Abstract
The aim of this chapter is to investigate the effect of size, shape and environment on the optical properties of metallic nanoparticles in a large spectral range (λ = 300–900 nm) using quasi-static approximation for nanoparticles of sizes (D = 10–40 nm) and Mie theory for nanoparticles of sizes (D = 40–100 nm). Extinction (scattering and absorption) cross-sectional spectrum of nanoparticles is obtained for different diameters embedded in different matrices. Collective oscillation of electrons in conduction band in metallic nanoparticles is known as surface plasmon resonance (SPR) phenomena. SPR of metallic nanoparticles has significant applications in optics, communications and biosensors. We present in this chapter the effects of the interparticle distance on the optical response of gold dimer nanoparticles of 100 nm diameter. The extinction spectra of dimer nanoparticles are calculated by using generalized Mie theory.
Keywords
- metallic nanoparticles
- noble metals
- optical properties
- surface plasmon resonance
- extinction cross section
- morphology
- dimer of nanoparticles
1. Introduction
Nanomaterials are macroscopic systems but constructed and organized from elementary bricks of nanometric dimensions known as nanoparticles. They have many fields of application, in the fields of optics [1, 2], magnetism [3, 4], electronics [5, 6], telecommunications [7, 8], superconductors [9, 10], chemical catalysis [11] or biological marking [12].
The phenomena of absorption, scattering and reemission of an electromagnetic wave by particles of micrometric or even nanometric size are numerous and varied. For example, sunlight incident on the Earth’s atmosphere is dispersed by gas molecules and suspended particles (aerosols), giving rise to a blue sky, white clouds and various optical phenomena such as the rainbows or the halos. Another example that concerns us more closely is that of the variety of colors of stained-glass windows whose origin is based on the very specific scattering properties of light by very fine metallic grains trapped in transparent glasses [13].
The metallic clusters of nanometric size, well below the optical wavelength, have been known and exploited for centuries for their spectacular optical properties (stained glass, ceramics) [14]. Take, for example, the case of gold nanoparticles, which can be obtained in colloidal form by chemical synthesis. When diluted in solution, they exhibit varying colors, ranging from red to violet as their size decreases. Other colors like green and blue can be obtained by also playing on their shape. These optical properties are a consequence of the dielectric confinement in these objects whose size is less than the wavelength of the excitatory light and which is at the origin of the well-known phenomenon of surface plasmon resonance (SPR), which dominates the extinction spectrum in the visible domain. This oscillation is analogous to that of an electron gas in a massive system (plasmon mode) but modified by the presence of interfaces.
Among the nanoscale systems that possess very interesting optical properties, metals and especially noble metals (gold, silver and copper) have been the most widely studied in this way [15, 16, 17]. Noble metals and gold in particular lend themselves well to the synthesis of such materials, thanks to their resistance to aging (oxidation), even in a divided form. Great progress has been made in understanding the optical properties of composite materials based on nanoparticle well as in their methods of synthesis. These range from techniques of precipitation of metal salts in glasses or gels, to the assembly of preformed particles, chemically (colloid) or physically (sources of clusters).
In this chapter, we recall the theoretical results concerning the optical properties of bulk and confined metal systems. Particular emphasis is placed on the remarkable origin and properties of surface plasmon resonance (SPR) and its dependence on the size, shape and dielectric environment of nanoparticles. We study the basic formalisms for the calculation of the different cross sections of nanoparticle interaction with light (extinction, scattering and absorption) in the framework of:
Quasi-static approximation for spherical and spheroidal particles
Mie theory for homogeneous spherical particles.
Finally, we briefly discuss the effects of the interparticle distance on the optical response of dimer nanoparticles based on the generalized Mie theory.
2. Drude model and plasma frequency
The first situation envisaged, since it is the simplest, is that of a metal whose optical properties are essentially due to the behavior of the conduction electrons (as for the alkali metals). The Drude model [18] is then quite appropriate to describe the behavior of these quasi-free electrons. In this model, the conduction electrons of solid metal, considered as independent, move almost freely. These electrons undergo random collisions with other particles (other electrons, phonons, defects, etc.), with a probability per unit of time given by the electronic collision (or relaxation) rate
In this equation,
The displacement of Drude’s electrons induces a dipole moment
where
3. Dielectric constant and dielectric susceptibility
In a material, the two macroscopic vector quantities, which are the electric field
where
which allows us to establish a relation between the electric displacement and the electric field by defining the dielectric constant
By combining the three equations: Eqs. (3), (4) and (6), the dielectric constant
The dielectric constant
The real and imaginary parts of
In the optical domain where the frequencies are such that
We then see, in a classical approach, how the core electrons are introduced in the study of the optical properties of noble metals.
4. Interband absorption: contribution of d electrons
The optical response of bulk noble metals cannot be completely described by the Drude model. To take into account the contribution of core electrons (d band electrons) in the optical response of noble metals, a term must be added to the dielectric constant as calculated from the Drude model (Eq. 9). The dielectric constant can be written in the following way:
The first term

