Characteristic gases of several styles of faults.
\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"Milestone",originalUrl:"/media/original/124"}},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"7604",leadTitle:null,fullTitle:"Colloid Science in Pharmaceutical Nanotechnology",title:"Colloid Science in Pharmaceutical Nanotechnology",subtitle:null,reviewType:"peer-reviewed",abstract:"This book presents studies on colloidal particle/nanoparticle systems and their applications. Some of the topics covered are include nanoparticle-based drug design, theranostic nanoparticles for cancer therapy, market perspectives of colloidal particles, and stability of nanoparticles. The authors focus on recent findings, applications, and new technological developments of the fundamental properties of colloidal particle systems.",isbn:"978-1-78985-596-8",printIsbn:"978-1-78985-595-1",pdfIsbn:"978-1-83880-498-5",doi:"10.5772/intechopen.77406",price:119,priceEur:129,priceUsd:155,slug:"colloid-science-in-pharmaceutical-nanotechnology",numberOfPages:128,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"f3940914be015381c3928eae31c2457e",bookSignature:"Selcan Karakuş",publishedDate:"February 12th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/7604.jpg",numberOfDownloads:4955,numberOfWosCitations:5,numberOfCrossrefCitations:9,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:19,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:33,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 6th 2019",dateEndSecondStepPublish:"March 29th 2019",dateEndThirdStepPublish:"May 28th 2019",dateEndFourthStepPublish:"August 16th 2019",dateEndFifthStepPublish:"October 15th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"206110",title:"Dr.",name:"Selcan",middleName:null,surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş",profilePictureURL:"https://mts.intechopen.com/storage/users/206110/images/system/206110.jpeg",biography:"Assoc. Prof. Selcan Karakuş is currently working at the Department of Chemistry, Istanbul University - Cerrahpasa, Turkey. She obtained her Master of Science degree in Physical Chemistry from Istanbul University (IU) in 2006. She obtained her Doctor of Philosophy degree in Physical Chemistry from IU in 2011. She has worked as a visiting researcher at the University of Massachusetts, Department of Polymer Science and Engineering. She has research experience in nanoparticles, nanocomposites, nanoemulsions, metal oxide nanostructures, and sensors. She has worked on different projects funded by Istanbul University - Cerrahpasa and has published several research articles and book chapters in her area of interest.",institutionString:null,position:null,outsideEditionCount:null,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"4",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1194",title:"Drug Delivery System",slug:"drug-delivery-system"}],chapters:[{id:"70158",title:"The Viscosity Behaviour of PEGylated Locust Bean Gum/Rosin Ester Polymeric Nanoparticles",doi:"10.5772/intechopen.90248",slug:"the-viscosity-behaviour-of-pegylated-locust-bean-gum-rosin-ester-polymeric-nanoparticles",totalDownloads:686,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"In this study, PEGylated locust bean gum–rosin glycerol ester polymeric nanoparticles (PEG-LBG/RE PNPs) were synthesized by using simple ultrasonic irradiation method. The nanoparticles were characterized by using Fourier-transform infrared spectroscopy (FTIR) and scanning transmission electron microscopy (STEM). The viscosity behaviors of nanoparticles were studied in different conditions (pH, sonication time, and salt). The experimental results were calculated by Huggins, Kraemer, Tanglertpaibul-Rao, and Higiro models to understand the colloidal stability, the miscibility mechanism, and coefficients of nanoparticles. The results confirmed that the homogenous distribution of nanostructure was related to sonication time (30 min) and the presence of NaOH salt. With the addition of NaOH, the nanosystem based on ionotropic gelation technique was made more homogeneous. The results made us think that nanoparticles can be a good candidate for drug delivery systems in biomedical and pharmaceutical applications.",signatures:"Selcan Karakus, Merve Ilgar, Ezgi Tan, Yeşim Müge Sahin, Nevin Tasaltin and Ayben Kilislioglu",downloadPdfUrl:"/chapter/pdf-download/70158",previewPdfUrl:"/chapter/pdf-preview/70158",authors:[null],corrections:null},{id:"69057",title:"Magnetic and Quantum Dot Nanoparticles for Drug Delivery and Diagnostic Systems",doi:"10.5772/intechopen.88611",slug:"magnetic-and-quantum-dot-nanoparticles-for-drug-delivery-and-diagnostic-systems",totalDownloads:799,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:1,abstract:"Nanoparticles are being used tremendously in biomedical sciences due to their promising chemical and physical properties. Magnetic nanoparticles and quantum dot nanocrystals are two of the main nanoparticle types used in the biomedical industry. The surface of these nanoparticles is further modified in order to obtain biocompatibility and surface functionalization. Magnetic properties, fluorescence, nanometer size, and availability of sites to modify its surface for bioconjugation provide greater potential to use these nanoparticles in targeted drug delivery technique and diagnostics. As a result, these nanoparticles create massive developments in the industrial operations. In this chapter, an overview of the nanoparticles used in drug delivery and diagnostic systems will be discussed. In addition, advantages in encapsulation of magnetic and quantum dot nanoparticles for bioconjugation and different methods of drug delivery will be addressed.",signatures:"Erandi Munasinghe, Maheshi Aththapaththu and Lakmal Jayarathne",downloadPdfUrl:"/chapter/pdf-download/69057",previewPdfUrl:"/chapter/pdf-preview/69057",authors:[null],corrections:null},{id:"68234",title:"Adsorption Configurations of 2-Chlorophenols on Colloidal Silica",doi:"10.5772/intechopen.88113",slug:"adsorption-configurations-of-2-chlorophenols-on-colloidal-silica",totalDownloads:560,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Chlorophenol (CP) is the organic-chloride compound which widely used as pesticides. Industrialization and modern agriculture release a vast amount of chlorophenol to the environment. Adsorption behavior and retention of chlorophenol in the environment still not cleared. Interaction of 2-chlorophenol (2-CP) with silica surface was investigated with different reaction conditions. The study was conformed that outer-sphere complexation of 2-CP with silica surface and different surface speciation was observed at different pH conditions. Maximum adsorption (1.5 × 10−8 mol m−2) was observed around neutral pH conditions. 2-CP adsorption on silica surface followed the first order kinetics, and it indicates multilayer formation through capillary condensation. FTIR spectral analysis reveals the formation of a bidentate complex on the silica surface with 2-CP.",signatures:"Lakmal Jayarathna, Nelum Karunathilake, Athula Bandara and Rohan Weerasooriya",downloadPdfUrl:"/chapter/pdf-download/68234",previewPdfUrl:"/chapter/pdf-preview/68234",authors:[null],corrections:null},{id:"68397",title:"Colloid Stability Influences on the Biological Organization and Functions",doi:"10.5772/intechopen.88448",slug:"colloid-stability-influences-on-the-biological-organization-and-functions",totalDownloads:629,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"It is common to entities having sizes in the nano/micro-scale range be that, real or bio-intended systems, to undergo the action of many different forces, imparting them colloid stability. Ubiquitary electrostatic contributions, sometimes dominant, may overlap with steric stabilization ones; their combination effectively takes place in most cases. The two effects are jointly responsible, for instance, for the control of many phenomena such as: adhesion onto cells of alien agents, cellular separation during morpho-functional evolution, uptake of exogenous materials into cells and tissues. We evidence here, how the combination of these forces operates, and indicate the procedures leading to their effectiveness, when required for purposes inherent to biomimicry.",signatures:"Camillo La Mesa and Gianfranco Risuleo",downloadPdfUrl:"/chapter/pdf-download/68397",previewPdfUrl:"/chapter/pdf-preview/68397",authors:[{id:"34533",title:"Prof.",name:"Camillo",surname:"La Mesa",slug:"camillo-la-mesa",fullName:"Camillo La Mesa"},{id:"295610",title:"Dr.",name:"Gianfranco",surname:"Risuleo",slug:"gianfranco-risuleo",fullName:"Gianfranco Risuleo"}],corrections:null},{id:"69770",title:"Self-Microemulsifying System",doi:"10.5772/intechopen.88603",slug:"self-microemulsifying-system",totalDownloads:689,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Oral route is preferred for drug administration; however according to the recent scenario 40% of new drug candidates have poor water solubility and low bioavailability. One of the biggest challenges in drug delivery science is to improve low oral bioavailability problem which is associated with the hydrophobic drugs due to their unprecedented potential as a drug deliver with the broad range of application. Self-emulsifying systems have been proved as highly useful technological innovations to vanquish such bioavailability problem by virtue of their diminutive globule size, higher solubilization tendency for hydrophobic drugs, robust formulation advantages, and easy to scale up. Self-microemulsifying systems are isotropic mixers of oil, surfactant, drug and co-emulsifier or solubilizer, which spontaneously form transparent micro-emulsions with oil droplets ranging between 100 and 250 nm. Micro emulsified drug can be easily absorbed through the lymphatic pathway and it bypasses the hepatic first-pass effect. Self-microemulsifying system is a thermodynamically stable system and overcomes the drawback of layering of emulsions after sitting for a long period of time. The present literature gives exhaustive information on the formulation design and characterization of self-microemulsifying systems.",signatures:"Mansi Shah and Anuj G. Agrawal",downloadPdfUrl:"/chapter/pdf-download/69770",previewPdfUrl:"/chapter/pdf-preview/69770",authors:[null],corrections:null},{id:"70614",title:"Cyclodextrin Nanosponges: A Promising Approach for Modulating Drug Delivery",doi:"10.5772/intechopen.90365",slug:"cyclodextrin-nanosponges-a-promising-approach-for-modulating-drug-delivery",totalDownloads:885,totalCrossrefCites:6,totalDimensionsCites:11,hasAltmetrics:0,abstract:"Nanotechnology showed great promise and impact on administration of therapeutic agents owing to its advantages over contemporary delivery systems. Nanoscale carriers like nanosponges represent a novel category of hyper cross-linked polymer structures with nanosized cavities which can be filled with variety of active moieties (hydrophilic as well as hydrophobic). These nanocarriers can circulate around the body until they found the specific target site and adhere on the surface and release the active moiety in a predictable and controlled manner, resulting in more effective delivery of a given dosage. Nanosponge technology helps to reduce drug associated side effects, improve stability, increase elegance and improve the flexibility of formulations, administered orally, parenterally and topically. Among nanosponges, cyclodextrin-based nanosponges (CDNS) are smart versatile carriers studied widely for drug delivery applications. Statistically, it have presented that approximately 40% of active moieties marketed currently and about 90% of active moieties in their preliminary phase confront problems regarding to solubility. In the past decade, the number of studies describing CDNS has dramatically increased. In the present chapter, scientists working in arena of nanotechnology can get an idea of fabrication, characterization and therapeutic utilities of nanosponges.",signatures:"Sunil Kumar, Pooja Dalal and Rekha Rao",downloadPdfUrl:"/chapter/pdf-download/70614",previewPdfUrl:"/chapter/pdf-preview/70614",authors:[null],corrections:null},{id:"70358",title:"Effect of Cyclodextrin Derivatization on Solubility and Efficacy of Drugs",doi:"10.5772/intechopen.90364",slug:"effect-of-cyclodextrin-derivatization-on-solubility-and-efficacy-of-drugs",totalDownloads:707,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Cyclodextrins (CDs) possess cyclic structure having (α-1,4)-linked glucopyranose units making them less vulnerable to enzymatic degradation as than the linear dextrins. Commonly used natural CDs are α-CD, β-CD, and ɣ-CD with truncated cone-like appearance having lipophilic central cavity and hydrophilic exterior surface. The problem of low aqueous solubility of natural CDs can be addressed by reacting them with various reagents to produce water-soluble derivatives. CD derivatives can be categorized in many ways depending upon their substituents, biological activity, polarity, and size. The derivatization of natural CDs produces noncrystalline and amorphous forms with higher water solubility that are physically and microbiologically stable for prolonged time period. Variety of methods can be used to determine average degree of substitution for a modified CD. Dissociation by dilution is considered as major release mechanism of drugs from complex. It is essential to optimize the amount of CDs for a given preparation because they can either retard or promote drug delivery through biological membrane.",signatures:"Syed Haroon Khalid, Mehreen Bashir, Sajid Asghar, Tauqeer Hussain Mallhi and Ikram Ullah Khan",downloadPdfUrl:"/chapter/pdf-download/70358",previewPdfUrl:"/chapter/pdf-preview/70358",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6519",title:"Science and Technology Behind Nanoemulsions",subtitle:null,isOpenForSubmission:!1,hash:"f4dd10764e9841064827609a62952748",slug:"science-and-technology-behind-nanoemulsions",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6519.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6694",title:"New Trends in Ion Exchange Studies",subtitle:null,isOpenForSubmission:!1,hash:"3de8c8b090fd8faa7c11ec5b387c486a",slug:"new-trends-in-ion-exchange-studies",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6694.