Defects found in macroporous silicon.
Abstract
Macroporous silicon (MPS) has been shown to be a promising material in many areas of technical interest. In particular, MPS has been applied for electronic devices and microfluidic applications. One of the most promising features of MPS is that it enables the development of optical applications using simple and cost-effective technology, compatible with MEMS fabrication processes and suitable for mass production. This chapter describes the application of MPS structures fabricated using electrochemical etching (EE) for the detection of gases of environmental concern in the wavelength range comprising 4 μ m to 15 μ m , such as C O 2 . Vertical-modulated MPS structures are reported, whose photonic bandgaps can be placed at different wavelengths depending on the application needs. These structures have been applied to the quantification of C O 2 , and these results are summarised here. Detection is performed by the direct measure of absorption, obtaining promising results with short optical paths.
Keywords
- macroporous silicon
- photonic crystal
- electrochemical etching
- non-dispersive infrared
- gas sensing
1. Introduction
Macroporous silicon (MPS) has been shown to be a versatile material with a broad spectrum of promising applications [1]. MPS was first described by Lehmann in the early 1990s [2, 3, 4] and has since attracted great interest among researchers. Of the initial works in MPS development, it is also worth mentioning those from Zhang [5], Propst [6], and Parkhutik [7]. Of particular interest is the
Thanks to the existence of PBGs, photonic crystals have been used for advanced applications in optical communications [10], photovoltaics [11], photonics [12], light emission [13], anti-reflection/blackbody emitters [14], and gas sensing [15, 16]. Particularly, in this field, the peculiar functionalities of PCs make these structures very attractive for their use in chemical sensing: gas detection [15, 17, 18] and bio-sensing [19]. The main advantage of using PCs for these areas is their potential to design and fabricate very compact and cheap photonic devices [20, 21]. Furthermore, the possibility of integration into large-scale circuits or microelectronic fabrication processes [21, 22] opens up vast opportunities for novel devices.
In particular, in this chapter, we focus on the use of MPS PCs for the optical detection and quantification of gases. More specifically, the characteristic
2. Sensing application: gas detection
Sensor demand for everyday applications is rapidly growing. The areas of use are many and multidisciplinary [23, 24]—to name a few: environmental [25, 26], safety [27], security [25], health, transportation, and wearables. Market research shows that gas sensor segment has strong growth [24] (forecast to achieve $765 M in 2020 [23]). Furthermore, climate change concerns is making governments and other agencies push the research and deployment of
2.1. Detection strategies: optical
Optical gas detection provides very desirable advantages over other methods. In first place, pure optical methods like spectroscopy have exceptionally fast response times to changes in mixture concentration. Furthermore, the spectroscopic optical systems are highly selective: they permit identifying a target gas by its
Traditional optical-based measuring is based on the direct measurement of optical power. One of its main drawbacks is that the equipment is large and expensive. Indeed, one has to trade-off space for detection limit. Some applications require several centimetres or even metres of optical path to reach the required sensitivity. Furthermore, spectroscopic systems are energy limited, thus they require stable and high power light sources such as lasers or thermal radiators. Spectroscopic systems also require additional complex mechanical and electronic equipment for the signal conditioning and processing. On the other hand, non-spectroscopic optical systems impose less strict requirements on some of these aspects. However, reducing the optical path length has not found a good solution until recently with the advent of PCs.
Other optical systems exist that use alternative detection strategies. Nevertheless, these alternative systems lose some of the more desirable traits of optical detection, like response time and selectivity. Special mention has to be done with respect to
2.2. Gases of environmental concern
The growing global consciousness in environmental preservation and climate change has driven the research and development of sensing devices. In particular, monitoring the environment for pollution control [25, 31] is one of the most important applications. Gas sensors are also significant for health [32] and indoor air quality assessment [33].
Air pollutants and greenhouse gases are primarily related to the exhaust gases of combustion processes. Major air pollutants are carbon monoxide (
These gases have simple molecular composition with strong light absorption in the medium infrared wavelength range. The absorption spectrum of a gas at these light frequencies is caused by the different vibrational and rotational modes of the atomic bonds in the molecules [35]. The absorption coefficient spectra for several of the environmental concern gases are plotted in Figure 1. Absorption data of several gases can be found on the freely available HiTRAN database [35]. Each vibrational-rotational mode of a gas corresponds to an absorption line. These modes are narrow and close together3. However, at atmospheric pressure

Figure 1.
