Amplification primers of the cytochrome b gene (
Abstract
Malaria is one the world’s most widespread lethal diseases. Plasmodium falciparum, P. vivax, P. ovale, P. malariae and P. knowlesi induce human pathology. These species could be differentially diagnosed using the genotyping of cytochrome b, Pfdhfr and RNA 18S. The persistence of P. falciparum, the most lethal parasite, is mainly due to antimalarial drug resistance. Indeed, a few years after the start of the ambitious malaria eradication program in 1960, chloroquine resistance emerged in Asia and spread widely in all the endemic areas. It was associated with genotypes in P. falciparum chloroquine resistance transporter (CVIET, SVMNT, CVMNT, CVIDT, SVIET and CVMET). The use of new drugs such as sulfadoxine-pyrimethamine (SP) leads quickly to SP-resistant parasites associated with genotypes on P. falciparum DiHydroFolate reductase (I51-R59-N108-I164) and P. falciparum DiHydroPteroate synthetase (436-437-580-613). Recently, the delay of parasite clearance has been described with artemisinine (the most efficacious antimalarial drug). This resistance was associated with the K13 propeller genotype. Since malaria species and antimalarial drug resistance markers could be characterized using nucleic acid sequences, genotyping is needed for malarial monitoring of species distribution and antimalarial drug resistance.
Keywords
- Plasmodium parasites
- drug resistance
- diagnostic
- genotyping
1. Introduction
Malaria remains a major public health problem. More than 40% of the world’s population (3.3 billion) live malarial endemic areas in varying degrees. Despite tremendous efforts in the fight, and though this strategy or plan resulted in significantly decreasing the burden in the last 20 years, Malaria still is persistent in nearly 91 countries (Figure 1). In 2016, the overall incidence was 216 million cases among these and 445,000 deaths were recorded [1]. Africa continues to account for 90% of malaria burden. African children under 5 years of age are the most affected. This infectious disease is due to the invasion of
Decisions concerning malaria treatment depend on the identification of the species causing the disease. Traditionally, this diagnosis was based on the microscopic detection of
2. Genotyping for Plasmodium spp. diagnosis
The genotyping of
2.1. PCR using the specificity of 18S RNA
rRNA is one of the ribosome components. Among rRNA, the
The nested PCR rFAL1 and rFAL2 generate a 205 bp in presence of the
2.2. RT-PCR NASBA 18S rRNA
Nucleic acid sequence-based amplification (NASBA) is a method in molecular biology, which is used to amplify RNA sequences. This novel approach of genotyping, based on the amplification of nucleic acid sequence (real-time QT-NASBA), was developed by Compton [24]. Immediately after its discovery, the NASBA method was used for the rapid diagnosis and quantification of HIV-1 in patients [25]. Some years later, Schooner et al. [26] developed a real-time quantitative nucleic acid sequence-based amplification (real time QT-NASBA) for the detection of
2.3. PCR sequencing cytochrome b
Cytochrome b (
The first round of PCR (PCR1) and use of the primers DW2/F and DW4/R produce the fragments of 1253 bp. In the second round of PCR (PCR2), primers
2.4. PCR-RFLP from cytochrome b
Due to the specie specificity and diversity of Cytochrome b, it could be digested with the restriction enzyme
2.5. PCR-DHFR
Figure 5 shows the equation of transformation of dihydrofolate to tetrahydrofolate. The dihdrofolate reductase is one of the important malaria proteins involved in the plasmodium folate synthesis. This gene is coded in chromosome 4 and is highly conserved between distantly related species, like plasmodium species. Its linker region revealed significantly a higher sequence diversity than the relatively conserved enzymatic diversity. Different species of