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9199",title:"Sonochemical Reactions",subtitle:null,isOpenForSubmission:!1,hash:"72f3010437d022fd2a932421ff4a9200",slug:"sonochemical-reactions",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/9199.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5357",title:"Advanced Technology for Delivering Therapeutics",subtitle:null,isOpenForSubmission:!1,hash:"bb3505baf01046e3248ceb6cea7899f0",slug:"advanced-technology-for-delivering-therapeutics",bookSignature:"Sabyasachi Maiti and Kalyan Kumar Sen",coverURL:"https://cdn.intechopen.com/books/images_new/5357.jpg",editedByType:"Edited by",editors:[{id:"180971",title:"Dr.",name:"Sabyasachi",surname:"Maiti",slug:"sabyasachi-maiti",fullName:"Sabyasachi Maiti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7663",title:"Role of Novel Drug Delivery Vehicles in Nanobiomedicine",subtitle:null,isOpenForSubmission:!1,hash:"e3fc1c64277dcc5702828fc74a423eea",slug:"role-of-novel-drug-delivery-vehicles-in-nanobiomedicine",bookSignature:"Rajeev K. Tyagi, Neeraj Garg, Rahul Shukla and Prakash Singh Bisen",coverURL:"https://cdn.intechopen.com/books/images_new/7663.jpg",editedByType:"Edited by",editors:[{id:"269120",title:"Dr.",name:"Rajeev",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"47331",slug:"correction-to-the-cultural-reinforcers-of-child-abuse",title:"Correction to: The Cultural Reinforcers of Child Abuse",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/47331.pdf",downloadPdfUrl:"/chapter/pdf-download/47331",previewPdfUrl:"/chapter/pdf-preview/47331",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/47331",risUrl:"/chapter/ris/47331",chapter:{id:"37763",slug:"the-cultural-reinforcers-of-child-abuse",signatures:"Essam Al-Shail, Ahmed Hassan, Abdullah Aldowaish and Hoda Kattan",dateSubmitted:"November 8th 2011",dateReviewed:"June 14th 2012",datePrePublished:null,datePublished:"July 11th 2012",book:{id:"2663",title:"Child Abuse and Neglect",subtitle:"A Multidimensional Approach",fullTitle:"Child Abuse and Neglect - A Multidimensional Approach",slug:"child-abuse-and-neglect-a-multidimensional-approach",publishedDate:"July 11th 2012",bookSignature:"Alexander Muela",coverURL:"https://cdn.intechopen.com/books/images_new/2663.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"138437",title:"Dr.",name:"Alexander",middleName:null,surname:"Muela Aparicio",slug:"alexander-muela-aparicio",fullName:"Alexander Muela Aparicio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"85712",title:"Dr.",name:"Ahmed",middleName:"M.",surname:"Hassan",fullName:"Ahmed Hassan",slug:"ahmed-hassan",email:"amh_64@hotmail.com",position:null,institution:{name:"King Faisal Specialist Hospital & Research Centre",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"139594",title:"Prof.",name:"Essam",middleName:null,surname:"Al-Shail",fullName:"Essam Al-Shail",slug:"essam-al-shail",email:"shail@kfshrc.edu.sa",position:null,institution:{name:"Alfaisal University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"149745",title:"Dr.",name:"Hoda",middleName:null,surname:"Kattan",fullName:"Hoda Kattan",slug:"hoda-kattan",email:"hoda@kfshrc.edu.sa",position:null,institution:null},{id:"149746",title:"Dr.",name:"Abdullah",middleName:null,surname:"Aldowaish",fullName:"Abdullah Aldowaish",slug:"abdullah-aldowaish",email:"dowaish@kfshrc.edu.sa",position:null,institution:null}]}},chapter:{id:"37763",slug:"the-cultural-reinforcers-of-child-abuse",signatures:"Essam Al-Shail, Ahmed Hassan, Abdullah Aldowaish and Hoda Kattan",dateSubmitted:"November 8th 2011",dateReviewed:"June 14th 2012",datePrePublished:null,datePublished:"July 11th 2012",book:{id:"2663",title:"Child Abuse and Neglect",subtitle:"A Multidimensional Approach",fullTitle:"Child Abuse and Neglect - A Multidimensional Approach",slug:"child-abuse-and-neglect-a-multidimensional-approach",publishedDate:"July 11th 2012",bookSignature:"Alexander Muela",coverURL:"https://cdn.intechopen.com/books/images_new/2663.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"138437",title:"Dr.",name:"Alexander",middleName:null,surname:"Muela Aparicio",slug:"alexander-muela-aparicio",fullName:"Alexander Muela Aparicio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"85712",title:"Dr.",name:"Ahmed",middleName:"M.",surname:"Hassan",fullName:"Ahmed Hassan",slug:"ahmed-hassan",email:"amh_64@hotmail.com",position:null,institution:{name:"King Faisal Specialist Hospital & Research Centre",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"139594",title:"Prof.",name:"Essam",middleName:null,surname:"Al-Shail",fullName:"Essam Al-Shail",slug:"essam-al-shail",email:"shail@kfshrc.edu.sa",position:null,institution:{name:"Alfaisal University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"149745",title:"Dr.",name:"Hoda",middleName:null,surname:"Kattan",fullName:"Hoda Kattan",slug:"hoda-kattan",email:"hoda@kfshrc.edu.sa",position:null,institution:null},{id:"149746",title:"Dr.",name:"Abdullah",middleName:null,surname:"Aldowaish",fullName:"Abdullah Aldowaish",slug:"abdullah-aldowaish",email:"dowaish@kfshrc.edu.sa",position:null,institution:null}]},book:{id:"2663",title:"Child Abuse and Neglect",subtitle:"A Multidimensional Approach",fullTitle:"Child Abuse and Neglect - A Multidimensional Approach",slug:"child-abuse-and-neglect-a-multidimensional-approach",publishedDate:"July 11th 2012",bookSignature:"Alexander Muela",coverURL:"https://cdn.intechopen.com/books/images_new/2663.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"138437",title:"Dr.",name:"Alexander",middleName:null,surname:"Muela Aparicio",slug:"alexander-muela-aparicio",fullName:"Alexander Muela Aparicio"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"8044",leadTitle:null,title:"Root Biology",subtitle:"Growth, Physiology, and Functions",reviewType:"peer-reviewed",abstract:"This book provides up-to-date knowledge of root biology. Most plants have roots, which anchor the plant in the soil and physically support the above-ground parts of the plant. In addition, roots absorb water and nutrients from the soil and transport this to the shoot. Roots grow by cell proliferation in the meristem in the root tip. The cells differentiate into the epidermis, cortex, and stele. Water and nutrients are absorbed through the cell membrane of the epidermis and are transported to the above-ground parts via xylem vessels. The root growth and functions are affected by various abiotic and biotic conditions, such as levels of water, salt, acid stresses, and presence of soil diseases. However, some beneficial microorganisms such as rhizobia and mycorrhizal fungi help plant growth.",isbn:"978-1-78985-310-0",printIsbn:"978-1-78985-309-4",pdfIsbn:"978-1-83962-839-9",doi:"10.5772/intechopen.77875",price:119,priceEur:129,priceUsd:155,slug:"root-biology-growth-physiology-and-functions",numberOfPages:110,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"e29d230e2fb39fddbf72452c91fe411d",bookSignature:"Takuji Ohyama",publishedDate:"November 20th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/8044.jpg",keywords:null,numberOfDownloads:5890,numberOfWosCitations:6,numberOfCrossrefCitations:10,numberOfDimensionsCitations:17,numberOfTotalCitations:33,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 21st 2019",dateEndSecondStepPublish:"March 13th 2019",dateEndThirdStepPublish:"May 12th 2019",dateEndFourthStepPublish:"July 31st 2019",dateEndFifthStepPublish:"September 29th 2019",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"30061",title:"Prof.",name:"Takuji",middleName:null,surname:"Ohyama",slug:"takuji-ohyama",fullName:"Takuji Ohyama",profilePictureURL:"https://mts.intechopen.com/storage/users/30061/images/system/30061.jpg",biography:"Takuji Ohyama was born in Japan in 1951. He obtained a Ph.D. with a thesis entitled “Studies on the fate of nitrogen fixed in soybean nodules” in 1980 from the University of Tokyo. Dr. Ohyama is currently a full professor in the Faculty of Applied Biosciences, Department of Agricultural Chemistry, Tokyo University of Agriculture. He was a professor in the Faculty of Agriculture, Niigata University, from 1982 to 2017. His research interests include symbiotic nitrogen fixation and metabolism in soybean plants, new technology of deep placement of slow-release nitrogen fertilizers for soybean cultivation, nitrogen and carbon metabolism in tulip, curcuma, and cucumber, and the use of stable isotopes and positron-emitting radioisotopes.\n\nDr. Ohyama has published more than 150 papers and 20 book chapters. He has also edited five books.",institutionString:"Tokyo University of Agriculture",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Tokyo University of Agriculture",institutionURL:null,country:{name:"Japan"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"372",title:"Phytology",slug:"phytology"}],chapters:[{id:"67987",title:"Protease Activity in the Rhizosphere of Tomato Plants Is Independent from Nitrogen Status",slug:"protease-activity-in-the-rhizosphere-of-tomato-plants-is-independent-from-nitrogen-status",totalDownloads:810,totalCrossrefCites:0,authors:[null]},{id:"68685",title:"Morphological and Physiological Root Plasticity and Its Relationships with Shoot Growth of Rice with Water Regimes and Microbial Densities",slug:"morphological-and-physiological-root-plasticity-and-its-relationships-with-shoot-growth-of-rice-with",totalDownloads:841,totalCrossrefCites:1,authors:[null]},{id:"67107",title:"Nitrogen Transport in Barley",slug:"nitrogen-transport-in-barley",totalDownloads:788,totalCrossrefCites:0,authors:[null]},{id:"67771",title:"The Role of Plant Growth-Promoting Bacteria in the Growth of Cereals under Abiotic Stresses",slug:"the-role-of-plant-growth-promoting-bacteria-in-the-growth-of-cereals-under-abiotic-stresses",totalDownloads:1590,totalCrossrefCites:7,authors:[null]},{id:"67736",title:"The Infection Unit: An Overlooked Conceptual Unit for Arbuscular Mycorrhizal Function",slug:"the-infection-unit-an-overlooked-conceptual-unit-for-arbuscular-mycorrhizal-function",totalDownloads:937,totalCrossrefCites:2,authors:[null]},{id:"68280",title:"Salted Radish Root Biology during Food Processing",slug:"salted-radish-root-biology-during-food-processing",totalDownloads:924,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"3806",title:"Advances in Biology and Ecology of Nitrogen Fixation",subtitle:null,isOpenForSubmission:!1,hash:"d7b6b90726ea589e7d303b4d95afa99c",slug:"advances-in-biology-and-ecology-of-nitrogen-fixation",bookSignature:"Takuji Ohyama",coverURL:"https://cdn.intechopen.com/books/images_new/3806.jpg",editedByType:"Edited by",editors:[{id:"30061",title:"Prof.",name:"Takuji",surname:"Ohyama",slug:"takuji-ohyama",fullName:"Takuji Ohyama"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10360",title:"Nitrogen in Agriculture",subtitle:"Physiological, Agricultural and Ecological Aspects",isOpenForSubmission:!1,hash:"5fc080ff8941417e9eeaf0ced2b5523a",slug:"nitrogen-in-agriculture-physiological-agricultural-and-ecological-aspects",bookSignature:"Takuji Ohyama and Kazuyuki Inubushi",coverURL:"https://cdn.intechopen.com/books/images_new/10360.jpg",editedByType:"Edited by",editors:[{id:"30061",title:"Prof.",name:"Takuji",surname:"Ohyama",slug:"takuji-ohyama",fullName:"Takuji Ohyama"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1814",title:"Botany",subtitle:null,isOpenForSubmission:!1,hash:"c692bbecba40bcdc059399e3ddb10de2",slug:"botany",bookSignature:"John Kiogora Mworia",coverURL:"https://cdn.intechopen.com/books/images_new/1814.jpg",editedByType:"Edited by",editors:[{id:"26063",title:"Dr.",name:"John",surname:"Mworia",slug:"john-mworia",fullName:"John Mworia"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7491",title:"Forage Groups",subtitle:null,isOpenForSubmission:!1,hash:"0f0fb28490411c41af2c39eaf6412aec",slug:"forage-groups",bookSignature:"Ricardo Loiola Edvan and Edson Mauro Santos",coverURL:"https://cdn.intechopen.com/books/images_new/7491.jpg",editedByType:"Edited by",editors:[{id:"283266",title:"Dr.",name:"Ricardo",surname:"Loiola Edvan",slug:"ricardo-loiola-edvan",fullName:"Ricardo Loiola Edvan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9704",title:"Cucumber Economic Values and Its Cultivation and Breeding",subtitle:null,isOpenForSubmission:!1,hash:"779dad6540f8023acf09657acf0b5da8",slug:"cucumber-economic-values-and-its-cultivation-and-breeding",bookSignature:"Haiping Wang",coverURL:"https://cdn.intechopen.com/books/images_new/9704.jpg",editedByType:"Edited by",editors:[{id:"280406",title:"Dr.",name:"Haiping",surname:"Wang",slug:"haiping-wang",fullName:"Haiping Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"55417",title:"Experimental Analysis of Modified CNTs-Based Gas Sensor",doi:"10.5772/intechopen.68590",slug:"experimental-analysis-of-modified-cnts-based-gas-sensor",body:'\n
The stability of electrical equipment is the key factor for the running safety and economy of electrical power system. Along with the extra‐high‐voltage grid construction, power transmission capacity becomes larger, coverage area becomes wider, and the national power grids at all levels are closely linked to each other, so the harm of grid accidents would be more serious [1]. Large power transformer, as the key equipment of power system, plays influential role to ensure the safe operation of power system. Real‐time detection of insulation state of transformer, accurately predicting the fault and avoiding possible trouble are important measures to ensure the safe operation of the electrical grid [2], to improve equipment utilization and reduce costs of equipment maintenance, which are also key technical issues of constructing the strong and intelligent electrical grid. A lot of study and practice has proved that the main reason for the transformer accident is the deterioration of its insulation performante. With the development of electronic, computer, sensor and information processing technology recently, detection ways for insulation state of large‐scale power transformer have been rapidly developing. For example, dissolved gas analysis (DGA) [3], partial discharge (PD) [4], winding coefficient of dielectric loss measurement, winding insulation resistance measurements, winding deformation and winding hot spot temperature monitoring the micro water insulation monitoring, etc. [5], these ways can help people to get the insulation state of transformer from different aspects.
