Bermúdez A, Oliveira-Miranda MA, Velázquez D. La investigación etnobotánica sobre plantas medicinales: Una revisión de sus objetivos y enfoques actuales. Interciencia: Revista de Ciencia y Tecnología de América. 2005;30:453-459
  2. 2. Fonnegra RdeJ, Jiménez SL, Plantas medicinales aprobadas en Colombia. Colección Salud/Interés General. 2nd ed. Colombia: Universidad de Antioquia; 2007
  3. 3. Restrepo M, Romero P, Fraume NJ. Manual el milagro de las plantas, aplicaciones medicinales y orofaríngeas. Colombia: San Pablo: Fundación Hogares Juveniles Campesinos; 2005
  4. 4. Núñez E, Plantas medicinales de Puerto Rico: Folklore y fundamentos científicos. 1° ed. Puerto Rico: Universidad de Puerto Rico; 1982
  5. 5. Panda H, Herbs Cultivation and Medicinal Uses. 2nd ed. India: National Institute of Industrial Research; 1999
  6. 6. Vardhana R. Direct Uses of Medicinal Plants and their Identification. India: Sarup & Sons; 2008
  7. 7. Villavicencio MÁ, Pérez BE. Guía de la flora útil de la Huasteca y la zona Otomí-Tepehua, Hidalgo I. México: Universidad Autónoma del Estado de Hidalgo (UAEH); 2005
  8. 8. Heywood VH, Moore DM, Richardson IBK, Stearn WT. Las plantas con flores. España: Reverté, S.A.; 1985. pp. 157-158
  9. 9. Wilson PG. Myrtaceae. The families and genera of vascular plants. Flowering Plants. Eudicots. 2011;10:212-271
  10. 10. Contreras-Moreno BZ, Rojas VJ, Méndez L, Celis MT. Preliminary Phytochemical screen-ing of Pimenta racemosa var. racemosa (Myrtaceae) from Táchira–Venezuela. Pharmacology. 2014;2:252-259
  11. 11. de Paula JAM, de Paula JR, Freitas Bara MT, Ferri PH, Santos SC, Soares e Silva LH. Chemical differences in the essential oil of Pimenta pseudocaryophyllus (Gomes) L. R. Landrum leaves from Brazil. Journal of Essential Oil Research. 2010;22(6):555-557. DOI: 10.1080/10412905.2010.9700398
  12. 12. Contreras-Moreno B, Rojas J, Celis M, Rojas L, Méndez L, Landrum L. Componentes volátiles de las hojas de Pimenta racemosa var. racemosa (Mill.) JW Moore (Myrtaceae) de Táchira–Venezuela. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 2014;13:305-310
  13. 13. Djilani A, Dicko A. The therapeutic benefits of essential oils. In: Jaouad B, Torsten B, editors. Nutrition, Well Being and Health. 1st ed. Croatia: InTech; 2012. pp. 155-178
  14. 14. Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC. Essential oils loaded in nanosystems: A developing strategy for a successful therapeutic approach. Evidence-based Complementary and Alternative Medicine. 2014;2014:1-14. http://dx.doi.org/10.1155/2014/651593
  15. 15. Contreras-Moreno B, Díaz L, Celis MT, Rojas J, Méndez L, Levy-Rosenzweig P, On-tiveros J. Actividad antioxidante del aceite esencial de las hojas de Pimenta racemosa var. racemosa (Mill.). JW Moore (Myrtaceae) de Táchira-Venezuela Ciencia e Ingeniería. 2018;38:223-230
  16. 16. Vanegas V, Rueda Y. Estudio comparativo de la composición química del aceite esencial de Calycolpus moritzianus (Myrtaceae) proveniente de cinco regiones de Norte de Santander. Colombia. Bistua Revista de la Facultad de Ciencias Básicas. 2013;9:9-15
  17. 17. Rodríguez M, García D, García M, Pino J, Hernández L. Antimicrobial activity of Pimenta dioica. Alimentaria (Madrid). 1996;274:107-110
  18. 18. Weiss EA. Spice Crops. USA: CABI Publishing; 2002. pp. 131-132
