Common adverse events in a cohort of childhood cancer survivors.
\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"Milestone",originalUrl:"/media/original/124"}},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"9524",leadTitle:null,fullTitle:"Organ Donation and Transplantation",title:"Organ Donation and Transplantation",subtitle:null,reviewType:"peer-reviewed",abstract:"This book brings together knowledge from different fields of science and presents advances in organ transplantation and donation. It uses a multidisciplinary approach to examine the complex issues of the transplant process. Written by experts in the field, this volume is suitable for medical specialists and medical students alike.",isbn:"978-1-83962-545-9",printIsbn:"978-1-83962-531-2",pdfIsbn:"978-1-83962-549-7",doi:"10.5772/intechopen.87319",price:119,priceEur:129,priceUsd:155,slug:"organ-donation-and-transplantation",numberOfPages:170,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",bookSignature:"Vassil Mihaylov",publishedDate:"March 31st 2021",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",numberOfDownloads:3089,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:1,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:1,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 12th 2020",dateEndSecondStepPublish:"July 3rd 2020",dateEndThirdStepPublish:"September 1st 2020",dateEndFourthStepPublish:"November 20th 2020",dateEndFifthStepPublish:"January 19th 2021",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov",profilePictureURL:"https://mts.intechopen.com/storage/users/313113/images/system/313113.png",biography:"Dr. Vassil Mihaylov received his medical degree from the Medical University, Sofia, Bulgaria, and completed his general surgery residency at the Military Medical Academy, Sofia. He completed a transplant fellowship at Queen Elizabeth Hospital, Birmingham, UK, after which he returned to Sofia as a part of the HPB and transplant team at the Military Medical Academy. Dr. Mihaylov obtained his Ph.D. with a thesis on the surgical aspects of liver transplantation. He was appointed Associate Professor of Surgery in 2017. He has published more than 100 papers in peer-reviewed journals and has given many scientific presentations at international meetings. He is a Fellow of the American College of Surgeons and a member of several professional organizations including the Bulgarian Transplant Society, the European Society for Organ Transplantation (ESOT), International Liver Transplantation Society (ILTS), Society of Laparoscopic Surgeons, and International Hepato-Pancreato-Biliary Association (IHPBA). His clinical and research interests include hepatobiliary and pancreatic surgery, minimally invasive surgery, and liver transplantation.",institutionString:"Military Medical Academy",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Military Medical Academy",institutionURL:null,country:{name:"Bulgaria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"202",title:"Surgery",slug:"surgery"}],chapters:[{id:"73733",title:"Pathophysiological Changes and Systemic Inflammation in Brain Dead Organ Donors: Effect on Graft Quality",doi:"10.5772/intechopen.94360",slug:"pathophysiological-changes-and-systemic-inflammation-in-brain-dead-organ-donors-effect-on-graft-qual",totalDownloads:430,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Transplantation is the definitive treatment of end-stage organ disease. As the shortage of suitable organs poses its main limitation, the active management of potential organ donors becomes increasingly more important. The majority of solid organs are still obtained from donors after confirmed brain death. Brain death is the complete and irreversible cessation of all brain functions, and triggers a variety of severe pathophysiological changes in cardiovascular, hormonal and metabolic status that can result in organ damage. Moreover, brain death is associated with massive inflammatory response with a cytokine storm and complement activation that increases graft immunogenicity and adversely affects graft survival. Organs from brain-dead donors are more prone to graft dysfunction and rejection when compared to organs obtained from living donors. Brain death is thus believed to be an important risk factor influencing the quality of organs before procurement.",signatures:"Neva Bezeljak and Željka Večerić-Haler",downloadPdfUrl:"/chapter/pdf-download/73733",previewPdfUrl:"/chapter/pdf-preview/73733",authors:[{id:"285874",title:"Prof.",name:"Željka",surname:"Večerić-Haler",slug:"zeljka-veceric-haler",fullName:"Željka Večerić-Haler"},{id:"325667",title:"Mrs.",name:"Neva",surname:"Bezeljak",slug:"neva-bezeljak",fullName:"Neva Bezeljak"}],corrections:null},{id:"74329",title:"Organ Donation and Transplantation in Sub-Saharan Africa: Opportunities and Challenges",doi:"10.5772/intechopen.94986",slug:"organ-donation-and-transplantation-in-sub-saharan-africa-opportunities-and-challenges",totalDownloads:528,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Sub-Saharan Africa (SSA), occupying about 80% of the African continent is a heterogeneous region with estimated population of 1.1 billion people in 47 countries. Most belong to the low resource countries (LRCs). The high prevalence of end-organ diseases of kidney, liver, lung and heart makes provision of organ donation and transplantation necessary. Although kidney and heart transplantations were performed in South Africa in the 1960s, transplant activity in SSA lags behind the developed world. Peculiar challenges militating against successful development of transplant programmes include high cost of treatment, low GDP of most countries, inadequate infrastructural and institutional support, absence of subsidy, poor knowledge of the disease condition, poor accessibility to health-care facilities, religious and trado-cultural practices. Many people in the region patronize alternative healthcare as first choice. Opportunities that if harnessed may alter the unfavorable landscape are: implementation of the 2007 WHO Regional Consultation recommendations for establishment of national legal framework and self-sufficient organ donation/transplantation in each country and adoption of their 2020 proposed actions for organ/transplantation for member states, national registries with sharing of data with GODT, prevention of transplant commercialization and tourism. Additionally, adapting some aspects of proven successful models in LRCs will improve transplantation programmes in SSA.",signatures:"Ifeoma Ulasi, Chinwuba Ijoma, Ngozi Ifebunandu, Ejikeme Arodiwe, Uchenna Ijoma, Julius Okoye, Ugochi Onu, Chimezie Okwuonu, Sani Alhassan and Obinna Onodugo",downloadPdfUrl:"/chapter/pdf-download/74329",previewPdfUrl:"/chapter/pdf-preview/74329",authors:[{id:"326035",title:"Prof.",name:"Ifeoma",surname:"Ulasi",slug:"ifeoma-ulasi",fullName:"Ifeoma Ulasi"},{id:"326036",title:"Prof.",name:"Chinwuba",surname:"Ijoma",slug:"chinwuba-ijoma",fullName:"Chinwuba Ijoma"},{id:"326037",title:"Prof.",name:"Ejikeme",surname:"Arodiwe",slug:"ejikeme-arodiwe",fullName:"Ejikeme Arodiwe"},{id:"326038",title:"Dr.",name:"Chimezie",surname:"Okwuonu",slug:"chimezie-okwuonu",fullName:"Chimezie Okwuonu"},{id:"326039",title:"Dr.",name:"Julius",surname:"Okoye",slug:"julius-okoye",fullName:"Julius Okoye"},{id:"326040",title:"Dr.",name:"Obinna",surname:"Onodugo",slug:"obinna-onodugo",fullName:"Obinna Onodugo"},{id:"326249",title:"Prof.",name:"Sani",surname:"Alhassan",slug:"sani-alhassan",fullName:"Sani Alhassan"},{id:"336179",title:"Dr.",name:"Ugochi",surname:"Onu",slug:"ugochi-onu",fullName:"Ugochi Onu"},{id:"336182",title:"Prof.",name:"Ngozi",surname:"Ifebunandu",slug:"ngozi-ifebunandu",fullName:"Ngozi Ifebunandu"},{id:"336184",title:"Prof.",name:"Uchenna",surname:"Ijoma",slug:"uchenna-ijoma",fullName:"Uchenna Ijoma"}],corrections:null},{id:"73562",title:"Surgical Techniques of Multiorgan Procurement from a Deceased Donor",doi:"10.5772/intechopen.94156",slug:"surgical-techniques-of-multiorgan-procurement-from-a-deceased-donor",totalDownloads:523,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Solid organ transplantation is now the standard treatment for many types of diseases and using a standard surgical technique for organ procurement from the deceased donors is an important step in preventing complications after such complicated procedures. In most centers, retrieval of heart, lungs, liver, kidneys, small bowel, pancreas and other organs is done at the same time by different surgeons under supervision by a team leader who is most familiar with at least basic steps of surgical technique of procurement of all the solid organs. Each transplant surgeon, regardless of his or her sub-specialty, has to know how to prepare and dissect the delicate anatomical structures which are in common between the two adjacent organs for example portal vein (liver-pancreas), superior mesenteric vein (pancreas-small bowel), abdominal inferior vena cava (liver-kidneys), supra-diaphragmatic inferior vena cava (liver-heart) and pulmonary artery-veins (heart-lungs). This needs a multidisciplinary approach by the most experienced members of the transplant team to decrease the warm ischemic time of the organs without any harm to them by better coordination between all the surgeons. In this, chapter we briefly describe the multiorgan retrieval procedure in a deceased donor, and we hope that following these instructions results in better quality of the procured organs without jeopardizing their vital anatomical structures.",signatures:"Farzad Kakaei",downloadPdfUrl:"/chapter/pdf-download/73562",previewPdfUrl:"/chapter/pdf-preview/73562",authors:[{id:"26626",title:"Dr.",name:"Farzad",surname:"Kakaei",slug:"farzad-kakaei",fullName:"Farzad Kakaei"}],corrections:null},{id:"75579",title:"Thoracic Organ Procurement during Multi-Organ Retrieval",doi:"10.5772/intechopen.95793",slug:"thoracic-organ-procurement-during-multi-organ-retrieval",totalDownloads:325,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Procurement of thoracic organs can be divided into two major categories- donation after brain death (DBD) or donation after circulatory determination of death (DCDD). In this section we will focus primarily on DBD, which is the commoner of these two or at times referred to as standard procurement. DCDD is a relatively new and promising field that has helped ameliorate donor shortage, aided by the latest advances in medical technology. However, DBD continues to be the major avenue of organ donation. There are several different combinations of thoracic procurement surgeries: heart, double lung, single lung/ 2-single lungs, heart-lung en bloc for transplantation, Double Lung procurement for Bronchial arterial revascularization, Heart and Lung procurement in DCDD donors with the OCS, NRP or Lungs for EVLP.",signatures:"Suresh Keshavamurthy, Vipin Dulam, Eros Leotta, Mohammed A. Kashem and Yoshiya Toyoda",downloadPdfUrl:"/chapter/pdf-download/75579",previewPdfUrl:"/chapter/pdf-preview/75579",authors:[{id:"179835",title:"Dr.",name:"Yoshiya",surname:"Toyoda",slug:"yoshiya-toyoda",fullName:"Yoshiya Toyoda"},{id:"243073",title:"Dr.",name:"Suresh",surname:"Keshavamurthy",slug:"suresh-keshavamurthy",fullName:"Suresh Keshavamurthy"},{id:"244736",title:"Dr.",name:"Abul",surname:"Kashem",slug:"abul-kashem",fullName:"Abul Kashem"},{id:"327378",title:"Mr.",name:"Vipin",surname:"Dulam",slug:"vipin-dulam",fullName:"Vipin Dulam"},{id:"340389",title:"Dr.",name:"Eros",surname:"Leotta",slug:"eros-leotta",fullName:"Eros Leotta"}],corrections:null},{id:"73993",title:"Pathology of Intestinal Transplantation: Rejection and a Case of Tolerance",doi:"10.5772/intechopen.94361",slug:"pathology-of-intestinal-transplantation-rejection-and-a-case-of-tolerance",totalDownloads:345,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Small bowel transplants are less common than other organ transplants. Histological criteria for rejection of the transplanted small intestine were proposed at the 8th International Symposium on Small Intestinal Transplantation 2003-2004. The Banff Conference on Transplant Disease Pathology, an international conference on the rejection of small bowel transplants, was held in 2019, and unifying diagnostic criteria were discussed (https://banfffoundation.org/pittsburgh-2019/). These histological criteria are expected to be standardized in the near future. This review outlines new findings such as apoptosis and apoptotic-body phagocytic findings in the lamina propria and behavior of natural killer T (NKT) cells, in addition to previously known crypt Fas-related apoptosis in acute cellular rejection. Furthermore, we review the case of a recipient who has shown no rejection for 5 years after transplantation. In the transplanted small intestine of this patient, the lymphocytes were replaced by those of another male patient.",signatures:"Tatsuaki Tsuruyama",downloadPdfUrl:"/chapter/pdf-download/73993",previewPdfUrl:"/chapter/pdf-preview/73993",authors:[{id:"94907",title:"Prof.",name:"Tatsuaki",surname:"Tsuruyama",slug:"tatsuaki-tsuruyama",fullName:"Tatsuaki Tsuruyama"}],corrections:null},{id:"73970",title:"Regulatory T Cells in the Mosaic of Liver Transplantation Tolerance",doi:"10.5772/intechopen.94362",slug:"regulatory-t-cells-in-the-mosaic-of-liver-transplantation-tolerance",totalDownloads:273,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The success of transplantation depends on multiple factors, but the establishment of immune tolerant milieu is of critical importance. Hepatic environment consists of different cellular populations with prominent capacity to tolerate a huge range of antigens. Among them, regulatory T cells (Tregs) play an important role. They control the strength of immune reactions against non-self antigens and were shown to have an impact on the establishment of immune tolerance in the post-transplantation period. Furthermore, they impact a particular state after transplantation – operational tolerance. The abundant data show that Tregs might be manipulated, which suggests their further implementation as a treatment strategy. Tregs are also a very attractive target as a biomarker in the monitoring of post-transplantation period. Here, we review the particular role of Tregs among the broad spectrum of immune tolerance mechanisms of the liver in the light of the current directions of medical research.",signatures:"Velislava Terzieva, Yordanka Uzunova, Radosvet Gornev and Lubomir Spassov",downloadPdfUrl:"/chapter/pdf-download/73970",previewPdfUrl:"/chapter/pdf-preview/73970",authors:[{id:"326186",title:"Associate Prof.",name:"Velislava",surname:"Terzieva",slug:"velislava-terzieva",fullName:"Velislava Terzieva"}],corrections:null},{id:"74963",title:"Coupling and Deviating of Altruism-Voluntariness Relationship in Organ Transplantation",doi:"10.5772/intechopen.95895",slug:"coupling-and-deviating-of-altruism-voluntariness-relationship-in-organ-transplantation",totalDownloads:278,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Organ transplantation is an issue that concerns two people (donor and recipient) at the same time in terms of the right to life, which is the most basic human right. The direct utility arising from organ transplantation involves the patient to whom the organ is transplanted, and the indirect utility relates to the donor. Today, the decision to obtain an organ from a living donor is based on the idea of doing something good by those who sacrifice themselves for their relatives. The person who donates an organ treats their body as an instrument and uses their willpower on it. If the statement “I will care about the health of others” is accepted as a universal principle, it will be very important to establish a balance between the duty of caring for the health of others and protecting one’s own health. If we want to introduce a new approach to be adopted in the assessment of living donors in society, we must look at the real situation in terms of utility, altruism, and volunteering. This Chapter thus evaluates organ transplantation from living donors in terms of utility, altruism, and volunteering.",signatures:"Mesut Güvenbaş and Omur Sayligil",downloadPdfUrl:"/chapter/pdf-download/74963",previewPdfUrl:"/chapter/pdf-preview/74963",authors:[{id:"179771",title:"Prof.",name:"Omur",surname:"Sayligil",slug:"omur-sayligil",fullName:"Omur Sayligil"},{id:"328369",title:"MSc.",name:"Mesut",surname:"Güvenbaş",slug:"mesut-guvenbas",fullName:"Mesut Güvenbaş"}],corrections:null},{id:"73890",title:"Future Prospects of Organ Transplantation",doi:"10.5772/intechopen.94367",slug:"future-prospects-of-organ-transplantation",totalDownloads:390,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"The gap between organ demand and supply is an universal problem in organ and tissue transplantation therapy. The gap is growing in spite of efforts spent in medical, educational, social areas and mass media support. This reality has created the need for completely new therapeutic alternatives for the management of end-stage organ disease. The present research should continue in future aiming to discover systems and devices capable of totally replacing the traditional transplantation. On the other hand, a different progress in underway in transplantation. The indication for solid organ transplantation is to save life and promote quality of life. The new developing transplantations of composite tissue, uterus and face are performed with completely different indications. Facial defects caused by various insults cause serious functional and esthetic disorders, psychological and social problems. Facial transplant surgery is accomplished to overcome such problems. Uterus transplantation is emerging as an alternative to female infertility. Transplantation of composite tissue includes different organs. The main purpose of composite tissue transplantation is to restore reduced or completely lost functions and to increase the quality of life. Nerve regeneration must occur as a consequence of transplant to regain sensory and motor functions. It appears that the future of transplantation involves developments in two main streams; invention of completely new tools for solid organ transplantation and advances in the transplantation of different organs including uterus, face and composite tissue.",signatures:"Mehmet Nur Altinörs",downloadPdfUrl:"/chapter/pdf-download/73890",previewPdfUrl:"/chapter/pdf-preview/73890",authors:[{id:"326125",title:"Prof.",name:"Mehmet Nur",surname:"Altınörs",slug:"mehmet-nur-altinors",fullName:"Mehmet Nur Altınörs"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6705",title:"Organ Donation and Transplantation",subtitle:"Current Status and Future Challenges",isOpenForSubmission:!1,hash:"e1ab81caf9179b0618c80dcd9bfd84a3",slug:"organ-donation-and-transplantation-current-status-and-future-challenges",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/6705.jpg",editedByType:"Edited by",editors:[{id:"57412",title:"Prof.",name:"Georgios",surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6211",title:"Medical and Surgical Education",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"6c32a9763401f2d6e07b50f3e6451870",slug:"medical-and-surgical-education-past-present-and-future",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/6211.jpg",editedByType:"Edited by",editors:[{id:"57412",title:"Prof.",name:"Georgios",surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7877",title:"Perioperative Care for Organ Transplant Recipient",subtitle:null,isOpenForSubmission:!1,hash:"f392542b05ddea5e08e4662dbc1dc8f7",slug:"perioperative-care-for-organ-transplant-recipient",bookSignature:"Alexander Vitin",coverURL:"https://cdn.intechopen.com/books/images_new/7877.jpg",editedByType:"Edited by",editors:[{id:"201176",title:"Associate Prof.",name:"Alexander",surname:"Vitin",slug:"alexander-vitin",fullName:"Alexander Vitin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8267",title:"Basic Principles and Practice in Surgery",subtitle:null,isOpenForSubmission:!1,hash:"b7c5d304980da18193c583518f293f2f",slug:"basic-principles-and-practice-in-surgery",bookSignature:"Miana Gabriela Pop",coverURL:"https://cdn.intechopen.com/books/images_new/8267.jpg",editedByType:"Edited by",editors:[{id:"213382",title:"Dr.",name:"Miana Gabriela",surname:"Pop",slug:"miana-gabriela-pop",fullName:"Miana Gabriela Pop"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9790",title:"Surgical Management of Head and Neck Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"8ae195fe1164fd55b69b775d596f1e8a",slug:"surgical-management-of-head-and-neck-pathologies",bookSignature:"Ho-Hyun (Brian) Sun",coverURL:"https://cdn.intechopen.com/books/images_new/9790.jpg",editedByType:"Edited by",editors:[{id:"184302",title:"Dr.",name:"H. Brian",surname:"Sun",slug:"h.