Open access

Introductory Chapter: A Brief Overview of Archaeal Applications

Written By

Haïtham Sghaier, Afef Najjari and Kais Ghedira

Submitted: May 8th, 2017 Published: October 11th, 2017

DOI: 10.5772/intechopen.70289

Chapter metrics overview

1,547 Chapter Downloads

View Full Metrics

1. Prologue

The first member of the Archaea was described in 1880 [13]. Yet, the recognition and formal description of the domain Archaea, as separated from Bacteria and Eukarya, occurred in 1977 during early phylogenetic analyses based upon ribosomal DNA sequences [46]. Indeed, members of the archaeal domain are characterized by several distinguishing traits [3] as confirmed later based on the first complete archaeal genome sequence obtained by Bult et al.[7] and the subsequent finished and ongoing archaeal sequencing projects (https://gold.jgi.doe.gov/organisms?Organism.Domain=ARCHAEAL, ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/archaea/) [8, 9].

The archaeal domain is composed of the DPANN superphylum[10]—Aenigmarchaeota, Diapherotrites, Nanoarchaeota, Nanohaloarchaeota, Pacearchaeota, Parvarchaeotaand Woesearchaeota[11]—excluded from the common branch of the TACK(or TACKL [12]) superphylum[13]—Aigarchaeota[14], Bathyarchaeota[15], Crenarchaeota[16], Korarchaeota[17], Lokiarchaeota[18] and Thaumarchaeota [19]—with the Euryarchaeota phylum[16]—extreme halophilic Archaea, hyperthermephiles such as Thermococcusand Pyrococcus, most acidophilic-thermophilic prokaryotes, the thermophilic-acidophilic cell wall-less Thermoplasma, methanogens [20] and the Altiarchaeales clade [21].

The Archaea are ubiquitous in most terrestrial, aquatic and extreme environments (acidophilic, halophilic, mesophilic, methanogenic, psychrophilic and thermophilic) [20, 22]. Although very diversified with a great number of species, luckily, no member of the domain Archaea has been described as a pathogen for humans, animals or plants [2325]. Thus, Archaea are a potentially valuable resource in the development of new biocatalysts, novel pharmaceuticals and various biotechnological applications. Applications of Archaea (for review, see [2632] and references therein) may be subdivided into four main fields (Figure 1): (i) commercial enzymes and/or molecules, (ii) environment, (iii) foodand (iv) health.

Figure 1.

Examples of potential applications of Archaea in biotechnology depicted in a 16S rDNA phylogenetic tree visualized via the iTOL (Interactive Tree Of Life) tool[33]. Potential applications of Archaea were subdivided into four fields (commercial enzymes and/or molecules (stars), environment (circles), food (triangles) and health (squares)) based on the reference(s) listed following each species. Thirty eight (n=38) archaeal species were integrated into the above phylogenetic tree (one DPANN species (white color), 21 Euryarchaeota species (dark grey color), 16 TACK species (light grey color)):Acidianus hospitalisW1 (NC_015518) [34,35],Acidilobus saccharovorans345-15 (NC_014374) [36,37],Aeropyrum caminiJCM 12091 (NC_121692) [38],Aeropyrum pernixK1 (NC_000854) [39],Archaeoglobus fulgidusDSM 4304 (NC_000917) [40,41],Caldivirga maquilingensisIC-167 (NC_009954) [42],Desulfurococcus fermentansDSM 16532 (NC_018001) [43],Desulfurococcus mobilisDSM 2161 (NC_014961) [44],Ferroglobus placidusDSM 10642 (NC_013849) [45],Fervidicoccus fontisKam940 (NC_017461) [46],Halobacterium salinarumR1 (NC_010364) [47],Halobacteriumsp. NRC-1 (NC_002607) [48],Haloferax mediterraneiATCC 33500 (NC_017941) [49],Halogeometricum borinquenseDSM 11551 (NC_014729) [50],Halorhabdus utahensisJCM 11049 (NC_013158) [51],Halostagnicola larseniiXH-48 (NZ_CP007055) [52],Haloterrigena turkmenicaDSM 5511 (NC_013743) [53],Metallosphaera cuprinaAr-4 (NC_015435) [54],Metallosphaera sedulaDSM 5348 (NC_009440) [55],Methanocaldococcus jannaschiiDSM 2661 (NC_000909) [27,56],Methanotorris igneusDSM 5666 (NC_015562) [57],Natrialba magadiiATCC 43099 (NC_013922) [58],Nanoarchaeum equitansKin4-M (NC_005213) [59,60],Pyrobaculum aerophilumIM2 (NC_041958) [61,62],Pyrobaculum calidifontisJCM 11548 (NC_009073) [63],Pyrobaculumsp. 1860 (NC_016645) [64,65],Pyrococcus horikoshiiOT3 (NC_000961) [66],Pyrococcussp. ST04 (NC_017946) [67],Pyrococcus yayanosiiCH1 (NC_015680) [68],Sulfolobus acidocaldariusDSM 639 (NC_007181) [69],Sulfolobus solfataricusP2 (NZ_LT549890) [70],Thermococcus gammatoleransEJ3 (NC_012804) [71],Thermococcus litoralisDSM 5473 (NC_022084) [72],Thermococcus onnurineusNA1 (NC_011529) [73],Thermococcussp. CL1 (NC_018015) [74],Thermoplasma acidophilumDSM 1728 (NC_002578) [75,76],Thermoplasma volcaniumGSS1 (NC_002689) [77],Vulcanisaeta moutnovskia768-28 (NC_015151) [78].