\nDissolved gas-in-oil analysis (Oil-DGA) is the most convenient and effective method of judging the early potential fault of oil‐immersed power transformers at present [6–8], and the method is the most extensive one in the real application, which has become an indispensable approach to judge the internal fault of oil‐filled electrical equipment and oversee the safe operation of equipment [9]. Research shows that, among main obstacle and defects of transformers discovered by experiment examinations, faults found by dissolved gas analysis of test standard always take up the highest percentage, 60.1% in 2004 and 68.5% in 2005 [10]. The international electro technical commission develops standard IEC60567 “Oil‐filled electrical equipment—Sampling of gases and analysis of free and dissolved gases—Guidance” and IEC60599 “Mineral oil‐impregnated electrical equipment in service—Guide to the interpretation of dissolved and free gases analysis.” Gas chromatography is widely applied to quantitative analysis of various gases dissolved in transformer oil content. For the past few years, it has become the new trend to develop the pint‐sized gas‐detecting device by using the gas‐sensing technology, which is aimed at achieving on‐line monitoring to dissolved gas in transformer oil and grasping the operational state of equipment at any time [11, 12]. On‐line monitoring of dissolved gas analysis could help reduce the unavailability of equipment in the long run‐time [13], thus it can improve the economic benefit, optimize cycle and content of maintenance job to decrease maintenance fee and improve control of power system and the reliability of monitoring performance in overload operation [14].
\nThe high‐sensitivity gas sensors are used to detect dissolved gas in transformer oil [15], structure of test system is simple and it is easy to implement. In recent years, a breakthrough has been making in the sensor technology [16, 17]. Especially, the development of nanotechnology has been providing the new material and processing method [18], in which the carbon nanotubes (CNTs) gas sensor has become the new research focus [19]. CNTs have abundant pore structure, large specific surface area, and a strong ability of adsorption and desorption for chemical composition of the gas phase, these properties make CNTs, as gas sensor, incomparable in conventional sensors of the detection sensitivity and miniaturization [20]. At present, this technology obtains rapid development in the biological, chemical, machinery, aviation, military, and other aspects.
\nAs the pressure of global resources and environment is increasing, the society demand for environmental protection, energy conservation, and emissions reduction and sustainable development is increasing day by day. Along with sustainable development of social economy, the rapid growth of electricity demand, carrying out the energy conservation and emissions reduction and construction of “resource saving and environment‐friendly society,” has become a very urgent task. The Electric Power Research Institute (EPRI) put forward the concept of smart grid in 2000; they think this is development tendency in the future power grid and a way to solve the problem of the grid in twenty‐first century. So‐called smart grid is the advanced sensor measurement technology, information technology, communication technology, computer technology, automatic control technology, and the original transport and distribution infrastructure highly integrated to form a new type of power grid. The observability based on advanced measurement, sensing technology, and real‐time analysis based on comprehensive analysis of decision‐making reflects mainly intelligence in grid [21, 22], and it is one of the hot topics in the study of the current smart grid.
\nIn conclusion, new sensors researched are used to detect equipment on real‐time and accurately predict failure, do nip in the bud. These are important measures to ensure the safety of the grid in production, improve equipment utilization, and reduce the equipment maintenance cost, also, is the key technology of construction for unified strong smart grid. Based on the study of the existing transformer oil gas detection and analysis method, this chapter studies deeply application of nanometer gas‐sensitive sensor technology for transformer oil gas detection and analysis, develops a new CNTs gas sensor and, tests its gas‐sensing property, master the basic law, put forward an algorithm of dissolved gas analysis in oil‐based dynamic tunnel fuzzy c‐means to rich analysis method of transformer fault characteristics. This research topic from the urgent demand in reality not only has important academic value but also has significant economic and social benefits and broad application prospects.
\nAt present, most of high‐voltage and large‐capacity power transformers used oil filled; this transformer used composite structure including insulating oil and insulation paper (plate) and has the very high‐electric strength. During long‐running process, insulating oil and other insulating materials of transformer under the effect of electricity and heat will gradually age and decompose, resulting in the production of gases such as low molecular hydrocarbons, CO, and CO2 that get dissolved in insulating oil [23, 24]. When the transformer is in normal operation condition, the outside factors such as electricity, heat, and mechanical stress cannot break chemical bond of insulating oil and insulation paper (plate). Insulating materials only produce little gas when they are normal aging. But the discharge and overheating fault occur in the equipment, deterioration process of insulating materials is greatly accelerated to accelerate rate of biogas production of the above gas [25]. The study demonstrated composition and content of these gas has close relation with property of fault, these gases are called as characteristic gases, as shown in Table 1.
\nFault type | \nInsulation medium | \nMain components | \nMinor components |
---|---|---|---|
Overheating | \nOil | \nCH4, C2H4 | \nC2H6, H2 |
Transformer oil paper insulation | \nCH4, C2H4, CO, CO2 | \nC2H6, H2 | |
Arc discharge | \nOil | \nC2H2, H2 | \nC2H6, CH4, C2H4 |
Transformer oil insulation paper | \nC2H2, H2, CO, CO2 | \nC2H6, CH4, C2H4 | |
Partial discharge | \nTransformer oil and insulation paper | \nCH4, CO, H2 | \nC2H6, CO2 |
Spark discharge | \nTransformer oil | \nC2H2, H2 | \n/ |
Bubble discharge | \nWatered oil | \nH2 | \n/ |
Characteristic gases of several styles of faults.
It has a great significance for indication of the transformer early fault to monitor change of characteristics of the gas composition and content in insulating oil. Electromagnetic interference shows no influence on dissolved gases analysis, and dissolved gases analysis shows high data reliability. The technology develops maturely and accumulates considerable experience from qualitative to quantitative analysis to form relative regulation, such as International Electrotechnical Commission standard IEC60567 and IEC60599. Since the 1970s, transformer fault diagnosis based on characteristic gases dissolved in transformer oil has widely spread all over world and gradually applied in the field.
\nAccording to “the guidelines for the dissolved gas in transformer oil analysis, and judgment,” detection of gas content first needs gas separation from oil (i.e., the degassing). The gas separated from oil is a mixture of various gas components. The general gas content detection method has sensitive for all kinds of gases or a gas. To detect a single gas, we usually use gas chromatography to separate various gas components [26]. The advantage of gas chromatographic method is quantitative analysis for a variety of gas content dissolved in oil; meanwhile, there are characteristics in it, such as many test links, complex operation, high technical requirements, and long test cycle. Therefore, this method is usually used to regular checking for main equipment (e.g., once half a year), professional workers conduct it in laboratory. However, in two regular interval periods, the internal condition changes of transformer cannot be found in a timely manner. Application of micro gas‐sensor technology is developed to miniaturized gas detection device, which can monitor on‐line dissolved gas in transformer oil to master the running status of equipment whenever. When an alarm occurs in on‐line monitor, we could use method such as chromatographic analysis to secondary diagnosis [27].
\nThe on‐line monitor of dissolved gas in transformer oil still based on the categories and quantities of dissolved gas which can be seen as fault characteristic quantities. The difference is that real‐time on‐line monitoring of oil chromatography and intelligent fault diagnosis can be realized using this technology. This can not only gain the running state of the transformer timely, based on which latent faults can be detected and tracked, but also diagnose fault automatically due to the expert system so as for operating crew, fault can be handled rapidly. Using on‐line monitoring device can improve the management level of substation operation and lay a foundation of transition from preventive maintenance system to predictive maintenance system [28].
\nChoosing different sensors and cooperating to use different ways to take air and use diagnostic devices due to different test object can make up a variety of on‐line or portable monitoring device to detect the dissolved gases in transformer oil [29, 30]. The method of detecting the dissolved gases in transformer oil can be divided into the following categories:
\nThe amount of combustible gases refers to the total quantities of H2, CO, and all kinds of gaseous hydrocarbons. These kind of devices represented by TCG detection device of Japan\'s Mitsubishi electric power company can only give the amount of combustible gas but cannot measure the content of one component.
\nWhen overheating or partial discharge occurred in the equipment, hydrogen would appear. Fuel cell sensor such as HYDRAN produced by SYPROTEC Company in Canada can acquire signals. This device is suitable for the preliminary diagnosis for fault on the spot based on its simple structure, but chromatographic analysis must be applied to further determine the fault.
\nWith the development of on‐line monitoring technology, on‐line chromatographic detection devices have been invented for measuring full‐component gases. The gas transformer oil on‐line gas monitoring equipment of AVO Company in the USA can measure the contents of up to eight kinds of gases. DRMCC transformer on‐line monitoring system can monitor the working status of transformer continuously, timely, and systematically. The main monitoring objects include dissolved substances such as hydrogen, water and wind temperature, position of tap, etc. The CONEDISON Company analyzed and measured the contents of CH4, C2H4, CO, CO2, and C2H6 using infrared spectroscopy method and measured the content of H2 with an oxide electrochemical sensor. The on‐line transformer fault prediction system developed by Chongqing university can measure the concentration of H2, CO, CH4, C2H4, C2H2, and C2H6 timely and can availably predict the concentrations of the dissolved gases in transformer oil and diagnose insulation condition of transformer in future with the method of gray clustering, paste pattern multi‐level clustering, and kernel‐based possibilistic clustering. Due to the limitation of sensing technology, the current on‐line monitoring devices are not satisfactory in reliability and sensitivity, but on‐line monitoring is the development direction of analysis technology of dissolved gases in transformer oil.
\nPolymer membranes of organic synthesis have different degrees of permeability and can be used in industrial gas separation and purification process. In the mid‐1960s, use of polyester hollow fiber membrane to recover hydrogen by Du Pont Company is one of the earliest attempts to use membrane to separate gases. The gases in oil follow Henry\'s law and go through the membrane into the air chamber so the gas concentration in the chamber and the dissolved gas concentration in the oil are balanced. The transmittance of the film is as high as possible to minimize the detection cycle, so that timely detection, timely alarm can be realized. Kurz first produced the polymer membrane and made its use for separation of transformer oil and gas, then the polyimide, polyhexafluoroethylene, polytetrafluoroethylene, and other polymer membranes were studied. China Electric Power Research Institute, Chongqing University, and other research institutions made repeated tests on the permeability of a variety of membranes, the results showed that Polytetrafluoroethylene (PTFE) film not only had good air permeability but also had good mechanical properties and resistance to oil, high temperature, and many other advantages. Therefore, it is often used as breathable film on the detectors of dissolved gas [31].
\nAccording to the principle of vacuum degassing, vacuum pump or bellows vacuum is used to extract dissolved gas in oil to achieve on‐line monitoring of dissolved gas in transformer oil.
\nUse different methods of blowing gas to replace oil‐soluble gas so that the concentration of one kind of gas on surface and the concentration of that in oil gradually reach equilibrium and then analyze the gas on surface using a detector. Common methods contain carrier gas elution, air circulation, colorimetric pool method, etc.
\nThe detector that is used to detect separated or unseparated gases and has responses to a sample or samples is an important component of a detection device. It can be divided into palladium gate Field Effect Transistor (FET), semiconductor sensor, catalytic combustion sensor, combustion cell sensor, and other types of sensors [32].
\nThe results show that combining two or more sensors, using modern computer technology, and developing the corresponding data processing software, we can measure the content of two kinds of fault gases and can achieve significantly better detection performance than one conventional sensor with a single monitoring device [33]. The development of gas‐sensor array technology includes two aspects, one is to develop integrated micro gas‐sensor array using micro‐manufacturing, micro‐machining technology; the other is to improve the accuracy of a single gas identification and realize quantitative analysis mixed gas using multi‐sensor information fusion technology. Whether in the integration of sensor array, or in the analysis theory and technology of sensor array, it has become the hot spots of current sensor researches.
\nUsing high‐sensitivity gas sensor to detect dissolved gases in oil is easy to realize due to its simple gas line. But the existing gas sensor\'s detection sensitivity and reliability have not yet reached the level of sensitivity and reliability of off‐line detection, so there are a lot of work to do. With the continuous development of detection technology, a variety of new sensors continues to come out, such as photoionization detector using energy of photons to ionize each type of gas, methane gas sensor, CO gas sensor based on vibration at room temperature, CO2 gas sensor using solid battery, Pt doped SnO2 separation membrane gas sensor by impregnation, CNTs sensor, etc. These new sensors create a good prospect of developing for the detection of high‐sensitivity transformer oil‐dissolved gas using on‐line monitoring device. However, due to the harsh natural environment of on‐line monitoring, complex strong electromagnetic interference, a large number of studies is also needed in selecting these sensors for gas detector [34].