Absorption coefficients of some of the most relevant health and environmental concern gases. The coefficients are calculated from HiTRAN data using an
From the data shown in Figure 1, it is clear that
2.3. Non-dispersive infrared detection of gases
Non-dispersive infrared (NDIR) detection relies on the fact that certain absorption lines of gases are “isolated” and their wavelengths have little overlap with other gases, as seen in Figure 1. This is profited to simplify the design of a gas detector reducing cost, complexity, space requirements, and power [36]. Identification and quantification of a certain gas can be done looking at a narrowband region of the spectrum. This can be done using optical filters or selective light sources, or a combination. At the other end, the detector (a photodiode: PD) will give a measure of the optical power received, directly corresponding to the concentration of the gas. When light passes through a gas mixture, some wavelengths will be absorbed following the Beer–Lambert (B-L) law
where
The simplest NDIR system is depicted in Figure 2a. A sample of the unknown gas mixture is placed in a gas cell. Light is then passed through the cell from a source to a detector. From Eq. (1), it is clear that optical path length

Figure 2.
Conventional optical gas sensor using mirrors to attain a long optical path. A PC-based gas sensor can be made much more compact exploiting the special properties of PCs such as slow light. Reprinted from [
To remedy the need of complex, bulky, and fragile optical systems to achieve the long optical paths required, a PC can be used as proposed in Figure 2b. PCs-based sensors are projected to require very small footprints, a few centimetres at most. The idea is to take advantage of the special features that PCs exhibit. One of such is the existence of propagation modes with extremely slow group velocity
3. Macroporous silicon applied to gas detection
Macroporous silicon is a
3.1. Seminal works
One of the first uses of MPS for gas sensing is in the work by Geppert [18]. From the analysis of the photonic band structure5 of the PCs, they observe that some bands are very flat at certain wave vectors, thus the group velocity
Some of the described devices are three-dimensional (3-d) PCs made of MPS. For these devices, light is shone normal to the surface, propagating parallel to the pores’ axis. The devices were used to detect ammonia (
They also present an alternative structure, refined in later works [17, 42], which uses two-dimensional (2-d) MPS structures. These are easier to fabricate and tolerances are better. As the structure is two-dimensional, the photonic band structure exists only for

Figure 3.
Optical setup for the measurement of gas using 2-d a MPS PC (a). (b) Shows results of measurement of
3.2. Structure design
From the possible strategies when using MPS structures as gas sensors, 2-d crystals impose the need to inject the light from the sides. In this way is easy to obtain long optical paths along the samples, but light coupling is complicated. However, from a practical standpoint, a system based on the normal incidence on the sample, using 3-d PCs, is easier to assemble, align, and calibrate7. In this chapter we expose results based in this option with PCs produced with macroporous silicon.
The designed MPS silicon structures are simulated using a simplified model by the finite-difference time-domain (FDTD) numerical method. Some MPS structures will be used as reflectors, while others will be used as filters. Reflection design requires a PBG encompassing just the absorption region of the desired gas. On the other hand, transmission design needs a PGB as wide as possible, with some crystal defects to block all light but the corresponding to the gas absorption line. The largest PBGs are obtained with an opal like PC [43]. As the samples will be illuminated from the top8, the horizontal pore arrangement is not as important. Our samples pore disposition is a square array. The EE of silicon does not allow getting perfect spherical shapes (opals), but the actual pore profile has a sinusoidal-like shape, or

Figure 4.
Sample model. The unitary cell can be approximated by a “ball and stick” model consisting of a cylinder and an ellipsoid, or by a slice method, using short cylinders.
To place the PBG at the
The FDTD simulations show that in the vertical direction there is a narrow PBG (
3.3. Fabrication
For MPS fabrication, the EE method is one of the most versatile, and one of the preferred for three-dimensional structure definition. A general description of the method is the dissolution of silicon by an electrically promoted reduction–oxidation chemical process (
The etching setup places the patterned face to be etched in contact with the electrolyte, opposing to the cathode. The back-face (i.e., the other side) is contacted electrically to close the electrochemical circuit. The illumination can be provided from either the front or back surfaces. For practicality reasons, it is simplest to irradiate from the backside. Our etching setup follows these principles, plus the IR light is provided by IR LEDS with
The pore growth and morphology depend on several factors of the etching process. The pore front (i.e., the
The MPS photonic crystals developed in this work have all been fabricated using the light assisted EE of silicon using n-type substrates. Having pores arranged in an
After the porosification, some samples were post-processed to create a membrane. The membrane is done by anisotropic etching of the back face. For gas measurements, an open membrane is the best option: gas can flow freely through the MPS sample, solving any issues with gas trapping or residence time for the sensors.