Figure 1.
Real and imaginary parts of the dielectric constant of bulk gold. The experimental results of Johnson and Christy (red •) and Palik (blue ▪) are compared to the Drude model (solid lines).

Figure 2.
Real and imaginary parts of the dielectric constant of bulk silver. The experimental results of Johnson and Christy (red •) and Palik (blue ▪) are compared to the Drude model (solid lines).
The role of the core electrons d is manifested by the deviation from the Drude function. It is mainly observed in the imaginary parts of
5. Extinction, scattering and absorption of wave by a sphere in the quasi-static approximation
We study the optical response of a metal sphere in the quasi-static approximation, that is to say when the wavelength λ of the incident radiation (plane wave) is much greater than the diameter D of the sphere. In this case, it is possible to consider that the applied electromagnetic field is uniform at each instant and at any point of the object volume (no delay effect). The sphere of radius R is characterized by a complex dielectric constant. The dielectric constant
Given the symmetry of the problem, the azimuthal angular dependence
where
The application of the electric field
One can write:
where
α is defined as the polarizability of the sphere, and V = 4/3πR3 is the volume of the particle. The extinction and scattering cross sections in general form are
The essential point here is that the polarization and consequently the different cross sections can become very important if the common term to their denominator vanishes or takes very low values. Knowing that the dielectric constant
will be minimum.
If the imaginary component
In the dipolar approximation, the pulsation

Figure 3.
Polarization of a sphere metal subjected to a uniform field E0. The dipole radiates a field Es.
Here,
Thus, for nanoparticles such as
6. Dielectric constant of a confined system
In the previous description, the dielectric constant of the particles was taken as that of solid bulks. This explains, for example, the absence of size effects on the value of the SPR in the quasi-static approximation. Strictly speaking, it is expected that the effective dielectric constant of the particles will be different from that of the solid bulk, essentially due to the fact that the confinement and the presence of an interface with the external environment must introduce significant modifications. The confinement can be taken into account in the Drude model by introducing phenomenologically a collision effective term for free electrons with surfaces. When the particle size is smaller than the mean free path of electrons, the collision frequency with the surfaces of a sphere of radius R is proportional to
The total collision rate is written as [25]
where
The dielectric constant of the bulk solid is written as:
and the dielectric constant of a confined metal:
The interband transitions are little modified for sizes up to 3 nm [26] and then
In the optical domain, the frequencies are such that
The constant

Figure 4.
Calculations of the extinction cross sections in the dipolar approximation for a gold nanoparticle with a diameter of 20 nm in a dielectric matrix

Figure 5.
Calculations of the extinction cross sections in the dipolar approximation for a silver nanoparticle with a diameter of 20 nm in a dielectric matrix
It should be noted that the profile of the spectra is given by Eq. (22) in which the modified value of the dielectric constant of the particle (Eq. 31) is introduced. In the case where the surface plasmon resonance is far from the interband threshold (like silver), it is possible to show that the spectrum adopts a quasi-Lorentzian profile. The full width at half maximum (FWHM) can be expressed approximately in the form [27, 28]:
The width of the resonance spectrum depends not only on the modified electronic collision rate but also on the imaginary part of the interband dielectric constant in the vicinity of the plasmon resonance. For silver with
7. Environment effect on the surface plasmon resonance
From the expression (Eq. 22), it is clear that the extinction cross-sectional spectrum is very sensitive to the value of