-brian-sun",fullName:"H. Brian Sun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7936",title:"Surgical Recovery",subtitle:null,isOpenForSubmission:!1,hash:"7ba422a208674f010835a5ad3378b06c",slug:"surgical-recovery",bookSignature:"Selim Sozen",coverURL:"https://cdn.intechopen.com/books/images_new/7936.jpg",editedByType:"Edited by",editors:[{id:"90616",title:"Associate Prof.",name:"Selim",surname:"Sözen",slug:"selim-sozen",fullName:"Selim Sözen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-review-of-liquid-filled-optical-fibre-based-temperature-sensing",title:"Corrigendum to Review of Liquid-Filled Optical Fibre-Based Temperature Sensing",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65367.pdf",downloadPdfUrl:"/chapter/pdf-download/65367",previewPdfUrl:"/chapter/pdf-preview/65367",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65367",risUrl:"/chapter/ris/65367",chapter:{id:"63471",slug:"review-of-liquid-filled-optical-fibre-based-temperature-sensing",signatures:"Fintan McGuinness, Gabriel Leen, Elfed Lewis, Gerard Dooly, Daniel Toal\nand Dinesh Babu Duraibabu",dateSubmitted:"May 22nd 2018",dateReviewed:"August 1st 2018",datePrePublished:"November 5th 2018",datePublished:"April 24th 2019",book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"27036",title:"Dr.",name:"Daniel",middleName:null,surname:"Toal",fullName:"Daniel Toal",slug:"daniel-toal",email:"daniel.toal@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"85846",title:"Prof.",name:"Elfed",middleName:null,surname:"Lewis",fullName:"Elfed Lewis",slug:"elfed-lewis",email:"Elfed.Lewis@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"259703",title:"Dr.",name:"Dinesh Babu",middleName:null,surname:"Duraibabu",fullName:"Dinesh Babu Duraibabu",slug:"dinesh-babu-duraibabu",email:"dineshbabu.duraibabu@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269578",title:"Dr.",name:"Gabriel",middleName:null,surname:"Leen",fullName:"Gabriel Leen",slug:"gabriel-leen",email:"Gabriel.Leen@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269579",title:"M.Sc.",name:"Fintan",middleName:null,surname:"McGuinness",fullName:"Fintan McGuinness",slug:"fintan-mcguinness",email:"Fintan.McGuinness@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269580",title:"Dr.",name:"Gerard",middleName:null,surname:"Dooly",fullName:"Gerard Dooly",slug:"gerard-dooly",email:"Gerard.Dooly@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}}]}},chapter:{id:"63471",slug:"review-of-liquid-filled-optical-fibre-based-temperature-sensing",signatures:"Fintan McGuinness, Gabriel Leen, Elfed Lewis, Gerard Dooly, Daniel Toal\nand Dinesh Babu Duraibabu",dateSubmitted:"May 22nd 2018",dateReviewed:"August 1st 2018",datePrePublished:"November 5th 2018",datePublished:"April 24th 2019",book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"27036",title:"Dr.",name:"Daniel",middleName:null,surname:"Toal",fullName:"Daniel Toal",slug:"daniel-toal",email:"daniel.toal@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"85846",title:"Prof.",name:"Elfed",middleName:null,surname:"Lewis",fullName:"Elfed Lewis",slug:"elfed-lewis",email:"Elfed.Lewis@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"259703",title:"Dr.",name:"Dinesh Babu",middleName:null,surname:"Duraibabu",fullName:"Dinesh Babu Duraibabu",slug:"dinesh-babu-duraibabu",email:"dineshbabu.duraibabu@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269578",title:"Dr.",name:"Gabriel",middleName:null,surname:"Leen",fullName:"Gabriel Leen",slug:"gabriel-leen",email:"Gabriel.Leen@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269579",title:"M.Sc.",name:"Fintan",middleName:null,surname:"McGuinness",fullName:"Fintan McGuinness",slug:"fintan-mcguinness",email:"Fintan.McGuinness@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}},{id:"269580",title:"Dr.",name:"Gerard",middleName:null,surname:"Dooly",fullName:"Gerard Dooly",slug:"gerard-dooly",email:"Gerard.Dooly@ul.ie",position:null,institution:{name:"University of Limerick",institutionURL:null,country:{name:"Ireland"}}}]},book:{id:"8271",title:"Applications of Optical Fibers for Sensing",subtitle:null,fullTitle:"Applications of Optical Fibers for Sensing",slug:"applications-of-optical-fibers-for-sensing",publishedDate:"April 24th 2019",bookSignature:"Christian Cuadrado-Laborde",coverURL:"https://cdn.intechopen.com/books/images_new/8271.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"220902",title:"Dr.",name:"Christian",middleName:null,surname:"Cuadrado-Laborde",slug:"christian-cuadrado-laborde",fullName:"Christian Cuadrado-Laborde"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10608",leadTitle:null,title:"Test Book 2020-06-03",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"a521d7746460f5ad3c0dc4eca04837df",bookSignature:"",publishedDate:null,coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 3rd 2020",dateEndSecondStepPublish:"June 24th 2020",dateEndThirdStepPublish:"August 23rd 2020",dateEndFourthStepPublish:"November 11th 2020",dateEndFifthStepPublish:"January 10th 2021",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10359",title:"Landraces",subtitle:"Traditional Variety and Natural Breed",isOpenForSubmission:!1,hash:"0600836fb2c422f7b624363d1e854f68",slug:"landraces-traditional-variety-and-natural-breed",bookSignature:"Amr Elkelish",coverURL:"https://cdn.intechopen.com/books/images_new/10359.jpg",editedByType:"Edited by",editors:[{id:"231337",title:"Dr.",name:"Amr",surname:"Elkelish",slug:"amr-elkelish",fullName:"Amr Elkelish"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"55168",title:"Long-Term Survivors of Childhood Cancer: The Late Effects of Therapy",doi:"10.5772/67366",slug:"long-term-survivors-of-childhood-cancer-the-late-effects-of-therapy",body:'\n
Over 12,400 children and adolescents younger than 20 years of age are diagnosed with cancer in the United States every year [1]. Survival for many pediatric cancers has improved significantly in the past three decades with improvement in therapies. The surveillance, epidemiology, and end results data estimate that the overall five-year survival rate among children for all cancer sites combined improved from 58% for patients diagnosed in 1975–1977 to 80% for those diagnosed in 1996–2003 [1].
\nThere were an estimated 388,501 survivors of childhood cancer in the United States as of January 1, 2011, of whom 83.5% are ≥5 years after diagnosis [2]. Frequently, long-term survivors of childhood cancer report late cancer-related effects that diminish quality of life and persisting after cancer treatment may result in premature onset of common diseases associated with aging such as obesity, diabetes mellitus, cardiovascular disease, hypertension, and second cancers [3–5].
\nRisk-based health care that involves a personalized plan for surveillance, screening, and prevention is recommended to reduce cancer-related morbidity in childhood cancer survivors. However, there are few consensus recommendations and very few specialized centers providing this care. Moreover, to implement this model, the survivor and healthcare provider must have accurate information about cancer diagnosis, treatment modalities, and potential cancer-related health risks to guide screening and risk-reducing interventions. Childhood Cancer Survivor Study (CCSS) data show that approximately half of the approximately 14,000 responding long-term survivors of childhood cancer had not been seen by a physician during the previous 2 years for evaluation of cancer-related problems. A recent survey of Pediatric Oncology Group and Children’s Cancer Group member sites reported that 44% of the sites have a mechanism for following adult survivors, but only 15% of the programs have a formal database for these patients [6].
\nIn this chapter, we describe the common late effects based on therapy received for cancer and provide the current evidence regarding guidelines available for long-term follow-up of pediatric cancer survivors. We also address the lacunas in patient and physician education and current evidence regarding interventions to address this to improve the quality of life for pediatric cancer survivors.
\nLate effects are those toxicities related to therapy for cancer that are absent or subclinical at the end of therapy but manifest later. Compensatory mechanisms that initially maintain the function of injured organs may fail with growth, development, and aging. We discuss below the common late effects of cancer chemotherapy in children. Table 1 summarizes the most common late effects in survivors of childhood cancer. Tables 2 and 3 summarize some of the common late effects and screening methodology used to monitor and manage them.
\nType and intensity of therapy as well as the patient’s age at therapy determine not only the overall survival but also the frequency of late effects of cancer therapy [7]. Some studies have shown excessive mortality rates in five-year survivors of childhood cancer [8–12]. The Childhood Cancer Survivor Study (CCSS), a retrospective cohort study initiated in 1994, was designed to study late effects among long-term survivors of childhood cancer. It showed a 10.8-fold excess in overall mortality. Risk of death was significantly higher in females, those with an initial diagnosis of leukemia or brain tumor and those diagnosed with cancer before they turned 5 years old. Sixty percent of deaths were from recurrence of the original cancer that was the leading cause of death. Statistically significant excess mortality rates were seen due to various causes shown in Table 4. Treatment-related associations were reported for cancer mortality (radiation, epipodophyllotoxins, alkylating agents), cardiac mortality (chest irradiation), and other deaths (radiation, anthracyclines). No excess mortality was seen for external causes [13].
\nAlopecia |
Ear, nose, and throat |
Fatigue |
Pain |
Tissue hypoplasia |
Urology |
Miscellaneous |
Ophthalmology |
Gastroenterology |
Angina pectoris/Myocardial infarction |
Cardiomyopathy |
Hypertension |
Tubular dysfunction |
Amputation/Prothesis/Rotationplasty |
Scoliosis/Low back pain |
Cognitive problems |
Emotional problems |
Oligospermia/Azoospermia |
Obesity |
Second tumors |
Malignant |
Growth hormone deficiency |
Thyroid disorders |
Panhypopituitarism |
Seizures |
Motor dysfunction/Hemiparesis |
Sensory loss |
Common adverse events in a cohort of childhood cancer survivors.
Organ | \nTherapy | \nScreening test |
---|---|---|
Musculoskeletal | \nRadiotherapy(RT) | \nPhysical exam scoliosis exam (annually if growing), X-ray pm |
Breast | \nMediastinal RT | \nBreast exam. mammography beginning age 25–30 |
CNS | \nCranial RT | \nNeurocognitive testing (baseline, q 3-5 yrs pm). MRI (baseline) |
Neuroendocrine | \nHypothala/mic-pituitary RT | \nGrowm curve q yr. bone age (age 9) |
GH stimulation test | ||
TSH, Free T4.T3 (baseline q 3-5 yr pm) | ||
LH FSH. test/est. prolactin (baseline, pm) | ||
8 am cortisol (baseline, pm) | ||
Cardiac | \nAnthracyclines mediastinal T-spine RT | \nECHO’EKG (baseline for all; q 3-5 yr after anthracycline) Holter q 5 yrs pm (high-dose anthracycline) Stress test/dobutamine stress echo pm (after RT) |
Pulmonary | \nRT | \nPFT baseline, q 3-5 yrs pm |
Bleomycin, CCNU/BCNU | ||
Ovary | \nAlkylating agents | \nMenstrual Ήx annually |
RT | \nLH FSH estradiol baseline (age>12) and pm | |
Testes | \nAlkylating agents | \nLH FSH. testos baseline (age >12) and pm |
RT | \nSpermatoanalysis pm | |
Renal | \nCisplatin (carboplatin), | \nCreatinine, Mg, q 1-2 yrs |
Ifosfamide, | \nCeatinine clearance baseline and q 3-5 yrs pm | |
RT | \nUrinalysis (RT. ifosfamide) | |
Ifosfamide: serum phosphate. urine glucose, protein | ||
Bladder | \nCyclophosphamide, | \nUrinalysis annually for heme |
Ifosfamide. RT | ||
Thyroid | \nRT to neck, mediastinum | \nTSH, FreeT4,T3q yr X 10 |
Scans (U/S) pm | ||
Liner | \n6-MP7MTX,Act-d, RT | \nLiver function tests every 1–3 years |
GI | \nIntestinal RT | \nStool guiac q yr, colonoscopy (ACS) |
Example of screening methodology for late effects specific to treatment received.
Chemotherapy | \n\n | |
If patient received: | \n\n | |
Actinomycin or antimetabolite | \nALT | \nPeriodically |
\n | Bone densitometry | \nOptional |
Aminogtycoside, high dose | \nAudiology | \nOptional |
Anthracycline | \nEchocardiogram | \nEvery 3 years |
(≥300 mg/m2, or anthracycline administered prior to age 1 year | \nEKG | \nOptional |
or ≥200 mg/m2 with radiation involving the chest) | ||
BCNU, CCNll, bleoraycin | \nCXR | \nBaseline |
\n | Pulmonary function tests | \nBaseline and as needed |
Cisplatin | \nBUN creatinine, magnesium | \nAnnually |
\n | Audiology | \nOptional |
Corticosteroids | \nBone deisitometry | \nOptional |
Cyclophosphamide | \nFSH, LH, estradiol | \nOptional |
\n | Semen analysis | \nOptional |
\n | Urinalysis | \nAnnually |
\n | Urine cytology | \nOptional |
Cyclosporine | \nBone densitometry | \nOptional |
Etoposide | \nCBC with platelets and differential | \nAnnually |
Nitrogen mustard, procarbazine | \nCBC with platelets and differential | \nAnnually |
\n | FSH, LH, estradiol | \nOptional |
\n | Testosterone | \nOptional |
\n | Semen analysis | \nOptional |
Vinciistine | \nALT | \nPeriodically |
Radiation therapy | ||
If patient received; | ||
Cranial or craniospinal radiation | \nCataract screening | \nPeriodically |
\n | Audiology | \nOptional |
\n | Dental screening | \nAnnually |
\n | TSH, Free T4 | \nAnnually |
\n | Lipid profile | \nAnnually |
\n | Bone densitometry | \nOptional |
Mande radiation | \nTSH | \nAnnually |
\n | Lipid profile | \nAnnually |
\n | Mammogram (females) | \nStart 8 years after radiation, then annually |
\n | Plain radiographs of irradiated site | \nOptional |
Abdominal radiation | \nHernoccult screening | \nAnnually |
\n | Urinalysis | \nAnnually |
Pehic radiation | \nFSH.LH | \nOptional |
\n | Semen analysis | \nOptional |
High-dose radiation of the Hunk or extremities | \nPlain radiographs of the irradiated sites | \nOptional |
Surgery | ||
If patient received: | ||
Nephrectomy | \nBUN, creatinine, urinalysis | \nAnnually |
Splenectomy | \nVerify immunizations | \nAnnually |
\n | Antibiotic prophvlaxis | \nOptional |
Organ-specific late effects of cancer therapy and screening methodology.
Subsequent neoplasm |
Lip, oral cavity, pharynx, lung |
Digestive organs and peritoneum |
Bone and articular cartilage |
Connective and other soft tissue |
Melanoma and other skin |
Breast |
Genitourinary organs |
Brain and other parts of nervous system |
Lymphatic and hematopoietic |
Other subsequent cancer |
Cardiac |
Ischemic heart disease |
Cardiomyopathy |
Congestive heart failure |
Other cardiac |
Pulmonary |
Pulmonary fibrosis |
Other pulmonary |
Other sequelae |
Infectious disease |
Other sequelae |
External causes |
Motor vehicle accident |
Other accident |
Suicide |
Homicide |
Medical conditions |
Human immunodeficiency virus |
Pneumonia |
Other bacterial/viral infection |
Heart disease |
Cerebrovascular disease |
Other medical condition |
Specific causes of mortality in Childhood Cancer Survivor Study cohort.
The effects on growth and development are dependent on dose and the developmental process of the organ in question. Therapy for the treatment of malignancy may interfere with development in terms of physical growth, neurocognitive growth, musculoskeletal growth (hypoplasia), and, ultimately, pubertal development.
\nGrowth is often impaired in children with active cancer and those undergoing intense therapies due to hypermetabolic states, the effects of chronic disease, and poor nutrition. After the completion of therapy, many children experience a growth spurt and normalization of growth but specific therapies may interfere with this [14].