\nSensor is a type of device that can transfer physical or chemical parameters into available electric information. Sensor can be defined as “device or apparatus which can sense the specified measurement and transfer it into available output signals by some laws” [35].
\nGas sensors, namely gas‐sensitive devices, are a type of device or apparatus that can sense specific gases and their concentrations in the environment. Information about the species and concentrations of gases can be transferred into electric signals for detection, monitoring, analysis, and alarm. Gas sensor is an important branch of sensor technology. Since the research on gas sensors started in the 1930s, it has passed more than half a century and there are several hundred kinds of sensors, which have been utilized in many aspects of human life, including national defense and military, industrial and agricultural production, energy and resource exploit, medicine, environment protection, disaster prediction, transport, etc. [36].
\nThe fundamental characters of gas sensors include: sensitivity, selection, stability and resistant ability to corrosion, etc. Those characters are ensured by the selection of materials. Based on the characteristics of aimed gases, the environment conditions, detection requirements, and proper materials can be chosen or prepared for best gas‐sensing properties of gas sensors. According to gas‐sensing materials and gas‐sensing response, gas sensors can be roughly divided into electric, optical, electrochemical, and other types, shown in Figure 1. The advantages and disadvantages of different gas sensors are shown in Table 2.
\nClassification chart of gas sensors.
Detectors | \nAdvantages | \nDisadvantages |
---|---|---|
Field‐effect tube detector | \nOnly for H2 detection, no interference by other gases | \nNot long lifespan, severe zero drift, false alarm |
Catalysis incendiary detector [37] | \nLow cost, long lifespan, low effect by temperature and humidity, high‐speed response, widely used for H2, CH4 detection | \nNot suitable for other gases, low gas selectivity |
Semiconductor detector [38, 39] | \nBy far the most widely used sensors, high response value, high response speed, good stability | \nLow gas selectivity |
Combustion cell detector | \nOften used for H2 detection, high detection precision, good repeat response capability | \nLimited lifespan, high cost and detection error |
Infrared absorption detector | \nOften used for CO2 detection, no sample separation | \nFor useable for other gases |
Optical gas sensor [40–42] | \nElectromagnetic insulation properties, high response speed, high response value, long lifespan, good stability | \nComplex detection system, high cost |
Electrochemical gas sensor [43–45] | \nHigh response value, good gas selectivity | \nEasy influence from outside environment |
High polymer gas sensor [46] | \nHigh response value to specific gases, good gas selectivity, important in food production | \nOnly works under common temperature |
Comparison of the use features of common detectors.
Microelectromechanical technology (MEMT) is the main manufacturing technology of gas sensors. MEMT is a type of new technology based on microelectronic technique and micro‐machining technology, including bulk micro‐machining technology, surface micro‐machining technology, and Lithographie, Galvanoformung and Abformung (LIGA) technology based on X‐ray. Bulk micro‐machining technology mainly aims at single silicon crystal, of which the key technique is corrosion and wire bonding technology with processing thickness of dozens to hundreds micron; surface micro‐machining technology is based on semiconductor technique like oxidation, spread, photoetching, thin‐film deposition, and other techniques, with thickness of several micron; LIGA technology adopts conventional X‐ray for procession, with thickness of several to dozens micron. In those years, new processing techniques such as nanotechnology have provided more choices for sensors manufacturing technology and the development of processing techniques also motivates the breakthrough of sensor technology.
\nNowadays, with the development of industry manufacturing, environment detection as well as nanotechnology, nanogas‐sensing technology has become the research focus of sensing technology. The development of nanotechnology provides not only excellent gas‐sensing materials such as nanoparticles, nanowire, and nanoplane, but also new preparation and processing technology like scanning tunneling microscopy (STM) which enables researchers to observe the atoms and handle these atoms using probe. Therefore, this technology has developed a lot in biology, chemistry, machine, aviation, etc. Another important aspect of nanogas‐sensing technology is CNTs gas sensors.
\nSince Iijima [47] found CNTs in 1991, both physical and chemical properties have been investigated widely. CNTs can be seen as tubes with nanosizes by graphite flake rolling. Hexagonal structural carbon atoms constitute several to 10 layers of tubes, with the distance between interfacing layers of 0.34 nm. There are single‐wall CNTs (SWNT) and multi‐wall CNTs (MWNT) according to the layers of CNTs as shown in Figure 2. The external diameter of CNTs is about several to dozens of nanometers and the length is about micron, much longer than the diameter.
\nStructure sketch of CNTs: (a) single‐wall nanotubes, (b) multi‐wall nanotubes.
CNTs possess abundant pore structure, large specific surface area, and excellent adsorption and desorption ability to gas molecules. Due to the interaction of adsorbed gas molecules with CNTs, the fermi level of it will change, thus leading to large macroscopic change of its resistance, which provides a way to detect the gases by the measurement of resistance. Those properties enable CNTs huge advantages as gas sensors. Firstly, large interaction surface provides gas adsorption sites with gas‐sensing response enhanced largely. Secondly, working temperature can be lowered largely. Thirdly, gas sensors can also be controlled at very small size.
\nIn recent years, considerable researches on CNTs sensors have been carrying on for the exploration of novel sensing materials. In 2000, Kong et al. [48] first applied the SWCNT to prepare gas sensors for detecting the mixture of NO2 and NH3, and they found that the conductivity of sensors after adsorbing NH3 can reduce two orders of magnitudes and improve three orders of magnitudes in terms of NO2. In that case, the sensors can be regarded as having a relatively high selectivity in complex gas environment. Subsequently, Kong et al. [49] successfully prepared the N‐modified SWCNTs with inconsecutive Pt metal thin film, which has better sensing property and quicker recovery property to H2, demonstrating that this semi‐conductivity single‐wall CNTs sensors have better sensitivity, selectivity, and recovery characteristics than before. Dai et al. [6] developed a novel type of CNTs sensors, which were also made by SWCNT that have the semi‐conductivity property, and they studied the change of electric property with the import of gases. The results showed that the gas responses of NO2 and NH3 are both good. Qi et al. [50] introduced a type of gas sensors using SWCNTs, which can detect NO2 with the minimum content to 1 ppb.
\nVarghese et al. [51] proposed two kinds of means to prepare CNTs sensors. The first one is to cover a layer of CNTs‐SiO2 thin film on the flat interdigital capacitor, named capacitance sensor; the other one is to carve a crooked SiO2 groove on a Si substrate and then to grow CNTs on the SiO2, called resistive transducer. It has been proved that these two types of sensors are both sensitive to NH3, presenting the liner change. Modi et al. [52] employed CNTs arrays and developed micro gas‐sensing device using Thompson discharge characteristic that can sensitively detect the content of atmosphere gases.
\nRobinson et al. [53] of the America Marine laboratory designed a capacitance gas sensor based on CNTs, where the interdigital electrodes and the SWCNT that distributes in the interdigital electrodes are acted as a counter electrode of the capacitance, the 30nm SiO2 layer acted as insulating layer between two poles, low‐resistance silicon acted as another counter electrode. The experimental results showed that these sensors have quick response and short recovery time to NO2, NH3, and dimethyl methylphosphonate (DMMP). Pulichel M. hjayan and Nikhil Koratkar in Rensselaer Polytechnic Institute successfully developed the micro gas‐sensing samples, which can sensitively quantify and qualitatively analyze varying gases in the atmosphere.
\nWhen implementing direct voltage on the gas sensors, the low voltage would generate strong electric field on the CNTs, and therefore form the dielectric breakdown condition. The experimental results reveal that the voltage values vary obviously with the difference of the type of gas, so that it can be qualitatively analyzed. The analyzable gases are extensive, ranging from Ar to He as well as some inert gases. Furthermore, it has been proved that the generated electricity values present direct proportion to the logarithm of the concentrations, which indicates the gas content could be quantitatively analyzed.
\nZhang et al. [54] of Xi’an Jiaotong University as well as Bondavalliet al. [55] had performed an in‐deep research to Thompson discharge type CNTs gas sensor. Xi Li also conducted primary study on CNTs film sensors. Zhang et al. [56] of Chongqing University also performed related studies on the electric properties of CNTs.
\nIn terms of sensing mechanism of CNTs, many calculations based on first principle theory have been carried out. Goldoni et al. [57] deemed that the reasons SWCNTs are sensitive to O2, CO, H2O, and N2 could be attributed to the combined induction of surfactant, lauryl sodium sulfate and contaminant come from NaOH, or the chemical adsorption between the defect zone of the CNTs and O2.
\nJing Li [58] considered that two sensing mechanisms are existed in the adsorption process of SWCNTs: (i) the direct charge transfer between single‐wall CNTs and the acceptor or receptor, inducing the change of semi‐conductivity CNTs in Femi energy, which further results in the change in conductivity, named in‐tube adjust and (ii) inside the SWCNT existing the adsorption points between targeted molecules and SWCNT, leading to the charge transfer, contributing to the change of conductivity, named inter‐tube adjust.
\nZhou et al. [59] who applied density functional theory calculated the effect of B‐ and N‐doped SWCNT on adsorption to H atom and H2 molecules. Owing to the complexity of porous materials and diversity of doping substance of CNTs, the gas‐sensing mechanism of CNTs still remains in qualitative or half qualitative stage, which also needs further studies both experimental and theoretical.
\nTo improve the sensitivity and selectivity of the CNTs sensors, a large number of modified methods such as chemical doped, molecules doped, molecular coating, as well as mechanical deformation [60–69] were introduced by scholars to modify the CNT, and acquired the desirable results. The variety of chemical doped and doped materials contributes to the selectivity to various gas adsorption. For example, the B‐doped and N‐doped make the intrinsic CNTs become P‐model and N‐model semiconductor, improving the density of the carrier so that make the charge transforms much easier between gas molecules and CNTs. Through doping Au, Pt, Pd, Ir, and the other expensive metal nanoparticles, the activation energy of chemical adsorption for gases can be reduced; at the same time, these expensive metal nanoparticles become the core of the catalytic activity, so that can effectively enhance the sensitivity, selectivity, and response time of the sensors.
\nThe simulation of quantum mechanics is realized by the Dmol3 of Material Studio software, which is developed by an American company of Accelrys. The PW91 function of the generalized gradient approximation (GGA) was employed for the exchange correlation of electrons. P polarized function is used for modified hydroxyl (OH)‐wall (8, 0) SWNT in presence of gas molecule adsorption density functional calculations. Previous theoretical calculations [70] show that the generalized gradient approximation (GGA) method can accurately describe the geometric structure and electronic structure of CNTs, and the process of interaction with molecules. To avoid the interaction between the nanotubes, we designed a large lattice of 20 Å × 20 Å × 85 Å, and use the periodic boundary conditions. In a superlattice, the SWNT‐OH is made up with 64 C atoms and the ‐OH which modified in the sidewall of CNTs. The initial action distance between gas dissolved in oil‐filled transform and SWNT‐OH can be set to 0.15 nm. All atoms are calculated by the atomic potential, self‐consistent field convergence value is set to 10 × 10−5. Literature [70] shows we can get more accurate calculation results on CNTs (8, 0) brillouin zone 2 K points. All the calculation procedures completed on the Dmol3.
\nBefore each calculation, the first stage is to optimize the SWNT‐OH of the superlattice and the isolated typical dissolved gases to get their stable configuration. And CO, H2, CH4 C2H4, and C2H2 are chosen as the typical dissolved gases to be detected by SWNT‐OH in this part. Then let the CO, H2, CH4, C2H4, and C2H2 molecule in various passible ways, respectively, to approach the O and H atom of the ‐OH of the tube wall to make atomic optimization, and form the oil‐dissolved gases molecule SWNT‐OH system preliminarily. Finally, this system is unconstrained optimized to find the stable configuration and calculate its electronic properties.
\nIn Figure 3, it is the SWNT‐OH stable configuration after geometry optimization. In Figure 4(a)–(e), they are CO, C2H2, H2, CH4, and C2H4 stable configuration after geometry optimization. And in Table 3, is the calculation results of SWNT‐OH respectively absorb the CO, H2, CH4, C2H4, and C2H2. In Figure 5, are the most stable configuration of after interaction between the geometrically optimized gas molecules and SWNT‐OH. The unit of structure parameter is Å. The brackets correspond to adsorption energy which unit is eV. The charge transfers
(8, 0) SWNT‐OH.
Optimized supercell structures for (a) CO, (b) C2H2, (c) H2, (d) CH4, and (e) C2H4.
The most stable configurations of H2, CO, C2H4, and C2H2 interacting with SWNT‐OH after optimization, respectively.
Structural system | \nGraphic | \nAdsorption energy (eV) | \nCharge‐transfer (au) | \nInteracting distance (nm) |
---|---|---|---|---|
H2 + SWNT‐OH | \nFigure 5(a) | \n−0.25 | \n0.012 | \n0.2211 |
CO + SWNT‐OH | \nFigure 5(b) | \n−0.22 | \n0.062 | \n0.2159 |
CH4 + SWNT‐OH | \nFigure 5(c) | \n−0.36 | \n0.017 | \n0.2409 |
C2H4 + SWNT‐OH | \nFigure 5(d) | \n−0.49 | \n0.052 | \n0.2413 |
C2H2 + SWNT‐OH | \nFigure 5(e) | \n−0.59 | \n0.068 | \n0.2409 |
Calculated binding energy, net charge transfer, and interacting distance.