Figure 6.
Extinction cross sections for a gold nanoparticle with a diameter of 20 nm calculated by the quasi-static approximation in different environments: Vacuum (

Figure 7.
Extinction cross sections for a silver nanoparticle with a diameter of 20 nm calculated by the quasi-static approximation in different environments: Vacuum (
8. Shape effect
So far, we have considered spherical nanoparticles. Experimentally, we are often led to study deformed particles which adopt ellipsoidal forms. On the basis of the notion of polarizability of particles, we establish here the general formulas of extinction cross sections for ellipsoids (semiaxes: a, b and c) in the quasi-static approximation (a, b and c < <λ) and discuss the shape effect on the optical response.
By analogy with the case of the sphere, it is possible to show that the polarizability of an ellipsoid when an electric field is applied to it in one of the
To obtain this result, the Maxwell equations are solved in a system of ellipsoidal coordinates. The establishment of the boundary conditions at the interface between the particle and the external environment makes it possible to express the electrical potentials in each region and to identify the dipole responsible of the scattered field. The geometric factors
By analogy with the problem of the sphere treated above, the cross sections can be expressed in the form:
An important case is that of an excitation by an electric field polarized collinearly with one of the principal axes of the ellipsoid. We can write:
with
The surface plasmon frequency for an ellipsoid:
If the case of prolate ellipsoid (a = c > b), then Lx = Lz and Ly depend only on its aspect ratio
Figures 8 and 9 illustrate the evolution of SPR as a function of the shape of the ellipsoid in the case of gold and silver nanoparticles, respectively. The cross sections are calculated according to Eq. (41) for a prolate ellipsoid whose volume is equivalent to that of a 20-nm nanoparticle embedded in vacuum with

Figure 8.
Extinction spectra calculated for a prolate gold nanoparticle for two aspect ratio values: (a) η = 0.9, (b) η = 0.4. The nanoparticle is placed in vacuum. The coefficient g of the surface term is taken to be equal to 1.

Figure 9.
Extinction spectra calculated for a prolate silver nanoparticle for two aspect ratio values: (a) η = 0.9, (b) η = 0.4. The nanoparticle is placed in a vacuum. The coefficient g of the surface term is taken to be equal to 1.
9. Mie theory
The quasi-static description developed previously is strictly valid only in the limit where
The important final result is that the extinction, scattering and absorption cross sections for a nanoparticle of diameter
The coefficients
where

Figure 10.
Extinction spectra calculated in the context of the Mie theory as a function of the size of nanoparticles in the case of gold (a) and (c) and silver (b) and (d). The spectra are compared with the calculations of the dipole approximation for sizes ranging from 10 to 30 nm in the case of gold (a) and silver (b).
10. Optical response of several spherical particles: generalized Mie theory
Finally, we study a situation that can be encountered experimentally: the optical response of a group of close particles. This situation is illustrated in Figure 11. The incident field on a particle i is the sum of the applied field and the set of scattered fields by the other particles.

Figure 11.
A scheme for exciting a group of spheres by an incident electromagnetic wave. The fields scattered by each particle can in turn excite neighboring particles.
The scattered field by a particle j depends on
In the case of spherical particles, this problem can be solved accurately but at the cost of a large numerical effort. The idea is to apply the results of the Mie theory developed previously since it allows to express the field scattered by a particle as a function of the incident field on this same particle. Nevertheless, for each of the particles considered, the theory requires to define a reference whose origin (center of the particle) and the orientation are fixed and linked to this particle [33, 34, 35]. Figure 12 shows the extinction spectra of gold dimer nanoparticles as a function of the interparticle distance