\nLocalized radiotherapy affects skin and musculoskeletal growth causing cosmetic concern in radiation-treated survivors. Asymmetric radiation fields result in differential growth of the radiated versus nonirradiated tissue. Functional effects, such as muscle or back pain due to radiation-induced scoliosis, can occur. Hypoplasia is not apparent at the end of therapy but becomes manifest with growth, particularly during the pubertal spurt. Particular sensitivity of adipose tissue to radiation may lead to asymmetric fat distribution with weight gain any time in life. Breast asymmetry occurs after unilateral chest radiotherapy prior to maturity. Doses of 20 Gy may stop breast development completely, whereas 10 Gy to the breast bud may cause hypoplasia [15, 16]. Lactation may not be possible for women [17].
\nCranial irradiation affects linear growth by its effect on the hypothalamic-pituitary axis. The effect is dependent on dose and age. Patients treated with large doses of whole brain radiotherapy are likely to have growth hormone deficiency requiring hormone replacement. Growth velocity after lower doses of radiotherapy may proceed normally until puberty, at which time the classic “growth spurt” may be impaired [18]. Early onset of puberty is common after cranial radiation, reducing final height [18] and this effect is more pronounced if the child is younger at the time of radiation [19]. Childhood cancer survivors treated with cranial radiation may have a higher body mass index [20], which is inversely related to the age of puberty [21, 22]. After spinal radiotherapy, the effect of aberrant growth hormone release and early puberty may be worsened by vertebral stature loss after spinal irradiation [23]. These effects can be mitigated prior to closure of the epiphyses. Close monitoring of growth is needed but may not be sufficient. The role of growth hormone stimulation beginning shortly after completion of therapy and inhibition of the pubertal spurt to prolong the potential growth phase is being assessed [19].
\nIntellectual outcome after the completion of therapy is important for integration successfully into society after completion of therapy. Central nervous system (CNS) radiotherapy or high-dose chemotherapy that achieves sufficient CNS levels for the prevention of meningeal leukemia may result in cognitive deficits [24]. Impairment of memory, attention, and visual perceptual motor skills result in problems with language, reading, and arithmetic and poor academic achievement [24, 25]. Brain injury may become more apparent years after the completion of therapy and intellectual growth suffers over time [26]. The severity of the effect is determined by both dose of therapy and the time at which it was given. Higher doses [>36 Gy] have significant deficits that virtually always require special educational efforts [27]. Cognitive effects of radiation on infant development are profound and hence high doses may be deferred until after age two [27]. Preschool children receiving doses in the range of 18–24 Gy of cranial radiotherapy often require special educational resources, and older children may have difficulties with complex systems such as a new language or high-level mathematics [27]. At lower doses of radiation, children are likely to remain within the mainstream education efforts but may need help to achieve maximal success. Significant doses of intrathecal chemotherapy may have similar effects [27]. Most survivors enter college at the same rates as siblings, except for those receiving 24 Gy or treated as preschoolers; however, an overall need for special education exists and occupational success may not be equal to that of siblings [28].
\nIt is tough to clinically assess the extent of treatment-induced gonadal damage suffered during childhood. Anticipatory guidance can be given based upon reported experience. Close monitoring throughout puberty is vital as initial pubertal development may proceed even with severe gonadal injury as a result of adrenal corticoid hormones. Long delays in assessment may have severe social consequences.
\nAlkylating agents are known for inducing infertility; little gonadal toxicity is noted after the antimetabolites, vinca alkaloids, anthracyclines, bleomycin, or platinum derivatives. Sertoli cells are more sensitive than Leydig cells to radiation and alkylating agents [29, 30]. Young boys may proceed with normal masculinization, potency, and libido even with azoospermia due to preservation of Leydig cells. Testosterone levels as well as pubertal development should be assessed for recipients of high-dose chemotherapy. By late puberty, testosterone deficiency should be treated to normalize masculinization. Even though ovaries are less sensitive than testes to gonadotoxic agents [30, 31], an affected female child may experience pubertal delay and amenorrhea. Hormone replacement to preserve feminization and periods may be needed. Another reason for treating estradiol deficiency is the prevention of osteoporosis and early coronary artery disease. Cranial radiation at higher doses can also result in secondary gonadal insufficiency by impairment in LH/FSH production and secretion. In those brain tumor patients receiving hypothalamic-pituitary axis radiation as well as alkylating agents (e.g., BCNU, CCNU), direct gonadal effects as well as secondary gonadal insufficiency are seen [31].
\nReversibility is dependent on dose of gonadal radiation or alkylating agents. Ovarian function is unlikely to recover long after the immediate therapy due to loss of ova. The testis is more sensitive to cytotoxic therapies than the ovary, but late recovery (2–12 years after radiotherapy) has been reported [32]. Prediction of fertility in an adult woman may be indicated by evaluation of her menstrual cycle. The same dose of drug is more likely to affect an older woman than a younger one [33]. Although young women may not become amenorrheic after cytotoxic therapy, the risk of early menopause exists. Direct radiotherapy to the ovaries also causes infertility. Oophoropexy is commonly offered to prevent infertility in women whose ovaries would otherwise remain in the radiation field. Lower doses or even scatter of radiation within the small body of an infant or toddler may have profound effects. Oophoropexy is not an option in this population since the small torso does not offer a sanctuary for the ovaries. Flank radiotherapy such as for Wilms’ tumor does not affect the ovaries but may result in reduced fetal size by effects on the uterine muscle and vasculature [34, 35].
\nMale sterility is usual after approximately 10 g/m2 of cyclophosphamide. The prepubertal state offers, at best, only limited protection to testes treated with cyclophosphamide [36]. Ten percent of men will become sterile after one to two cycles of MOPP chemotherapy commonly used in Hodgkin’s disease in the past, while 80–100% are sterile after six courses [36]. Low doses (2–3 Gy) of radiotherapy result in azoospermia in all males, with late recovery noted occasionally after a period of years.
\nNew reproductive technologies have improved outcomes for infertile cancer survivors. Sperm banking, the ability to inseminate ova with only small numbers of spermatozoa, and artificial insemination are the most frequently used approaches for sterile male survivors. Female survivors have more limited options. Storage of ova is being researched actively [37].
\nHyperprolactinemia is another easily treatable and fairly common but often missed effect of hypothalamic-pituitary irradiation that may impair fertility as well as growth and libido [38]. Appropriate endocrinologic interventions with dopamine agonists can be helpful.
\nAnthracyclines are important in the treatment of most childhood cancers. Unfortunately, cardiac damage is most pronounced after treatment with anthracyclines, with additive effects of cyclophosphamide and radiation therapy. Anthracyclines cause decrease in myocyte number by causing myocardial cell death. Residual myocytes hypertrophy in a compensatory manner [39]. Cardiac injury during or shortly after the completion of chemotherapy may progress, stabilize, or improve after the first year [40]. Patients with reduced cardiac function within 6 months of completing chemotherapy are at increased risk for the development of late cardiac failure [41].
\nMyocardial injury can be detected with sensitive screening tests, even after a cumulative dose of 45 mg/m2 [42, 43]. Unfortunately, these tests are not routinely available. Initial improvement in cardiac function from compensatory changes may diminish with later stressors in life. For example, myocardial depressants such as alcohol or increased afterload brought on by exercise, growth spurts, or pregnancy may induce late cardiac failure. Isometric exercise may increase the risk for late cardiac failure, particularly in after neck or mantle radiotherapy [44]. There is evidence to suggest that there is a continuum of injury that will manifest itself throughout the lives of these patients [45]. Many pediatric cardiologists may advise patients to avoid excessive alcohol intake and isometric exercises such as weight-lifting. Those who have received the higher doses of anthracyclines need the closest monitoring and counseling.
\nPregnancy, a time of increased cardiac demand, is a dangerous period for anthracycline-treated women. These women need to be evaluated by a cardiologist. Obstetricians should be made aware that these women may have limited ability to compensate for the increased cardiac output of pregnancy. Careful monitoring during pregnancy and the postpartum period is essential. Women with significantly limited cardiac reserve may be advised that pregnancy may carry unacceptable risk [44].
\nSevere cardiac effects of radiation may be noted including valvular damage, pericardial thickening, and ischemic heart disease [46]. Patients have an increased risk of both angina and myocardial infarction years after radiotherapy for Hodgkin’s disease [47], with a relative risk of 3.1 for cardiac death with Hodgkin’s disease [48]. This risk was noted in those receiving >30 Gy of mantle irradiation and was greatest for those treated before 20 years of age [49]. The use of anteriorly weighted ports, reduction in total tumor and daily fraction dose, and cardiac shielding are some of the techniques being used to reduce the effects of radiation [49].
\nThe effects of chemotherapy on the lungs may be lethal or may improve gradually. However, pulmonary function tests may not return to normal, and there may be slow clinical decline. Long-term outcome depends on severity of the acute injury, the extent of compensation, and the likelihood of decompensation. It is reported that 35% of children treated for brain tumors with nitrosourea and radiotherapy died of pulmonary fibrosis, 12% within 3 years and 24% after a symptom-free period of 7–12 years [50]. Therefore, the recommended dose limit of nitrosourea’s in children has been lowered from 1500 to 750 mg/m2 but the late effects of this lower dose need to be assessed [50]. Some chemotherapy drugs like cyclophosphamide when used orally may cause restrictive lung disease by inhibition of chest wall growth. This effect may become apparent as late as 7 years after the completion of therapy [51]. It has not been reported after modern intravenous cyclophosphamide regimens. Patients treated with bleomycin may experience pulmonary insufficiency from interstitial pneumonitis characterized by a reticulo-nodular pattern [52, 53]. Even after the completion of therapy, the risk for overt decompensation remains for at least 1 year. A recent study by Kung et al. has noted that 22% of Hodgkin’s disease patients with normal pulmonary function tests at the end of therapy developed abnormalities with follow-up of 1–7 years [54, 55]. In long-term follow-up, pulmonary dysfunction is usually subclinical. Subconscious avoidance of exercise is rarely attributed to therapy or recognized by the patient himself. Patients who have been treated with pulmonary radiation and cytotoxic agents such as BCNU, CCNU, and bleomycin should undergo pulmonary function testing every 5–8 years [56]. Such patients should avoid exposure to pulmonary toxins, most notably cigarettes. Radiation itself (>9 Gy) raised the risk of lung cancer after Hodgkin’s disease.
\nThe most commonly noted renal problems after radiation therapy, especially with doses greater than 20 Gy are tubular damage and hypertension associated with renal artery stenosis [57, 58]. Children may be susceptible to these complications at lower doses. In addition, chemotherapy may exacerbate these effects [59]. Chemotherapy alone, particularly platinum compounds are notorious for glomerular and tubular injury [60, 61]. Glomerular injury may recover over time, while tubular injury persists. The nitrosourea may affect glomerular function. Ifosfamide results in renal Fanconi’s syndrome with glycosuria, phosphaturia, and aminoaciduria [62]. Hypophosphatemia may result in slow growth and bone disease. Glomerular filtration may also be affected by ifosfamide. In children, there is a risk of renal decompensation with growth with any of these injuries. The bladder is susceptible to cytotoxic agents such as cyclophosphamide and ifosfamide that have acrolein as a by-product. Acrolein may result hemorrhage cystitis, fibrosis, diminished bladder volume, and rarely bladder cancer [63–65]. Patients who have received one of these agents should have an annual urinalysis, with further evaluation if hematuria is noted. Radiation may induce bladder fibrosis, decreasing contractibility and decreased volume depending on dose and area exposed [66]. Scarring may also diminish function of the urethra and ureter.
\nDamage to thyroid is common after radiotherapy to the neck and chest. Patients treated for Hodgkin’s disease in whom the thyroid was irradiated had a 47% risk of overt or compensated hypothyroidism at 26 years [67]. Although compensatory increase in thyroid-stimulating hormone (TSH) initially maintains the euthyroid clinical state, further deterioration of thyroid function often results in clinical symptomatology. Treatment with thyroid hormone is recommended with persistent evidence of compensated hypothyroidism. Chronically elevated TSH levels in the presence of irradiated thyroid tissue can enhance tumor development [68, 69]. Benign nodules, Graves’ disease, thyroid cancer, and Hashimoto’s thyroiditis are some of the other disorders seen after radiation to the gland [67].
\nThere is not much literature describing long-term effects to this system. This may be due to long latency of the late effects or under detection. Many chemotherapeutic agents as well as radiotherapy may be damaging to the liver; therefore, it may be difficult to attribute the harm to specific therapy. Transfusions increase the risk of viral hepatitis. Hepatitis C has been identified in increasing numbers of survivors [70]. Fibrosis and adhesions of bowel are known to occur after radiotherapy.
\nAbout 4% of survivors develop a secondary malignancy within 25 years of diagnosis of the primary cancer [71]. This is an excess risk of six times among survivors compared to healthy individuals and is contributed to by the carcinogenic effects of treatments for the original childhood cancer as well as to genetic predisposition [71]. Bone cancers, mostly osteosarcomas, are the most common solid second cancers observed after all types of childhood cancer other than retinoblastoma [72, 73]. There is probably some element of genetic predisposition, which would include, for example, constitutional mutations of the p53 gene that contributes to secondary cancers after childhood cancers [74, 75]. Second primary leukemia is diagnosed in about 0.2% of survivors of childhood cancer within 6 years of diagnosis of the original cancer—about eight times the expected number of leukemia [76].
\nEvidence suggests that survivors of childhood cancer experienced a range of educational, behavioral, and social problems. The extent of problems experienced varies by the disease and its treatment, as well as by demographic and family variables [77, 78]. Children miss substantial amounts of schooling during treatment, and this affects both academic achievement and social relationships. Fairly consistent evidence shows that intrathecal chemotherapy and radiotherapy to the CNS impacts academic achievement and learning. Children under 5 years at diagnosis are particularly vulnerable. A general decline in intellectual function or deficits in specific skills, including attention, concentration, and mathematical reasoning may be seen [79, 80]. Measurement of social function is more complex than measurement of academic function, and perhaps for this reason there is limited literature describing social functioning among survivors. Among children of school age, there is some evidence that survivors of a central nervous system tumor are less popular with other children [81]. Many survivors need appropriate and sensitive counseling to enable them to choose and succeed in appropriate employment [82]. There is a considerable variation in quality of life among survivors [82]. Several studies report compromises in mental health among survivors [82].
\nSeveral agents designed to protect normal tissues from the toxic effects of specific therapeutic agents are being evaluated. Examples of these agents include amifostine (cisplatinum-induced ototoxicity) [83] and dexrazoxane (anthracycline-induced cardiomyopathy) [84]. Long-term follow-up will be required to assess the efficacy of all these strategies. Research related to determination of whether agents used to protect normal tissues will or slow down the progression of an adverse late effect, is less well developed. Specific research initiatives include the use of afterload reducing agents for prevention of further progression of myocardial dysfunction [85], use of chemoprevention for prevention of secondary malignancies, lifestyle and behavior modification, and education to increase awareness of the need for screening for early detection.
\nAwareness of the potential health problems as a result of treatment for cancer in childhood is less than optimal among practitioners and survivors themselves. In contrast to the multitude of publications describing treatment-related sequelae in childhood cancer survivors, relatively few provide specific recommendations for health screening and risk-reduction counseling to guide healthcare providers in monitoring this vulnerable population [5, 86–90]. To reach this goal, several barriers need to be surpassed, notably education of survivors and healthcare providers regarding the late effects of cancer treatment; availability of standardized guidelines for follow-up of the survivors in a feasible and practical setting and ongoing communication between the cancer center that provided acute care for the patient and the facility providing follow-up care. Among the hurdles to guideline development are ongoing changes in pediatric cancer therapy, long latency periods required to evaluate many late effects, the unknown effects of aging, and the multiple factors known to influence cancer-related health risks in patients who received cancer therapy during childhood [86, 91]. Despite these challenges, two sets of clinical follow-up guidelines designed to guide care for pediatric cancer survivors have recently been published and are described below.
\nThe COG is a 242-member National Cancer Institute-supported cooperative clinical trials group whose goals include minimizing the risk of long-term effects that may impact duration and/or quality of life in pediatric cancer survivors. COG recently developed risk-based, exposure-related guidelines (Long-Term Follow-up Guidelines for Survivors of Childhood, Adolescent, and Young Adult Cancers] for use in directing follow-up care for survivors of pediatric malignancies [86].
\nThe COG-LTFU Guidelines are risk-based, exposure-related clinical practice guidelines for screening and management of late effects resulting from therapeutic exposures used during the treatment of pediatric malignancies. The guidelines are both evidence-based and based on the collective clinical experience of experts (matching the magnitude of the risk with the intensity of the screening recommendations). The screening recommendations are provided in these guidelines area consensus statement from a panel of experts in the late effects of pediatric cancer treatment. A therapy-based design was chosen to permit formatting of the guidelines by therapeutic exposure since the therapeutic interventions for a specific pediatric malignancy may differ considerably based on the patient’s age, presenting features, and treatment era [86]. The guidelines are therefore organized according to therapeutic agent, and cross-referenced to other topics with related toxicities. The guidelines are designed to standardize and direct follow-up care that facilitates early identification of and intervention for treatment-related complications. Limitations include the potential for false-positive screening evaluations and increased patient anxiety related to an increased awareness of possible complications. Costs of long-term follow-up care may also be prohibitive for some patients.
\nGoal of implementation of these guidelines is to increase quality of life and decrease complication-related healthcare costs for pediatric cancer survivors by providing standardized and enhanced follow-up care throughout the life span. The guidelines are intended for use beginning 2 or more years following the completion of cancer therapy to [1] promote healthy lifestyles [2], provide ongoing monitoring of health status [3], facilitate early identification of late effects, and [4] provide timely intervention for late effects. The information within these guidelines is important for clinicians (e.g., physicians, nurse practitioners, physician assistants, nurses) in the fields of pediatrics, oncology, internal medicine, family practice, and gynecology, as well as subspecialists in many fields (e.g., endocrinology, cardiology, pulmonology) [86]. Figure 1 presents an example model of how these guidelines were developed.