In order to determine the most stable geometry configuration of the system of oil‐dissolved gases molecule and SWNT‐OH, we designed the different initial configuration. In other words, let the different atoms of CO, H2, CH4, C2H4, and C2H2 molecule with the same initial distance (1.5) approach the O and H atom of ‐OH to optimize. And in order to evaluate the adsorption energy between molecules and SWNT‐OH, we calculated their adsorption energy
As shown in Table 3, all of adsorption energy between CNT‐OH and each oil‐dissolved gas molecules are less than 0.6 eV. Therefore, the interaction between CNTs‐OH and each oil‐dissolved gas molecules is physisorption because chemisorption energy should be larger than 0.6 eV. As shown in Figure 5 and Table 3, the value of charge transfer between CO and CNTs‐OH (0.052 au) is nearly six times the value of that between H2 and CNTs‐OH (0.012 au) though the interaction distance and adsorption energy between H2 and CO and CNTs‐OH are almost the same. Then CNTs‐OH can be used to detect CO due to the strong sensitivity if there is no organic gas in oil‐dissolved gas molecules. Comparing with inorganic gas, the average adsorption energy between organic gas (CH4, C2H4, C2H2) is about 0.48 eV, which is two times the average adsorption energy (0.23 eV) between inorganic gas (CO, H2) and CNTs‐OH. In addition, the charge transfer (0.046 au) between organic gas and SWNT‐OH is far more than that between the inorganic gas value (0.037 au) between inorganic gas and SWNT‐OH. This is because the hydroxyl modification on the surface of SWNT enhances its interaction to organic gas molecules due to the activation of hydroxyl. Thus, SWNT‐OH is more sensitive to organic gas in oil. If we only consider the organic gas: CH4, C2H4, and C2H2, the adsorption energy decreases in order: C2H2 (0.59 eV) > C2H4 (0.49 eV) > CH4 (0.36 eV), and charge transfer decreases in order: C2H2 (0.068 au) > C2H4 (0.052 au) > CH4 (0.017 au) as shown in Table 3. With the increase of C—C covalent, it leads to the increase of adsorption energy, resulting in the high sensitivity to C2H2. Hence, CNTs‐OH can be used to detect C2H2 component in oil‐dissolved transformer.
\nIn order to evaluate the influence of oil‐dissolved gas to the change of conductivity during the adsorption process, density of states (DOS) is calculated as shown in Figure 6. On comparing the calculation results shown in Figure 6(a)–(f), gas adsorption narrows down the DOS at fermi level. Upon inorganic gas: H2 and CO adsorption shown in Figure 5(b) and (c), it is found that the energy gap of DOS around fermi level for CO + CNTs‐OH is smother and narrower than that of H2 + CNTs‐OH adsorption system, signifying the increase of conductivity after CO adsorption. The result is also in consistence with the results that the charge transfer in CO + CNTs‐OH system is larger than that of H2 + CNTs‐OH. Upon organic gas: CH4, C2H4, and C2H2 adsorption shown in Figure 6(d)–(f), the DOS of organic gas molecules adsorbed SWNT‐OH system at fermi level is greater than that of inorganic adsorbed SWNT‐OH system, indicating the strong interaction between organic gas molecules and SWNT‐OH comparing with that of inorganic adsorption, which is also consistence with the results in Table 3. And the DOS for C2H2 + CNTs‐OH system around at fermi level is obviously larger than that of other gas adsorption systems, thus SWNT‐OH is most sensitive to C2H2 gas. Therefore, SWNT‐OH can be used to detect C2H2 in oil‐filled transformer.
\nCalculated density of states for SWNT‐OH, H2 + SWNT‐OH, CO + SWNT‐OH, CH4 + SWNT‐OH, C2H4 + SWNT‐OH, C2H2 + SWNT‐OH.
In this study, density functional theory has been used to study the adsorption properties of hydroxyl‐modified CNTs (CNTs‐OH) upon gases dissolved in oil‐filled transformer. According to the calculation results of first‐principles calculations, the adsorptions to all of the gases are physisorption, which leads to the change of geometric and electronic structures. The adsorption energy to organic gases is bigger than inorganic gases, especially reflecting in the great adsorption energy to C2H2. Therefore, we conclude that SWN‐OH can be chosen as gas sensor to detect C2H2 gas dissolved in oil‐filled transformer.
\nThe results showed that different oil‐dissolved gases have different responses on the Ni‐CNT sensor. To further understand the sensing mechanism, we established a properly simplified model to calculate and analyze the adsorption properties of the supports (CNTs and Ni‐CNTs) to the gases. Ni‐substituted CNTs and typical oil‐dissolved gases were constructed to simulate the sensor in this part. C2H2, C2H4, and C2H6 are chosen as the target measured gases due to the specific sensitivity and selectivity of Ni‐CNT sensor.
\nTotally optimized geometries and related properties of the configurations were carried out by Design for Testability (DFT) calculations in the generalized gradient approximation using the Dmol3 model with double‐numerical polarized basis sets. The whole calculations were performed using the Perdew-Burke-Ernzerhof (PBE) DFT. The geometrical structures are shown in Figures 7 and 8.
\nGeometrical structures of CNTs and Ni‐CNTs. (a) CNTs, (b) Ni‐CNTs.
Geometrical structures of oil‐dissolved gases (a) C2H2, (b) C2H4, (c) C2H6.
The spontaneity of these interactions can be described by the adsorption energy
where
Mulliken population of gas molecules and support were calculated, respectively, so that the charge distribution of the system can be obtained in the adsorption process. Charge transfers
Table 4 shows the adsorption energy and charge transfers of the Ni‐CNT system and the CNT system. Compared with the CNT system, the doped Ni effectively improved the electronic structure and sensitivities of CNTs. The adsorption energies of C2H6 are the lowest, and C2H2 and C2H4 are 8.7 and 4.6 times larger than that of C2H6, respectively. The values of charge transfers of three gases are as follows: C2H2 > C2H4 > C2H6. Both the adsorption energies and charge transfers of C2H2 are highest. Thus, Ni‐CNTs have the highest sensitivity to C2H2, which is similar to that of the CNTs.
\n\n | ||
---|---|---|
C2H2‐CNTs | \n−0.3265 | \n0.006 |
C2H4‐CNTs | \n−0.2814 | \n0.003 |
C2H6‐CNTs | \n−0.0458 | \n0.002 |
C2H2‐Ni‐CNTs | \n−1.7412 | \n0.091 |
C2H4‐Ni‐CNTs | \n−0.9246 | \n0.069 |
C2H6‐Ni‐CNTs | \n−0.1994 | \n0.043 |
Adsorption energy and charge transfer.
In summary, the sensitivity of the CNT sensor for the gases is as follows: C2H2 > C2H4 > C2H6, and the doped Ni can improve the sensor sensitivity.
\nThe molecular orbit theory was calculated to obtain the highest occupied molecular orbital (HOMO) energy and the lowest unoccupied molecular orbital (LUMO) energy of the three gas molecules and the supports. The analysis of HOMO and LUMO and related energy gap are able to determine whether charges can easily transform between gases and adsorbent or not.
A small
Adsorption type | \n|||
---|---|---|---|
CNTs | \n−4.5606 | \n−3.8695 | \n0.6911 |
Ni‐CNTs | \n−4.9797 | \n−4.4327 | \n0.5470 |
C2H2‐Ni‐CNTs | \n−4.5906 | \n−4.1606 | \n0.4300 |
C2H4‐Ni‐CNTs | \n−4.6940 | \n−4.2477 | \n0.4463 |
C2H6‐Ni‐CNTs | \n−4.7593 | \n−4.1933 | \n0.5660 |
Molecular frontier orbital energy and orbital energy differences.
In the process of Ni‐CNTs adsorption, the conductivity change of the adsorption system shows that C2H2 is the highest, while C2H6 is the lowest. The change of resistance shows the same changing characteristics. This result indicates that the sensitivity of Ni‐CNTs is as follows: C2H2 > C2H4 > C2H6. This finding is consistent with the results based on gas‐sensing experiments.
\nIn this chapter, to detect oil‐dissolved gases in a transformer, the research\'s work includes theoretical and experimental studies on a Ni‐CNT sensor. This study focuses on the response and mechanism of gas sensing. The results of gas‐sensing experiment are consistent with the simulation.
\nCharge redistribution between the surface and the adsorbed molecules results in changes in the electronic structure and conductivity. Higher charge transfer results in greater conductivity changes. The values of transfer charges calculated based on DFT are shown in Table 4. Compare with other two gases, the transfer charges of C2H2 are the highest, and C2H2 has the highest response on the gas sensor. In addition, the orbital theory results are consistent with the charge transfer analysis and experimental results. Thus, in this chapter, the theoretical analysis results are consistent with the experimental results, and the sensitivities of the three gases on Ni‐CNTs are as follows: C2H2 > C2H4 > C2H6. Moreover, as the C2H2 concentration increases, the response time becomes shorter. High gases concentration leads to fast sensor response.
\nPrevious researches signified that gas‐sensing properties can be enhanced by metal doping. The transition metal is rich in d‐electrons and has empty orbits, and the small gas molecules can be strongly combined with the metal when adsorbed on the surface. In this chapter, nickel ions are the transition metal divalent cations used, which make nickel ions more accessible to the internal tubes in the capillary. Moreover, due to the coordination unsaturation of the surface atoms of nickel ions, the surface active sites of CNT increase and the catalytic activity is greatly enhanced. In general, the order of the chemical adsorption capacity of the transition metal to the gas is as follows: O2 > C2H2 > C2H4 > CO > H2 > CO2 > N2. The results of this paper are consistent with this order, which indicating that the doped Ni increases the chemical adsorption of the gas molecules.
\nIt is the first and most used method to prepare CNTs. The main processes are: (a) keep a certain pressure of inert gas or hydrogen in vacuum vessel and (b) choose graphite (with catalyst: nickel, cobalt and iron, etc.) as electrode. The graphite is consumed by evaporation at anode during the arc discharge process, and CNTs are received by depositing at cathode. Ebbsen and Ajayan [72] successfully prepared gram order weight of CNTs under nitrogen gas condition, and then this method is widely adopted. In 1994, Bethune introduced catalyst for arc reaction, reducing the reaction temperature and enhancing the productivity of CNTs. In 1997, Journet et al. [73] used catalysts for synthesizing single CNTs under helium condition. Mingliang et al. [74] studied the influence factors to CNTs prepared by DC arc discharge method: (a) inert gas pressure will affect the diameter and length of CNTs. (b) How much the adhesion of particles? (c) Oxygen and water vapor will lead to defects in CNTs, and it is unable to separate and purify after sintering together. (d) Current and voltage will affect the yield and production rate of CNTs, but length to diameter ratio of graphite does not affect the generation of CNTs.
\nCatalytic cracking method, also known as chemical vapor deposition, prepares CNTs through cracking hydrocarbons or carbon oxides with the help of catalyst. The basic preparation processes are: (a) mix the organic gases (such as acetylene and ethylene) with certain proportion of nitrogen gas in quartz tube. (b) CNTs grow on the surface of catalyst under certain temperature when the carbon source flow past and pyrolysis onto the surface of catalyst, and pushing forward the small catalyst particles [75]. (c) The growth of CNTs ends till all of the catalyst particles were coated with graphite layer. The advantages of the method are: easy to control the reaction process, simple equipment, low raw material cost, easy to produce the product in large scale, and the high productivity. The disadvantages are: too much CNTs layers, poor graphitization, exist crystalline defects. Theses disadvantages have great adverse influence on the physical and chemical properties of CNTs.
\nLaser evaporation method prepares CNTs by illuminating the graphite target that contain metal catalyst. Then the vapor mix with carbon source and deposit on the surface of substrate and the wall of reaction chamber. Smalley et al. received SWCNTs after adding a certain amount of catalyst to the electrode during preparing C60. After improving the method, Thess et al. [76] successfully fabricated amount of SWCNTs. Under the condition of 1473 K, the graphite target with Ni/Co catalyst particles was irradiated by double pulse laser with 50 ns, receiving the high quality SWCNTs bundles.
\nLow temperature solid state pyrolysis prepares CNTs through intermediate. First, the nanometer level silicon nitride (Si2C2N) ceramic intermediate was prepared. The nanoceramic intermediate is then placed in a boron nitride crucible, which is heated in a graphite resistance furnace to decompose it with nitrogen gas as the protective gas. After 1 h, the nanointermediate powder begins to paralyze, and the carbon atoms migrate to the surface. A high proportion of CNTs is obtained with amount of silicon nitride powder in the surface pyrolysis products. The advantage of the low temperature solid state pyrolysis method is the repeatable production, which is beneficial for large‐scale CNTs production.