Primer | Species | Sequence (5′–3′) | Annealing (°C) | No. of cycles | Product (bp) |
---|---|---|---|---|---|
Pla-DHFR-F Pla-TS-R | ATGGARSAMSTYTSMGABGTWTTYGA AAATATTGRTAYTCTGGRTG | 50 | 30 | 1000 | |
Pla-DHFR-NF Pla-TS-R | AAATGYTTYATYATWGGDGG AAATATTGRTAYTCTGGRTG | 55 | 35 | 509–587 | |
PF-Lin-F PF-Lin-R | AAAAGGAGAAGAAAAAAATAA AAAATAAACAAAATCATC | 50 | 35 | 160 | |
PM-Lin-F PM-Lin-R | GACCCAAGAATCCCTCCC CCCATGAAGTTATATTCC | 50 | 35 | 177 | |
PV-Lin-F PV-Lin-R | CGGGAGCACTGCGGACAGCG CACGGGCACGCGGCGGGGC | 55 | 35 | 144 | |
PO-Lin-F PO-Lin-R | GACACACAAAATGATGGGGA ATTGTCCTTTCCTTGACTCG | 55 | 35 | 231, 237 or 243 | |
PK-Lin-F PK-Lin-R | CGATGGATATGGATAGTGG CGCGGGAGAGCATTTCCTC | 58 | 35 | 134 |
3. Genotyping for the monitoring of antimalarial drug resistance
3.1. Antimalarial drug resistance
Antimalarial drug resistance is the ability of
3.2. The genotyping of markers associated with antimalarial drug resistance
3.2.1. P. falciparum chloroquine resistance transporter (Pfcrt)
Several mutations have been identified in this transporter. The main mutation T76 allows for the abolition of accumulation of the drug chloroquine in the digestive vacuole. The association of mutations in codons 72, 73, 74, 75 and 76 defined different haplotypes. These haplotypes show a spatio-temporal specificity. CVMNK is the wild-type haplotype that is found in chloroquine-sensitive parasites. In Africa, the most prevalent chloroquine-resistance haplotype is the CVIET. It was also found with less prevalence in South America and in Southeast of Asia. Another
For the genotype haplotype 72–76 of
Genes, codons | Primer names | Primers | T°C | Restriction enzyme | Sizes (bp)* |
---|---|---|---|---|---|
CRT72MS | TTTATATTTTAAGTATTATTTATTTAAGTGGA | 55 | 55 + 38 | ||
76-D2 | CAAAACTATAGTTACCAATTTTG | ||||
CRT745MS | TAAGTATTATTTATTTAAGTGTATGTGTCAT | 55 | 53 + 31 | ||
76-D2 | CAAAACTATAGTTACCAATTTTG | ||||
CRT745MS | TAAGTATTATTTATTTAAGTGTATGTGTCAT | 50 | 53 + 31 | ||
76-D2 | CAAAACTATAGTTACCAATTTTG | ||||
Pfcrt-76A | GCGCGCGCATGGCTCACGTTTAGGTGGAG | 55 | 136 + 56 | ||
Pfcrt-76B | GGGCCCGGCGGATGTTACAAAACTATAGTTACC |
3.2.2. Plasmodium falciparum multidrug resistance 1 (Pfmdr1)
Some isolates exhibit multicopies of
To the genotype Pfmdr1, followed primers and restriction enzymes are used for PCR-RFLP or for PCR followed by sequencing gene. Digestion of PCR products gives fragments of 126 and 165 bp for mutant 86Y whereas wild type N86 is not digested by restriction enzyme
Genes, Codons | Primer names | Primers | T°C | Restriction enzyme | Sizes (bp)* |
---|---|---|---|---|---|
mdr86D1 | TTTACCGTTTAAATGTTTACCTGC | 45 | 126 + 165 | ||
mdr86D2 | CCATCTTGATAAAAAACACTTCTT | ||||
mdr1246D1 | AATGTAAATGAATTTTCAAACC | 45 | 113 + 90 | ||
mdr1246D2 | CATCTTCTCTTCCAAATTTGATA |
3.2.3. Plasmodium falciparum dihydrofolate reductase (PfDHFR)
3.2.4. Plasmodium falciparum dihydropteroate synthase (PfDHPS)
Triple mutant I51R59N108 in
3.2.5. Plasmodium falciparum ATPase 6 (PfATPASE6)
The sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, ortholog of
3.2.5.1. P. falciparum multidrug resistance protein (PfMRP)
3.2.5.2. P. falciparum Kelch 13 (PfK13)
Chinese populations used
Several investigations on K13 genotyping reported that mutations M476I, Y493H, R539T, I543T, P553L and C580Y conferred a greater artemisinin resistance [63]. Other mutations F446I and A578S were described in PfK13. A578S, widespread in Africa, is not associated with artemisinin resistance. These genotypes are investigated by PCR sequencing.