3.3.1. Fabrication quality
In general, the EE of silicon produces good quality porous silicon. What is “good quality” with respect to MPS? In a minimal sense, macroporous silicon is of “good quality” if pores are of the same shape and have grown uniformly. Of course this does not provide much information whether the “quality” is acceptable for the intended application. In particular, for photonic applications, the requirements can be very strict. Fabrication imperfections arise due to numerous reasons: wafer crystalline defects, crystal alignment, and local dopant distribution; but also the etching process itself can account for some variability, and lithography errors will also cause flaws in the grown pores. The common fabrication defects one can encounter in a MPS structure fabricated by EE are summarised in Table 1.

Table 1.
From Table 1, the defects that are of greater concern are the ones classified as “large optical influence.” Here
The abovementioned discussion was made considering the local effect of perturbations in the pore shape and outcome of the etching process. Nonetheless, the uncertainties of etching, the inhomogeneity of the substrate, and the flaws in lithography can be considered on a larger scale or
3.4. Absorption and losses of macroporous silicon
One important concern is determining how absorption and fabrication tolerances will affect the performance of the detection system. Intrinsic silicon absorbs light at wavelengths shorter than
On the other hand, fabrication tolerances definitively do have an impact on optical performance. For instance, in [17], it is reported that a
4. Measurements and results
Samples of MPs photonic crystals were fabricated with a lattice pitch of 700 nm and modulated pore profile. The fabrication conditions were the ones described earlier in Section 3.3—using the EE method. The modulation profiles for the 3-d PCs were programmed to generate a “strong”12 profile having a
4.1. Fabrication, sample characterisation, and morphological study
The fabricated samples were etched using a silicon substrate with
4.1.1. Morphological analysis
The morphological analysis of some samples shows, as seen in Figure 5, that the etched profiles of the MPS structures have some imperfections. The observed flaws are mainly small variations in pore radius between adjacent pores, pore “wiggling”, skew, and pore death. On the surface of the pores, a rough finish due to microporous silicon can be appreciated (see Figure 5). Pore radius variation is small—less than

Figure 5.
Cross section detail of a MPS photonic crystal (a) and (b), and the current waveform used to generate (a).
The fabrication process for the MPS samples has been optimised to obtain structures virtually free from dead pores. In general, optical performance is preserved if dead pores are few, or if pores die late during etching. To avoid pore death in the initial samples, the lower current limit was increased, so dynamic range was reduced and modulation could not be as strong as desired (compare Figure 5a and b).
The most significant defect found in the samples here used was vertical period variation13. As seen from Figure 5, for neighbouring pores, the beginning and ending of each vertical period is slightly different. As shown in our previous work [57], this variation has a noticeable influence on the PC optical response. In general, the 700 nm samples fabricated with our equipment show about
Two types of PC structures were fabricated for this work. Samples used for reflectance measurements are regular 3-d structures with a continuous sinusoidal-like profile for the pores. Such samples are shown in Figure 5 along with an example of current waveform used to generate them. The cross section images reveal that the modulation is slightly skewed to the beginning of the modulation. The vertical period is measured to be
Comparing the etched pore profile from the input waveform (Figure 5c), it can be seen that during the high plateau portion of the profile, once the pore has reached its maximum diameter, it slowly starts narrowing as the pore front advances. Presently, this can only be “corrected” by trial and error and judicious changes to the current and potential waveforms. For example, a second profile was designed with smoother transitions and “pre-skewing” resulting however in the PC of Figure 5b. Better modulation index was obtained (
Samples used for transmittance measurements include one or more defects, as shown in Figure 6. These structures have been fabricated using a refined profile. As seen on the SEM cross-section micrograph, the modulation skew is still present16, but the vertical period length is better adjusted. Otherwise, the quality of the fabricated structures is maintained. The modulation index has been increased, with pores having a smaller diameter at the necks. This greatly improves the PBG (both width and transmittance blocking) of the PC compared to the first structures depicted in Figure 5. The vertical period of the PC used for these samples is

Figure 6.