  19. 19. Jirovetz L, Buchbauer G, Stoilova I, Krastanov A, Stoyanova A, Schmidt E. Spice plants: Chemical composition and antioxidant properties of Pimenta Lindl. essential oils, part 1: Pimenta dioica (L.) Merr. leaf oil from Jamaica. Nutrition-Vienna. 2007;31:55
  20. 20. Jirovetz L, Buchbauer G, Stoilova I, Krastanov A, Stoyanova A, Schmidt E. Spice plants: Chemical composition and antioxidant properties of Pimenta Lindl. essential oils, part 2: Pimenta racemosa (Mill.) JW Moore leaf oil from Jamaica. Nutrition-Vienna. 2007;31:293-300
  21. 21. Boning CR. Florida’s Best Herbs and Spices: Native and Exotic Plants Grown for Scent and Flavor. 1st ed. USA: Pineapple Press Inc; 2010. pp. 32-33
  22. 22. Ogundajo A, Owolabi MS, Oladosu IA, Ogunwande IA, Flamini G, Yusuff KO. Volatile constituents and potatoes tuber sprout suppressant activity of Pimenta racemosa (Mill) J.W. Moore. African Journal of Basic & Applied Sciences. 2011;3:92-97
  23. 23. Alitonou GA, Noudogbessi JP, Sessou P, Tonouhewa A, Avlessi F, Menut C, Sohounhloue DC. Chemical composition and biological activities of essential oils of Pimenta racemosa (Mill.) JW Moore. from Benin. International Journal of Biosciences. 2012;2:1-12
  24. 24. Apifishcare. PIMAFIX® [Internet]. 2015. Available from: http://www.apifishcare.com/product.php?id=630#.Vd4uifl_Oko [Accessed: 2015-08-26]
  25. 25. Poleo AG, Rojas JE, Natural product in cream with anti-vitiligo therapeutic properties. Eur. Pat. Appl. 2007:EP1747786-A2 20070131
  26. 26. Rojas-Rodríguez FE, Bermúdez-Cruz GE, Jiménez-Madrigal Q. Plantas ornamentales del trópico. Costa Rica: Editorial Tecnológica de Costa Rica. 2006. pp. 267, 336
  27. 27. Sytsma KJ, Litt A, Zjhra ML, Pires JC, Nepokroeff M, Conti E, et al. Clades, clocks, and continents: Historical and biogeographical analysis of Myrtaceae, Vochysiaceae, and relatives in the southern hemisphere. International Journal of Plant Sciences. 2004;165:S85-S105
  28. 28. USDA Plant DataBase. Myrtaceae [Internet]. 2012. Available from: http://plants.usda.gov/java/ClassificationServlet?source=display&classid=Myrtaceae.%20/ [Accessed: 2012-02-02]
  29. 29. Wilson PG, Mm O’b, Gadek PA, Quinn CJ. Myrtaceae revisited: A reassessment of infrafamilial groups. American Journal of Botany. 2001;88:2013-2025
  30. 30. Cheewangkoon R, Groenewald JZ, Summerell BA, Hyde KD, To-Anun C, Crous PW. Myrtaceae, a cache of fungal biodiversity. Persoonia. 2009;23:55-85
  31. 31. Biffin E, Lucas EJ, Craven LA, da Costa IR, Harrington MG, Crisp MD. Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae. Annals of Botany. 2010;106:79-93
  32. 32. Kew, Royal Botanical Garden. Myrtaceae. [Internet]. Available from: http://www.kew.org/science-research-data/directory/teams/myrtaceae/ [Accessed: 2012-02-02]
  33. 33. González CC. Arquitectura foliar de las especies de Myrtaceae nativas de la Argentina I: Grupos “Myrcia”, “Myrceugenia” y “Plinia”. Boletín de la Sociedad Argentina de Bo-tánica. 2011;46:41-63
  34. 34. Badillo V, Schnee L. Clave de las Familias de Plantas Superiores de Venezuela. 3rd ed. Caracas: Revista de la Facultad de Agronomía de la Universidad Central de Venezuela; 1972
  35. 35. Hokche O, Berry PE, Huber O editors. Nuevo Catálogo de la Flora Vascular de Venezuela. Caracas: Fundación Instituto Botánico de Venezuela Dr. Tobías Lasser; 2008