Figure 12.
Extinction spectra (longitudinal excitation) of gold dimers (R = 50 nm, nm = 1.15) calculated by the generalized Mie theory as a function of the interparticle distance d. The dotted spectrum (for d = 10 nm) is obtained for transverse excitation. To guide the eye, dotted arrows indicate the redshift of the dipolar (D), quadrupolar (q) and hexapolar (h) resonance. The spectra for d = 0.5 nm and d = 3 nm are highlighted.
11. Conclusion
In this chapter, we demonstrated the capabilities of the Mie theory and quasi-static approximation to calculate the optical response of metallic nanoparticles. The quasi-static approximation is typically valid for nanoparticle diameter D ≤ λ/10 (λ is the wavelength of the incident light). For other dimensions of size, we calculated the optical response in the framework of Mie theory. We recalled the differences between extinction, absorption and scattering cross section of metallic nanoparticles. The spectrum of the extinction cross section present a resonance attributed to the collective oscillation of electrons in the conduction band: surface plasmon resonance (SPR). SPR spectral profile is very sensitive to the size, morphology and environment of the metallic nanoparticles. It is concluded that as the size of the spherical nanoparticle increases, the extinction magnitude increases whereas the spectral position of the surface plasmon resonance (SPR) is redshifted by using Mie theory. However, the peak position of SPR in quasi-static approximation is independent of size. We used the parameter g for confined nanoparticles to introduce the collision between electrons and the surface of nanoparticles. As the g factor increases, then there are more damping of oscillations. We concluded that the extinction cross-sectional magnitude is decreased and the width at half peak of SPR is increased. We investigated the effect of shape using dipolar approximation. We found that the surface plasmon resonance depends strongly on the polarization of the electromagnetic incident wave on the nanoparticle. As the aspect ratio decreases, the spectral position is shifted toward higher wavelength (when the light is polarized along major axis) and shifted toward smaller wavelength (when the light is polarized along minor axis). The mode along the long axis gives a larger extinction cross section because it is equivalent to a larger volume of material probed in relative to the sphere. We studied the extinction cross section of metallic nanoparticle embedded in different matrices. We remarked that the SPR is redshifted and accompanied by a large enhancement of its absorption cross section with increasing dielectric constant of the matrix. In the case of interacting systems, we have seen that the distance between nanoparticles is a crucial parameter. In the case of gold dimer nanoparticles, the smaller the interparticle distance, the more the dipolar resonance is redshifted with the appearance of higher order resonances.
References
- 1.
So DWC, Seshadri SR. Metal-island-film polarizer. Journal of the Optical Society of America B. 1997; 14 :2831 - 2.
Lal U, Link S, Halas NJ. Nano-optics from sensing to waveguiding. Nature Photonics. 2007; 1 :641 - 3.
Sharrouf M, Awad R, Marhaba S, Bakeer DE. Structural, optical and room temperature magnetic study of Mn-doped ZnO nanoparticles. Nano. 2016; 11 :1650042 - 4.
Sharrouf M, Awad R, Roumié M, Marhaba S. Structural, optical and room temperature magnetic study of Mn2O3 nanoparticles. Materials Sciences and Applications. 2015; 5 :850 - 5.
Stuart HR, Hall DG. Island size effects in nanoparticle-enhanced photodetector. Applied Physics Letters. 1998; 73 :3815 - 6.
Akella A, Honda T, Liu AY, Hesselink L. Two photon holographic recording in aluminosilicate glass containing silver particles. Optics Letters. 1997; 22 :967 - 7.
Ricard D, Roussignol P, Flytzanis C. Surface-mediated enhancement of optical phase conjugation in metal colloids. Optics Letters. 1985; 10 ;511 - 8.
Elvira D, Braive R, Beaudoin G, Sagnes I, Hugonin JP, Abram I, Philip IR, Lalanne P, Beveratos A. Broadband enhancement and inhibition of single quantum dot emission in plasmonic nano-cavities operating at telecommunications wavelengths. Applied Physics Letters. 2013; 103 :061113 - 9.