The book ‘Archaea - New Biocatalysts, Novel Pharmaceuticals and Various Biotechnological Applications’ contains five chapters.

The first chapteris an Introductory Chapter, where editors give a general overview of the content of the book.

The second chapterby Castro-Fernandez et al.,entitled ‘Evolution, metabolism and molecular mechanisms underlying extreme adaptation of Euryarchaeotaand its biotechnological potential’, provides an interesting depiction of the phylum Euryarchaeotain terms of evolutive history, metabolic strategies, lipid composition, proteic structural adaptations and its biotechnological applications.

The third chapter‘Archaebiotics: archaea as pharmabiotics for treating chronic disease in humans?’ was written by Ben Hania and co-authors. It promotes the idea that some specific archaea are potential next-generation probiotics.

The fourth chapter‘Biocompounds from haloarchaea and their uses in biotechnology’ by Torregrosa-Crespo et al.,emphasizes the main characteristics of biocompounds from haloarchaea and their potential uses in biomedicine, pharmacy and industry.

The book concludes with a (fifth) chapterby Mizuno et al.,entitled ‘Plasmid curing is a promising approach to improve thermophiles for biotechnological applications: perspectives in archaea’, providing a new tip based on the plasmid-curing approach for improving the potential of thermophiles in various biotechnological applications.

Finally, we would like to thank all authors for their contributions. We are also grateful to InTech Publishing Process Managers, particularly Ms. Mirena Čalmić, Ms. Romina Rovan and Ms. Ana Pantar, who assisted us with patience until the publication of this book.