4. Conclusions
Due to the nucleotide specificities of each
References
- 1.
WHO. World Malaria Report 2016. 2017. p. 196. ISBN: 978-92-4-156552-3 - 2.
Hawley WA, Phillips-Howard PA, ter Kuile FO, Terlouw DJ, Vulule JM, Ombok M, Nahlen BL, Gimnig JE, Kariuki SK, Kolczak MS. Community-wide effects of permethrin-treated bed nets on child mortality and malaria morbidity in western Kenya. The American Journal of Tropical Medicine and Hygiene. 2003; 68 :121-127 - 3.
Bull PC, Marsh K. The role of antibodies to Plasmodium falciparum -infected-erythrocyte surface antigens in naturally acquired immunity to malaria. Trends in Microbiology. 2002;10 :55-58 - 4.
Berendt A, Ferguson D, Newbold C. Sequestration in Plasmodium falciparum malaria: Sticky cells and sticky problems. Parasitology Today. 1990;6 :247-254 - 5.
Kyes S, Horrocks P, Newbold C. Antigenic variation at the infected red cell surface in malaria. Annual Review of Microbiology. 2001; 55 :673-707 - 6.
Loy DE, Liu W, Li Y, Learn GH, Plenderleith LJ, Sundararaman SA, Sharp PM, Hahn BH. Out of Africa: Origins and evolution of the human malaria parasites Plasmodium falciparum andPlasmodium vivax . International Journal for Parasitology. 2017;47 :87-97 - 7.
Cox-Singh J, Singh B. Knowlesi malaria: Newly emergent and of public health importance? Trends in Parasitology. 2008; 24 :406-410 - 8.
Lee KS, Divis PC, Zakaria SK, Matusop A, Julin RA, Conway DJ, Cox-Singh J, Singh B. Plasmodium knowlesi : Reservoir hosts and tracking the emergence in humans and macaques. PLoS Pathogens. 2011;7 :e1002015 - 9.
Cox-Singh J, Davis TM, Lee K-S, Shamsul SS, Matusop A, Ratnam S, Rahman HA, Conway DJ, Singh B. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clinical Infectious Diseases. 2008;46 :165-171 - 10.
Ngassa Mbenda HG, Das A. Molecular evidence of Plasmodium vivax mono and mixed malaria parasite infections in Duffy-negative native Cameroonians. PLoS One. 2014;9 :e103262 - 11.
Russo G, Faggioni G, Paganotti GM, Djeunang Dongho GB, Pomponi A, De Santis R, Tebano G, Mbida M, Sanou Sobze M, Vullo V, Rezza G, Lista FR. Molecular evidence of Plasmodium vivax infection in Duffy negative symptomatic individuals from Dschang, West Cameroon. Malaria Journal. 2017;16 :74 - 12.
Mueller I, Zimmerman PA, Reeder JC. Plasmodium malariae andPlasmodium ovale —The ‘bashful’malaria parasites. Trends in Parasitology. 2007;23 :278-283 - 13.
Ayala F, Escalante A, Rich S. Evolution of Plasmodium and the recent origin of the world populations ofPlasmodium falciparum . Parassitologia. 1999;41 :55-68 - 14.
Collins WE, Jeffery GM. Plasmodium ovale : Parasite and disease. Clinical Microbiology Reviews. 2005;18 :570-581 - 15.
Makler MT, Palmer CJ, Ager AL. A review of practical techniques for the diagnosis of malaria. Annals of Tropical Medicine and Parasitology. 1998; 92 :419-433 - 16.
Manwell RD. Malaria infections by four species of Plasmodium in the duck and chicken, and resulting parasite modifications. American Journal of Hygiene. 1943;38 :211-222 - 17.
Jordan HB. The effect of host constitution on the development of Plasmodium floridense . The Journal of Eukaryotic Microbiology. 1975;22 :241-244 - 18.
Mens PF, Schoone GJ, Kager PA, Schallig HD. Detection and identification of human Plasmodium species with real-time quantitative nucleic acid sequence-based amplification. Malaria Journal. 2006;5 :80 - 19.
Moody A. Rapid diagnostic tests for malaria parasites. Clinical Microbiology Reviews. 2002; 15 :66-78 - 20.