Macroporous silicon structures used in transmission measurements. (a) Is a single defect PC, while (b) shows a two defect MPS structure. Panel (b) © 2017 IEEE. Reprinted, with permission, from [
4.1.2. Optical response
Samples were optically characterised after fabrication to ensure the adequacy to sensing
Samples used for reflectance gas measurements, such as the one in Figure 5a, have a single PBG in the optical response. The morphological analysis shows that, as the modulation index is small, the PBG will be relatively narrow. This is confirmed in the measurement shown in Figure 7. The results confirm that as expected by the criteria given above, the PBG of a 3-d PC with a vertical period of

Figure 7.
Measured spectra of the PC shown in
The samples for transmission measurements have different responses according to the number of PC defects placed. As seen in Figure 8a, b, placing two defects gives rise to two resonant states, and three states if three defects are used. Coupling between resonant cavities induce the appearance of several resonances in the optical spectra even if all cavities are of the same dimensions. The placement of the defect along the PC depth also influences the coupling efficiency and quality factor of the resonance. The creation of a membrane also improves the transmitted signal, compare Figure 8c and d where the transmitted peak is almost

Figure 8.
Characterisation of transmission PC samples. (a) Is a two defect sample which shows two resonance states inside the PBG. (b) Is for a three defect PC (thick line) compared to a single defect crystal. (c) Is the characterisation of the sample in
4.2. Gas measurement system
After the devices were characterised, they were measured under different atmospheres consisting of
The gas mixture is fed to a gas cell purposely built where the MPS photonic crystal is placed. The gas flows continuously through the cell. For the measurements, a broadband infrared light source is used. This light is directed to the cell and then collected by a photodetector (PD). In the work here presented, the MPS structures were characterised by FT-IR spectrometry. The expected response of an autonomous NDIR measuring device can be then extrapolated from the spectroscopic gathered data in the characterisation of the PCs.
4.2.1. Principle of detection and method
The basic idea here proposed for an NDIR system is to use a MPS photonic crystal with a PBG wide enough to comprise one of the gas absorption
From the characterisation measurements, it is straightforward to approximate the expected response of the NDIR system. The spectra can be any of the reflectance, transmittance or absorbance, as these are proportional to the power of the electromagnetic wave:
4.3. Reflection
CO
2
measurement
Reflection measurement of
4.3.1. Setup
The measurement setup consists of the gas mixer connected to a specifically built gas cell. A schematic view of the cell design is shown in Figure 9 alongside the actual built device. The cell consists of two plates separated with an O-ring such that the cell is made airtight. The top plate has one port for gas input and another for output, and a central opening where a potassium bromide (

Figure 9.
Gas cell for reflection measures. A schematic section view is shown and the actual fabricated cell is pictured next to it. The sample is held in place by locking it with a spring screwed in a suitable position of the cell base grid. The cell is made airtight by an O-ring, and sealant around the IR window.
The cell is then placed in the spectrometer to make the gas concentration readings. In particular, a Renishaw Raman microscope equipped with Smiths IlluminatIR FT-IR module is used to take reflectance measurements at normal incidence,
4.3.2. Results
Reflectance spectra were measured for

Figure 10.
Measurement results for reflectance setup. The spectral response (a) from
5. Conclusion
Macroporous silicon is a versatile material that has shown to be a good candidate for the obtainment of PCs for gas sensing applications. Using fabrication methods such as EE opens up the possibility of obtaining high-quality photonic filters, in large quantities, and economically competitive. Furthermore, this fabrication technique is very flexible allowing creating customised designs with little effort. Using silicon as the base material has other benefits, such as the reutilisation of the existing manufacturing tooling and the reuse of process flows. Moreover, EE is compatible with microfabrication technology and might be incorporated in VLSI designs to build complete sensing devices. This will result in more compact and integrated system design lowering the bill of materials, costs, and improving manufacturability.
Here we demonstrate one possible way to use MPS PCs for gas sensing: as selective filters. Carbon dioxide has been detected and quantified using NDIR reflectance measurements. It has been found the MPS crystal has also an effect in the measured absorption. This is due to the very nature of the PC, slowing the group velocity of the incident light and enhancing the interaction time—increasing the effective optical path length—with the gas mixture. The inclusion of resonant cavities further enhances light absorption by inducing resonant states and spatially confining the IR radiation.