  36. 36. Rivero-Maldonado G, Pacheco D, Fuenmayor J, Sánchez-Urdaneta A, Quirós M, Ortega J, Bracho B, Taborda J. Análisis morfológico de especies de Psidium (MYRTACEAE) presentes en Venezuela. Revista de la Facultad de Agronomía de la Universidad del Zulia. 2012;29:72-103
  37. 37. Herrero JVI, Medina NNR, Alor MB, García MMO, Moreno AQ, Teyer LFS, et al. Microsatélites desarrollados en guayabo (Psidium guajava L.) y su utilidad para evaluar diversidad en la familia Myrtaceae. Revista Colombiana de Biotecnología. 2010;12:64-76
  38. 38. Theplantlist.org. Pimenta [Internet]. Available from: http://www.theplantlist.org/tpl1.1/search?q=pimenta [Accessed: 2013-20-02]
  39. 39. The New York Botanical Garden. Myrtaceae [Internet]. Available from: www.nybg.org/bsci/hcol/sebc/Myrtaceae.html [Accessed: 2013-02-05]
  40. 40. Landrum LR. Flora neotropica: Monograph 45. Campomanesia, Pimenta, Blepharocalyx, Legrandia, Acca, Myrrhinium, and Luma (Myrtaceae). New York: New York Botanical Garden for Organization for Flora Neotropica 179 p.-illus., maps. 1986. ISBN: 893273015
  41. 41. D’Angelis ASR, Negrelle RRB. Pimenta pseudocaryophyllus (Gomes) Landrum: Aspec-tos botânicos, ecológicos, etnobotânicos e farmacológicos. Revista Brasileira de Plantas Medicinais. 2014;16:607-617
  42. 42. Aristeguieta L. Familias y Géneros de los Arboles de Venezuela. In: Instituto Botánico de Venezuela, Dirección de Recursos Naturales Renovables. Ministerio de agricultura y Cría. Edición Especial. Caracas: Instituto Botánico de Venezuela; 1973
  43. 43. Discoverlife. Pimenta [Internet]. Available from: http://www.discoverlife.org/mp/20m?kind=Pimenta [Accessed: 2014-01-18]
  44. 44. Landrum LR, Kawasaki ML. The genera of Myrtaceae in Brazil: An illustrated synoptic treatment and identification keys. Brittonia. 1997;49:508-536
  45. 45. Paula JAM, Reis JB, Ferreira LHM, Menezes AC, Paula JR. Gênero Pimenta: Aspectos botânicos, composição química e potencial farmacológico. Revista Brasileira de Plantas medicinales. 2010;12:363-379
  46. 46. Flores KE, Quinlan MB. Ethnomedicine of menstruation in rural Dominica, West Indies. Journal of Ethnopharmacology. 2014;53:624-634
  47. 47. Wu M, Guo P, Tsui SW, Chen H, Zhao Z. An ethnobotanical survey of medicinal spices used in Chinese hotpot. Food Research International. 2012;48:226-232
  48. 48. Jiang ZT, Feng X, Li R, Wang Y. Composition comparison of essential oils extracted by classical hydro distillation and microwave-assisted Hydrodistillation from Pimenta dioica. Journal of Essential Oil Bearing Plants. 2013;16:45-50
  49. 49. Volpato G, Godínez D. Ethnobotany of Pru, a traditional Cuban refreshment. Economic Botany. 2004;58:381-395
  50. 50. Garcia D, Álvarez A, Tornos P, Fernández A, Sáenz T. Gas chromatographic-mass spectrometry study of the essential oils of Pimenta racemosa var. terebinthina and P. racemosa var. grisea. Zeitschrift fur Naturforschung C. 2002;57:449-451
  51. 51. Raghavan S. Handbook of Spices, Seasonings, and Flavorings. Boca Raton: CRC Press; 2006. pp. 64-66
  52. 52. Nayak Y, Abhilash D. Protection of cyclophosphamide induced myelosuppression by alcoholic extract of Pimenta dioica leaves in mice. Pharmacology. 2008;3:719-723