References

  1. 1. Farlow WG. Part IV. Report for the commissioner. In: United States Commission of Fish and Fisheries. Washington DC: Government Printing Office; 1878. pp. 969-973. 1880
  2. 2. Kocur M, Hodgkiss W. Taxonomic status of the genusHalococcusSchoop. International Journal of Systematic and Evolutionary Microbiology. 1973;23(2):151-156
  3. 3. Cavicchioli R. Archaea—timeline of the third domain. Nature Reviews Microbiology. 2011;9(1):51-61
  4. 4. Balch WE, Magrum LJ, Fox GE, Wolfe RS, Woese CR. An ancient divergence among the bacteria. Journal of Molecular Evolution. 1977;9(4):305-311
  5. 5. Fox GE, Magrum LJ, Balch WE, Wolfe RS, Woese CR. Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proceedings of the National Academy of Sciences of the United States of America. 1977;74(10):4537-4541
  6. 6. Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America. 1977;74(11):5088-5090
  7. 7. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, et al. Complete genome sequence of the methanogenic archaeon,Methanococcus jannaschii. Science. 1996;273(5278):1058-1073
  8. 8. Reddy TB, Thomas AD, Stamatis D, Bertsch J, Isbandi M, Jansson J, Mallajosyula J, Pagani I, Lobos EA, Kyrpides NC. The Genomes OnLine Database (GOLD) v.5: A metadata management system based on a four level (meta)genome project classification. Nucleic Acids Research. 2015;43(Database issue):D1099-D1106
  9. 9. Tatusova T, Ciufo S, Fedorov B, O’Neill K, Tolstoy I. RefSeq microbial genomes database: New representation and annotation strategy. Nucleic Acids Research. 2014;42(Database issue):D553-D559
  10. 10. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA, et al: Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499(7459):431-437
  11. 11. Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, Frischkorn KR, Tringe SG, Singh A, Markillie LM, et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Current Biology: CB. 2015;25(6):690-701
  12. 12. Da Cunha V, Gaia M, Gadelle D, Nasir A, Forterre P. Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Genetics. 2017;13(6):e1006810
  13. 13. Guy L, Ettema TJ. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends in Microbiology. 2011;19(12):580-587
  14. 14. Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, Kazama H, Chee GJ, Hattori M, Kanai A, Atomi H, et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Research. 2011;39(8):3204-3223
  15. 15. Meng J, Xu J, Qin D, He Y, Xiao X, Wang F. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. The ISME Journal. 2014;8(3):650-659
  16. 16. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America. 1990;87(12):4576-4579
  17. 17. Barns SM, Delwiche CF, Palmer JD, Pace NR. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(17):9188-9193
  18. 18. Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJ. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature. 2015;521(7551):173-179
  19. 19. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. Mesophilic Crenarchaeota: Proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews Microbiology. 2008;6(3):245-252
  20. 20. Amils R. Euryarchaeota. In: Gargaud M, Irvine WM, Amils R, Cleaves HJ, Pinti DL, Quintanilla JC, Rouan D, Spohn T, Tirard S, Viso M, editors. Encyclopedia of Astrobiology Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. pp. 764-765
  21. 21. Probst AJ, Moissl-Eichinger C. “Altiarchaeales”: Uncultivated archaea from the subsurface. Life. 2015;5(2):1381-1395
  22. 22. Ferrera I, Takacs-Vesbach CD, Reysenbach A-L. Archaeal ecology. In: Encyclopedia of Life Sciences (ELS). Chichester: John Wiley & Sons, Ltd; 2008. DOI: 10.1002/9780470015902.a9780470000338.pub9780470015902
  23. 23. Cavicchioli R, Curmi PM, Saunders N, Thomas T. Pathogenic archaea: Do they exist? BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology. 2003;25(11):1119-1128
  24. 24. Reeve JN. Archaebacteria Then … Archaes Now (Are There Really No Archaeal Pathogens?). Journal of Bacteriology. 1999;181(12):3613-3617
  25. 25. Aminov RI. Role of archaea in human disease. Frontiers in Cellular and Infection Microbiology. 2013;3:42