The PCs here shown, prove that a compact
Acknowledgments
This work has been funded by the Spanish
References
- 1.
Vega Bru D, Rodríguez Martínez Á. Macroporous silicon: Technology and applications. En: Igorevich Talanin V, editor. New Res. Silicon - Struct. Prop. Technol., InTech; 2017. DOI:10.5772/67698 - 2.
Lehmann V, Föll H. Formation mechanism and properties of electrochemically etched trenches in n-type silicon. Journal of the Electrochemical Society. 1990; 137 :653-659. DOI: 10.1149/1.2086525 - 3.
Lehmann V. The physics of macropore formation in low doped n-type silicon. Journal of the Electrochemical Society. 1993; 140 :2836. DOI: 10.1149/1.2220919 - 4.
Lehmann V. The physics of macroporous silicon formation. Thin Solid Films. 1995; 255 :1-4. DOI: 10.1016/0040-6090(94)05620-S - 5.
Zhang XG. Mechanism of pore formation on n-type silicon. Journal of the Electrochemical Society. 1991; 138 :3750. DOI: 10.1149/1.2085494 - 6.
Propst EK. The electrochemical oxidation of silicon and formation of porous silicon in acetonitrile. Journal of the Electrochemical Society. 1994; 141 :1006. DOI: 10.1149/1.2054832 - 7.
Parkhutik V. Porous silicon—Mechanisms of growth and applications. Solid State Electronics. 1999; 43 :1121-1141. DOI: 10.1016/S0038-1101(99)00036-2 - 8.
Ho KM, Chan CT, Soukoulis CM. Existence of a photonic gap in periodic dielectric structures. Physical Review Letters. 1990; 65 :3152-3155. DOI: 10.1103/PhysRevLett.65.3152 - 9.
Pendry JB. Photonic band structures. Journal of Modern Optics. 1994; 41 :209-229. DOI: 10.1080/09500349414550281 - 10.
Taalbi A, Bassou G, Youcef MM. New design of channel drop filters based on photonic crystal ring resonators. Optik- International Journal of Light and Electron Optics. 2013; 124 :824-827. DOI: 10.1016/j.ijleo.2012.01.045 - 11.
Lenert A, Rinnerbauer V, Bierman DM, Nam Y, Celanovic I, Soljacic M, et al. 2D Photonic-crystals for high spectral conversion efficiency in solar thermophotovoltaics. Proc. IEEE Int. Conf. Micro Electro Mech. Syst., 2014, p. 576-579. DOI: 10.1109/MEMSYS.2014.6765706 - 12.
Schilling J, Birner A, Müller F, Wehrspohn RB, Hillebrand R, Gösele U, et al. Optical characterisation of 2D macroporous silicon photonic crystals with bandgaps around 3.5 and 1.3 μm. Optics Materials (Amst). 2001; 17 :7-10. DOI: 10.1016/S0925-3467(01)00012-X - 13.
Cheylan S, Trifonov T, Rodriguez A, Marsal LF, Pallares J, Alcubilla R, et al. Visible light emission from macroporous Si. Optics Materials (Amst). 2006; 29 :262-267. DOI: 10.1016/j.optmat.2005.06.021 - 14.
Vega Bru D, Todorov Trifonov T, Hernández Díaz D, Rodríguez Martínez Á, Alcubilla González R. Blackbody behaviour from spiked macroporous silicon photonic crystals. Spanish Conf. Electron Devices. «8th Spanish Conf. Electron Devices», 2011, p. 257-258 - 15.
Vega D, Marti F, Rodriguez A, Trifonov T. Macroporous silicon for spectroscopic CO2 detection. IEEE SENSORS 2014 Proc., Valencia: IEEE; 2014, p. 1061-1064. DOI: 10.1109/ICSENS.2014.6985187 - 16.
Cardador D, Vega D, Segura D, Trifonov T, Rodr?guez A. Enhanced geometries of macroporous silicon photonic crystals for optical gas sensing applications. Photonics and Nanostructures – Fundamentals and Applications 2017; 25 :46-51. DOI: 10.1016/j.photonics.2017.04.005 - 17.
Pergande D, Geppert TM, Rhein A von, Schweizer SL, Wehrspohn RB, Moretton S, et al. Miniature infrared gas sensors using photonic crystals. Journal of Applied Physics 2011; 109 :83117. DOI: 10.1063/1.3575176 - 18.