  53. 53. Rao J, McClements DJ. Food-grade microemulsions and nanoemulsions: Role of oil phase composition on formation and stability. Food Hydrocolloids. 2012;29:326-334
  54. 54. Chau CF, Wu SH. The development of regulations of Chinese herbal medicines for both medicinal and food uses. Trends in Food Science & Technology. 2006;17:313-323
  55. 55. Attokaran M. Natural Food Flavors and Colorants. Chicago: John Wiley & Sons. 2011. pp. 53-57
  56. 56. Poleo AG, Rojas JE, Natural product in cream with anti-vitiligo therapeutic properties. Eur. Pat. 2007. Appl. EP1747786-A2 20070131
  57. 57. Garcıa MD, Fernandez MA, Alvarez A, Saenz MT. Antinociceptive and anti-inflammatory effect of the aqueous extract from leaves of Pimenta racemosa var. ozua (Mirtaceae). Journal of Ethnopharmacology. 2004;91:69-73
  58. 58. Kirk TK. Tropical Trees of Florida and the Virgin Islands: A Guide to Identification, Characteristics and Uses. 1st ed. Sarasota: FL. Pineapple Press Inc; 2009 p. 108
  59. 59. Contreras-Moreno BZ, Velasco JJ, Rojas JDC, Méndez LDC, Celis MT. Antimicrobial activity of essential oil of Pimenta racemosa var. racemosa (Myrtaceae) leaves. Journal of Pharmacy & Pharmacognosy Research. 2016;4:224-230
  60. 60. Abaul J, Bourgeois P, Bessiere JM. Chemical composition of the essential oils of chemotypes of Pimenta racemosa var. racemosa (P. Miller) JW Moore (bois d’Inde) of Guadeloupe (FWI). Flavour and Fragrance Journal. 1995;10:319-321
  61. 61. Hüsnü K, Başer C, Demirci F. Chemistry of essential oils. In: Flavours and Fragrances. Springer Berlin Heidelberg; 2007. pp. 43-86
  62. 62. Sessou P, Farougou S, Sohounhloué D. Major component and potential applications of plant essentials oils as natural food preservatives: A short review research results. In-ternational Journal of Biosciences. 2012;2:45-57
  63. 63. Urbina-Soria J, Martínez-Fernández J. Más allá del Cambio Climático: Las dimensiones psicosociales del cambio ambiental global. México: Instituto Nacional de Ecología y Facultad de Psicología (UNAM); 2006. p. 128
  64. 64. Requena A, Balibrea L. Tríadas. Nuevas lecturas en ciencia y tecnología. España: Netbiblo, SL; 2008. p. 17
  65. 65. Cunha AP, Cavaleiro C, Salgueiro L. Fármacos aromáticos (plantas aromáticas e óleos essenciais). In: Cunha, A.P. (Coord.). Farmacognosia e fitoquímica. Lisboa: Fundação Calouste Gulbenkian. 2005. pp. 339-401
  66. 66. Spitzer V, Simões CMO. Óleos voláteis. In: Simões CMO, et al. (Orgs.). Farmacognosia: Da planta ao medicamento. 5ta.edición. revisión ampliada. Porto Alegre/Florianópolis: Editora da UFRGS/Editora da UFSC. 2004. pp. 467-495
  67. 67. Pino JA, Bello A, Urquiola A. The leaf oil of Pimenta adenoclada (Urb.) Burret from Cuba. Journal of Essential Oil Research. 2002;14:400-401
  68. 68. Tucker AO, Maciarello MJ, Landrum LR. Volatile leaf oils of Caribbean Myrtaceae. II. Pimenta dioica (L.) Merr. of Jamaica. Journal of Essential Oil Research. 1991;3:195-196
  69. 69. García-Fajardo J, Martínez-Sosa M, Estarrón-Espinosa M, Vilarem G, Gaset A, de Santos JM. Comparative study of the oil and supercritical CO2 extract of Mexican pimento (Pimenta dioica Merrill). Journal of Essential Oil Research. 1997;9:181-185