Trape JF. The public health impact of chloroquine resistance in Africa. The American Journal of Tropical Medicine and Hygiene. 2001; 64 :12-17 - 21.
Payne D. Spread of chloroquine resistance in Plasmodium falciparum . Parasitology Today. 1987;3 :241-246 - 22.
Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, Thaithong S, Brown KN. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Molecular and Biochemical Parasitology. 1993; 61 :315-320 - 23.
Johnston SP, Pieniazek NJ, Xayavong MV, Slemenda SB, Wilkins PP, da Silva AJ. PCR as a confirmatory technique for laboratory diagnosis of malaria. Journal of Clinical Microbiology. 2006; 44 :1087-1089 - 24.
Compton J. Nucleic acid sequence-based amplification. Nature. 1991; 350 :91-92 - 25.
Kievits T, van Gemen B, van Strijp D, Schukkink R, Dircks M, Adriaanse H, Malek L, Sooknanan R, Lens P. NASBATM isothermal enzymatic in vitro nucleic acid amplification optimized for the diagnosis of HIV-1 infection. Journal of Virological Methods. 1991; 35 :273-286 - 26.
Schoone GJ, Oskam L, Kroon NC, Schallig HD, Omar SA. Detection and quantification of Plasmodium falciparum in blood samples using quantitative nucleic acid sequence-based amplification. Journal of Clinical Microbiology. 2000;38 :4072-4075 - 27.
Schneider P, Schoone G, Schallig H, Verhage D, Telgt D, Eling W, Sauerwein R. Quantification of Plasmodium falciparum gametocytes in differential stages of development by quantitative nucleic acid sequence-based amplification. Molecular and Biochemical Parasitology. 2004;137 :35-41 - 28.
Schneider P, Wolters L, Schoone G, Schallig H, Sillekens P, Hermsen R, Sauerwein R. Real-time nucleic acid sequence-based amplification is more convenient than real-time PCR for quantification of Plasmodium falciparum . Journal of Clinical Microbiology. 2005;43 :402-405 - 29.
Van Gemen B, van Beuningen R, Nabbe A, van Strijp D, Jurriaans S, Lens P, Kievits T. A one-tube quantitative HIV-1 RNA NASBA nucleic acid amplification assay using electrochemiluminescent (ECL) labelled probes. Journal of Virological Methods. 1994; 49 :157-167 - 30.
Ollomo B, Durand P, Prugnolle F, Douzery E, Arnathau C, Nkoghe D, Leroy E, Renaud FA. New malaria agent in African hominids. PLoS Pathogens. 2009; 5 :e1000446 - 31.
Prugnolle F, Durand P, Neel C, Ollomo B, Ayala FJ, Arnathau C, Etienne L, Mpoudi-Ngole E, Nkoghe D, Leroy E, Delaporte E, Peeters M, Renaud F. African great apes are natural hosts of multiple related malaria species, including Plasmodium falciparum . Proceedings of the National Academy of Sciences of the United States of America. 2010;107 :1458-1463 - 32.
Boundenga L, Ollomo B, Rougeron V, Mouele LY, Mve-Ondo B, Delicat-Loembet LM, Moukodoum ND, Okouga AP, Arnathau C, Elguero E, Durand P, Liégeois F, Boué V, Motsch P, Le Flohic G, Ndoungouet A, Paupy C, Ba CT, Renaud F, Prugnolle F. Diversity of malaria parasites in great apes in Gabon. Malaria Journal. 2015; 14 :111 - 33.
Boundenga L, Makanga B, Ollomo B, Gilabert A, Rougeron V, Mve-Ondo B, Arnathau C, Durand P, Moukodoum ND, Okouga AP, Delicat-Loembet L, Yacka-Mouele L, Rahola N, Leroy E, Ba CT, Renaud F, Prugnolle F, Paupy C. Haemosporidian parasites of antelopes and other vertebrates from Gabon, Central Africa. PLoS One. 2016; 11 :e0148958 - 34.
Steenkeste N, Incardona S, Chy S, Duval L, Ekala M-T, Lim P, Hewitt S, Sochantha T, Socheat D, Rogier C, Mercereau-Puijalon O, Fandeur T, Ariey F. Towards high-throughput molecular detection of Plasmodium . New approaches and molecular markers. Malaria Journal. 2009;8 :86 - 35.