Geppert TM, Schweizer SL, Schilling J, Jamois C, Rhein AV, Pergande D, et al. Photonic crystal gas sensors. En: Fauchet PM, Braun PV, editores. Opt. Sci. Technol. SPIE 49th Annu. Meet., vol. 5511, Denver, CO: International Society for Optics and Photonics; 2004, p. 61-70. DOI: 10.1117/12.561724 - 19.
Cai Z, Smith NL, Zhang J-T, Asher SA. Two-dimensional photonic crystal chemical and biomolecular sensors. Analytical Chemistry. 2015; 87 :5013-5025. DOI: 10.1021/ac504679n - 20.
Lee H-S, Lee E-H. Design of compact silicon optical modulator using photonic crystal MZI structure. 2008 5th IEEE Int Conf Gr IV Photonics 2008:308-310. DOI: 10.1109/GROUP4.2008.4638182 - 21.
Viktorovitch P, Drouard E, Garrigues M, Leclercq JL, Letartre X, Rojo Romeo P, et al. Photonic crystals: Basic concepts and devices. Comptes Rendus Physique. 2007; 8 :253-266. DOI: 10.1016/j.crhy.2006.04.005 - 22.
Threm D, Nazirizadeh Y, Gerken M. Photonic crystal biosensors towards on-chip integration. Journal of Biophotonics. 2012; 5 :601-616. DOI: 10.1002/jbio.201200039 - 23.
YOLE. YOLE Reports abstract for EPIC. 2015 - 24.
MNT Gas Sensor Forum. MNT Gas Sensor Roadmap. 2006 - 25.
Sekhar PK, Brosha EL, Mukundan R, Garzon FH. Chemical sensors for environmental monitoring and homeland security. Electrochemical Society Interface. 2010:35-40. DOI: 10.1149/2.F04104if - 26.
Ramboll Environ US Corporation. Technology Assessment Report: Air Monitoring Technology near Upstream Oil and Gas Operations. 2017 - 27.
Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, Kruefu V, et al. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sensors and Actuators B: Chemical. 2011; 160 :580-591. DOI: 10.1016/j.snb.2011.08.032 - 28.
OECD. Smart Sensor Networks : Technologies and Applications for Green Growth. 2009 - 29.
Tonouchi M. Cutting-edge terahertz technology. Nature Photonics. 2007; 1 :97-105. DOI: 10.1038/nphoton.2007.3 - 30.
Bigourd D, Cuisset A, Hindle F, Matton S, Fertein E, Bocquet R, et al. Detection and quantification of multiple molecular species in mainstream cigarette smoke by continuous-wave terahertz spectroscopy. Optics Letters. 2006; 31 :2356. DOI: 10.1364/OL.31.002356 - 31.
Lee DD. Environmental gas sensors. IEEE Sensors Journal. 2001; 1 :214-224. DOI: 10.1109/JSEN.2001.954834 - 32.
Han X, Naeher LP. A review of traffic-related air pollution exposure assessment studies in the developing world. Environment International. 2006; 32 :106-120. DOI: 10.1016/j.envint.2005.05.020 - 33.
Monn C. Exposure assessment of air pollutants: A review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone. Atmospheric Environment. 2001; 35 :1-32. DOI: 10.1016/S1352-2310(00)00330-7 - 34.
U.S. Environmental Protection Agency. American’s Children and the Environment. 3rd ed. 2013 - 35.
Rothman LS, Gordon IE, Barbe A, Benner DC, Bernath PF, Birk M, et al. The HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiation Transfer. 2009; 110 :533-572. DOI: 10.1016/j.jqsrt.2009.02.013 - 36.
Dinh T-V, Choi I-Y, Son Y-S, Kim J-C. A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction. Sensors and Actuators B: Chemical. 2016; 231 :529-538. DOI: 10.1016/j.snb.2016.03.040 - 37.
Mikuta R, Silinskas M, Bourouis R, Kloos S, Burte EP. Characterization of non-dispersive infrared gas detection system for multi gas applications. tm - Tech Mess. 2016; 83 :410-416. DOI: 10.1515/teme-2015-0010 - 38.
Painter O, Vučkovič J, Scherer A. Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab. Journal of Optical Society of America B. 1999; 16 :275. DOI: 10.1364/JOSAB.16.000275 - 39.