  70. 70. Hernández L, Rodríguez M, García D, Pino J. Actividad antidermatofítica in vitro de aceites esenciales. Revista Cubana de Plantas Medicinales. 2003;8(2). ISSN: 1028-4796. Available from: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962003000200004&lng=es&nrm=iso
  71. 71. Marongiu B, Piras A, Porcedda S, Casu R, Pierucci P. Comparative analysis of supercritical CO2 extract and oil of Pimenta dioica leaves. Journal of Essential Oil Research. 2005;17:530-532
  72. 72. Oussalah M, Caillet S, Saucier L, Lacroix M. Antimicrobial effects of selected plant essential oils on the growth of Pseudomonas putida strain isolated from meat. Meat Science. 2006;73:236-244
  73. 73. Oussalah M, Caillet S, Saucier L, Lacroix M. Inhibitory effects of selected plant essential oils on the growth of four pathogenic bacteria: Escherichia coli O157:H7, Salmonella Typhimurium, Staphylococcus aureus and Listeria monocytogenes. Food Control. 2007;18:414-420
  74. 74. Minott DA, Brown HA. Differentiation of fruiting and non-fruiting Pimenta dioica (L.) Merr. Trees based on composition of leaf volatiles. Journal of Essential Oil Research. 2007;19:354-357
  75. 75. Park IK, Kim J, Lee SG, Shin SC. Nematicidal activity of plant essential oils and components from ajowan (Trachyspermum ammi), allspice (Pimenta dioica) and litsea (Litsea cubeba) essential oils against pine wood nematode (Bursaphelenchus xylophilus). Journal of Nematology. 2007;39:275-279
  76. 76. Höferl M, Buchbauer G, Jirovetz L, Schmidt E, Stoyanova A, Denkova Z, et al. Correlation of antimicrobial activities of various essential oils and their main aromatic volatile constituents. Journal of Essential Oil Research. 2009;21:459-463
  77. 77. Martinez-Velazquez M, Castillo-Herrera GA, Rosario-Cruz R, Flores-Fernandez JM, Lopez-Ramirez J, Hernandez-Gutierrez R, del Carmen Lugo-Cervantes E. Acaricidal effect and chemical composition of essential oils extracted from Cuminum cyminum, Pimenta dioica and Ocimum basilicum against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitology Research. 2011;108:481-487
  78. 78. Monteiro OS, Souza AG, Soledade LEB, Queiroz N, Souza AL, Mouchrek Filho VE, Vasconcelos AFF. Chemical evaluation and thermal analysis of the essential oil from the fruits of the vegetable species Pimenta dioica Lindl. Journal of Thermal Analysis and Calorimetry. 2011;106:595-600
  79. 79. Sánchez-Sáenz EO, Pérez-Alonso C, Cruz-Olivares J, Román-Guerrero A, Baéz-González JG, Rodríguez-Huezo ME. Establishing the most suitable storage conditions for microencapsulated allspice essential oil entrapped in blended biopolymers matrices. Drying Technology. 2011;29:863-872
  80. 80. Kloucek P, Smid J, Frankova A, Kokoska L, Valterova I, Pavela R. Fast screening method for assessment of antimicrobial activity of essential oils in vapor phase. Food Research International. 2012;47:161-165
  81. 81. Rao J, McClements DJ. Impact of lemon oil composition on formation and stability of model food and beverage emulsions. Food Chemistry. 2012;134:749-757
  82. 82. Amma KP, Rani MP, Sasidharan I, Sreekumar MM. Comparative chemical composition and in vitro antioxidant activities of essential oil isolated from the leaves of Cinnamomum tamala and Pimenta dioica. Natural Product Research. 2013;27:290-294