  26. 26. Schiraldi C, Giuliano M, De Rosa M. Perspectives on biotechnological applications of archaea. Archaea. 2002;1(2):75-86
  27. 27. Eichler J. Biotechnological uses of archaeal extremozymes. Biotechnology Advances. 2001;19(4):261-278
  28. 28. Reed CJ, Lewis H, Trejo E, Winston V, Evilia C. Protein adaptations in archaeal extremophiles. Archaea. 2013;2013:373275
  29. 29. Litchfield CD. Potential for industrial products from the halophilic Archaea. Journal of Industrial Microbiology and Biotechnology. 2011;38(10):1635-1647
  30. 30. Egorova K, Antranikian G. Industrial relevance of thermophilic Archaea. Current Opinion in Microbiology. 2005;8(6):649-655
  31. 31. Dumorne K, Cordova DC, Astorga-Elo M, Renganathan P. Extremozymes: A potential source for industrial applications. Journal of Microbiology and Biotechnology. 2017;27(4):649-659
  32. 32. Antunes A, Simões MF, Grötzinger SW, Eppinger J, Bragança J, Bajic VB. Bioprospecting Archaea: Focus on extreme halophiles. In: Paterson R, Lima N, editors. Bioprospecting: Success, Potential and Constraints. Cham: Springer International Publishing; 2017. pp. 81-112
  33. 33. Letunic I, Bork P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research. 2016;44(W1):W242-W245
  34. 34. You X, Zhang Q, Zheng H, Jiang C. Adaptation ofAcidianus hospitalisW1 to oligotrophic and acidic hot spring environments. Wei Sheng Wu Xue Bao = Acta Microbiologica Sinica. 2014;54(10):1193-1203
  35. 35. Krupovic M, Peixeiro N, Bettstetter M, Rachel R, Prangishvili D. Archaeal tetrathionate hydrolase goes viral: Secretion of a sulfur metabolism enzyme in the form of virus-like particles. Applied and Environmental Microbiology. 2012;78(15):5463-5465
  36. 36. Gumerov VM, Rakitin AL, Mardanov AV, Ravin NV. A novel highly thermostable multifunctional beta-glycosidase from crenarchaeonAcidilobus saccharovorans. Archaea. 2015;2015:978632
  37. 37. Mardanov AV, Svetlitchnyi VA, Beletsky AV, Prokofeva MI, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG. The genome sequence of the crenarchaeonAcidilobus saccharovoranssupports a new order, Acidilobales, and suggests an important ecological role in terrestrial acidic hot springs. Applied and Environmental Microbiology. 2010;76(16):5652-5657
  38. 38. Nishimura H, Sako Y. Purification and characterization of the oxygen-thermostable hydrogenase from the aerobic hyperthermophilic archaeonAeropyrum camini. Journal of Bioscience and Bioengineering. 2009;108(4):299-303
  39. 39. Mino K, Ishikawa K. Characterization of a novel thermostable O-acetylserine sulfhydrylase fromAeropyrum pernixK1. Journal of Bacteriology. 2003;185(7):2277-2284
  40. 40. Beblo-Vranesevic KA-Ohoo, Galinski EA, Rachel R, Huber H, Rettberg P. Influence of osmotic stress on desiccation and irradiation tolerance of (hyper)-thermophilic microorganisms. Archives of Microbiology. 2017;199(1):17-28
  41. 41. Toso DB, Javed MM, Czornyj E, Gunsalus RA-O, Zhou ZH. Discovery and characterization of iron sulfide and polyphosphate bodies coexisting inArchaeoglobus fulgidus cells. Archaea. 2016. DOI: 10.1155/2016/4706532
  42. 42. Letsididi R, Hassanin HA, Koko MY, Ndayishimiye JB, Zhang T, Jiang B, Stressler T, Fischer L, Mu W. Characterization of a thermostable glycoside hydrolase (CMbg0408) from the hyperthermophilic archaeonCaldivirga maquilingensisIC-167. Journal of the Science of Food and Agriculture. 2017;97(7):2132-2140
  43. 43. Susanti D, Johnson EF, Rodriguez JR, Anderson I, Perevalova AA, Kyrpides N, Lucas S, Han J, Lapidus A, Cheng JF, et al. Complete genome sequence ofDesulfurococcus fermentans, a hyperthermophilic cellulolytic crenarchaeon isolated from a freshwater hot spring in Kamchatka, Russia. Journal of Bacteriology. 2012;194(20):5703-5704
  44. 44. Susanti D, Johnson EF, Lapidus A, Han J, Reddy TB, Pilay M, Ivanova NN, Markowitz VM, Woyke T, Kyrpides NC, et al. Permanent draft genome sequence ofDesulfurococcus mobilistype strain DSM 2161, a thermoacidophilic sulfur-reducing crenarchaeon isolated from acidic hot springs of Hveravellir, Iceland. Standards in Genomic Sciences. 2016;11:3
  45. 45. Aklujkar M, Risso C, Smith J, Beaulieu D, Dubay R, Giloteaux L, DiBurro K, Holmes D. Anaerobic degradation of aromatic amino acids by the hyperthermophilic archaeonFerroglobus placidus. Microbiology. 2014;160(Pt 12):2694-2709