\nSample excerpt from the Children’s Oncology Group Long-Term Follow-Up Guidelines for survivors of childhood, adolescent, and young adult cancers. TSH, thyroid-stimulating hormone.
The goal of Scottish Intercollegiate Guidelines Network (SIGN) is to develop evidence-based clinical guidelines aimed at reducing variations in clinical practice and outcomes for patients [91]. SIGN is composed of members from all medical specialties, nursing, pharmacy, dentistry, allied health professionals, patients, health service managers, social services, and researchers [91]. SIGN recently developed national guidelines for pediatric cancer survivors (SIGN guidelines ) [91].The SIGN guideline provides a detailed review of the following topics with evidence for each and grading for each recommendation and its rationale: (1) assessment and achievement of normal growth; (2) achievement of normal progression through puberty and factors affecting fertility; (3) early identification, assessment and treatment of cardiac abnormalities; (4) assessment of thyroid function; and 5] assessment and achievement of optimum neurodevelopment and psychological health [92, 93]. Limitations of the SIGN guideline include lack of specific follow-up recommendations for areas such as renal, pulmonary, gastrointestinal, ocular, auditory, and musculoskeletal systems as well as second malignancies. In addition to clinical recommendations, the SIGN guideline contains recommendations for the delivery of follow-up care for pediatric cancer survivors, based on the intensity of treatment received. The degree of long-term risk is determined by site of the underlying malignancy, type and intensity of treatment, and age of patient at treatment. Three levels of follow-up are described: “Level 1” follow-up is suggested for those survivors for whom the benefit of clinical follow-up is not clearly established. Annual or even every two-year postal or telephone contact is recommended. “Level 2” follow-up is suggested for the majority of patients on current protocols. Nurse or primary care follow-up on an annual basis may suffice. “Level 3” follow-up is for patients who have received radiotherapy, bone marrow transplantation, or megatherapy, and who have a significant risk of long-term morbidity [92, 93]. Recommendations for these patients include follow-up in a medically supervised long-term follow-up clinic three to four times per year [92, 93].
\nThe main challenge of providing quality care to a pediatric cancer survivor is combining routine age-appropriate health maintenance with exposure-related screening for potential late-onset complications related to pediatric cancer therapy. Ideally, evaluations should be individualized based on the survivor’s treatment history. A balance between over-screening, which might induce anxiety related to unlikely complications, and under-screening for potentially life-threatening complications that if missed at an early phase may require more aggressive intervention later needs to be achieved. Screening guidelines that can be individualized based on the patient’s risk for developing a particular complication are therefore ideal. As the COG and SIGN guidelines become more widely implemented over time, refinements will undoubtedly be made that will make them even more clinically relevant and practical for survivors who are followed in future years.
\nThe importance of educating both survivor and healthcare professionals about potential late effects cannot be over-emphasized since a wide range of providers are involved in the follow-up of these patients including nurses, psychologists, social workers, adult and pediatric primary care providers, and specialists in many fields. Ultimately, as with all clinical practice guidelines, decisions regarding implementation of specific screening modalities and ongoing clinical management should be tailored to individual patients, taking into consideration all relevant factors, including medical and psychosocial history, therapeutic exposures, risk factors, and co-morbidities [93].
\nMisperceptions about their cancer diagnosis, treatment, and cancer-related health risks exist among cancer survivors [94–96]. Byrne et al. [90] surveyed 1928 adult survivors of childhood cancer diagnosed between 1945 and 1974 to assess knowledge of their cancer diagnosis. Overall, 14% of survivors were not aware that they had cancer. Lesser knowledge of their diagnosis was associated with younger age at treatment, nonwhite race, less intensive treatment, and lower parental education status. It is possible that racial, socioeconomic, and cultural factors that were prevalent during the period when the patient was diagnosed may influence the interaction amongst the oncologist and patient [90]. Historically, some healthcare professionals and families prefer giving limited information about cancer-related health risk to survivors due to concerns about inducing anxiety. In a similar study from 1970 to 1986, Childhood Cancer Survivor Study (CCSS) investigators evaluated the accuracy of self-reported information acquired from a cross-sectional survey of 635 adult survivors of childhood cancer. Knowledge about cancer history and its associated health risks is improved in more recently treated survivors compared to the Byrne study [94]. More than 90% of participants were aware of their cancer diagnosis but not all elements of their history in a recent study. The knowledge deficits about cancer-related health risks in older survivors may limit their participation in screening and risk-reducing programs [97].
\nHealthcare providers encountering childhood cancer survivors must be knowledgeable about potential cancer-related adverse effects in order to prescribe appropriate monitoring and interventions should health problems arise. Because of the rarity and complexity of numerous histologic subtypes with unique epidemiology, biology, and treatment regimens managing long-term childhood cancer survivors is an intimidating task for primary care physicians. Healthcare providers are unlikely to care for more than a handful of survivors, usually each with different cancers, treatment exposures, and health risks making it difficult to attain proficiency. Consequently, primary healthcare providers in the community are often uncomfortable with supervising the care of childhood cancer survivors.
\nThe knowledge, attitudes, and beliefs of physicians providing care for survivors of childhood cancer have not been well studied. Several investigators coordinating late effects surveyed a convenience sample of 236 physicians from around the United States, in private or academic practices using a 36-item questionnaire that asked about knowledge, attitudes, and beliefs in providing health care for adult survivors of childhood cancer [98]. In comparison with pediatric oncologists, primary care physicians (general internists and family physicians) reported a lower level of knowledge regarding both common childhood cancers and the late effects with treatment exposures. A recent study in the UK reported a cross-sectional postal survey as well as a cross-sectional postal survey of general practitioners of 10,979 adult survivors of childhood cancer in Britain. This study has shown that there are wide variations in the extent to which survivors of childhood cancer are discharged from hospital follow-up [99]. Adult oncologists generally reported a higher level of knowledge of these factors than primary care physicians, but considerably less than pediatric oncologists. Notably, primary care physicians expressed a lower level of comfort in managing survivors. These data point to a need for resources and interventions that specifically address the unique needs and medical management of childhood cancer survivors that primary care providers might benefit from.
\nMultidisciplinary long-term follow-up teams at some pediatric oncology treatment centers have established long-term follow-up clinics. Follow-up in this model is limited to an annual comprehensive multidisciplinary health evaluation, and survivors are encouraged to establish an ongoing relationship with a primary healthcare provider in the community for routine health maintenance. Benefits of this approach are that the patient remains in contact with a team that is knowledgeable and has a standardized program of long-term follow-up care, contact with the original treatment center is maintained, and multidisciplinary referrals available within the healthcare system. Disadvantages include the lack of familiarity of the pediatric treatment team with age related health-care issues that might arise, reluctance of the older patient to return to a pediatric facility, reimbursement for specialized services not covered by insurance companies, and problems of access due to long distances between the medical center and the survivor’s residence [100].
\nIn some instances, institutions have established formalized transition programs with specialized long-term follow-up programs for adult survivors of childhood cancer because of reluctance of pediatric oncology centers to take care of adult cancer survivors. Transition programs may utilize both oncology and primary care providers in a collaborative framework, and maintain many of the benefits of the specialized long-term follow-up clinics, with the benefit of care providers with expertise in adult medicine. One limitation is that since the focus is on survivorship care, and ongoing primary care is often not accessible through these specialized programs, and distance to the center may remain a barrier [100].
\nIn this model, when the survivor reaches adulthood, the pediatric provider makes a referral to an adult oncologist for ongoing follow-up. Advantages of this system include ongoing monitoring for disease recurrence in an adult medical care system, and accessibility to care in the local community. Disadvantages include the limited familiarity of most adult oncologists with the potential late complications of chemotherapy and radiotherapy in children and the appropriate follow-up evaluations indicated for childhood cancer survivors [100].
\nFollow-up care may be provided by an adult primary care provider (e.g., internist, family practitioner), who maintains communication with the original pediatric oncology treatment team. Advantages of this model include ability to maintain a relationship with a provider in the community who is familiar with their specialized healthcare needs and disadvantages include the primary care provider’s lack of familiarity with potential late effects. There may also be limited access to multidisciplinary specialty care providers that many survivors require [100].
\nAs pediatric oncologists, our work is not done when the cancer is cured. We must try to recognize, monitor and decrease the late effects of cancer therapy when possible and, if not possible, to understand the effects so that future treatment regimens can be designed with less risks of late effects. Remarkable improvement in cure rates has been achieved by persistent stress on designing effective therapy. Only by continued, systematic follow-up of large cohorts of survivors will we know the full spectrum of damage caused by cytotoxic therapy and possible interventions that may mitigate the effects. Ongoing methods for educating both the patient and the primary caretakers must be devised. We must set up programs to evaluate the survivors to assess and care for chronic organ damage, providing the necessary support for the primary physician. As part of a collaborative effort, the primary care provider and the specialist must work toward the goal of best possible quality of life for the pediatric cancer survivor.
\nColorectal cancer is the fourth most frequently diagnosed cancer and one of the leading causes of cancer death around the World [1]. Unfortunately, despite significant advances in treatment, there has still not been a proportional improvement in survival [2, 3]. This aspect is related to diagnosing and treating neoplasms at a more advanced stage. Although considered a single entity, locally advanced colorectal cancer should be differently treated if located in the colon or mid/lower rectum [4].
In the case of locally advanced rectal cancer (LARC), in part due to its anatomical location, multimodal therapy, and neoadjuvant therapy, in particular, plays a leading role. The optimal treatment plan for patients with rectal cancer can be a complex and highly individualized process. It usually results in multimodal therapy that combines radiation therapy, chemotherapy, and surgery [5]. Although early stages can be treated with surgery alone, more advanced stages (stages II and III) typically are treated with neoadjuvant chemoradiotherapy (CRT) before surgery to decrease the risk of recurrence and optimize oncologic outcomes. The Swedish Rectal Cancer Trial, the Dutch Colorectal Cancer Group trial, and The German Rectal Cancer Group all showed that on long-term follow-up, neoadjuvant CRT was found to improve 5-year local recurrence rates, been the overall survival effect not so evident [6, 7, 8]. Response to neoadjuvant CRT can be quite variable; some have minimal response while others have a complete clinical response [9]. Pathologic response has since become an established surrogate marker of long-term survival and a useful oncologic benchmark [10, 11]. About 20% of LARC patients have a pathologic complete response. In comparison, therapeutic resistance is evident in 80% of the cases and contributes to surgical failure, disease recurrence, and poor prognosis [12]. This discrepancy is of utmost importance because one cannot forget that the associated morbidity of these strategies cannot be underestimated.
Despite increasing knowledge of the molecular signaling pathways implicated in rectal cancer, therapeutic outcomes are still only moderately successful in comparison. To change the therapeutic paradigm, LARC patients must be integrated into clinical algorithms tailoring therapy for individual patients by either identifying more effective strategies or by omitting ineffective treatments to avoid unnecessary toxicity [12, 13].
As one should note, the high rate of resistance demonstrated by the low complete response in most rectal cancer patients must lead the scientific community to explore novel molecular strategies to enhance conventional therapy.
Recent investigations showed that bioactive sphingolipids play a significant role in the colon and rectal cancer tumorigenesis, signaling mechanisms, and response to treatment as they can influence the impact and effectiveness of radio and chemotherapy. Understanding the molecular patterns and the relation between sphingolipids and CRT should provide valuable information regarding tumor survival mechanisms and, this way, pursue novel therapeutic targets.
Sphingolipids are structural molecules of cell membranes with an essential role in barrier and fluidity functions [14]. They have been implicated in many physiologic and pathologic processes, such as cell growth, cell death, cell adhesion, proliferation, stress, inflammatory responses, differentiation, migration, invasion, and/or metastasis, by controlling signaling functions within the signal transduction network of cancer cell [13, 15, 16, 17, 18, 19]. The two central bioactive lipids, ceramide and sphingosine-1-phosphate (S1P), have opposing roles in regulating cancer cell death and survival [19]. Ceramide has been shown to mediate cell cycle arrest and cell death in response to cell stress [14, 20]. S1P has been shown to promote cell survival and proliferation [14, 18, 20, 21].
During the past decades, information regarding almost all major enzymes involved in sphingolipid metabolism was gathered, which has provided data that shows that these metabolic enzymes highly regulate the abundance of sphingolipids and their role in different biologic pathways [22]. Additional complexity derives from multiple isoforms of those enzymes that can vary in subcellular location and pH requirements, which results in different metabolic products. For instance, different ceramide synthases can produce ceramides with different fatty acid chains, which will have distinct biologic roles [12]. One should also find that different isoforms of sphingosine kinase, which generates S1P, have different localizations and functions.
Cellular stress induced by chemotherapy and/or radiation is known to cause pro-cell death mechanisms and tumor suppression, at least partly through the induction of ceramide generation [19]. On the contrary, S1P generation results in resistance to CRT. Given the importance of CRT in the treatment of LARC, understanding the relation between sphingolipids metabolism and CRT could be of utmost importance in finding new ways to treat these patients more effectively. One must also find that understanding more about the sphingolipids’ metabolism may open opportunities to define potential predictive biomarkers for CRT resistance, such as S1P and glucosylceramide, as shown in previous studies with different types of tumors [23, 24].
Cellular stress induces sphingosine and/or ceramide generation by activating the de novo synthesis pathways, sphingomyelin hydrolysis, or the salvage pathway to mediate cancer cell death (Figure 1) [14, 25]. By contrast, many tumors exhibit increased ceramide metabolism mainly by increased activities of glycosylceramide synthase (GCS), sphingomyelin synthase (SMS), ceramide kinase (CERK), acid ceramidase (AC), and/or sphingosine kinase (SPHK), which increases the generation of sphingolipids with pro-survival functions [26, 27].
Sphingolipid metabolism and some of the critical enzymes. De novo synthesis (blue) depends on CERS1-6 activity and it is the central hub of the sphingolipid pathway. Ceramide is also produced by the sphingomyelin hydrolysis (orange), which is dependent on SMase activity. The salvage pathway also relies on CERS1-6 activity (green) that can metabolize free sphingosine to ceramide. Ceramide can be converted to sulfatides by the action of galactosylceramide synthase (GCS). The complex glycosphingolipids are hydrolyzed to glucosylceramide and galactosylceramide. These lipids are then hydrolyzed by beta-glucosidases and beta-galactosidases (GCDase) to regenerate ceramide. CDase activity will metabolize ceramide to sphingosine that, in turn, will lead to S1P unbalancing the scale to a less apoptotic and pro-surviving state. S1P can be broken down by S1P lyase activity exiting the sphingolipid metabolic pathway.
Ceramide consists of a long-chain sphingosine base and an amide-linked fatty acyl chain that varies from 14 to 26 carbons (C) in length [14, 25]. Endogenous ceramides are synthesized via the de novo pathway with the help of ceramide synthases (CERS1-6) [28], which are specialized for ceramide synthesis with different fatty acyl chain lengths. CerS or longevity assurance genes (LASS) [29, 30], a family of six members in mammals with differing tissue expression, are primarily confined to the endoplasmic reticulum (ER). Each CerS1-6 isoform has a unique tissue expression profile and predilection for a fatty acyl CoA with a specific FA chain length. Thus, depending on the CerS family member, distinct sets of ceramides with varying chain lengths are produced [30]. With few exceptions, naturally occurring mammalian ceramides generally possess acyl chain lengths varying between C16 to C24 [31] and its biological activity has only recently become apparent.
Some studies with the administration of exogenous C16-Cer in human colon cancer cell lines showed that it resulted in programmed cell death, suggesting that an increase in endogenous production of C16-Cer could lead to the same effects [32].
Despite these results, one should note that the same ceramide analogs have entirely different effects regarding the type of histological tissue. In the head and neck squamous cell carcinoma cell line, C16:0-Cer had antiapoptotic properties [33], whereas, in HeLa cells, C16:0-ceramide worked as a proapoptotic factor [34]. Ceramides chain length is another critical factor as specific chain lengths can have different effects in different cells. Long-chain and very-long-chain ceramides have shown the opposite effect on the human colon cancer cell line [35].
Moreover, the deficiency of some ceramides may be compensated for by increased expression of others, resulting in an altered synthesis of different ceramide analogs [36].
Ceramide is also generated by sphingomyelinases (SMases, acid, neutral, or alkaline), which mediate sphingomyelin hydrolysis—by far the most abundant sphingolipid in animal cell membranes [31]—or by glucosylceramidase (GlcCDase) and galactosylceramidase (GCDase), which, respectively, catalyze glucosylceramide and/or galactosylceramide breakdown to ceramide [14, 25, 37]. In the salvage pathway, CerSs are responsible for regenerating ceramide from free sphingosine by re-acylation [38].
Ceramide is hydrolyzed by ceramidases (CDases) to yield sphingosine, which is phosphorylated by sphingosine kinases (SPHK1 and SPHK2) to generate S1P [19]. A balance between the proapoptotic properties of ceramide and the antiapoptotic properties of S1P has been termed the ceramide/S1P rheostat and is considered important in balancing cell death and survival in numerous stress situations [39]. S1P engages with five specific G protein-coupled receptors, S1PR1-5, in an autocrine or paracrine manner to elicit pro-survival signaling in various cancer cells [19, 40].