Nagahara K, Morifuji M, Kondow M. Optical coupling between a cavity mode and a waveguide in a two-dimensional photonic crystal. Photonics Nanostructures - Fundamental Applications. 2011; 9 :261-268. DOI: 10.1016/j.photonics.2011.04.011 - 40.
Hu J. Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy. Optics Express. 2010; 18 :22174. DOI: 10.1364/OE.18.022174 - 41.
Vasiliev A, Malik A, Muneeb M, Kuyken B, Baets R, Roelkens G. On-chip mid-infrared Photothermal spectroscopy using suspended silicon-on-insulator microring resonators. ACS Sensors. 2016; 1 :1301-1307. DOI: 10.1021/acssensors.6b00428 - 42.
Wehrspohn RB, Schweizer SL, Gesemann B, Pergande D, Geppert TM, Moretton S, et al. Macroporous silicon and its application in sensing. Comptes Rendus Chimie. 2013; 16 :51-58. DOI: 10.1016/j.crci.2012.05.011 - 43.
Xu H, Wu P, Zhu C, Elbaz A, Gu ZZ. Photonic crystal for gas sensing. Journal of Materials Chemistry C. 2013; 1 :6087. DOI: 10.1039/c3tc30722k - 44.
Śmigaj W, Gralak B. Validity of the effective-medium approximation of photonic crystals. Physical Review B. 2008; 77 :235445. DOI: 10.1103/PhysRevB.77.235445 - 45.
Li HH. Refractive index of silicon and germanium and its wavelength and temperature derivatives. Journal of Physical and Chemical Reference Data. 1980; 9 :561. DOI: 10.1063/1.555624 - 46.
Garín M, Trifonov T, Hernández D, Rodriguez A, Alcubilla R. Thermal emission of macroporous silicon chirped photonic crystals. Optics Letters. 2010; 35 :3348-3350. DOI: 10.1364/OL.35.003348 - 47.
Declair S, Meier T, Zrenner A, Förstner J. Numerical analysis of coupled photonic crystal cavities. Photonics Nanostructures - Fundamental Applications. 2011; 9 :345-350. DOI: 10.1016/j.photonics.2011.04.012 - 48.
Kolasinski KW. Etching of silicon in fluoride solutions. Surface Science. 2009; 603 :1904-1911. DOI: 10.1016/j.susc.2008.08.031 - 49.
Trifonov T, Rodríguez A, Marsal LF, Pallarès J, Alcubilla R. Macroporous silicon: A versatile material for 3D structure fabrication. Sensors and Actuators A: Physical. 2008; 141 :662-669. DOI: 10.1016/j.sna.2007.09.001 - 50.
Rönnebeck S, Ottow S, Carstensen J, Föll H. Crystal orientation dependence of macropore formation in n-Si with backside-illumination in HF-electrolyte. Journal of Porous Materials. 2000; 7 :353-356. DOI: 10.1023/A:1009639105357 - 51.
Carstensen J, Prange R, Föll H. A model for current-voltage oscillations at the silicon electrode and comparison with experimental results. Journal of the Electrochemical Society. 1999; 146 :1134-1140. DOI: 10.1149/1.1391734 - 52.
Föll H, Christophersen M, Carstensen J, Hasse G. Formation and application of porous silicon. Material Science and Engineering R Reports. 2002; 39 :93-141. DOI: 10.1016/S0927-796X(02)00090-6 - 53.
Carstensen J, Christophersen M, Hasse G, Föll H. Parameter dependence of pore formation in silicon within a model of local current bursts. Physica Status Solidi. 2000; 182 :63-69. DOI: 10.1002/1521-396X(200011)182:1<63::AID-PSSA63>3.0.CO;2-E - 54.
Hilbrich S, Theiβ W, Arens-Fischer R, Glück O, Berger M. The influence of the doping level on the optical properties of porous silicon. Thin Solid Films. 1996; 276 :231-234. DOI: 10.1016/0040-6090(95)08060-0 - 55.
Vega Bru D, Cardador Maza D, Trifonov T, Garin Escriva M, Rodriguez MA. The effect of absorption losses on the optical behaviour of macroporous silicon photonic crystal selective filters. Journal of Light Technology. 2016; 34 :1281-1287. DOI: 10.1109/JLT.2015.2503354 - 56.
Matthias S, Hillebrand R, Müller F, Gösele U. Macroporous silicon: Homogeneity investigations and fabrication tolerances of a simple cubic three-dimensional photonic crystal. Journal of Applied Physics. 2006; 99 :113102. DOI: 10.1063/1.2200871 - 57.