  46. 46. Lebedinsky AV, Mardanov AV, Kublanov IV, Gumerov VM, Beletsky AV, Perevalova AA, Bidzhieva S, Bonch-Osmolovskaya EA, Skryabin KG, Ravin NV: Analysis of the complete genome ofFervidococcus fontisconfirms the distinct phylogenetic position of the orderFervidicoccalesand suggests its environmental function. Extremophiles. 2014;18(2):295-309
  47. 47. Cherin E, Melis JM, Bourdeau RW, Yin M, Kochmann DM, Foster FS, Shapiro MG. Acoustic behavior ofHalobacterium salinarumgas vesicles in the high-frequency range: Experiments and modeling. Ultrasound in Medicine & Biology. 2017;43(5):1016-1030
  48. 48. Balakrishnan A, DasSarma P, Bhattacharjee O, Kim JM, DasSarma S, Chakravortty D. Halobacterial nano vesicles displaying murine bactericidal permeability-increasing protein rescue mice from lethal endotoxic shock. Scientific Reports. 2016;6:33679
  49. 49. Alsafadi D, Al-Mashaqbeh O. A one-stage cultivation process for the production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) from olive mill wastewater byHaloferax mediterranei. New Biotechnology. 2017;34:47-53
  50. 50. Salgaonkar BB, Braganca JM. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) byHalogeometricum borinquensestrain E3. International Journal of Biological Macromolecules. 2015;78:339-346
  51. 51. Anderson I, Tindall BJ, Pomrenke H, Goker M, Lapidus A, Nolan M, Copeland A, Glavina Del Rio T, Chen F, Tice H, et al. Complete genome sequence ofHalorhabdus utahensistype strain (AX-2). Standards in Genomic Sciences. 2009;1(3):218-225
  52. 52. Kanekar PP, Kulkarni SO, Kanekar SP, Shouche Y, Jani K, Sharma A. Exploration of a haloarchaeon,Halostagnicola larsenii, isolated from rock pit sea water, West Coast of Maharashtra, India, for the production of bacteriorhodopsin. Journal of Applied Microbiology. 2016;120(4):1136
  53. 53. Squillaci G, Finamore R, Diana P, Restaino OF, Schiraldi C, Arbucci S, Ionata E, La Cara F, Morana A. Production and properties of an exopolysaccharide synthesized by the extreme halophilic archaeonHaloterrigena turkmenica. Applied Microbiology and Biotechnology. 2016;100(2):613-623
  54. 54. Liu LJ, You XY, Zheng H, Wang S, Jiang CY, Liu SJ. Complete genome sequence ofMetallosphaera cuprina, a metal sulfide-oxidizing archaeon from a hot spring. Journal of Bacteriology. 2011;193(13):3387-3388
  55. 55. Artz JH, White SN, Zadvornyy OA, Fugate CJ, Hicks D, Gauss GH, Posewitz MC, Boyd ES, Peters JW. Biochemical and structural properties of a thermostable mercuric ion reductase fromMetallosphaera sedula. Frontiers in Bioengineering and Biotechnology. 2015;3:97
  56. 56. Kim JW, Flowers LO, Whiteley M, Peeples TL. Biochemical confirmation and characterization of the family-57-like alpha-amylase ofMethanococcus jannaschii. Folia Microbiologica. 2001;46(6):467-473
  57. 57. Hei DJ, Clark DS. Pressure stabilization of proteins from extreme thermophiles. Applied and Environmental Microbiology. 1994;60(3):932-939
  58. 58. Polosina YY, Zamyatkin DF, Kostyukova AS, Filimonov VV, Fedorov OV. Stability ofNatrialba magadiiNDP kinase: Comparisons with other halophilic proteins. Extremophiles. 2002;6(2):135-142
  59. 59. Waters E, Hohn MJ, Ahel I, Graham DE, Adams MD, Barnstead M, Beeson KY, Bibbs L, Bolanos R, Keller M, et al. The genome ofNanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(22):12984-12988
  60. 60. Olszewski M, Balsewicz J, Nowak M, Maciejewska N, Cyranka-Czaja A, Zalewska-Piątek B, Piątek R, Kur J. Characterization of a single-stranded DNA-binding-like protein fromNanoarchaeum equitans—A nucleic acid binding protein with broad substrate specificity. PLOS ONE. 2015;10(5):e0126563
  61. 61. Kaper T, Talik B, Ettema TJ, Bos H, van der Maarel MJ, Dijkhuizen L. Amylomaltase ofPyrobaculum aerophilumIM2 produces thermoreversible starch gels. Applied and Environmental Microbiology. 2005;71(9):5098-5106
  62. 62. de Vries S, Momcilovic M, Strampraad MJ, Whitelegge JP, Baghai A, Schroder I. Adaptation to a high-tungsten environment:Pyrobaculum aerophilumcontains an active tungsten nitrate reductase. Biochemistry. 2010;49(45):9911-9921