The clinical relevance of sphingolipid metabolism has been established, and it is well known, as demonstrated in the biopathological mechanisms of lysosomal storage diseases (Farber disease, Gaucher disease, Krabbe disease, and Niemann-Pick A, B disease), owing to aberrant accumulation of sphingolipids [19]. Although some of the effects of SLs appear to be cell-specific, generally, increased intracellular levels of ceramides, sphingosines, and also dihydroceramides are mostly connected with the induction of cell cycle arrest and/or cell death. In contrast, the elevated levels of S1P, ceramide-1-phosphate, glucosylceramides, and lactosylceramides seem to be associated with increased cell survival, proliferation, cell adhesion, and promotion of cell migration and/or invasion, events that are related to cancer progression [22]. Until now, the changes in S1P/Cer ratio remain the best-characterized outcome of the alterations of SL metabolism in cancer.
Ceramides are essential components of cell membranes, and their presence depends on the equilibrium between production and degradation rates. Different stress stimuli, physiological or pathological, will change the way they act, usually leading to cancer cell death through various mechanisms [36] such as apoptosis, autophagy, and ER stress. In fact, as can be seen by numerous laboratory studies, the accumulation of sphingolipids represents the great majority of cell changes during apoptosis [36].
In 1993, the induction of apoptosis by ceramide was first demonstrated in leukemic cells by treatment with exogenous ceramide [41]. There are two primary pathways, an intrinsic one (mitochondrial) and an extrinsic one. While the extrinsic one results from the activation of death receptors on the cell surface, the intrinsic pathway is activated by stress stimuli like hypoxia, nutrient deprivation, or DNA damage. Cancer cells can overcome those mechanisms, escape apoptosis, and engage in pro-survival pathways [36, 42].
Despite the proapoptotic action of ceramides in cancer cells, it can also have an opposite behavior in regard to subcellular localization, the type of stress stimuli, and changes in ceramide targets [19].
The abundance of sphingolipid molecules is highly regulated by metabolic enzymes, the altered expression or activity of which has crucial roles in the induction of cancer cell death or survival [19]. 2002 was marked as the year of the discovery of the first mammalian ceramide synthase. Since then, various experiments have indicated that changing the composition of ceramide species alters cell physiology and influences pathology [43].
The discovery and cloning of CERS1-6 were key to understanding the roles of ceramides with different fatty acyl chain lengths in cancer cell signaling. CerS1 and CerS4 preferentially generate ceramide with 18–20-carbon fatty acids (C18–20-Cer), while CerS5 or CerS6 primarily generate ceramide with 14–16-carbon fatty acids (C14-16-Cer), and CerS2 selectively generates ceramides with 22–24-carbon fatty acids. CerS3 is responsible for synthesis of very-long-chain C28-32 ceramides [12].
Phenotypes observed in CerS-deficient mice suggest that ceramides with different fatty acid chain lengths have distinct biologic roles. For example, CerS1 expression was found to be repressed in head and neck cancer cells [44]; In the liver, CerS2-deficiency resulted in a compensatory generation of C16-Cer, which leads to the development of hepatocellular cancer owing to possible defects in apoptosis [45]. C16 ceramide was shown to increase apoptosis in colon cancer cells [46]. Targeting specific CerS can, in theory, shift ceramide composition in cancer cell lines resulting in different cellular responses and signaling pathways. The tissue distribution of CerS varies and likely reflects the need for specific ceramide species for proper signaling and sphingolipid homeostasis in any given tissue [29, 47].
Ceramide is also generated by the hydrolysis of sphingomyelin by SMases – acid, neutral, and alkaline – based on their pH-dependent optimal activity. Data from different studies support the hypothesis that the hydrolysis of sphingomyelin by SMases generates ceramide, which mediates cancer cell death, growth arrest, and/or tumor suppression [19]. In comparison to surrounding normal tissue, SMase activity in colorectal cancer is reduced by 75%, 50%, and 30% for alkSMase, nSMase, and aSMase, respectively [48].
There are three classes of CDases—acid, neutral, and alkaline—responsible for converting ceramide to sphingosine, which was found to be upregulated in various cancer types. Studies with prostate cancer mouse models showed tumor relapse due to radiation resistance induced by ACDase expression [49]. Neutral ceramidase (NCDase) sphingosine release is utilized for S1P biosynthesis by SPHK1 and/or SPHK2, resulting in the inhibition of cell death through reduced levels of proapoptotic ceramide. Colon cancer cells’ works demonstrated that NCDase inhibition resulted in autophagy and apoptosis due to ceramide accumulation. In fact, null mice were protected from the development of colon cancer [50].
The two isoforms of sphingosine kinase, SPHK1, and SPHK2, both utilize sphingosine and generate S1P but have significant differences in subcellular localization and function [51]. SPKH1 releases S1P extracellularly, which regulates several cellular processes in an autocrine or paracrine manner, leading to pro-survival mechanisms. SPHK2 appears to have both pro and antiapoptotic functions in regard to the cell type, subcellular localization, and stimuli [51]. Increased expression of SPHK1 mRNA was indicative of poor prognosis and decreased survival in patients with various cancers [52].
SPL function represents a final path and an exit route from the sphingolipid metabolism with the hydrolysis of S1P. In fact, some studies show S1P accumulation in colon cancer tissues due to SPL downregulation [53]. On the contrary, SPL overexpression leads to increased apoptosis through reduced S1P signaling in colon cancer cells [54].
There is ample evidence suggesting that SPHK/S1P signaling pathways are associated with cancer development and metastasis (Table 1) [55]. Overexpression of SPHK/S1P signaling is often associated with cancer drug resistance to chemotherapy, radiation therapy, or hormonal therapies in various types of cancers [26]. It is important to note that along with SPHK1, SPHK2 is overexpressed in many human cancers, and based on its cellular localization, it can function as a pro- or antiapoptotic signaling molecule. It was suggested that knockdown of SPHK2 with siRNA or inhibition of SPHK2 activity with the selective pharmacological drugs reduces cancer cell growth, migration, and invasion [56, 57, 58] and induces apoptosis by accumulating proapoptotic ceramides. In sharp contrast, it has been recently demonstrated that mitochondrial SPHK2 is proapoptotic [55]. However, more studies need to be performed with specific SPHK2 inhibitors or mitochondrial-targeted SPHK2 that would be beneficial to identify clinically relevant functions of SPHK2.
Lipids | Mechanism | Functions |
---|---|---|
Intracellular Extracellular | Tumor progression | |
Metastasis | ||
Cancer cell survival | ||
Cell migration | ||
Angiogenesis | ||
Inflammation | ||
Chemokine signaling | ||
Immune cell trafficking | ||
Epigenetic regulation |
Significant effects mediated by S1P.
The knowledge acquired in recent years regarding sphingolipids metabolism made clear that there are quite a substantial number of different opportunities for cancer cells to escape cell death. In fact, sphingolipid metabolic pathways represent an essential branch of human and pharmacological research in pursuit of novel therapeutic drugs for cancer patients. About two decades ago, researchers first showed that standard-of-care treatments, for example, chemotherapeutics and radiation, modulate sphingolipid metabolism to increase endogenous ceramides, which kill cancer cells. Strikingly, resistance to these treatments has also been linked to altered sphingolipid metabolism, favoring lipid species that ultimately lead to cell survival [59]. The significant number of chemotherapeutic agents available in clinical practice is, in fact, characterized by the accumulation of sphingolipids in cells [60]. The response to stress induced by chemotherapeutic agents leads to ceramide accumulation, both by sphingomyelin hydrolysis as well as through de novo synthesis of ceramide [61], as described for daunorubicin, etoposide, and gemcitabine [60]. So, inhibiting de novo pathway enzymes leads to decreased ceramide levels, reducing the cytotoxicity of the chemotherapeutics and finally their overall efficacy. In the phase II clinical trial, elevated serum levels of C18 ceramide were markedly associated with improved response to gemcitabine plus doxorubicin combination therapy in patients with recurrent head and neck cancers [62].
Interestingly, altered ceramide levels are not the only biological connection between sphingolipids and chemotherapy; glucosylceramides are increased in breast cancer and in patients who were resistant to chemotherapy. The enzyme that generates glucosylceramide is upregulated in several different tumor types such as lung cancer, breast cancer, and colorectal cancer [63].
Ceramide levels can also be diminished by the action of CDase enzymes which converts ceramide to sphingosine, which, in turn, can be transformed to S1P.
In essence, when too much ceramide accumulates and the metaphorical balance overflows, the cell dies (Figure 2).
The accumulation of ceramide (endogenous and exogenous) and degradation of ceramide.
In regard to radiotherapy, one of the first discoveries of the role of ceramide in cell death in radiation subjects was the rapid hydrolysis of sphingomyelin to ceramide by SMase [65]. Notably, ceramide was shown to be the major mediator of cellular stress after radiation exposure [66]. Besides sphingomyelin hydrolysis, raised ceramide levels can also be achieved by induction of de novo synthesis in response to radiation, as seen in Scarlatti F.
Lastly, ceramide cell levels in response to radiation are also increased by ceramide synthase activity [68]. The current knowledge is that ceramide levels are firstly increased by sphingomyelin hydrolysis and then by CerS activity, 8 to 24 h after radiation therapy [69]. These data suggest that ceramide generation in cancer cells in response to chemotherapy and radiotherapy has an important role in tumor suppression.
Bacterial resistance to antibiotic drugs was first described after the discovery that penicillin prompted bacteria to develop defense mechanisms culminating in the expression of an array of efflux transporters in the outer cell wall [70]. The broad range of substrates used by these transport proteins resulted in coining the term multidrug resistance (MDR) as pathogens can limit the accumulation of diverse drugs targeted against them [31, 71]. Some cancer types harbor intrinsic MDR, most probably due to exogenous expression of drug efflux transport proteins in the tissue of origin. Other cancer types acquire MDR through prolonged or repeated treatment with chemotherapeutic drugs [72]. An altered glycosphingolipid profile in cancerous versus non-cancerous cells was observed in cell lines transformed by chemicals or viruses and impacted cell growth, intercellular recognition, and cell adhesivity. The conversion of ceramide to glucosylceramide by GCS has been shown to mediate drug resistance in various cancers [23]. Importantly, drug sensitivity was restored when GCS was inhibited or downregulated [73], but not all studies exhibit the dependence of drug resistance on CGS/CluCer [74]. SPHK1 overexpression was reported at intrinsic or acquired resistance to cetuximab in CRC cell lines, xenograft mouse models, and tumors obtained from patients [24] and S1PR1 inhibition using FTY720 sensitized resistant CRC cells and tumors to cetuximab [24]. Hence, while CGS and SPHK1/2 are potential therapeutic targets to overcome drug resistance, increased accumulation of their sphingolipid products—glucosylceramide and S1P, respectively—might be potential predictive biomarkers for chemotherapy resistance in various cancers [19]. Descriptive lipidomic studies may help to identify potential lipid markers of distinct rectal cancer stages.
The last decade was fruitful in the investigation of the metabolic switch during tumorigenesis [75]. Lipids are central in different cellular levels of physiology that go from plasmatic and membrane organization, plasticity, and signaling mechanisms [76, 77, 78].
Data from the literature indicate that the equilibrium between ceramides of various chain lengths is crucial for cell fate [35]. As noted before, the S1P/Cer ratio changes remain the best-characterized outcome of the alterations of SL metabolism in cancer.
The amount of new information and knowledge regarding sphingolipids in colorectal cancer can hardly be systematized. The best option is to follow the sphingolipids’ metabolic pathways and see which alterations are present in cancer cells.
Ceramides and their proportion are different in plasma of patients with CRC and tumor tissue compared with plasma and tissue control levels. On the other hand, plasma ceramide concentration is not directly related to ceramide concentration in tumor tissue. One must also be aware that different chain lengths can have different actions regarding cell localization and the microenvironment. Chen et al. demonstrated increased levels of C16:0 and C24:0 ceramides and reduced levels of both C18 and C20 ceramides in colorectal tumor tissues [79, 80, 81]. Levels of C22:0 ceramide were unchanged [80]. Those results were in line with the protein expression and enzymatic activity of SCD1 (Stearoyl-CoA desaturase-1), a key conversion enzyme that regulates lipogenesis. SCD1 inhibition impairs the proliferation of cancer cells probably by cellular endogenous ceramide signals mediation [80]. Another study showed an increased amount of S1P and C14:0 compared to normal tissue and a significantly lower amount of C18:0 and C20:0, as previously noted [36].
The plasma profile of sphingolipids appears to be different than in tissues with the highest concentration in the plasma for C24:0-ceramide and C24:1-ceramide [36]. The concentration for C22:0, C16:0-ceramides, and S1P is smaller but significant [36]. Another study, however, showed significantly higher concentration levels of C16, C18, C18:1, and C24:1-ceramide than those of controls and lower levels of C24-sphingomyelin; there was a relation between these results and stage IV CRC. These results are limited by the small sample size and retrospective design of the study [82]. Markowski et al. divided the patients into two groups regarding their stage and showed that a higher tumor content of C20:0 and C24:0-ceramide was present in the TNM III + IV group. In plasma, there was a statistically significant relation between CRC patients in TNM stage III + IV and higher levels of C16:0 and C18:1-ceramides. Their data raise the possibility that it could be possible to distinguish patients between early and advanced stages based on this model [36]. Taken together, one must note that plasma ceramide concentration is not directly related to ceramide concentration in tumor tissue.
In another study with patients with pulmonary and hepatic metastasis submitted to radiotherapy, it was observed that although pre-treatment levels of ceramides did not correlate with response to treatment, patients with complete response had higher post-treatment total plasma ceramide levels than non-responders [83].
Lymph node invasion was shown to have a positive correlation with C24 ceramide levels in CRC tumor tissues [79]. It was also demonstrated that Sphingosine 1-phosphate (S1P) signaling pathways were associated with lymphangiogenesis [84].
As mentioned before, sphingolipids’ metabolism is regulated through a complex equilibrium between different enzymes’ actions, which will, in the end, change the balance between ceramide and S1P. For example, different enzymes will provide different ceramides, with different actions depending on the tissue and subcellular localization.
The discovery and cloning of CERS1–6 were crucial for understanding the roles of ceramides with different fatty acyl chain lengths in cancer cell signaling. Hartmann et al. showed that overexpression of CerS4 and CerS6 in HCT-116 human colon cancer cells inhibits cell proliferation by upregulation of long-chain ceramides C16:0, C18:0, and C20:0. In contrast, upregulation of CerS2 and concomitant increase of C24:0 and C24:1 promotes cell proliferation [35].
Jang et al. revealed that all four CerS genes were significantly upregulated in CRC tissues compared with corresponding normal tissues [85]. CERS6 overexpression reduced the proliferation of CRC cells and induced apoptosis, whereas CERS2 overexpression increased the proliferation of CRC cells [35]. Regardless of the mechanism, overexpression of CERS2 and CERS6 decreased the viability of CRC cell lines tested [85]. CerS6-generated C16 ceramide was shown to increase apoptosis in colon cancer cells [46].
CERS5-ko mice showed significantly larger colon tumors than CERS5-wt mice [86]. Another study showed that strong CERS5 staining correlated with poor prognosis in patients with CRC [87]. CERS4 and CERS5 were also found to be upregulated in colon cancer prior to apoptosis induction and down-regulated after apoptosis induction in colon cell lines [88].
The importance of ceramide levels in cancer cells was also demonstrated in studies with ceramide analogs such as LCL-30, the cationic water-soluble analog of C16-ceramide. LCL-30 accumulates in cells’ mitochondria and induces mitochondrial swelling, decreases membrane potential, caspase activation, and ultimately cell death [89, 90]. The same group also tested its actions in colon carcinoma cell line CT-26 as an
Adiseshaiah et al. also showed that injection of nanoliposomal C6-ceramide, an autophagy inducer, in combination with vinblastine, decreased tumor growth in comparison to the individual treatments [75]. The authors used the colon cancer xenograft model (LS174T) and showed that the combination treatment resulted in statistically significant suppression of tumor growth compared to a single treatment. The rationale behind the study was that cancer cells might evade anticancer therapy by inducing autophagy, so blocking it should improve therapeutic response.
It is undoubtedly that microenvironment will largely influence cancer cells’ fate during their life cycle. Cancer cell progression is associated with tumorigenic M2 macrophages. Ceramide-treated macrophages were shown to induce the switching of macrophage polarization toward the pro-inflammatory M1-phenotype. Ceramide also abolished macrophage-induced epithelial-mesenchymal transition and migration of colorectal cancer cells [91]. Other studies have demonstrated that M1 and M2 macrophages can switch phenotypes and lipids have the potential to modulate their function and phenotypes [92, 93]. Ceramides act as an intracellular second messenger and membrane component [94]. Araujo Junior et al. have demonstrated that ceramide can reduce M2 phenotype and block migration of cancer cells, suggesting that targeting ceramide in the tumor microenvironment could, in theory, reduce tumor progression and potential for metastasis of colon cancer cells [91].
Ceramide is also generated by the hydrolysis of sphingomyelin by SMases—acid, neutral, and alkaline—based on their pH-dependent optimal activity.
The activities of neutral and alkaline SMase were highest in the ascending colon and decreased in the sigmoid colon and rectum, whereas no significant difference was found for acidic SMase activity at all locations [48]. Markowski et al. also examined the relationship of sphingolipids levels in CRC tissue on tumor localization and documented that, albeit complex and ambiguous, the number of total ceramides was lowest in sigmoid and cecum tumors and the largest in rectal tumors [36]. SMase activity was found to be decreased in colorectal carcinomas, mainly alkaline SMase activity, which results in lowered cellular levels of ceramide. In comparison to surrounding normal tissue, SMase activity in colorectal cancer is reduced by 75%, 50%, and 30% for alkSMase, nSMase, and aSMase, respectively [48].