\nThe method prepares CNTs by decomposition of hydrocarbons precursor (such as acetylene and benzene) at high temperature. Cho et al. [70] prepared CNTs by heating the polymer obtained from citric acid and glycol after polyesterification under 400°C for 8 hours. The CNTs were synthesized by using metal Ni as catalyst in the temperature ranged from 420 to 450°C and under H2 atmosphere. Under the 900°C and Ar‐H2 atmosphere conditions, Sen et al. [77] obtained CNTs by pyrolyzing ferrocene, nickelocene, and cobaltocene. These metal compounds not only provide carbon source after pyrolysis but also provide the catalyst particles. The growth mechanism of the method is similar to the catalytic cracking method.
\nIn a vacuum furnace, carbon is evaporated by ion or electron discharge and deposit on the condenser. Chernozatonskii et al. [78] synthesized CNTs with diameter range from 10 to 20 nm and high alignment by evaporating the graphite coated on the surface of substrates. Yamamoto et al. [79] got CNTs with diameter range from 10 to 15 nm by irradiating amorphous carbon with argon ion beam under high‐vacuum environment [80].
\nFlame synthesis method utilizes the heat, produced by burning methane and a small amount of oxygen, and imports hydrocarbons and catalysts at temperature of 600–1300°C to synthesize CNTs. The CNTs prepared by this method have the disadvantages of low crystallinity and large amount of amorphous carbon. There is still no definite explanation for the growth mechanism of CNTs nanostructure by flame method. Richter et al. [81] found SWCNTs that attached with a large amount of amorphous carbon from carbon black after burning the mixture of acetylene, oxygen, and argon gases. Das Chowdhury et al. [82] found nanometer tubular CNTs by detecting carbon black after burning the mixture of benzene, acetylene, ethylene, and oxygen gases.
\nThe CNTs are received from the condensation of high temperature (3000 K) mixture vapor of graphite and metal catalyst that heated by focusing the sunlight. This method is initially used for buckyballs production, then adopted for CNTs synthesis since 1996. Laplaze et al. [83] synthesized that the CNTs and SWCNTs use this method.
\nThe preparation of CNTs by electrochemical method is a novel technique. This method adopted graphite electrode (electrolytic cell as anode) and obtained carbon nanomaterials by electrolyzing molten alkali halide salts (such as LiCl) under a certain voltage and current with the protection of air or argon gases at about 600°C. The products include packaged or not packaged CNTs and carbon nanoparticles, and the form of carbon nanomaterials can be controlled by changing the process conditions of electrolysis. Goldoni et al. [57] found that CNTs can directly grow on the surface of n type of (1 0 0) silicon electrode in solution of acetylene/ammonia. Hsu et al. [84] synthesized nanotubular and onion‐like CNTs under argon environment by using molten alkali metal halide as electrolyte and graphite as electrode. Hui et al. [85] successfully synthesized CNTs and carbon nanowires using LiCl and LiCl + SnCl2 as molten salt electrolyte.
\nStevens et al. [86] got CNTs by using an exothermic reaction between cesium and nanoporous amorphous carbon in the low temperature of 50°C. Chernozatonskii et al. [87] found the fullerene and CNTs at the micro holes of Fe2Ni2C, Ni2Fe2C, and Fe2Ni2Co2C alloy prepared by powder metallurgy method [88]. Kyotani et al. [89] first pyrolyze and deposit carbon on the wall of anodic alumina model (with nanometer trench) under 800°C. Then hollow CNTs with open‐end on both sides after removing the anodic alumina membrane by hydrofluoric acid. Matveev et al. [90] synthesized CNTs using liquid nitrogen solution of acetylene at 233 K by electrochemical method. It is the lowest temperature ever reported to synthesize CNTs.
\nThis chapter used CNTs which were made by chemical vapor deposition method. Tube diameter is 20–30 nm, with a length of 10–30 μm, purity > 95%, the catalyst residue (ash) < 1.5 wt%, and multi‐walled structure. Around 0.1 g of CNTs was placed in an appropriate amount of anhydrous ethanol, then adding surface active agent. Afterward, it had been scattered by ultrasonic oscillator with 2 hours in order to obtain a moderate concentration of CNTs solution, which was set as the sample I. Similarly, another 0.1 g of CNTs was immersed in 50 mL mixed acid solution, which was initially prepared by mixing concentrated sulfuric acid and concentrated nitric acid with the volume ratio of 3:1. The solution was put in ultrasonic oscillator for about 2 hours of dispersion. And then the solution was diluted with deionized water, and filtrated by filter membrane with an aperture of 0.22 μm. This progress should be conducted repeatedly until the diluted solution becomes neutral. The finally collected sample is named as sample II.
\nThe printed circuit board was used to make the substrate of CNTs sensors. The surface of substrate was etched by copper to generate interdigital electrodes. Copper foil has the thick of 30 μm, with 0.5 mm electrode interval and 0.5 mm line width, as shown in Figure 9.
\nThe geometric sketch of CNTs sensor.
Once moderate concentration solution of the sample I was obtained, the micro‐scale parts were spread on the space between the interdigital electrodes, and then placed in a drying oven at 80°C to dry it. Uniform dense of MWNTs film with smooth surface was able to be prepared with repeated operations. The obtained sample is named as the sensor I, as shown in Figure 9(b). Take appropriate sample II placed in anhydrous ethanol, and then after ultrasonic dispersion for 10 min to get moderate concentration of the suspension. Sensor II was obtained in the same way. These two‐dimensional CNTs films generated from the deposition of the one‐dimensional CNTs have so many structural defects, making it possess specificity of electrical properties.
\nDevice for detection of dissolved gas in transformer oil by CNTs‐based sensors is shown in Figure 10. Prepared CNTs sensors were initially placed in the test device. It was a sealed chamber designed to perform this experiment. Then the sensor was connected with the impedance analyzer by wire and the chamber was then sealed with a round head passing through the spherical ring with a screw and a nut.
\nDetection test device for the CNTs sensor adsorbing gases dissolved in transformer oil. 1: sealed metal can, 2: vacuum gauge and pressure gauge, 3: intake valve, 4: vacuum pump, 5: CNTs sensors, 6: impedance analyzer.
The standard gas of CH4 with concentration of 200 μL/L is injected through the intake valve into the test device, as shown in Figure 10, and use sensors I and II to detect gas response, respectively. The acquired gas response curves are shown in Figure 11. Based on Figure 11,
The MWNTs sensor response to CH4, C2H6, C2H4, C2H2, CO, H2.
In Figure 11(a), curves I and II show response curve of sensors I and II, respectively. It can be observed that the changes of MWNTs thin‐film sensor in resistance value are very small without chemical modification, about 0.4%; while the one conducted with chemical modification has great change with respect to resistance value, reaching to 1.8%.
\nAfter detection, a vacuum pump is used to make the device vacuumed again, according to the same method. Inject C2H6, C2H4, C2H2, CO, and H2 gas into the tank, respectively, with concentration of 200 μL/L. Then detect the response curve using sensors I and II, respectively. Obtained response curves are shown in Figure 11(b)–(f).
\nCombining Figure 11(a)–(f) obtains Table 6, the resistance value change of CNTs which had adsorb the measured gas and being chemically modified is much greater than that of the non‐modified CNTs. After calculation, adsorption capacity of modified CNTs to CH4, C2H6, C2H4, C2H2, CO, and H2 increased by about 4.6, 5.9, 4.2, 5.3, 2.9, and 2.4 times, respectively. It can be seen that chemical modification contributes great affection upon the electrical properties of MWNTs.
\nGas (200 | \nThe relative change in resistance value (%) | |
---|---|---|
I | \nII | |
CH4 | \n0.39 | \n1.81 |
C2H6 | \n0.27 | \n1.60 |
C2H4 | \n0.47 | \n1.96 |
C2H2 | \n0.33 | \n1.76 |
CO | \n0.48 | \n1.38 |
H2 | \n0.38 | \n0.90 |
Relative changes of CNTs resistance value to different gases in oil.
The CNTs film is regarded as a connection of many disordered CNTs or CNTs, among which there are considerable series‐parallel paths. The high‐resistance samples contain more series path than parallel paths, while low‐resistance samples on the opposite. Gas‐adsorption property is closely related to charge transfer capacity, adsorption sites, and the characteristics of gas molecules as well. Adsorption sites of gas molecules in carbon nanotubes include: the tube gaps of a bundle of CNTs, the grooves on the surface of the bundle between tubes, the inner cavity of CNTs as well as the tube surface. Recently, many researchers agree that there are two kinds of carriers in CNTs, electrons and holes, Cantalini et al. [91] and some other scholars argue that the MWNTs is a P‐type semiconductor properties, namely the electron would be accepted by gas molecules after adsorption of oxidation substances, so that concentration of holes would be increased, and resistance value would be decreased; on the other hand, once reducing gases are adsorbed on the CNTs surface, their electrical resistance increases. Given that in oil, methane and other gases have certain reducibility, it can result in an increase in electrical resistance after their adsorption on CNTs surface. As analyzed, if the carbon nanotubes are pretreated with concentrated nitric acid and concentrated sulfuric acid, its length would be shortened, ports be opened, and a lot of depressions on the surface as well as at ports be generated. Then a large number of stable functional groups such as carboxyl, hydroxyl, and carbonyl are bonded to the adsorbing sites of depression, which would increase the number of active sites for gas adsorption, contributing to better gas sensitivity.
\nCNTs‐based gas sensors that have advantages of high sensitivity, fast response, and small size can work at room temperature. This chapter took good use of these electrical properties, introduced a multi‐walled CNTs gas sensor. Laboratory mixed acid modification was employed to improve the gas‐sensing properties of CNTs to dissolve gases in transformer. Results show that without modification, MWNTs sensors are insensitive to dissolved gas in transformer oil; while the modified MWNTs sensor that has many faults and contains active functional groups guarantee the good sensitivity and fast response characteristics to the dissolved gas in oil. Synthesis of CNTs sensors industrially and large‐scaly to realize this purpose is hard, but it provides a novel way for this detection. In the further work, researches should focus on gas‐sensing response mechanism, sensitivity, and selectivity of so‐prepared CNTs. It is hopeful and promising to prepare CNTs‐based sensors that have better performance for detection of dissolved gas in oil.
\nDue to the low growth temperature, and the atmospheric pressure during the reaction, etc., the Chemical Vapor Deposition (CVD) is widely used in the synthesis of CNTs. The sensitivity of the sensor to typical oil‐dissolved gases was studied. C2H2, C2H4, and C2H6 are chosen as the target measured gases in consistence with theoretical calculation above.
\nIn this chapter, the purity of the CNTs is more than 95%, which diameter and length are ranged from 20 to 30 nm and 10 to 30 μm, respectively. At first, a mixed solution of concentrated sulfuric acid (98%) and nitric acid (78%) at a concentration ratio of 3:1 was arranged, then put into 0.1 g CNTs, and dispersed in an ultrasonic shaker for 60 min. Second, washed several times with deionized water until the solution became neutral and then dried at 70°C. After these two steps, the dark powder of the mixed acid‐modified CNTs can be obtained.
\nTo prepare 1 mg/mL solutions of CNTs, take appropriate amount of CNTs dissolved in anhydrous ethanol. Take 20 mg NiCl26H2O dissolved in 50 mL 1 mg/mL solutions of CNTs. In order to obtain a uniform dispersed Ni‐CNTs solution, put the beaker in an ultrasonic bath for 90 min. Using coating drops prepared the Ni‐CNTs thin films on the surface of interdigital electrodes and dried at 80°C. To ensure a compact and smooth distribution of the sensing film, repeated this process.
\nThe device for detecting the gas‐sensing properties is shown in Figure 12. The main part of the device is a steel chamber that is sealed by screws. Before the test, the pressure tightness of the device should be examined and guaranteed.
\nGeometry of the experimental equipment.
First, the sensor was put inside the chamber and connected with an impedance analyzer through wires to record the measured resistance. Second, nitrogen was passed through the chamber until the resistance of the sensor becomes stabilized. Then, different concentrations of the target gas species were injected into the sealed chamber through the inlet valve. The relative variation of the resistance was calculated as expressed:
\nwhere
The gas responses of the Ni‐CNTs prepared gas sensor upon the concentrations of 10 μL/L C2H2, C2H4, and C2H6 were detected using the method described above. The gas response curves are shown in Figure 13, where the horizontal axis represents time, and the vertical axis represents resistance. In order to avoid accidental factors that affect the detection results, data presented here are the results of statistical analysis preformed on 10 sensor samples instead of one set. The gas sensitivity in this work is an average value. The calculated standard deviations of C2H2, C2H4, and C2H6 are 0.0374, 0.0288, 0.0275, respectively (data not shown).
\nNi‐CNT sensor response to 10 μL/L C2H2, C2H4, and C2H6.
Figure 13 shows that there is a sharp rise in the resistance of the Ni‐CNT‐based sensor at first when exposed to atmosphere filled with C2H2, C2H4, and C2H6, and then becomes stable after 400 s. It can be observed that the relative variations of the resistance for C2H2, C2H4, and C2H6 are nearly unchanged at 2.52, 1.95, and 1.61%, respectively. These results indicate that the Ni‐CNTs sensor presents the most sensitivity to C2H2 under the same concentration compared with the other two gases.