Tanomsing N, Imwong M, Theppabutr S, Pukrittayakamee S, Day NP, White NJ, Snounou G. Accurate and sensitive detection of Plasmodium species in humans by use of the dihydrofolate reductase-thymidylate synthase linker region. Journal of Clinical Microbiology. 2010;48 :3735-3737 - 36.
Basco LK, Ringwald P, Thor R, Doury JC, Le Bras J. Activity in vitro of chloroquine, cycloguanil, and mefloquine against African isolates of Plasmodium falciparum : Presumptive evidence for chemoprophylactic efficacy in central and West Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene. 1995;89 :657-658 - 37.
Beshir K, Sutherland CJ, Merinopoulos I, Durrani N, Leslie T, Rowland M, Hallett RL. Amodiaquine resistance in Plasmodium falciparum malaria in Afghanistan is associated with the pfcrt SVMNT allele at codons 72 to 76. Antimicrobial Agents and Chemotherapy. 2010;54 :3714-3716 - 38.
Warhurst DC, Steele JC, Adagu IS, Craig JC, Cullander C. Hydroxychloroquine is much less active than chloroquine against chloroquine-resistant Plasmodium falciparum , in agreement with its physicochemical properties. The Journal of Antimicrobial Chemotherapy. 2003;52 :188-193 - 39.
Sa JM, Twu O. Protecting the malaria drug arsenal: Halting the rise and spread of amodiaquine resistance by monitoring the Pf CRT SVMNT type. Malaria Journal. 2010;9 :374 - 40.
Valderramos SG, Fidock DA. Transporters involved in resistance to antimalarial drugs. Trends in Pharmacological Sciences. 2006; 27 :594-601 - 41.
Mwai L, Kiara SM, Abdirahman A, Pole L, Rippert A, Diriye A, Bull P, Marsh K, Borrmann S, Nzila A. In vitro activities of piperaquine, lumefantrine, and dihydroartemisinin in Kenyan Plasmodium falciparum isolates and polymorphisms in pfcrt and pfmdr1. Antimicrobial Agents and Chemotherapy. 2009;53 :5069-5073 - 42.
Bray PG, Ward SA. A comparison of the phenomenology and genetics of multidrug resistance in cancer cells and quinoline resistance in Plasmodium falciparum . Pharmacology & Therapeutics. 1998;77 :1-28 - 43.
Sisowath C, Stromberg J, Martensson A, Msellem M, Obondo C, Bjorkman A, Gil JP. In vivo selection of Plasmodium falciparum pfmdr1 86N coding alleles by artemether-lumefantrine (Coartem). The Journal of Infectious Diseases. 2005;191 :1014-1017 - 44.
Lekana-Douki JB, Dinzouna Boutamba SD, Zatra R, Zang Edou SE, Ekomy H, Bisvigou U, Toure-Ndouo FS. Increased prevalence of the Plasmodium falciparum Pfmdr1 86N genotype among field isolates from Franceville, Gabon after replacement of chloroquine by artemether-lumefantrine and artesunate-mefloquine. Infection, Genetics and Evolution. 2011;11 :512-517 - 45.
Peterson DS, Walliker D, Wellems TE. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proceedings of the National Academy of Sciences of the United States of America. 1988; 85 :9114-9118 - 46.
Triglia T, Cowman AF. Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum . Proceedings of the National Academy of Sciences of the United States of America. 1994;91 :7149-7153 - 47.
Nzila-Mounda A, Mberu EK, Sibley CH, Plowe CV, Winstanley PA, Watkins WM. Kenyan Plasmodium falciparum field isolates: Correlation between pyrimethamine and chlorcycloguanil activity in vitro and point mutations in the dihydrofolate reductase domain. Antimicrobial Agents and Chemotherapy. 1998;42 :164-169 - 48.
Osman ME, Mockenhaupt FP, Bienzle U, Elbashir MI, Giha HA. Field-based evidence for linkage of mutations associated with chloroquine ( pf crt/pf mdr1) and sulfadoxine–pyrimethamine (pfdhfr/pfdhps) resistance and for the fitness cost of multiple mutations inP. falciparum . Infection, Genetics and Evolution. 2007;7 :52-59 - 49.