So, on one side of the balance, we can identify the mechanisms responsible for ceramide raised levels; however, on the other side, we should pay attention to the antagonist mechanisms leading to the degradation of ceramide in detriment to S1P and their transitory metabolites.
Among the five ceramidases identified to date [95], neutral CDase is predominantly expressed in the colon and is involved in the metabolism of dietary sphingolipids [96]. It was shown that inhibition of NCDase induces an increase of ceramide in colon cancer cells, decreasing cell growth and increasing apoptosis [50, 81]. Coant et al. also showed that deletion of NCDase protected mice from the onset and progression of colorectal cancer C16:0 ceramide levels were increased. The inhibition of NCDase leads to inhibition of the WNT/β-catenin pathway [81]. HT 29 colon cancer cells treated with NCDase inhibition were accompanied by decreased survival, increased apoptosis, and autophagy [50]. Animal studies also showed that inhibition of NCDase delayed tumor growth, with increased ceramide and reduced tumor cell proliferation [50]. Taken together, NCDase appears to be an important target for new therapeutic strategies.
Studies in mice have demonstrated that oral administration of plant-type sphingolipids increased colonic Sphingosine-1-phosphate lyase (SPL) levels and reduced S1P levels, cytokine levels, and tumorigenesis, indicating that SPL can prevent transformation and carcinogenesis [53]. These studies suggest that dietary sphingolipids can have a role in colon cancer prevention in opposition to high-fat diets that possibly increase the risk of colorectal cancer. SPL is highly expressed in normal intestinal and colonic epithelium, however, it is downregulated in CRC cells and in early adenomatous lesions of Min mice [54]. SPL expression promotes apoptosis through a cascading mechanism that involves p53, p38, PIDD, and caspase-2; however, it is not clear how this interaction occurs [54]. SPL activity provides an exit route from sphingolipid metabolism via the rapid hydrolysis of S1P. SPL appears to be downregulated at the protein level in colon cancer tissues, and SPL silencing promoted colon carcinogenesis, which occurred via S1P accumulation and/or S1PR signaling [53]. On the contrary, SPL overexpression leads to increased apoptosis through reduced S1P signaling in colon cancer cells [54].
The two isoforms of sphingosine kinase, SPHK1, and SPHK2, utilize sphingosine and generate S1P but have significant differences in subcellular localization and function [51]. Sphingosine kinases (SPHK1 and 2) are overexpressed in many cancers, including colorectal cancer, compared with normal mucosa [97]. The expression levels of SPHK1 and 2 were also high in liver metastases compared with matched normal colon tissues. SPHK1 and SPHK2 are observed in different places within the cell; SPHK1 in the cytosol while SPHK2 was detected in both cytosol and nucleus [97]. SPHKs seem to have a role in promoting the metastatic potential of colorectal cancer cells [97]. FTY-720, an S1P receptor antagonist, reduces cell migration and invasion and significantly decreases cellular proliferation in all cell lines tested [97].
5-Fluorouracil (5-FU) is one of the first-line chemotherapy agents’ in colorectal cancer and despite its efficacy, drug resistance is still an important limitation. Jung et al. conducted a lipidomic analysis showing that resistance to 5-FU is associated with the up-regulation of sphingomyelin and the down-regulation of CERS [98].
SPHK1 contribution to cetuximab resistance in colorectal cancer was investigated. The authors found overexpressed and overactivated SPHK1 in colorectal cancer cells with intrinsic or acquired resistance to cetuximab [24]. It was also documented that treatment of resistant cells with FTY-720 resulted in resensitization to cetuximab both
In another study involving SPHK2, the authors found that using ABC294649, a novel SPHK2 inhibitor, resulted in growth inhibition and apoptosis of CRC cells, with S1P depletion and ceramide incrementation. Also, exogenously-added S1P inhibited ABC294640 cell effects. The authors also described that ABC294649 sensitized 5-FU and cisplatin-mediated anti-HT-29 cell activity. This agent could be an important anti-CRC weapon, and it is also available in an oral formulation [58]. Xun et al. demonstrated in HT-29 cell lines that SphK2 inhibition (ABC294640) resulted in S1P depletion and ceramide incensement with consequent cell lethality. Oral administration dramatically inhibited H-29 xenograft growth in nude mice [58].
SphK inactivation induces the accumulation of S1P precursors, including sphingosine and ceramide, causing cell apoptosis and growth arrest [99].
Activity in primary cancer cells was also tested. SphK2 expression was different between patients, however, ABC294640 activity was negatively associated with SphK2 expression level [58].
Glucosylceramide synthase (GCS), a ceramide-metabolizing enzyme, has been demonstrated to be overexpressed in CRC tissues compared with non-CRC tissues. Wang et al. documented that high-expression GCS patients were associated with significantly higher lymph node metastasis than the low CGS expression group [63].
GCS has been associated with several studies that documented its role in chemotherapy resistance [63, 100]. Oxaliplatin-resistant cells demonstrated increased expression of GCS protein compared to the parental cell line, with increased levels of glucosylceramide (GlcCer) [100]. Madigan et al. also showed that inhibition of GCS expression resulted in the reduction of ClcCer levels with restored sensitivity to oxaliplatin. Oxaliplatin-resistant CRC cells also expressed lower ceramide levels compared to parental cells. In fact, the conversion of ceramide to glucosylceramide by GCS represents an essential mechanism for limiting ceramide accumulation [101]. It was also shown that the rate of GCS was higher in patients receiving neoadjuvant chemotherapy than in non-CRC tissues, raising the possibility that chemotherapy drugs might induce the high expression of GCS and increase the risk of MDR [63]. The authors hypothesized that oxaliplatin treatment might result in reduced ceramide levels compared to oxaliplatin-sensitive cells. C16-ceramide was the only species to differ significantly between the two cell lines. Higher sphingomyelin levels were found in the positive nodes of colorectal cancer patients compared to the negative lymph nodes [102].
In recent years, a few new pharmacologic strategies have been used in laboratory and clinical trials. Fenretinide (preclinical; reduces de novo synthesis with dihydroceramide accumulation), Safingol (association with irinotecan, preclinical; SPHK1 inhibitor), Ceramide nanoliposomes (association with tamoxifen, preclinical; apoptosis promoter by ceramide accumulation), α-GalCer (preclinical; α- galactosylceramide-pulsed antigen-presenting cells), and Fingolimod (association with sphingosine and cetuximab, preclinical; functional antagonist of the sphingosine-1-phosphate receptor (S1PR) and structural analog of sphingosine) [60, 103] are the most important in colorectal cancer with exciting and promising results.
Sphingolipids are structural molecules of cell membranes with an essential role in barrier and fluidity functions. They have been implicated in many physiologic and pathologic processes, such as cell growth, cell death, adhesion, proliferation, stress, inflammatory responses, differentiation, migration, invasion, and/or metastasis.
The sphingolipids play an essential role in cancer biology and influence treatment response and aggressiveness. It also happens in colorectal cancer and may be interesting in developing an individualized treatment plan for LARC.
Nevertheless, the molecule’s action interpretation is complicated, given the complexity of sphingolipid’s metabolism with several activations and counter-regulation pathways. In addition, there are isoforms whose action is different depending on the location in the cell and the type of tissues in which they occur. Finally, the balance among ceramides has also essential for the activity response.
However, we can state that in general terms, there are two central bioactive lipids, ceramides and sphingosine-1-phosphate (S1P), which have opposing roles in regulating cancer cell death and survival. Ceramides have been shown to mediate cell cycle arrest and cell death in response to cell stress. Also, the equilibrium between ceramides of various chain lengths is crucial for cell fate. On the other hand, S1P has been shown to promote cell survival and proliferation.
Thus, the increase in specific ceramides in the tumor may correspond to a lower aggressiveness or effective response to the therapy instituted. In comparison, the rise in S1P in the tumor will correspond to a greater aggressiveness of tumor resistance to the treatment.
In this perspective, the measurement of ceramides and S1P may be of interest to assess the aggressiveness of a particular tumor. Nevertheless, on the other hand, we can try to interfere with the amount of these elements present in the tumor to modify tumor resistance to conventional therapy.
From published studies, it appears that sphingolipids’ metabolism in tumor tissue is unsettled in colorectal cancer.
Ceramides and their proportion are different in plasma of patients with CRC and tumor tissue compared with plasma and tissue control levels. On the other hand, plasma ceramide concentration is not directly related to ceramide concentration in tumor tissue.
The knowledge gathered in the past decade can lead us to new ways of treating CCR patients, trying to overcome treatment resistance, and, in the end, achieving higher response rates and improved global life expectancy.
In conclusion, the knowledge of tumor sphingolipids metabolism may be essential in colorectal cancer treatment. Unfortunately, the studies about this issue are small and few. Therefore, investigation in this area is needed.
The authors declare no conflict of interest.
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11662},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22333},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33644}],offset:12,limit:12,total:135278},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"11"},books:[{type:"book",id:"11452",title:"Cryopreservation - Applications and Challenges",subtitle:null,isOpenForSubmission:!0,hash:"a6c3fd4384ff7deeab32fc82722c60e0",slug:null,bookSignature:"Dr. Marian Quain",coverURL:"https://cdn.intechopen.com/books/images_new/11452.jpg",editedByType:null,editors:[{id:"300385",title:"Dr.",name:"Marian",surname:"Quain",slug:"marian-quain",fullName:"Marian Quain"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11513",title:"Gas Sensors",subtitle:null,isOpenForSubmission:!0,hash:"8eeb7ab232fa8d5c723b61e0da251857",slug:null,bookSignature:"Dr. Soumen Dhara and Dr. Gorachand Dutta",coverURL:"https://cdn.intechopen.com/books/images_new/11513.jpg",editedByType:null,editors:[{id:"196334",title:"Dr.",name:"Soumen",surname:"Dhara",slug:"soumen-dhara",fullName:"Soumen Dhara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11514",title:"Vision Sensors - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"6da8427ef3062c142b4e9650a5fed534",slug:null,bookSignature:"Dr. Francisco J. Gallegos-Funes",coverURL:"https://cdn.intechopen.com/books/images_new/11514.jpg",editedByType:null,editors:[{id:"2868",title:"Dr.",name:"Francisco",surname:"Gallegos-Funes",slug:"francisco-gallegos-funes",fullName:"Francisco Gallegos-Funes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11520",title:"Direct Torque Control",subtitle:null,isOpenForSubmission:!0,hash:"6504dee75dbbfd7792308293a8f1a27f",slug:null,bookSignature:"Prof. Moulay Tahar Lamchich",coverURL:"https://cdn.intechopen.com/books/images_new/11520.jpg",editedByType:null,editors:[{id:"21932",title:"Prof.",name:"Moulay Tahar",surname:"Lamchich",slug:"moulay-tahar-lamchich",fullName:"Moulay Tahar Lamchich"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11526",title:"Mass Production in the Industry 4.0 Era",subtitle:null,isOpenForSubmission:!0,hash:"082678c3d4e60a3ac282f3f2309379d4",slug:null,bookSignature:"Dr. Tamás Bányai",coverURL:"https://cdn.intechopen.com/books/images_new/11526.jpg",editedByType:null,editors:[{id:"201248",title:"Dr.",name:"Tamás",surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11538",title:"Updates on Supercapacitors",subtitle:null,isOpenForSubmission:!0,hash:"defe620d92b00d7a1b12b939941b7528",slug:null,bookSignature:"Dr. Zoran M. Stevic",coverURL:"https://cdn.intechopen.com/books/images_new/11538.jpg",editedByType:null,editors:[{id:"30692",title:"Dr.",name:"Zoran",surname:"Stevic",slug:"zoran-stevic",fullName:"Zoran Stevic"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11539",title:"Thermal Power Plants - Modeling, Control, and Optimization",subtitle:null,isOpenForSubmission:!0,hash:"1c3acd9b5f01439c18515d73d41b830d",slug:null,bookSignature:"Dr. Paweł Madejski",coverURL:"https://cdn.intechopen.com/books/images_new/11539.jpg",editedByType:null,editors:[{id:"179645",title:"Dr.",name:"Paweł",surname:"Madejski",slug:"pawel-madejski",fullName:"Paweł Madejski"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11543",title:"Energy Consumption, Conversion, Storage, and Efficiency",subtitle:null,isOpenForSubmission:!0,hash:"ad63fe95611354246fb73cb3653b6348",slug:null,bookSignature:"Prof. Jiajun Xu and Prof. Bao Yang",coverURL:"https://cdn.intechopen.com/books/images_new/11543.jpg",editedByType:null,editors:[{id:"233386",title:"Prof.",name:"Jiajun",surname:"Xu",slug:"jiajun-xu",fullName:"Jiajun Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11546",title:"Smart and Sustainable Transportation",subtitle:null,isOpenForSubmission:!0,hash:"88ccbca0fb32b8f905e4307bfe485862",slug:null,bookSignature:"Dr. Arshad Jamal",coverURL:"https://cdn.intechopen.com/books/images_new/11546.jpg",editedByType:null,editors:[{id:"339925",title:"Dr.",name:"Arshad",surname:"Jamal",slug:"arshad-jamal",fullName:"Arshad Jamal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11927",title:"Advances in Slope Engineering",subtitle:null,isOpenForSubmission:!0,hash:"8f99ec47c5d5c034e72f0db4cbede70c",slug:null,bookSignature:"Associate Prof. Resat Oyguc",coverURL:"https://cdn.intechopen.com/books/images_new/11927.jpg",editedByType:null,editors:[{id:"239239",title:"Associate Prof.",name:"Resat",surname:"Oyguc",slug:"resat-oyguc",fullName:"Resat Oyguc"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11928",title:"Pipeline Engineering",subtitle:null,isOpenForSubmission:!0,hash:"a01da9c63fd3825818d1215bd7c283ff",slug:null,bookSignature:"Dr. Sayeed Rushd, Dr. Mohamed Ismail and Dr. Kofi Freeman Adane",coverURL:"https://cdn.intechopen.com/books/images_new/11928.jpg",editedByType:null,editors:[{id:"267670",title:"Dr.",name:"Sayeed",surname:"Rushd",slug:"sayeed-rushd",fullName:"Sayeed Rushd"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11930",title:"Reliability-Based Design in Structure and Geotechnical Engineering",subtitle:null,isOpenForSubmission:!0,hash:"63cb9ce2478d12b0649b47deaab8ab56",slug:null,bookSignature:"Dr. Faham Tahmasebinia",coverURL:"https://cdn.intechopen.com/books/images_new/11930.jpg",editedByType:null,editors:[{id:"211659",title:"Dr.",name:"Faham",surname:"Tahmasebinia",slug:"faham-tahmasebinia",fullName:"Faham Tahmasebinia"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:22},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:6},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:15},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:37},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:8},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:55},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"657",title:"Thermochronology",slug:"thermochronology",parent:{id:"104",title:"Geology and Geophysics",slug:"geology-and-geophysics"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:29,numberOfWosCitations:21,numberOfCrossrefCitations:15,numberOfDimensionsCitations:35,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"657",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5615",title:"Evolutionary Models of Convergent Margins",subtitle:"Origin of Their Diversity",isOpenForSubmission:!1,hash:"315039e7d089e246a15380d9be8faab2",slug:"evolutionary-models-of-convergent-margins-origin-of-their-diversity",bookSignature:"Yasuto Itoh",coverURL:"https://cdn.intechopen.com/books/images_new/5615.jpg",editedByType:"Edited by",editors:[{id:"46893",title:"Dr.",name:"Yasuto",middleName:null,surname:"Itoh",slug:"yasuto-itoh",fullName:"Yasuto Itoh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"54840",doi:"10.5772/67982",title:"Effectiveness for Determination of Depositional Age by Detrital Zircon U–Pb Age in the Cretaceous Shimanto Accretionary Complex of Japan",slug:"effectiveness-for-determination-of-depositional-age-by-detrital-zircon-u-pb-age-in-the-cretaceous-sh",totalDownloads:1495,totalCrossrefCites:8,totalDimensionsCites:13,abstract:"Detrital zircon U–Pb ages indicate the crystallization age. Therefore, it is necessary to evaluate the effectiveness of determining the age of deposition using zircon age data. We carried out U–Pb dating of detrital zircons from sandstone at eight sites in the Cretaceous Shimanto accretionary complex on Kii Peninsula, Japan, with the aim of evaluating the accuracy of U–Pb zircon ages as indicators of the depositional age of sedimentary rocks by comparing zircon ages with radiolarian ages. Our results reveal zircons of late Cretaceous age, and the youngest peak ages are in good agreement with depositional ages inferred from radiolarian fossils. In addition, the youngest peak ages become younger as tectono-structurally downwards, and this tendency is clearer for the zircon ages than for the radiolarian ages. These results indicate that newly crystalized zircons were continuously supplied to the sediment by constant igneous activity during the late Cretaceous and that zircon ages provide remarkably useful information for determining the age of deposition in the Cretaceous Shimanto accretionary complex.",book:{id:"5615",slug:"evolutionary-models-of-convergent-margins-origin-of-their-diversity",title:"Evolutionary