\nA standard value of the dissolved gas in the transformer oil is 5 μL/L. In order to meet the engineering requirements, the gas‐sensitive response of C2H2 at concentrations of 1, 3, 5, and 10 μL/L were all tested, with related result shown in Figure 14(a). The change of prepared sensors in resistance to 1, 3, 5, and 10 μL/L C2H2 are obtained as 0.52, 1.05, 1.18, and 2.52%, respectively. With the increasing concentration, the relevant change in resistance increases as well, and the response time is accordingly shortened. Figure 14(b) depicts the linear fit curve of the response and gas concentrations with the linear correlation coefficient (
The gas response of Ni‐CNTs sensors to different concentrations of C2H2. (a) Gas response curve to different concentrations of C2H2, (b) liner fitting curve.
The sensor reliability is strongly depended on the reproducibility that is exhibited by the sensor material. The reproducibility of the Ni‐doped CNTs sensor was evaluated by repeating the response experiments for three times. Tests were conducted according to the experimental steps described in Section 2.2. Pure N2 was employed to accelerate desorption of gas molecules. The dynamic response transients for the Ni‐doped CNTs sensors toward 10 μL/L C2H2 gas is depicted in Figure 15 in order to illustrate desorption and repeatability processes. Based on this figure, one can find that the response of the material is almost constant, confirming the reproducibility of sensor material, which suggests that the Ni‐CNTs‐prepared sensor can be applied as a reusable sensing material for detecting oil‐dissolved gases.
\nReproducibility of Ni‐doped CNTs sensor to 10 μL/L C2H2.
All publications on this website are published under the Open Access model, without any subscription, registration, or access fees required from the user or his/her institution. In accordance with the Budapest Open Access Initiative's (BOAI) definition of Open Access, users are allowed to read, download, copy, distribute, print, search, and link to the full text versions of all Chapters. To read more about our Open Access Statement click here.
\n\nFor Editorial Policies for journals please consult individual journal pages.
',metaTitle:"Editorial policies",metaDescription:"Editorial policies",metaKeywords:null,canonicalURL:"/page/editorial-policies",contentRaw:'[{"type":"htmlEditorComponent","content":"All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\\n\\n\\n\\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\\n\\n\\n\\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\\n\\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\\n\\n\\n\\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\\n\\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\\n\\n\\n\\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\n\\n\\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\\n\\n\\n\\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\\n\\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\\n\\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\\n\\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\\n\\n\\n\\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\\n\\n\\n\\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\\n\\n\\n\\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\\n\\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\\n\\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\\n\\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\\n\\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\\n\\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\\n\\nIntechOpen books are available online by accessing all published content on a chapter level.
\\n\\n\\n\\nIntechOpen publishes different types of publications.
\\n\\n\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\n\n\n\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\n\n\n\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\n\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\n\n\n\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\n\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\n\n\n\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\n\n\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\n\n\n\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\n\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\n\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\n\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\n\n\n\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\n\n\n\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\n\n\n\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\n\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\n\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\n\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\n\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\n\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\n\nIntechOpen books are available online by accessing all published content on a chapter level.
\n\n\n\nIntechOpen publishes different types of publications.
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"205"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:19},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:128},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"22",title:"Robotics",slug:"physical-sciences-engineering-and-technology-robotics",parent:{id:"1",title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:104,numberOfSeries:0,numberOfAuthorsAndEditors:1443,numberOfWosCitations:4568,numberOfCrossrefCitations:3742,numberOfDimensionsCitations:7058,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"22",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!1,hash:"bf915895c5372e30c213b65ad1a62322",slug:"motion-planning",bookSignature:"Edgar A. Martínez García",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:"Edited by",editors:[{id:"84958",title:"Dr.",name:"Edgar A.",middleName:"Alonso",surname:"Martínez García",slug:"edgar-a.-martinez-garcia",fullName:"Edgar A. Martínez García"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10417",title:"Collaborative and Humanoid Robots",subtitle:null,isOpenForSubmission:!1,hash:"dd42dd44dc386e591e8ff04956762023",slug:"collaborative-and-humanoid-robots",bookSignature:"Jesús Hamilton Ortiz and Ramana Kumar Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/10417.jpg",editedByType:"Edited by",editors:[{id:"283288",title:"Dr.",name:"Jesus Hamilton",middleName:null,surname:"Ortiz",slug:"jesus-hamilton-ortiz",fullName:"Jesus Hamilton Ortiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10616",title:"Single Port Gynecologic Laparoscopic and Robotic-Assisted Surgery",subtitle:null,isOpenForSubmission:!1,hash:"0eaecc6e8ea016f111026b607d1673f7",slug:"single-port-gynecologic-laparoscopic-and-robotic-assisted-surgery",bookSignature:"Greg Marchand",coverURL:"https://cdn.intechopen.com/books/images_new/10616.jpg",editedByType:"Edited by",editors:[{id:"322729",title:"M.D.",name:"Greg",middleName:null,surname:"Marchand",slug:"greg-marchand",fullName:"Greg Marchand"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9869",title:"Self-Driving Vehicles and Enabling Technologies",subtitle:null,isOpenForSubmission:!1,hash:"fd451ca2e4785ef098e04b7d695a18d9",slug:"self-driving-vehicles-and-enabling-technologies",bookSignature:"Marian Găiceanu",coverURL:"https://cdn.intechopen.com/books/images_new/9869.jpg",editedByType:"Edited by",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10569",title:"Latest Developments in Medical Robotics Systems",subtitle:null,isOpenForSubmission:!1,hash:"b48d1b7672b3d7e9e59ddc7b86d9b930",slug:"latest-developments-in-medical-robotics-systems",bookSignature:"Serdar Küçük",coverURL:"https://cdn.intechopen.com/books/images_new/10569.jpg",editedByType:"Edited by",editors:[{id:"5424",title:"Dr.",name:"Serdar",middleName:null,surname:"Küçük",slug:"serdar-kucuk",fullName:"Serdar Küçük"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9902",title:"Service Robotics",subtitle:null,isOpenForSubmission:!1,hash:"9b42f533ea14906bcd1e07df74b33ac2",slug:"service-robotics",bookSignature:"Volkan Sezer, Sinan Öncü and Pınar Boyraz Baykas",coverURL:"https://cdn.intechopen.com/books/images_new/9902.jpg",editedByType:"Edited by",editors:[{id:"268170",title:"Dr.",name:"Volkan",middleName:null,surname:"Sezer",slug:"volkan-sezer",fullName:"Volkan Sezer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8883",title:"Autonomous Vehicle and Smart Traffic",subtitle:null,isOpenForSubmission:!1,hash:"841c82c0bf27716a7c800bc1180ad5de",slug:"autonomous-vehicle-and-smart-traffic",bookSignature:"Sezgin Ersoy and Tayyab Waqar",coverURL:"https://cdn.intechopen.com/books/images_new/8883.jpg",editedByType:"Edited by",editors:[{id:"156004",title:"Associate Prof.",name:"Sezgin",middleName:null,surname:"Ersoy",slug:"sezgin-ersoy",fullName:"Sezgin Ersoy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6864",title:"Autonomous Vehicles",subtitle:null,isOpenForSubmission:!1,hash:"c320902fc1cfc252c1db006b944996fb",slug:"autonomous-vehicles",bookSignature:"George Dekoulis",coverURL:"https://cdn.intechopen.com/books/images_new/6864.jpg",editedByType:"Edited by",editors:[{id:"9833",title:"Prof.",name:"George",middleName:null,surname:"Dekoulis",slug:"george-dekoulis",fullName:"George Dekoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8872",title:"Multi Agent Systems",subtitle:"Strategies and Applications",isOpenForSubmission:!1,hash:"6b0454f8f575d5d65603f329af59c80b",slug:"multi-agent-systems-strategies-and-applications",bookSignature:"Ricardo López - Ruiz",coverURL:"https://cdn.intechopen.com/books/images_new/8872.jpg",editedByType:"Edited by",editors:[{id:"9849",title:"Prof.",name:"Ricardo",middleName:null,surname:"López-Ruiz",slug:"ricardo-lopez-ruiz",fullName:"Ricardo López-Ruiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7792",title:"Unmanned Robotic Systems and Applications",subtitle:null,isOpenForSubmission:!1,hash:"53805f091c3107536edd2579c9987649",slug:"unmanned-robotic-systems-and-applications",bookSignature:"Mahmut Reyhanoglu and Geert De Cubber",coverURL:"https://cdn.intechopen.com/books/images_new/7792.jpg",editedByType:"Edited by",editors:[{id:"15068",title:"Dr.",name:"Mahmut",middleName:null,surname:"Reyhanoglu",slug:"mahmut-reyhanoglu",fullName:"Mahmut Reyhanoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6865",title:"Becoming Human with Humanoid",subtitle:"From Physical Interaction to Social Intelligence",isOpenForSubmission:!1,hash:"e208316a62e4ab5b042486aea682ee18",slug:"becoming-human-with-humanoid-from-physical-interaction-to-social-intelligence",bookSignature:"Ahmad Hoirul Basori, Ali Leylavi Shoushtari and Andon Venelinov Topalov",coverURL:"https://cdn.intechopen.com/books/images_new/6865.jpg",editedByType:"Edited by",editors:[{id:"13394",title:"Prof.",name:"Ahmad Hoirul",middleName:null,surname:"Basori",slug:"ahmad-hoirul-basori",fullName:"Ahmad Hoirul Basori"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7779",title:"Path Planning for Autonomous Vehicle",subtitle:"Ensuring Reliable Driverless Navigation and Control Maneuver",isOpenForSubmission:!1,hash:"91196f0aadb70bd5cecac290401d614f",slug:"path-planning-for-autonomous-vehicles-ensuring-reliable-driverless-navigation-and-control-maneuver",bookSignature:"Umar Zakir Abdul Hamid, Volkan Sezer, Bin Li, Yanjun Huang and Muhammad Aizzat Zakaria",coverURL:"https://cdn.intechopen.com/books/images_new/7779.jpg",editedByType:"Edited by",editors:[{id:"268173",title:"Dr.",name:"Umar Zakir Abdul",middleName:null,surname:"Hamid",slug:"umar-zakir-abdul-hamid",fullName:"Umar Zakir Abdul Hamid"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:104,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"10088",doi:"10.5772/8835",title:"Intention-Based Walking Support for Paraplegia Patients with Robot Suit HAL",slug:"intention-based-walking-support-for-paraplegia-patients-with-robot-suit-hal",totalDownloads:5430,totalCrossrefCites:15,totalDimensionsCites:158,abstract:null,book:{id:"3622",slug:"climbing-and-walking-robots",title:"Climbing and Walking Robots",fullTitle:"Climbing and Walking Robots"},signatures:"Kenta Suzuki, Gouji Mito, Hiroaki Kawamoto, Yasuhisa Hasegawa and Yoshiyuki Sankai",authors:null},{id:"240",doi:"10.5772/4876",title:"Geminoid: Teleoperated Android of an Existing Person",slug:"geminoid__teleoperated_android_of_an_existing_person",totalDownloads:4418,totalCrossrefCites:81,totalDimensionsCites:134,abstract:null,book:{id:"3373",slug:"humanoid_robots_new_developments",title:"Humanoid Robots",fullTitle:"Humanoid Robots: New Developments"},signatures:"Shuichi Nishio, Hiroshi Ishiguro and Norihiro Hagita",authors:[{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro"}]},{id:"172",doi:"10.5772/4808",title:"Limit Cycle Walking",slug:"limit_cycle_walking",totalDownloads:5088,totalCrossrefCites:11,totalDimensionsCites:98,abstract:null,book:{id:"3372",slug:"humanoid_robots_human_like_machines",title:"Humanoid Robots",fullTitle:"Humanoid Robots, Human-like Machines"},signatures:"Daan G.E. Hobbelen and Martijn Wisse",authors:null},{id:"6206",doi:"10.5772/6696",title:"Guidance Laws for Autonomous Underwater Vehicles",slug:"guidance_laws_for_autonomous_underwater_vehicles",totalDownloads:6692,totalCrossrefCites:39,totalDimensionsCites:82,abstract:null,book:{id:"3700",slug:"underwater_vehicles",title:"Underwater Vehicles",fullTitle:"Underwater Vehicles"},signatures:"Morten Breivik and Thor I. Fossen",authors:null},{id:"379",doi:"10.5772/5015",title:"Robot Kinematics: Forward and Inverse Kinematics",slug:"robot_kinematics__forward_and_inverse_kinematics",totalDownloads:51697,totalCrossrefCites:62,totalDimensionsCites:77,abstract:null,book:{id:"6110",slug:"industrial_robotics_theory_modelling_and_control",title:"Industrial Robotics",fullTitle:"Industrial Robotics: Theory, Modelling and Control"},signatures:"Serdar Kucuk and Zafer Bingul",authors:null}],mostDownloadedChaptersLast30Days:[{id:"379",title:"Robot Kinematics: Forward and Inverse Kinematics",slug:"robot_kinematics__forward_and_inverse_kinematics",totalDownloads:51703,totalCrossrefCites:62,totalDimensionsCites:77,abstract:null,book:{id:"6110",slug:"industrial_robotics_theory_modelling_and_control",title:"Industrial Robotics",fullTitle:"Industrial Robotics: Theory, Modelling and Control"},signatures:"Serdar Kucuk and Zafer Bingul",authors:null},{id:"56737",title:"UAV for Landmine Detection Using SDR-Based GPR Technology",slug:"uav-for-landmine-detection-using-sdr-based-gpr-technology",totalDownloads:3333,totalCrossrefCites:12,totalDimensionsCites:14,abstract:"This chapter presents an approach for explosive-landmine detection on-board an autonomous aerial drone. The chapter describes the design, implementation and integration of a ground penetrating radar (GPR) using a software defined radio (SDR) platform into the aerial drone. The chapter?s goal is first to tackle in detail the development of a custom-designed lightweight GPR by approaching interplay between hardware and software radio on an SDR platform. The SDR-based GPR system results on a much lighter sensing