Roumié M, Marhaba S, Awad R, Kork M, Hassan I, Mawassi R. Effect of Fe2O3 nano-oxide addition on the superconducting properties of the (Bi,Pb)-2223 phase. Journal of Superconductivity and Novel Magnetism. 2014; 27 :143 - 10.
Basma H, Awad R, Roumie M, Isber S, Marhaba S, Abou Aly AI. Study of the irreversibility line of GdBa2Cu3O7−δ added with nanosized ferrite CoFe2O4. Journal of Superconductivity and Novel Magnetism. 2016; 29 :179 - 11.
Henry CR. Catalytic activity of supported nanometer-sized metal clusters. Applied Surface Science. 2000; 164 :252 - 12.
Burchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semi-conductors nanocrystals as fluorescent biological labels. Science.1998; 281 :2013 - 13.
Faraday M. Experimental relations of gold (and other metals) to light. Royal Society of London. 1857; 147 :145-181 - 14.
Maxwell Garnett JC. Colours in metal glasses and in metallic films. Philosophical transactions of the Royal Society of London, Serie B. 1904; 203 :385 - 15.
Marhaba S. Gold nanoparticle arrays spectroscopy: Observation of electrostatic and radiative dipole interactions. S. Nano. 2015; 10 :1550007 - 16.
Baida H, Billaud P, Marhaba S, Christofilos D, Cottancin E, Crut A, Lermé J, Maioli P, Pellarin M, Broyer M, Del Fatti N, Vallée F, Sánchez-Iglesias A, Pastoriza-Santos I, Liz-Marzán LM. Quantitative size dependence of the surface plasmon resonance damping in single Ag@SiO2 nanoparticles. Nano-Letters. 2009; 9 :3463–3469 - 17.
Billaud P, Marhaba S, Cottancin E, Arnaud L, Bachelier G, Bonnet C, Del Fatti N, Lermé J, Vallée F, Vialle JL, Broyer M, Pellarin M. Correlation between the extinction spectrum of a single metal nanoparticle and its electron microscopy image. Journal of Physical Chemistry C. 2008; 112 :978-982 - 18.
Pines D. A collective description of electron interactions. IV.Electron interactions in metals. Physical Review. 1953; 92 (3):626 - 19.
Kittel C. Physique de l’état solide, 7ème édition. Dunod, Paris; 1998 - 20.
Ashcroft NW, ND Mermin. Solid State Physics. International Edition, Saunders College, Philadelphia; 1976 - 21.
Johnson PB, Christy RW. Optical constants of the noble metals. Physical Review B. 1972; 6 (12):4370 - 22.
Palik ED. Handbook of optical constants of solids. London: Academic Press Inc; 1985 - 23.
Berthier S. Optique des milieux composites. Paris: Polytechnica; 1993 - 24.
Kreibig U, Vollmer M. Optical properties of Metal Clusters. Berlin: Springer Verlag; 1995 - 25.
Kreibig U, Genzel L. Optical absorption of small metallic particles. Surface Science. 1985; 156 :678 - 26.
Billaud P. Propriétés optiques de nanoparticules uniques de métaux nobles. Thèse de Doctorat, Université Lyon 1; 2006 - 27.
Del Fatti N. Dynamique électronique femtoseconde dans les systèmes métalliques massifs et confinés. Thèse de Doctorat, Université Bordeaux 1; 1999 - 28.
Muskens OL, Bachelier G, Del Fatti N, Vallée F, Brioude A, Jiang X, Pileni MP. Quantitative absorption spectroscopy of a single gold nanorod. Journal of Physical Chemistry C. 2008; 112 (24):8917 - 29.
Bohren CF, Huffman DP. Absorption and scattering of light by small particles. New York: Wiley; 1983 - 30.
Mie GG. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annals of Physics. 1908; 25 (3):377 - 31.
Lermé J, Bonnet C, Broyer M, Cottancin E, Marhaba S, Pellarin M. Optical response of metal or dielectric nano-objects in strongly convergent light beams. Physical Review B. 2008; 77 :245406 - 32.
Lermé J, Bachelier G, Billaud P, Bonnet C, Broyer M, Cottancin E, Marhaba S, Pellarin M. Optical response of a single spherical particle in a tightly focused light beam: Application to the spatial modulation spectroscopy technique. Journal of the Optical Society of America A. 2008; 25 :493-514 - 33.
Gérardy JM, Ausloos M. Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. The long-wavelength limit. Physical Review B. 1980; 22 (10):4950 - 34.
Gérardy JM, Ausloos M. Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres. Physical Review B. 2004; 25 (6):4950 - 35.
Marhaba S, Bachelier G, Bonnet C, Broyer M, Cottancin E, Grillet N, Lermé J, Vialle JL, Pellarin M. Surface plasmon resonance of single gold nanoparticle pairs near the conductive contact limit. Journal of Physical Chemistry C. 2009; 113 :4349-4356