Models of Convergent Margins",fullTitle:"Evolutionary Models of Convergent Margins - Origin of Their Diversity"},signatures:"Tetsuya Tokiwa, Makoto Takeuchi, Yusuke Shimura, Kazuho Shobu,\nAkari Ota, Koshi Yamamoto and Hiroshi Mori",authors:[{id:"150531",title:"Dr.",name:"Koshi",middleName:null,surname:"Yamamoto",slug:"koshi-yamamoto",fullName:"Koshi Yamamoto"},{id:"194144",title:"Dr.",name:"Tetsuya",middleName:null,surname:"Tokiwa",slug:"tetsuya-tokiwa",fullName:"Tetsuya Tokiwa"},{id:"204259",title:"Dr.",name:"Makoto",middleName:null,surname:"Takeuchi",slug:"makoto-takeuchi",fullName:"Makoto Takeuchi"},{id:"204260",title:"Mr.",name:"Yusuke",middleName:null,surname:"Shimura",slug:"yusuke-shimura",fullName:"Yusuke Shimura"},{id:"204261",title:"Mr.",name:"Kazuho",middleName:null,surname:"Shobu",slug:"kazuho-shobu",fullName:"Kazuho Shobu"},{id:"204262",title:"Ms.",name:"Akari",middleName:null,surname:"Ota",slug:"akari-ota",fullName:"Akari Ota"},{id:"204263",title:"Dr.",name:"Hiroshi",middleName:null,surname:"Mori",slug:"hiroshi-mori",fullName:"Hiroshi Mori"}]},{id:"55296",doi:"10.5772/68112",title:"Alteration Reaction and Mass Transfer via Fluids with Progress of Fracturing along the Median Tectonic Line, Mie Prefecture, Southwest Japan",slug:"alteration-reaction-and-mass-transfer-via-fluids-with-progress-of-fracturing-along-the-median-tecton",totalDownloads:1223,totalCrossrefCites:1,totalDimensionsCites:8,abstract:"We have analyzed mass transfer in the cataclasite samples collected from the Median Tectonic Line, southwest Japan, in which the degree of fracturing is well correlated with the bulk rock chemical compositions determined by the X-ray fluorescence (XRF) analysis. The results of “isocon” analysis indicate not only a large volume increase up to 110% but also the two-stage mass transfer during cataclasis. At the first stage from the very weakly to weakly fractured rocks, the weight percents of SiO2, Na2O, and K2O increase, while those of TiO2, FeO, MnO, MgO, and CaO decrease. At the second stage from the weakly to moderately and strongly fractured rocks, the trend of mass transfer is reversed. The principal component analysis reveals that the variation of chemical compositions in the cataclasite samples can be mostly interpreted by the mass transfer via fluids and by the difference in chemical composition in the protolith rocks to lesser degree. Finally, the changes in the modal composition of minerals with increasing cataclasis analyzed by the X-ray diffraction (XRD) with the aid of “RockJock” software clearly elucidate that the mass transfer of chemical elements was caused by dissolution and precipitation of minerals via fluids in the cataclasite samples.",book:{id:"5615",slug:"evolutionary-models-of-convergent-margins-origin-of-their-diversity",title:"Evolutionary Models of Convergent Margins",fullTitle:"Evolutionary Models of Convergent Margins - Origin of Their Diversity"},signatures:"Yumi Kaneko, Toru Takeshita, Yuto Watanabe, Norio Shigematsu\nand Ko‐Ichiro Fujimoto",authors:[{id:"194157",title:"M.Sc.",name:"Yumi",middleName:null,surname:"Kaneko",slug:"yumi-kaneko",fullName:"Yumi Kaneko"},{id:"204607",title:"Prof.",name:"Toru",middleName:null,surname:"Takeshita",slug:"toru-takeshita",fullName:"Toru Takeshita"},{id:"204608",title:"MSc.",name:"Yuto",middleName:null,surname:"Watanabe",slug:"yuto-watanabe",fullName:"Yuto Watanabe"},{id:"204609",title:"Dr.",name:"Norio",middleName:null,surname:"Shigematsu",slug:"norio-shigematsu",fullName:"Norio Shigematsu"},{id:"204610",title:"Dr.",name:"Ko-Ichiro",middleName:null,surname:"Fujimoto",slug:"ko-ichiro-fujimoto",fullName:"Ko-Ichiro Fujimoto"}]},{id:"54870",doi:"10.5772/67559",title:"Deposition and Deformation of Modern Accretionary-Type Forearc Basins: Linking Basin Formation and Accretionary Wedge Growth",slug:"deposition-and-deformation-of-modern-accretionary-type-forearc-basins-linking-basin-formation-and-ac",totalDownloads:1791,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"Since a comprehensive review of forearc basins was published by Dickinson more than 20 years ago, a significant amount of new data about them have been published. These recent studies revealed details of depositional and deformation styles in the forearc basins, suggesting the formation processes were not unique. In this chapter, we reviewed modern forearc basins to understand how is the basin stratigraphy related with growth of accretionary wedges. The results indicate forearc basin can be classified into two (single‐ and two‐wedge models) plus one (strike‐slip model): (1) the single‐wedge model which is characterized by landward tilting of the basin strata ascribed to asymmetrical doubly vergent (single‐vergent) uplift of the outer arc high with forethrusts (seaward‐vergent thrusts in the pro‐wedge); (2) the two‐wedge model which is marked by contractional deformation caused by symmetrical doubly vergent uplift of the wedge with forethrusts in the prowedge and back‐thrusts (landward‐vergent thrusts) in the retro‐wedge; and (3) the strike‐slip model which is an additional one being represented by transpressional and/or transtensional deformations due to oblique subduction. We speculate that these models spatially and temporally depend on material fluxes at the plate interfaces that affect geometry and mechanical strength of backstops.",book:{id:"5615",slug:"evolutionary-models-of-convergent-margins-origin-of-their-diversity",title:"Evolutionary Models of Convergent Margins",fullTitle:"Evolutionary Models of Convergent Margins - Origin of Their Diversity"},signatures:"Atsushi Noda and Ayumu Miyakawa",authors:[{id:"161716",title:"Dr.",name:"Atsushi",middleName:null,surname:"Noda",slug:"atsushi-noda",fullName:"Atsushi Noda"},{id:"204603",title:"Dr.",name:"Ayumu",middleName:null,surname:"Miyakawa",slug:"ayumu-miyakawa",fullName:"Ayumu Miyakawa"}]},{id:"54596",doi:"10.5772/67960",title:"Paleomagnetic Studies on Miocene Sequences of Hokutan and Tottori Groups in Southwest Japan: Implications for Middle Miocene Rotational Movement of Southwest Japan Block Associated with the Japan Sea Opening",slug:"paleomagnetic-studies-on-miocene-sequences-of-hokutan-and-tottori-groups-in-southwest-japan-implicat",totalDownloads:1551,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Miocene sequences composed of volcanic rocks and overlying marine sediments distributing at the Japan Sea side of Southwest Japan have been considered to form related to the rifting and subsequent spreading of the Japan Sea back-arc basin in Miocene time. We performed paleomagnetic investigations on the sequences in the eastern San’in district, the Hokutan and Tottori Groups. Paleomagnetic analyses on samples from 33 sites indicated that characteristic magnetic components from five sites of volcanic rocks in the Hokutan Group and from four sites of marine sediments in the Tottori Group were regarded as primary components. An obtained paleomagnetic direction of the volcanic rocks has an easterly deflected declination (D = 23.9° ± 20.2°), while that of the marine sediments shows no significant deflection in declination (D = 17.8° ± 19.1°). Through the comparison with paleomagnetic data from the Miocene sequences in Southwest Japan, it is suggested that magnetic polarities of the volcanic and sedimentary sequences are assigned to C5Cn and C5Br-C5Bn, respectively, and that the eastern San’in district suffered a clockwise rotation of 24° at around 16 Ma after the early Miocene volcanic activity and before the middle Miocene marine transgression in the whole clockwise rotation process of Southwest Japan related to the Japan Sea opening.",book:{id:"5615",slug:"evolutionary-models-of-convergent-margins-origin-of-their-diversity",title:"Evolutionary Models of Convergent Margins",fullTitle:"Evolutionary Models of Convergent Margins - Origin of Their Diversity"},signatures:"Naoto Ishikawa, Takashi Suzuki and Shiro Ishida",authors:[{id:"194180",title:"Dr.",name:"Naoto",middleName:null,surname:"Ishikawa",slug:"naoto-ishikawa",fullName:"Naoto Ishikawa"},{id:"204504",title:"Dr.",name:"Takashi",middleName:null,surname:"Suzuki",slug:"takashi-suzuki",fullName:"Takashi Suzuki"},{id:"204505",title:"Prof.",name:"Shiro",middleName:null,surname:"Ishida",slug:"shiro-ishida",fullName:"Shiro Ishida"}]},{id:"54454",doi:"10.5772/67669",title:"Structural Features Along the Median Tectonic Line in Southwest Japan: An Example of Multiphase Deformation on an Arc‐Bisecting Fault",slug:"structural-features-along-the-median-tectonic-line-in-southwest-japan-an-example-of-multiphase-defor",totalDownloads:1302,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"A geological survey for the Late Cretaceous Izumi Group distributed on the Median Tectonic Line (MTL) active fault system in the central part of southwestern Japan has revealed varied deformation styles. Among the confined deformation zones found in the western and central parts of the study area, some are located far from the active trace of the MTL (Negoro Fault), at distances of up to 300–350 m. Such kink zones may have been generated during a contraction phase of the MTL from the end of the Pliocene to the early Pleistocene. We identified clear active foldings in a narrow zone sandwiched between a north dextral and a south reverse active fault. Western and eastern upheavals of the crustal sliver show ridge and domal active morphologies, respectively. Structural analysis was extended to the north of the MTL, where the Izumi Group has suffered multiphase deformation since the Cretaceous. The phase stripping method was introduced to extract the neotectonic trend, which successfully delineated complicated deformation zones related to the morphological divergence of the MTL active fault system.",book:{id:"5615",slug:"evolutionary-models-of-convergent-margins-origin-of-their-diversity",title:"Evolutionary Models of Convergent Margins",fullTitle:"Evolutionary Models of Convergent Margins - Origin of Their Diversity"},signatures:"Yasuto Itoh and Tomotaka Iwata",authors:[{id:"46893",title:"Dr.",name:"Yasuto",middleName:null,surname:"Itoh",slug:"yasuto-itoh",fullName:"Yasuto Itoh"},{id:"203882",title:"Prof.",name:"Tomotaka",middleName:null,surname:"Iwata",slug:"tomotaka-iwata",fullName:"Tomotaka Iwata"}]}],mostDownloadedChaptersLast30Days:[{id:"54840",title:"Effectiveness for Determination of Depositional Age by Detrital Zircon U–Pb Age in the Cretaceous Shimanto Accretionary Complex of Japan",slug:"effectiveness-for-determination-of-depositional-age-by-detrital-zircon-u-pb-age-in-the-cretaceous-sh",totalDownloads:1493,totalCrossrefCites:8,totalDimensionsCites:13,abstract:"Detrital zircon U–Pb ages indicate the crystallization age. Therefore, it is necessary to evaluate the effectiveness of determining the age of deposition using zircon age data. We carried out U–Pb dating of detrital zircons from sandstone at eight sites in the Cretaceous Shimanto accretionary complex on Kii Peninsula, Japan, with the aim of evaluating the accuracy of U–Pb zircon ages as indicators of the depositional age of sedimentary rocks by comparing zircon ages with radiolarian ages. Our results reveal zircons of late Cretaceous age, and the youngest peak ages are in good agreement with depositional ages inferred from radiolarian fossils. In addition, the youngest peak ages become younger as tectono-structurally downwards, and this tendency is clearer for the zircon ages than for the radiolarian ages. These results indicate that newly crystalized zircons were continuously supplied to the sediment by constant igneous activity during the late Cretaceous and that zircon ages provide remarkably useful information for determining the age of deposition in the Cretaceous Shimanto accretionary complex.",book:{id:"5615",slug:"evolutionary-models-of-convergent-margins-origin-of-their-diversity",title:"Evolutionary Models of Convergent Margins",fullTitle:"Evolutionary Models of Convergent Margins - Origin of Their Diversity"},signatures:"Tetsuya Tokiwa, Makoto Takeuchi, Yusuke Shimura, Kazuho Shobu,\nAkari Ota, Koshi Yamamoto and Hiroshi Mori",authors:[{id:"150531",title:"Dr.",name:"Koshi",middleName:null,surname:"Yamamoto",slug:"koshi-yamamoto",fullName:"Koshi Yamamoto"},{id:"194144",title:"Dr.",name:"Tetsuya",middleName:null,surname:"Tokiwa",slug:"tetsuya-tokiwa",fullName:"Tetsuya Tokiwa"},{id:"204259",title:"Dr.",name:"Makoto",middleName:null,surname:"Takeuchi",slug:"makoto-takeuchi",fullName:"Makoto Takeuchi"},{id:"204260",title:"Mr.",name:"Yusuke",middleName:null,surname:"Shimura",slug:"yusuke-shimura",fullName:"Yusuke Shimura"},{id:"204261",title:"Mr.",name:"Kazuho",middleName:null,surname:"Shobu",slug:"kazuho-shobu",fullName:"Kazuho Shobu"},{id:"204262",title:"Ms.",name:"Akari",middleName:null,surname:"Ota",slug:"akari-ota",fullName:"Akari Ota"},{id:"204263",title:"Dr.",name:"Hiroshi",middleName:null,surname:"Mori",slug:"hiroshi-mori",fullName:"Hiroshi Mori"}]},{id:"54341",title:"Oki-Dozen Dike Swarm: Effect of the Regional Stress Field on Volcano-Tectonic Orientations",slug:"oki-dozen-dike-swarm-effect-of-the-regional-stress-field-on-volcano-tectonic-orientations",totalDownloads:1521,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"This article presents new field, geochronological, and geochemical data for the Late Miocene Oki-dozen dike swarm (ODS), southwest Japan. This swarm is part of a volcanic suite comprising mafic and silicic dikes, sills, and pyroclastic cones from which we obtained structural measurements at a various genetic orders and scales. The mafic magmas generated three dike swarms with dikes oriented to NW-SE, N-S, and NE-SW. In comparison, the silicic intrusions do not have a preferred orientation but instead appear to radiate from the center of the volcanic suite. Comparison of the maximum thickness of 37 dikes with SiO2 content (wt%) yielded a critical thickness (T\ncr\n) value of T\ncr\n = 0.2 × (SiO2 − 40). These data indicate that the orientations of dikes were controlled by the magnitude of dike tip pressure and magma overpressure, both of which positively correlate with SiO2 concentrations. The silicic units yield estimated pressures (up to 15–60 MPa) that are large enough to have counteracted the regional stress field, whereas the mafic dike swarm only yielded lower pressures. This result suggests that comparative analysis at a range of scales is essential for the accurate determination on the tectonic stress field by igneous rocks.",book:{id:"5615",slug:"evolutionary-models-of-convergent-margins-origin-of-their-diversity",title:"Evolutionary Models of Convergent Margins",fullTitle:"Evolutionary Models of Convergent Margins - Origin of Their Diversity"},signatures:"Daisuke Miura, Kiyoshi Toshida, Ken-ichi Arai, Takeshi Wachi and\nYutaka Wada",authors:[{id:"194873",title:"Dr.",name:"Daisuke",middleName:null,surname:"Miura",slug:"daisuke-miura",fullName:"Daisuke Miura"},{id:"203853",title:"Mr.",name:"Kiyoshi",middleName:null,surname:"Toshida",slug:"kiyoshi-toshida",fullName:"Kiyoshi Toshida"},{id:"203854",title:"Mr.",name:"Ken'Ichi",middleName:null,surname:"Arai",slug:"ken'ichi-arai",fullName:"Ken'Ichi Arai"},{id:"203856",title:"Prof.",name:"Yutaka",middleName:null,surname:"Wada",slug:"yutaka-wada",fullName:"Yutaka Wada"},{id:"204024",title:"Mr.",name:"Takeshi",middleName:null,surname:"Wachi",slug:"takeshi-wachi",fullName:"Takeshi Wachi"}]},{id:"54596",title:"Paleomagnetic Studies on Miocene Sequences of Hokutan and Tottori Groups in Southwest Japan: Implications for Middle Miocene Rotational Movement of Southwest Japan Block Associated with the Japan Sea Opening",slug:"paleomagnetic-studies-on-miocene-sequences-of-hokutan-and-tottori-groups-in-southwest-japan-implicat",totalDownloads:1547,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Miocene sequences composed of volcanic rocks and overlying marine sediments distributing at the Japan Sea side of Southwest Japan have been considered to form related to the rifting and subsequent spreading of the Japan Sea back-arc basin in Miocene time. We performed paleomagnetic investigations on the sequences in the eastern San’in district, the Hokutan and Tottori Groups. Paleomagnetic analyses on samples from 33 sites indicated that characteristic magnetic components from five sites of volcanic rocks in the Hokutan Group and from four sites of marine sediments in the Tottori Group were regarded as primary components. An obtained paleomagnetic direction of the volcanic rocks has an easterly deflected declination (D = 23.9° ± 20.2°), while that of the marine sediments shows no significant deflection in declination (D = 17.8° ± 19.1°). Through the comparison with paleomagnetic data from the Miocene sequences in Southwest Japan, it is suggested that magnetic polarities of the volcanic and sedimentary sequences are assigned to C5Cn and C5Br-C5Bn, respectively, and that the eastern San’in district suffered a clockwise rotation of 24° at around 16 Ma after the early Miocene volcanic activity and before the middle Miocene marine transgression in the whole clockwise rotation process of Southwest Japan related to the Japan Sea opening.",book:{id:"5615",slug:"evolutionary-models-of-convergent-margins-origin-of-their-diversity",title:"Evolutionary Models of Convergent Margins",fullTitle:"Evolutionary Models of Convergent Margins - Origin of Their Diversity"},signatures:"Naoto Ishikawa, Takashi Suzuki and Shiro Ishida",authors:[{id:"194180",title:"Dr.",name:"Naoto",middleName:null,surname:"Ishikawa",slug:"naoto-ishikawa",fullName:"Naoto Ishikawa"},{id:"204504",title:"Dr.",name:"Takashi",middleName:null,surname:"Suzuki",slug:"takashi-suzuki",fullName:"Takashi Suzuki"},{id:"204505",title:"Prof.",name:"Shiro",middleName:null,surname:"Ishida",slug:"shiro-ishida",fullName:"Shiro Ishida"}]},{id:"55296",title:"Alteration Reaction and Mass Transfer via Fluids with Progress of Fracturing along the Median Tectonic Line, Mie Prefecture, Southwest Japan",slug:"alteration-reaction-and-mass-transfer-via-fluids-with-progress-of-fracturing-along-the-median-tecton",totalDownloads:1223,totalCrossrefCites:1,totalDimensionsCites:8,abstract:"We have analyzed mass transfer in the cataclasite samples collected from the Median Tectonic Line, southwest Japan, in