device compared against the conventional GPR systems found in the literature and with the capability of re-configuration in real-time for different landmines and terrains, with the capability of detecting landmines under terrains with different dielectric characteristics. Secondly, the chapter introduce the integration of the SDR-based GPR into an autonomous drone by describing the mechanical integration, communication system, the graphical user interface (GUI) together with the landmine detection and geo-mapping. This chapter approach completely the hardware and software implementation topics of the on-board GPR system given first a comprehensive background of the software-defined radar technology and second presenting the main features of the Tx and Rx modules. Additional details are presented related with the mechanical and functional integration of the GPR into the UAV system.",book:{id:"5905",slug:"robots-operating-in-hazardous-environments",title:"Robots Operating in Hazardous Environments",fullTitle:"Robots Operating in Hazardous Environments"},signatures:"Manuel Ricardo Pérez Cerquera, Julian David Colorado Montaño\nand Iván Mondragón",authors:[{id:"177422",title:"Dr.",name:"Julian",middleName:null,surname:"Colorado",slug:"julian-colorado",fullName:"Julian Colorado"},{id:"197884",title:"Prof.",name:"Ivan",middleName:null,surname:"Mondragon",slug:"ivan-mondragon",fullName:"Ivan Mondragon"},{id:"199958",title:"Prof.",name:"Manuel",middleName:null,surname:"Perez",slug:"manuel-perez",fullName:"Manuel Perez"}]},{id:"15855",title:"Kinematics of AdeptThree Robot Arm",slug:"kinematics-of-adeptthree-robot-arm",totalDownloads:14592,totalCrossrefCites:1,totalDimensionsCites:2,abstract:null,book:{id:"152",slug:"robot-arms",title:"Robot Arms",fullTitle:"Robot Arms"},signatures:"Adelhard Beni Rehiara",authors:[{id:"29287",title:"Dr.",name:"Adelhard",middleName:"Beni",surname:"Rehiara",slug:"adelhard-rehiara",fullName:"Adelhard Rehiara"}]},{id:"62978",title:"Intelligent Robotic Perception Systems",slug:"intelligent-robotic-perception-systems",totalDownloads:2373,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"Robotic perception is related to many applications in robotics where sensory data and artificial intelligence/machine learning (AI/ML) techniques are involved. Examples of such applications are object detection, environment representation, scene understanding, human/pedestrian detection, activity recognition, semantic place classification, object modeling, among others. Robotic perception, in the scope of this chapter, encompasses the ML algorithms and techniques that empower robots to learn from sensory data and, based on learned models, to react and take decisions accordingly. The recent developments in machine learning, namely deep-learning approaches, are evident and, consequently, robotic perception systems are evolving in a way that new applications and tasks are becoming a reality. Recent advances in human-robot interaction, complex robotic tasks, intelligent reasoning, and decision-making are, at some extent, the results of the notorious evolution and success of ML algorithms. This chapter will cover recent and emerging topics and use-cases related to intelligent perception systems in robotics.",book:{id:"7227",slug:"applications-of-mobile-robots",title:"Applications of Mobile Robots",fullTitle:"Applications of Mobile Robots"},signatures:"Cristiano Premebida, Rares Ambrus and Zoltan-Csaba Marton",authors:[{id:"203409",title:"Ph.D.",name:"Cristiano",middleName:null,surname:"Premebida",slug:"cristiano-premebida",fullName:"Cristiano Premebida"},{id:"254880",title:"Dr.",name:"Rares",middleName:null,surname:"Ambrus",slug:"rares-ambrus",fullName:"Rares Ambrus"},{id:"254881",title:"Dr.",name:"Zoltan-Csaba",middleName:null,surname:"Marton",slug:"zoltan-csaba-marton",fullName:"Zoltan-Csaba Marton"}]},{id:"67705",title:"Advanced UAVs Nonlinear Control Systems and Applications",slug:"advanced-uavs-nonlinear-control-systems-and-applications",totalDownloads:1906,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Recent development of different control systems for UAVs has caught the attention of academic and industry, due to the wide range of their applications such as in surveillance, delivery, work assistant, and photography. In addition, arms, grippers, or tethers could be installed to UAVs so that they can assist in constructing, transporting, and carrying payloads. In this book chapter, the control laws of the attitude and position of a quadcopter UAV have been derived basically utilizing three methods including backstepping, sliding mode control, and feedback linearization incorporated with LQI optimal controller. The main contribution of this book chapter would be concluded in the strategy of deriving the control laws of the translational positions of a quadcopter UAV. The control laws for trajectory tracking using the proposed strategies have been validated by simulation using MATLAB®/Simulink and experimental results obtained from a quadcopter test bench. Simulation results show a comparison between the performances of each of the proposed techniques depending on the nonlinear model of the quadcopter system under investigation; the trajectory tracking has been achieved properly for different types of trajectories, i.e., spiral trajectory, in the presence of unknown disturbances. Moreover, the practical results coincided with the results of the simulation results.",book:{id:"7792",slug:"unmanned-robotic-systems-and-applications",title:"Unmanned Robotic Systems and Applications",fullTitle:"Unmanned Robotic Systems and Applications"},signatures:"Abdulkader Joukhadar, Mohammad Alchehabi and Adnan Jejeh",authors:null}],onlineFirstChaptersFilter:{topicId:"22",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81922",title:"Skill Acquisition for Resource-Constrained Mobile Robots through Continuous Exploration",slug:"skill-acquisition-for-resource-constrained-mobile-robots-through-continuous-exploration",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.104996",abstract:"We present a cognitive mobile robot that acquires knowledge, and autonomously learns higher-level abstract capabilities based on play instincts, inspired by human behavior. To this end, we (i) model skills, (ii) model the robot’s sensor and actuator space based on elementary physical properties, and (iii) propose algorithms inspired by humans’ play instincts that allow the robot to autonomously learn the skills based on its sensor and actuator capabilities. We model general knowledge in the form of competencies (skills) of the mobile robot based on kinematic properties using physical quantities. Thus, by design, our approach has the potential to cover very generic application domains. To connect desired skills to the primitive capabilities of the robot’s sensors and actuators, it playfully explores the effects of its actions on its sensory input, thus autonomously learning relations and dependencies and eventually the desired skill. KnowRob is used for knowledge representation and reasoning, and the robot’s operation is based on ROS. In the experiments, we use a millirobot, sized 2 cm2, equipped with two wheels, motion, and distance sensors. We show that our cognitive mobile robot can successfully and autonomously learn elementary motion skills based on a playful exploration of its wheels and sensors.",book:{id:"10823",title:"Cognitive Robotics",coverURL:"https://cdn.intechopen.com/books/images_new/10823.jpg"},signatures:"Markus D. Kobelrausch and Axel Jantsch"},{id:"81693",title:"The Neo-Mechanistic Model of Human Cognitive Computation and Its Major Challenges",slug:"the-neo-mechanistic-model-of-human-cognitive-computation-and-its-major-challenges",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.104995",abstract:"The neo-mechanistic theory of human cognition is currently one of the most accepted major theories in fields, such as cognitive science and cognitive neuroscience. This proposal offers an account of human cognitive computation, and it has been considered by its proponents as revolutionary and capable of integrating research concerning human cognition with new evidence provided by fields of biology and neuroscience. However, some complex cognitive capacities still present a challenge for explanations constructed by using this theoretical structure. In this chapter, I make a presentation of some of the central tenets of this framework and show in what dimensions it helps our understanding of human cognition concerning aspects of capacities, such as visual perception and memory consolidation. My central goal, however, is to show that to understand and explain some particular human cognitive capacities, such as self-consciousness and some conscious informal reasoning and decision making, the framework shows substantial limitations. I conclude the chapter by suggesting that to fully understand human cognition we will need much more than what the neo-mechanistic framework is actually able to provide.",book:{id:"10823",title:"Cognitive Robotics",coverURL:"https://cdn.intechopen.com/books/images_new/10823.jpg"},signatures:"Diego Azevedo Leite"},{id:"81719",title:"Service Robots in Healthcare Settings",slug:"service-robots-in-healthcare-settings",totalDownloads:6,totalDimensionsCites:0,doi:"10.5772/intechopen.104640",abstract:"Robots will play a part in all aspects of healthcare. The presence of service robots in healthcare demands special attention, whether it is in the automation of menial labour, prescription distribution, or offering comfort. In this chapter, we examine the several applications of healthcare-oriented robots in the acute, ambulatory and at-home settings. We discuss the role of robotics in reducing environmental dangers, as well as at the patient’s bedside and in the operating room, in the acute setting. We examine how robotics can protect and scale up healthcare services in the ambulatory setting. Finally, in the at-home scenario, we look at how robots can be employed for both rural/remote healthcare delivery and home-based care. In addition to assessing the current state of robotics at the interface of healthcare delivery, we describe critical problems for the future where such technology will be ubiquitous. Patients, health care workers, institutions, insurance companies, and governments will realize that service robots will deliver significant benefits in the future in terms of leverage and cost savings, while maintaining or improving access, equity, and high-quality health care.",book:{id:"10657",title:"Advances in Service Robots",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg"},signatures:"Rohit Singla and Christopher Nguan"},{id:"81413",title:"Dynamic Analysis and Optimized Design of Synergetic Control for a PMSM Drive System",slug:"dynamic-analysis-and-optimized-design-of-synergetic-control-for-a-pmsm-drive-system",totalDownloads:12,totalDimensionsCites:0,doi:"10.5772/intechopen.104206",abstract:"This chapter presents an optimum design of synergetic control for a permanent magnet synchronous motor (PMSM) drive system. New macro-variables are proposed to improve the performance of the standard controller. The controller’s performance is compared with that of the field-oriented control scheme. The chapter also investigates the regenerative braking mode of operation in PMSM. Regenerative braking is achieved by operating the motor in torque control mode. The different algorithms are validated through experiments using a 1-hp PMSM drive system. We also provide an extensive study of the controller parameters tuning for optimal performance. The experimental results show that the proposed macro-variables improve the performance of the synergetic controller significantly. The synergetic controller is able to overcome nonlinearities in the system, such as static friction, faster than the field-oriented controller. The system also experiences fewer harmonics under the synergetic controller. The synergetic controller shows also better performance under wide signal variations. As for regenerative braking, the torque control mode of operation is shown to be suitable for harvesting energy and both techniques showed similar performance levels. The proposed synergetic control strategy will be very useful in electric vehicle (EV) applications, as it allows to improve the dynamic response and efficiency of the drive system required by the EV dynamics.",book:{id:"10657",title:"Advances in Service Robots",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg"},signatures:"Andrew Adib and Rached Dhaouadi"}],onlineFirstChaptersTotal:4},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:289,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"May 26th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:5,paginationItems:[{id:"81972",title:"The Submicroscopic Plasmodium falciparum Malaria in Sub-Saharan Africa; Current Understanding of the Host Immune System and New Perspectives",doi:"10.5772/intechopen.105086",signatures:"Kwame Kumi Asare",slug:"the-submicroscopic-plasmodium-falciparum-malaria-in-sub-saharan-africa-current-understanding-of-the-",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{},onlineFirstChapters:{paginationCount:18,paginationItems:[{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:32,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81294",title:"Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine",doi:"10.5772/intechopen.104044",signatures:"Jing Gong, Jiahui Kang, Minghui Li, Xiao Liu, Jun Yang and Haiwei Xu",slug:"applications-of-neural-organoids-in-neurodevelopment-and-regenerative-medicine",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81318",title:"Retinal Organoids over the Decade",doi:"10.5772/intechopen.104258",signatures:"Jing Yuan and Zi-Bing Jin",slug:"retinal-organoids-over-the-decade",totalDownloads:42,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},subseriesFiltersForOFChapters:[{caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1,group:"subseries"},{caption:"Bioinformatics and Medical Informatics",value:7,count:13,group:"subseries"}],publishedBooks:{paginationCount:0,paginationItems:[]},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"23",type:"subseries",title:"Computational Neuroscience",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",slug:"asim-bhatti",fullName:"Asim Bhatti",profilePictureURL:"https://mts.intechopen.com/storage/users/13818/images/system/13818.jpg",institutionString:null,institution:{name:"Deakin University",institutionURL:null,country:{name:"Australia"}}},{id:"151889",title:"Dr.",name:"Joao Luis Garcia",middleName:null,surname:"Rosa",slug:"joao-luis-garcia-rosa",fullName:"Joao Luis Garcia Rosa",profilePictureURL:"https://mts.intechopen.com/storage/users/151889/images/4861_n.jpg",institutionString:null,institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},publishedBooks:{paginationCount:0,paginationItems:[]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/55417",hash:"",query:{},params:{id:"55417"},fullPath:"/chapters/55417",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()