  83. 83. Vázquez-Cahuich D, Espinosa Moreno J, Centurion Hidalgo D, Velazquez Martinez JR, Borges-Argaez R, Caceres Farfan M, Antimicrobial Activity and Chemical Composition of the Essential Oils of Malvaviscus arboreus Cav, Pimenta dioica (L.) Merr., Byrsonima crassifolia (L.) Kunth AND Psidium guajava L. Tropical and Subtropical Agroecosystems. 2013;16:505-513
  84. 84. Dharmadasa RM, Abeysinghe DC, Dissanayake DMN, Fernando NS. Leaf essential oil composition, antioxidant activity, total phenolic content and total flavonoid content of Pimenta Dioica (L.) Merr (Myrtaceae): A superior quality spice grown in Sri Lanka. Universal Journal of Agricultural Research. 2015;3:49-52
  85. 85. Misharina TA, Alinkina ES, Medvedeva IB. Antiradical properties of essential oils and extracts from clove bud and pimento. Applied Biochemistry and Microbiology. 2015;51:119-124
  86. 86. Chaverri C, Cicció JF. Leaf and fruit essential oil compositions of Pimenta guatemalensis (Myrtaceae) from Costa Rica. International Journal of Tropical Biology and Conservation. 2015;63:303-311
  87. 87. Tucker AO, Maciarello MJ, Adams RP, Landrum LR, Zanoni TA. Volatile leaf oils of Caribbean Myrtaceae. III. Pimenta haitiensis (urban) Landrum of the Dominican Republic. Journal of Essential Oil Research. 1991;3:471-473
  88. 88. Tucker AO, Maciarello MJ, Landrum LR. Volatile leaf oils of Caribbean Myrtaceae. IV. Pimenta jamaicensis (Britton & Harris) proctor of Jamaica. Journal of Essential Oil Research. 1992;4:93-94
  89. 89. Tucker AO, Maciarello MJ, Landrum LR. Volatile leaf oils of Caribbean Myrtaceae. V. Pimenta obscura proctor of Jamaica. Journal of Essential Oil Research. 1992;4:195-196
  90. 90. Nakaoka-Sakita M, Aguiar OT, Yatagai M, Igarashi T. Óleo essencial de Pimenta pseudocaryophyllus var. pseudocaryophyllus (Gomes) Landrum (Myrtaceae) I: Cromatografia a gás/espectrometria de massa (CC/EM). A Revista do Instituto Florestal. 1994;6:53-61
  91. 91. Lima MEL, Cordeiro I, Young MCM, Sobra ME, Moreno PRH. Antimicrobial activity of the essential oil from two specimens of Pimenta pseudocaryophyllus (Gomes) LR Landrum (Myrtaceae) native from São Paulo State-Brazil. Pharmacology. 2006;3:589-593
  92. 92. Custódio DL, Burgo RP, Moriel B, Barbosa ADM, Rezende MI, Daniel JFDS, et al. Antimicrobial activity of essential oils from Pimenta pseudocaryophyllus and Tynanthus micranthus. Brazilian Archives of Biology and Technology. 2010;53:1363-1369
  93. 93. Marqués FA, Wendler EP, Baroni AC, de Oliveira PR, Sasaki BS, Guerrero PG Jr. Leaf essential oil compositon of Pimenta pseudocaryophyllus (Gomes) LR Landrum native from Brazil. Journal of Essential Oil Research. 2010;22:150-152
  94. 94. Barata LE, Dos Santos BC, Marques FA, Baroni AC, De Oliveira PR, Einloft P, et al. Seasonal variation of the volatile constituents from leaves of Pimenta pseudocaryophyllus (Gomes). Journal of Essential Oil Research. 2011;23:54-57
  95. 95. Paula JA, Ferri PH, Bara MTF, Tresvenzol LM, Sá FA, Paula JR. Infraspecific chemical variability in the essential oils of Pimenta pseudocaryophyllus (Gomes) LR Landrum (Myrtaceae). Biochemical Systematics and Ecology. 2011;39:643-650