which the degree of fracturing is well correlated with the bulk rock chemical compositions determined by the X-ray fluorescence (XRF) analysis. The results of “isocon” analysis indicate not only a large volume increase up to 110% but also the two-stage mass transfer during cataclasis. At the first stage from the very weakly to weakly fractured rocks, the weight percents of SiO2, Na2O, and K2O increase, while those of TiO2, FeO, MnO, MgO, and CaO decrease. At the second stage from the weakly to moderately and strongly fractured rocks, the trend of mass transfer is reversed. The principal component analysis reveals that the variation of chemical compositions in the cataclasite samples can be mostly interpreted by the mass transfer via fluids and by the difference in chemical composition in the protolith rocks to lesser degree. Finally, the changes in the modal composition of minerals with increasing cataclasis analyzed by the X-ray diffraction (XRD) with the aid of “RockJock” software clearly elucidate that the mass transfer of chemical elements was caused by dissolution and precipitation of minerals via fluids in the cataclasite samples.",book:{id:"5615",slug:"evolutionary-models-of-convergent-margins-origin-of-their-diversity",title:"Evolutionary Models of Convergent Margins",fullTitle:"Evolutionary Models of Convergent Margins - Origin of Their Diversity"},signatures:"Yumi Kaneko, Toru Takeshita, Yuto Watanabe, Norio Shigematsu\nand Ko‐Ichiro Fujimoto",authors:[{id:"194157",title:"M.Sc.",name:"Yumi",middleName:null,surname:"Kaneko",slug:"yumi-kaneko",fullName:"Yumi Kaneko"},{id:"204607",title:"Prof.",name:"Toru",middleName:null,surname:"Takeshita",slug:"toru-takeshita",fullName:"Toru Takeshita"},{id:"204608",title:"MSc.",name:"Yuto",middleName:null,surname:"Watanabe",slug:"yuto-watanabe",fullName:"Yuto Watanabe"},{id:"204609",title:"Dr.",name:"Norio",middleName:null,surname:"Shigematsu",slug:"norio-shigematsu",fullName:"Norio Shigematsu"},{id:"204610",title:"Dr.",name:"Ko-Ichiro",middleName:null,surname:"Fujimoto",slug:"ko-ichiro-fujimoto",fullName:"Ko-Ichiro Fujimoto"}]},{id:"54454",title:"Structural Features Along the Median Tectonic Line in Southwest Japan: An Example of Multiphase Deformation on an Arc‐Bisecting Fault",slug:"structural-features-along-the-median-tectonic-line-in-southwest-japan-an-example-of-multiphase-defor",totalDownloads:1301,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"A geological survey for the Late Cretaceous Izumi Group distributed on the Median Tectonic Line (MTL) active fault system in the central part of southwestern Japan has revealed varied deformation styles. Among the confined deformation zones found in the western and central parts of the study area, some are located far from the active trace of the MTL (Negoro Fault), at distances of up to 300–350 m. Such kink zones may have been generated during a contraction phase of the MTL from the end of the Pliocene to the early Pleistocene. We identified clear active foldings in a narrow zone sandwiched between a north dextral and a south reverse active fault. Western and eastern upheavals of the crustal sliver show ridge and domal active morphologies, respectively. Structural analysis was extended to the north of the MTL, where the Izumi Group has suffered multiphase deformation since the Cretaceous. The phase stripping method was introduced to extract the neotectonic trend, which successfully delineated complicated deformation zones related to the morphological divergence of the MTL active fault system.",book:{id:"5615",slug:"evolutionary-models-of-convergent-margins-origin-of-their-diversity",title:"Evolutionary Models of Convergent Margins",fullTitle:"Evolutionary Models of Convergent Margins - Origin of Their Diversity"},signatures:"Yasuto Itoh and Tomotaka Iwata",authors:[{id:"46893",title:"Dr.",name:"Yasuto",middleName:null,surname:"Itoh",slug:"yasuto-itoh",fullName:"Yasuto Itoh"},{id:"203882",title:"Prof.",name:"Tomotaka",middleName:null,surname:"Iwata",slug:"tomotaka-iwata",fullName:"Tomotaka Iwata"}]}],onlineFirstChaptersFilter:{topicId:"657",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"August 7th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",isOpenForSubmission:!0,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",isOpenForSubmission:!0,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",isOpenForSubmission:!0,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:20,paginationItems:[{id:"82991",title:"Diseases of the Canine Prostate Gland",doi:"10.5772/intechopen.105835",signatures:"Sabine Schäfer-Somi",slug:"diseases-of-the-canine-prostate-gland",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82956",title:"Potential Substitutes of Antibiotics for Swine and Poultry Production",doi:"10.5772/intechopen.106081",signatures:"Ho Trung Thong, Le Nu Anh Thu and Ho Viet Duc",slug:"potential-substitutes-of-antibiotics-for-swine-and-poultry-production",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"82905",title:"A Review of Application Strategies and Efficacy of Probiotics in Pet Food",doi:"10.5772/intechopen.105829",signatures:"Heather Acuff and Charles G. Aldrich",slug:"a-review-of-application-strategies-and-efficacy-of-probiotics-in-pet-food",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"82773",title:"Canine Transmissible Venereal Tumor: An Infectious Neoplasia in Dogs",doi:"10.5772/intechopen.106150",signatures:"Chanokchon Setthawongsin, Somporn Techangamsuwan and Anudep Rungsipipat",slug:"canine-transmissible-venereal-tumor-an-infectious-neoplasia-in-dogs",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón Poggi",slug:"juan-carlos-gardon-poggi",fullName:"Juan Carlos Gardón Poggi",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:null,institution:{name:"Valencia Catholic University Saint Vincent Martyr",institutionURL:null,country:{name:"Spain"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:21,paginationItems:[{id:"83000",title:"Purine and Pyrimidine Pathways as Antimalarial Targets",doi:"10.5772/intechopen.106468",signatures:"Yacoba V.T. Minnow and Vern L. Schramm",slug:"purine-and-pyrimidine-pathways-as-antimalarial-targets",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:null,authors:null,book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"83065",title:"Interventions and Practical Approaches to Reduce the Burden of Malaria on School-Aged Children",doi:"10.5772/intechopen.106469",signatures:"Andrew Macnab",slug:"interventions-and-practical-approaches-to-reduce-the-burden-of-malaria-on-school-aged-children",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Andrew",surname:"Macnab"}],book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82559",title:"Perspective Chapter: Bioinformatics Study of the Evolution of SARS-CoV-2 Spike Protein",doi:"10.5772/intechopen.105915",signatures:"Črtomir Podlipnik, Radostina Alexandrova, Sebastian Pleško, Urban Bren and Marko Jukič",slug:"perspective-chapter-bioinformatics-study-of-the-evolution-of-sars-cov-2-spike-protein",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82521",title:"Challenges in Platelet Functions in HIV/AIDS Management",doi:"10.5772/intechopen.105731",signatures:"Gordon Ogweno",slug:"challenges-in-platelet-functions-in-hiv-aids-management",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82701",title:"Pathology of Streptococcal Infections",doi:"10.5772/intechopen.105814",signatures:"Yutaka Tsutsumi",slug:"pathology-of-streptococcal-infections",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yutaka",surname:"Tsutsumi"}],book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82634",title:"Bacterial Sexually Transmitted Disease",doi:"10.5772/intechopen.105747",signatures:"Lebeza Alemu Tenaw",slug:"bacterial-sexually-transmitted-disease",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Fungal Infectious Diseases",value:4,count:1,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:5,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:5,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:10,group:"subseries"}],publishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"10840",title:"Benzimidazole",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",slug:"benzimidazole",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Pravin Kendrekar and Vinayak Adimule",hash:"e28c770013e7a8dd0fc37aea6aa9def8",volumeInSeries:34,fullTitle:"Benzimidazole",editors:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:14}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:9},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:{name:"Association for Computing Machinery",country:{name:"United States of America"}}},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"310576",title:"Prof.",name:"Erick Giovani",middleName:null,surname:"Sperandio Nascimento",slug:"erick-giovani-sperandio-nascimento",fullName:"Erick Giovani Sperandio Nascimento",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y00002pDKxDQAW/ProfilePicture%202022-06-20%2019%3A57%3A24.788",biography:"Prof. Erick Sperandio is the Lead Researcher and professor of Artificial Intelligence (AI) at SENAI CIMATEC, Bahia, Brazil, also working with Computational Modeling (CM) and HPC. He holds a PhD in Environmental Engineering in the area of Atmospheric Computational Modeling, a Master in Informatics in the field of Computational Intelligence and Graduated in Computer Science from UFES. He currently coordinates, leads and participates in R&D projects in the areas of AI, computational modeling and supercomputing applied to different areas such as Oil and Gas, Health, Advanced Manufacturing, Renewable Energies and Atmospheric Sciences, advising undergraduate, master's and doctoral students. He is the Lead Researcher at SENAI CIMATEC's Reference Center on Artificial Intelligence. In addition, he is a Certified Instructor and University Ambassador of the NVIDIA Deep Learning Institute (DLI) in the areas of Deep Learning, Computer Vision, Natural Language Processing and Recommender Systems, and Principal Investigator of the NVIDIA/CIMATEC AI Joint Lab, the first in Latin America within the NVIDIA AI Technology Center (NVAITC) worldwide program. He also works as a researcher at the Supercomputing Center for Industrial Innovation (CS2i) and at the SENAI Institute of Innovation for Automation (ISI Automação), both from SENAI CIMATEC. He is a member and vice-coordinator of the Basic Board of Scientific-Technological Advice and Evaluation, in the area of Innovation, of the Foundation for Research Support of the State of Bahia (FAPESB). He serves as Technology Transfer Coordinator and one of the Principal Investigators at the National Applied Research Center in Artificial Intelligence (CPA-IA) of SENAI CIMATEC, focusing on Industry, being one of the six CPA-IA in Brazil approved by MCTI / FAPESP / CGI.br. He also participates as one of the representatives of Brazil in the BRICS Innovation Collaboration Working Group on HPC, ICT and AI. He is the coordinator of the Work Group of the Axis 5 - Workforce and Training - of the Brazilian Strategy for Artificial Intelligence (EBIA), and member of the MCTI/EMBRAPII AI Innovation Network Training Committee. He is the coordinator, by SENAI CIMATEC, of the Artificial Intelligence Reference Network of the State of Bahia (REDE BAH.IA). He leads the working group of experts representing Brazil in the Global Partnership on Artificial Intelligence (GPAI), on the theme \"AI and the Pandemic Response\".",institutionString:"Manufacturing and Technology Integrated Campus – SENAI CIMATEC",institution:null},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:'"Politechnica" University Timişoara',institution:null},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"426586",title:"Dr.",name:"Oladunni A.",middleName:null,surname:"Daramola",slug:"oladunni-a.-daramola",fullName:"Oladunni A. Daramola",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Federal University of Technology",country:{name:"Nigeria"}}},{id:"357014",title:"Prof.",name:"Leon",middleName:null,surname:"Bobrowski",slug:"leon-bobrowski",fullName:"Leon Bobrowski",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Bialystok University of Technology",country:{name:"Poland"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"354126",title:"Dr.",name:"Setiawan",middleName:null,surname:"Hadi",slug:"setiawan-hadi",fullName:"Setiawan Hadi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Padjadjaran University",country:{name:"Indonesia"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"332603",title:"Prof.",name:"Kumar S.",middleName:null,surname:"Ray",slug:"kumar-s.-ray",fullName:"Kumar S. Ray",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Statistical Institute",country:{name:"India"}}},{id:"415409",title:"Prof.",name:"Maghsoud",middleName:null,surname:"Amiri",slug:"maghsoud-amiri",fullName:"Maghsoud Amiri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Allameh Tabataba'i University",country:{name:"Iran"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}}]}},subseries:{item:{id:"14",type:"subseries",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},onlineFirstChapters:{paginationCount:26,paginationItems:[{id:"83087",title:"Role of Cellular Responses in Periodontal Tissue Destruction",doi:"10.5772/intechopen.106645",signatures:"Nam Cong-Nhat Huynh",slug:"role-of-cellular-responses-in-periodontal-tissue-destruction",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Periodontology - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81894",title:"Diet and Nutrition and Their Relationship with Early Childhood Dental Caries",doi:"10.5772/intechopen.105123",signatures:"Luanna Gonçalves Ferreira, Giuliana de Campos Chaves Lamarque and Francisco Wanderley Garcia Paula-Silva",slug:"diet-and-nutrition-and-their-relationship-with-early-childhood-dental-caries",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80964",title:"Upper Airway Expansion in Disabled Children",doi:"10.5772/intechopen.102830",signatures:"David Andrade, Joana Andrade, Maria-João Palha, Cristina Areias, Paula Macedo, Ana Norton, Miguel Palha, Lurdes Morais, Dóris Rocha Ruiz and Sônia Groisman",slug:"upper-airway-expansion-in-disabled-children",totalDownloads:44,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80839",title:"Herbs and Oral Health",doi:"10.5772/intechopen.103715",signatures:"Zuhair S. Natto",slug:"herbs-and-oral-health",totalDownloads:70,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80441",title:"Periodontitis and Heart Disease: Current Perspectives on the Associative Relationships and Preventive Impact",doi:"10.5772/intechopen.102669",signatures:"Alexandra Roman, Andrada Soancă, Bogdan Caloian, Alexandru Bucur, Gabriela Valentina Caracostea, Andreia Paraschiva Preda, Dora Maria Popescu, Iulia Cristina Micu, Petra Șurlin, Andreea Ciurea, Diana Oneț, Mircea Viorel Ciurea, Dragoș Alexandru Țermure and Marius Negucioiu",slug:"periodontitis-and-heart-disease-current-perspectives-on-the-associative-relationships-and-preventive",totalDownloads:66,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79498",title:"Oral Aspects and Dental Management of Special Needs Patient",doi:"10.5772/intechopen.101067",signatures:"Pinar Kiymet Karataban",slug:"oral-aspects-and-dental-management-of-special-needs-patient",totalDownloads:116,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Pinar",surname:"Karataban"}],book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79699",title:"Metabolomics Distinction of Cigarette Smokers from Non-Smokers Using Non-Stationary Benchtop Nuclear Magnetic Resonance (NMR) Analysis of Human Saliva",doi:"10.5772/intechopen.101414",signatures:"Benita C. Percival, Angela Wann, Sophie Taylor, Mark Edgar, Miles Gibson and Martin Grootveld",slug:"metabolomics-distinction-of-cigarette-smokers-from-non-smokers-using-non-stationary-benchtop-nuclear",totalDownloads:56,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80295",title:"Preventive Methods and Treatments of White Spot Lesions in Orthodontics",doi:"10.5772/intechopen.102064",signatures:"Elif Nadide Akay",slug:"preventive-methods-and-treatments-of-white-spot-lesions-in-orthodontics",totalDownloads:89,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79876",title:"Management and Prevention Strategies for Treating Dentine Hypersensitivity",doi:"10.5772/intechopen.101495",signatures:"David G. Gillam",slug:"management-and-prevention-strategies-for-treating-dentine-hypersensitivity",totalDownloads:94,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80020",title:"Alternative Denture Base Materials for Allergic Patients",doi:"10.5772/intechopen.101956",signatures:"Lavinia Cosmina Ardelean, Laura-Cristina Rusu and Codruta Victoria Tigmeanu",slug:"alternative-denture-base-materials-for-allergic-patients",totalDownloads:198,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79297",title:"Oral Health and Prevention in Older Adults",doi:"10.5772/intechopen.101043",signatures:"Irma Fabiola Díaz-García, Dinorah Munira Hernández-Santos, Julio Alberto Díaz-Ramos and Neyda Ma. Mendoza-Ruvalcaba",slug:"oral-health-and-prevention-in-older-adults",totalDownloads:113,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79903",title:"Molecular Docking of Phytochemicals against Streptococcus mutans Virulence Targets: A Proteomic Insight into Drug Planning",doi:"10.5772/intechopen.101506",signatures:"Diego Romário da Silva, Tahyná Duda Deps, Otavio Akira Souza Sakaguchi, Edja Maria Melo de Brito Costa, Carlus Alberto Oliveira dos Santos, Joanilda Paolla Raimundo e Silva, Bruna Dantas da Silva, Frederico Favaro Ribeiro, Francisco Jaime Bezerra Mendonça-Júnior and Andréa Cristina Barbosa da Silva",slug:"molecular-docking-of-phytochemicals-against-em-streptococcus-mutans-em-virulence-targets-a-proteomic",totalDownloads:114,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79754",title:"Evaluation of Trans-Resveratrol as a Treatment for Periodontitis",doi:"10.5772/intechopen.101477",signatures:"Tracey Lynn Harney",slug:"evaluation-of-trans-resveratrol-as-a-treatment-for-periodontitis",totalDownloads:112,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:124,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"3",title:"Bacterial Infectious Diseases",scope:"