  63. 63. Satomura T, Zhang XD, Hara Y, Doi K, Sakuraba H, Ohshima T: Characterization of a novel dye-linked L-proline dehydrogenase from an aerobic hyperthermophilic archaeon,Pyrobaculum calidifontis. Applied Microbiology and Biotechnology. 2011;89(4):1075-1082
  64. 64. Shao H, Xu L, Yan Y. Biochemical characterization of a carboxylesterase from the archaeonPyrobaculumsp. 1860 and a rational explanation of its substrate specificity and thermostability. International Journal of Molecular Sciences. 2014;15(9):16885-16910
  65. 65. Mardanov AV, Gumerov VM, Slobodkina GB, Beletsky AV, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG. Complete genome sequence of strain 1860, a crenarchaeon of the genusPyrobaculumable to grow with various electron acceptors. Journal of Bacteriology. 2012;194(3):727-728
  66. 66. Ishikawa K, Ishida H, Matsui I, Kawarabayasi Y, Kikuchi H. Novel bifunctional hyperthermostable carboxypeptidase/aminoacylase fromPyrococcus horikoshiiOT3. Applied and Environmental Microbiology. 2001;67(2):673-679
  67. 67. Jung JH, Seo DH, Holden JF, Park CS. Maltose-forming alpha-amylase from the hyperthermophilic archaeonPyrococcussp. ST04. Applied Microbiology and Biotechnology. 2014;98(5):2121-2131
  68. 68. Fu L, Li X, Xiao X, Xu J. Purification and characterization of a thermostable aliphatic amidase from the hyperthermophilic archaeonPyrococcus yayanosiiCH1. Extremophiles. 2014;18(2):429-440
  69. 69. Pennacchio A, Sannino V, Sorrentino G, Rossi M, Raia CA, Esposito L. Biochemical and structural characterization of recombinant short-chain NAD(H)-dependent dehydrogenase/reductase fromSulfolobus acidocaldariushighly enantioselective on diaryl diketone benzil. Applied Microbiology and Biotechnology. 2013;97(9):3949-3964
  70. 70. Zhu S, Huang R, Gao S, Li X, Zheng G. Discovery and characterization of a second extremely thermostable (+)-gamma-lactamase fromSulfolobus solfataricusP2. Journal of Bioscience and Bioengineering. 2016;121(5):484-490
  71. 71. Jolivet E, L’Haridon S, Corre E, Forterre P, Prieur D.Thermococcus gammatoleranssp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. International Journal of Systematic and Evolutionary Microbiology. 2003;53(Pt 3):847-851
  72. 72. Washio T, Kato S, Oikawa T. Molecular cloning and enzymological characterization of pyridoxal 5’-phosphate independent aspartate racemase from hyperthermophilic archaeonThermococcus litoralisDSM 5473. Extremophiles. 2016;20(5):711-721
  73. 73. Kim YJ, Lee HS, Kwon ST, Lee JH, Kang SG. Enhancing the processivity of a family B-type DNA polymerase ofThermococcus onnurineusand application to long PCR. Biotechnology Letters. 2014;36(5):985-992
  74. 74. Jeon EJ, Jung JH, Seo DH, Jung DH, Holden JF, Park CS. Bioinformatic and biochemical analysis of a novel maltose-forming alpha-amylase of the GH57 family in the hyperthermophilic archaeonThermococcussp. CL1. Enzyme and Microbial Technology. 2014;60:9-15
  75. 75. Kim JH, Sung MW, Lee EH, Nam KH, Hwang KY. Crystallization and preliminary X-ray diffraction analysis of 5,10-methylenetetrahydrofolate dehydrogenase/cyclohydrolase fromThermoplasma acidophilumDSM 1728. Journal of Microbiology and Biotechnology. 2008;18(2):283-286
  76. 76. Kim YK, Mizutani K, Rhee KH, Nam KH, Lee WH, Lee EH, Kim EE, Park SY, Hwang KY. Structural and mutational analysis of tRNA intron-splicing endonuclease fromThermoplasma acidophilumDSM 1728: Catalytic mechanism of tRNA intron-splicing endonucleases. Journal of Bacteriology. 2007;189(22):8339-8346
  77. 77. Kocabiyik S, Demirok B. Cloning and overexpression of a thermostable signal peptide peptidase (SppA) fromThermoplasma volcaniumGSS1 in E. coli. Biotechnology Journal. 2009;4(7):1055-1065
  78. 78. Gumerov VM, Mardanov AV, Beletsky AV, Prokofeva MI, Bonch-Osmolovskaya EA, Ravin NV, Skryabin KG. Complete genome sequence of “Vulcanisaeta moutnovskia” strain 768-28, a novel member of the hyperthermophilic crenarchaeal genusVulcanisaeta. Journal of Bacteriology. 2011;193(9):2355-2356

Written By

Haïtham Sghaier, Afef Najjari and Kais Ghedira

Submitted: May 8th, 2017 Published: October 11th, 2017