  96. 96. Paula JAMD, Silva MDRR, Costa MP, Diniz DGA, Sá FA, Alves SF, et al. Phytochemical analysis and antimicrobial, antinociceptive, and anti-inflammatory activities of two chemotypes of Pimenta pseudocaryophyllus (Myrtaceae). Evidence-Based Complementary and Alternative Medicine: eCAM. 2012;2012:15. Article ID: 420715. Available from: https://doi.org/10.1155/2012/420715
  97. 97. Suzuki ÉY, Baptista EB, Resende Do Carmo AM, Chaves M, Afonso MDG, Chicourel EL, Barbosa Raposo NR. Potential of the essential oil from Pimenta pseudocaryophyllus as an antimicrobial agent. Acta Pharmaceutica. 2014;64:379-385
  98. 98. Browne CA. Industrial and agricultural chemistry in the British West Indies, with some account of the work of sir Francis watts, imperial commissioner of agriculture. Industrial & Engineering Chemistry. 1921;13:78-83
  99. 99. Buttery RG, Black DR, Guadagni DG, Ling LC, Connolly G, Teranishi R. California bay oil. I. Constituents, odor properties. Journal of Agricultural and Food Chemistry. 1974;22:773-777
  100. 100. Calderón E, de Nigrinis S. Estudio fotoquímico del aceite esencial de Pimenta officinalis. Revista Colombiana de Ciencias Químicas Farmaceúticas. 1974;2:37-54
  101. 101. McHale D, Laurie WA, Woof MA. Composition of West Indian bay oils. Food Chemistry. 1977;2:19-25
  102. 102. Leyva M, Tacoronte JE, Marquetti MDC. Composición química y efecto letal del aceite esencial de Pimenta racemosa (Myrtales: Myrtaceae) sobre Blattella germanica (Dic-tyoptera: Blattellidae). Revista Cubana de Medicina Tropical. 2007;59:154-158
  103. 103. Noudogbessi JP, Kossou D, Sohounhloué DC. Composition Chimique et Propriétés Physico-Chimiques des Huiles Essentielles de Pimenta racemosa (Miller) et de Chromolaena odorata (L. Robinson) Acclimatées au Bénin. Journal de la Société. Ouest Africaine de Chimie. 2008;26:11-19
  104. 104. Pragadheesh VS, Yadav A, Singh SC, Gupta N, Chanotiya CS. Leaf essential oil of cultivated Pimenta racemosa (Mill.) JW Moore from North India: Distribution of phenylpropanoids and chiral terpenoids. Medicinal Aromatic Plants. 2013;2:118-121
  105. 105. Zabka M, Pavela R, Prokinova E. Antifungal activity and chemical composition of twenty essential oils against significant indoor and outdoor toxigenic and aeroallergenic fungi. Chemosphere. 2014;112:443-448
  106. 106. Tucker AO, Maciarello MJ, Adams RP, Landrum LR, Zanoni TA. Volatile leaf oils of Caribbean Myrtaceae. I. Three varieties of Pimenta racemosa (Miller) J. Moore of the Dominican Republic and the commercial bay oil. Journal of Essential Oil Research. 1991;3:323-329
  107. 107. Ayedoun AM, Adeoti BS, Setondji J, Menut C, Lamaty G, Bessiére JM. Aromatic plants from tropical West Africa. IV. Chemical composition of leaf oil of Pimenta racemosa (Miller) JW Moore var. racemosa from Benin. Journal of Essential Oil Research. 1996;8:207-209
  108. 108. Huelvas P, Mora F. Análisis y determinación de la actividad antibacteriana del aceite esencial de la Pimenta racemosa. P. Miller (J.W. Moore) var. racemosa. [thesis]. Mérida: Universidad de Los Andes, Facultad de Farmacia y Bioanálisis Venezuela; 2009
  109. 109. Sáenz MT, Tornos MP, Alvarez A, Fernandez MA, Garcia MD. Antibacterial activity of essential oils of Pimenta racemosa var. terebinthina and Pimenta racemosa var. grisea. Fitoterapia. 2004;75:599-602

Written By

Billmary Zuleyma Contreras-Moreno

Submitted: 02 December 2017 Reviewed: 26 April 2018 Published: 26 September 2018