Segura D, Vega D, Cardador D, Rodriguez A. Effect of fabrication tolerances in macroporous silicon photonic crystals. Sensors Actuators, A Physics. 2017; 264 :172-179. DOI: 10.1016/j.sna.2017.07.011 - 58.
Langtry TN, Asatryan AA, Botten LC, de Sterke CM, McPhedran RC, Robinson PA. Effects of disorder in two-dimensional photonic crystal waveguides. Physical Review E 2003; 68 :26611. DOI: 10.1103/PhysRevE.68.026611 - 59.
Schilling J, Scherer A. 3D photonic crystals based on macroporous silicon: Towards a large complete photonic bandgap. Photonics Nanostructures - Fundamental Applications. 2005; 3 :90-95. DOI: 10.1016/j.photonics.2005.09.015 - 60.
Cardador D, Segura D, Vega D, Rodriguez A. Coupling defects in macroporous silicon photonic crystals. 2017 Spanish Conf. Electron Devices, Barcelona, Spain: IEEE; 2017, p. 1-3. DOI: 10.1109/CDE.2017.7905236 - 61.
Granados MJ. Fabricación de dispositivos fotónicos integrados. Bachelor’s degree Thesis. Universistat Politècnica de Catalunya; 2017 - 62.
Joannopoulos JD, Johnson SG, Winn JN, Meade RD. Photonic Crystals: Molding the Flow of Light. 2.a ed. Princeton University Press; 2011
Notes
- Nonetheless, MPS is not the only material nor technology in which PCs can be devised and fabricated.
- The chemical composition of a gas compound has specific vibrational (atomic bonds; from MIR to VIS) and electronic (electron excitation; from VIS to X-Ray) resonances that result in particular absorption frequencies unique for such gas.
- An ideal vibration-rotation mode has a single frequency. However, the actual line profile of a mode depends on external factors such as the gas pressure, velocity, temperature, etc. Typical line profiles are Gaussian (Doppler broadening), Lorentzian (pressure broadening), and Voigt (mixture of the previous). In standard conditions, ideal gas line profile separation is around Δ k = 2 cm − 1 , and full-width half-maximum approximately FWHM = 0.2 cm − 1 .
- The construction of a gas cell as well as other optical elements existing in the light path introduces several reflections. However, all of them are accounted when measuring the reference value I 0 .
- The band structure is the reciprocal of the dispersion diagram, thus the slope of the band represents the group velocity v g = ∂ ω / ∂ k , where ω is the wave frequency and k the wave vector in the reciprocal lattice of the PC, for a plane wave propagating through the media [62].
- There exist several methods to find the effective refractive index of a PC. The simplest one for low frequencies is calculating the average of the different materials that compose the PC. To obtain the n eff at higher frequencies, a theoretical study of the photonic band structure is needed, from it, n eff can be derived from the group velocity.
- Indeed, using 3-d PCs, the light can be launched into free space and coupled into the crystal from the top or bottom surface, which are much larger than the sides of the MPS structure.
- Concretely, the “top” surface is the surface from where the pores are etched. This surface has the initial pattern of the pore sites. For prime quality wafers, this face is polished and the incident light will have little scattering.
- Porosity is defined as the ratio of air to silicon volume in the unit-cell.
- A porous media is termed microporous for pore diameters less than 5 nm , mesoporous for 50 nm > d pore > 5 nm , and macroporous if pores are larger than 50 nm wide.
- For example, a scratch on the back-surface or shadow of the illumination will cause the shape of such scratch or shadow to be transferred to the pores grown at the front surface: the affected area will have smaller diameter pores or, in extreme cases, dead pores and branching.
- This profile tries to obtain a spherical shape as close as possible.
- That is for the current way the PCs are being used: with light coming from the “top” along the pores’ axis.
- These performance figures were achieved with the latter fabricated samples, with an optimised EE process.
- The input waveform is a square signal, so the concept of modulated index in AM is extended here as m = max r t ∕ min r t , where r t is the radius of the poresuperfluous.
- However for this particular instance, the asymmetric modulation was actually designed.
- This figure may change due to uncertainty. For example MPS sample thickness or tightening of the screws can change the gap as much as 0.2 mm . It must be remarked that this is a proof-of concept cell.