Triglia T, Menting JG, Wilson C, Cowman AF. Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum . Proceedings of the National Academy of Sciences of the United States of America. 1997;94 :13944-13949 - 50.
Triglia T, Wang P, Sims PF, Hyde JE, Cowman AF. Allelic exchange at the endogenous genomic locus in Plasmodium falciparum proves the role of dihydropteroate synthase in sulfadoxine-resistant malaria. The EMBO Journal. 1998;17 :3807-3815 - 51.
Picot S, Bienvenu AL, Konate S, Sissoko S, Barry A, Diarra E, Bamba K, Djimde A, Doumbo OK. Safety of epoietin beta-quinine drug combination in children with cerebral malaria in Mali. Malaria Journal. 2009; 8 :169 - 52.
Eckstein-Ludwig U, Webb R, Van Goethem I, East J, Lee A, Kimura M, O’neill P, Bray P, Ward S, Krishna S. Artemisinins target the SERCA of Plasmodium falciparum . Nature. 2003;424 :957-961 - 53.
Jambou R, Legrand E, Niang M, Khim N, Lim P, Volney B, Ekala MT, Bouchier C, Esterre P, Fandeur T, Mercereau-Puijalon O. Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCA-type PfATPase6. Lancet. 2005;366 :1960-1963 - 54.
Fairhurst RM, Nayyar GM, Breman JG, Hallett R, Vennerstrom JL, Duong S, Ringwald P, Wellems TE, Plowe CV, Dondorp AM. Artemisinin-resistant malaria: Research challenges, opportunities, and public health implications. The American Journal of Tropical Medicine and Hygiene. 2012; 87 :231-241 - 55.
Kiaco K, Teixeira J, Machado M, do Rosario V, Lopes D. Evaluation of artemether-lumefantrine efficacy in the treatment of uncomplicated malaria and its association with pfmdr1, pfatpase6 and K13-propeller polymorphisms in Luanda, Angola. Malaria Journal. 2015; 14 :504 - 56.
Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M, Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NP, Lindegardh N, Socheat D, White NJ. Artemisinin resistance in Plasmodium falciparum malaria. The New England Journal of Medicine. 2009;361 :455-467 - 57.
Tahar R, Ringwald P, Basco LK. Molecular epidemiology of malaria in Cameroon. XXVIII. In vitro activity of dihydroartemisinin against clinical isolates of Plasmodium falciparum and sequence analysis of theP. falciparum ATPase 6 gene. The American Journal of Tropical Medicine and Hygiene. 2009;81 :13-18 - 58.
Sanchez CP, Dave A, Stein WD, Lanzer M. Transporters as mediators of drug resistance in Plasmodium falciparum . International Journal for Parasitology. 2010;40 :1109-1118 - 59.
Pirahmadi S, Zakeri S, Afsharpad M, Djadid ND. Mutation analysis in pfmdr1 and pfmrp1 as potential candidate genes for artemisinin resistance in Plasmodium falciparum clinical isolates 4years after implementation of artemisinin combination therapy in Iran. Infection, Genetics and Evolution. 2013;14 :327-334 - 60.
Pradines B, Briolant S, Henry M, Oeuvray C, Baret E, Amalvict R, Didillon E, Rogier C. Absence of association between pyronaridine in vitro responses and polymorphisms in genes involved in quinoline resistance in Plasmodium falciparum . Malaria Journal. 2010;9 :339 - 61.
Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, Kim S, Duru V, Bouchier C, Ma L, Lim P, Leang R, Duong S, Sreng S, Suon S, Chuor CM, Bout DM, Ménard S, Rogers WO, Genton B, Fandeur T, Miotto O, Ringwald P, Le Bras J, Berry A, Barale JC, Fairhurst RM, Benoit-Vical F, Mercereau-Puijalon O, Ménard D. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505 :50-55 - 62.
Fairhurst RM, Dondorp AM. Artemisinin-resistant Plasmodium falciparum malaria. Microbiology Spectrum. 2016; 4: EI10-0013-2016 - 63.
Straimer J, Gnädig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, Dacheux M, Khim N, Zhang L, Lam S, Gregory PD, Urnov FD, Mercereau-Puijalon O, Benoit-Vical F, Fairhurst RM, Ménard D, Fidock DA. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science. 2015;347 :428-431