Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\n
We wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\n
Throughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\n
We wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"10143",leadTitle:null,fullTitle:"Molecular Pharmacology",title:"Molecular Pharmacology",subtitle:null,reviewType:"peer-reviewed",abstract:"This book concentrates on recent developments related to the application of original structural biology, biochemistry, biophysics, physiology, genetics, and molecular biology as well as basic pharmacological problems that offer mechanistic insights that are generally significant for the field of pharmacology. Written by experts, chapters cover such topics as drug transport mechanisms and drug–receptor complexes. This volume offers up-to-date, expert reviews of the fast-moving field of molecular pharmacology.",isbn:"978-1-83962-932-7",printIsbn:"978-1-83962-931-0",pdfIsbn:"978-1-83962-933-4",doi:"10.5772/intechopen.89926",price:119,priceEur:129,priceUsd:155,slug:"molecular-pharmacology",numberOfPages:166,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"2b2fce4ff393dff0d0f0581c7818087c",bookSignature:"Angel Catala and Usama Ahmad",publishedDate:"December 16th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/10143.jpg",numberOfDownloads:5498,numberOfWosCitations:4,numberOfCrossrefCitations:4,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:10,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:18,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 29th 2019",dateEndSecondStepPublish:"March 12th 2020",dateEndThirdStepPublish:"May 11th 2020",dateEndFourthStepPublish:"July 30th 2020",dateEndFifthStepPublish:"September 28th 2020",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/255360/images/system/255360.png",biography:"Dr. Usama Ahmad holds a specialization in Pharmaceutics from Amity University, Lucknow, India. He received his Ph.D. from Integral University, Lucknow, India, with his work titled ‘Development and evaluation of silymarin nanoformulation for hepatic carcinoma’. Currently, he is an Assistant Professor of Pharmaceutics, at the Faculty of Pharmacy, Integral University. He has been teaching PharmD, BPharm, and MPharm students and conducting research in the novel drug delivery domain. From 2013 to 2014 he worked on a research project funded by SERB-DST, Government of India. He has a rich publication record with more than twenty-four original journal articles, two edited books, four book chapters, and several scientific articles to his credit. He is a member of the American Association for Cancer Research, the International Association for the Study of Lung Cancer, and the British Society for Nanomedicine. Dr. Ahmad’s research focus is on the development of nanoformulations to facilitate the delivery of drugs.",institutionString:"Integral University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Integral University",institutionURL:null,country:{name:"India"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1201",title:"Pharmacokinetics",slug:"pharmacology-toxicology-and-pharmaceutical-science-pharmacology-pharmacokinetics"}],chapters:[{id:"72868",title:"Liposome-A Comprehensive Approach for Researchers",doi:"10.5772/intechopen.93256",slug:"liposome-a-comprehensive-approach-for-researchers",totalDownloads:776,totalCrossrefCites:0,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Bangham was first to develop these spherical-shaped nano-vesicles called liposomes in the early 1960s. Today, liposomes have emerged as crucial tools for bettering the delivery of drugs that majorly includes-antifungal drug, peptide hormones, enzymes, vaccines antimicrobial agents, drugs against cancer, and genetic materials. Following the different manufacturing practices and versatile properties liposomes can be categorized in various parameters of size, charge, poly-dispersity index, encapsulation efficiency, solubility properties, and lamellarity. Alteration in such parameters elevates the loading and bioavailability of a drug by giving more clear target specification, desired or controlled release. This bibliographic chapter provides a comprehensive overview of methods for the preparation of liposomes with other perspectives that majorly includes—physio-chemical characteristics, dosage regimen, advantages over other delivery systems, approved liposomal based drugs and other ongoing drugs in clinical trials. It will help researchers to breakthrough more structurally successful delivery vehicles depending upon their various physic-chemical properties.",signatures:"Mani Sharma, Jyoti Joshi, Neeraj Kumar Chouhan, Mamta N. Talati, Sandeep Vaidya and Abhiram Kumar",downloadPdfUrl:"/chapter/pdf-download/72868",previewPdfUrl:"/chapter/pdf-preview/72868",authors:[{id:"315626",title:"Dr.",name:"Mani",surname:"Sharma",slug:"mani-sharma",fullName:"Mani Sharma"},{id:"317188",title:"Mr.",name:"Neeraj",surname:"Chouhan",slug:"neeraj-chouhan",fullName:"Neeraj Chouhan"},{id:"317189",title:"Mr.",name:"Sandeep",surname:"Vaidya",slug:"sandeep-vaidya",fullName:"Sandeep Vaidya"},{id:"324078",title:"Mrs.",name:"Jyoti",surname:"Joshi",slug:"jyoti-joshi",fullName:"Jyoti Joshi"},{id:"324079",title:"Ms.",name:"Mamta",surname:"Talati",slug:"mamta-talati",fullName:"Mamta Talati"},{id:"324080",title:"Mr.",name:"Abhiram",surname:"Kumar",slug:"abhiram-kumar",fullName:"Abhiram Kumar"}],corrections:null},{id:"74007",title:"Preparation and in vitro Characterisation of Solid Dispersion Floating Tablet by Effervescent Control Release Technique with Improved Floating Capabilities",doi:"10.5772/intechopen.92187",slug:"preparation-and-em-in-vitro-em-characterisation-of-solid-dispersion-floating-tablet-by-effervescent-",totalDownloads:389,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In this research, an effort has been done for the development of effervescent controlled release floating tablet (ECRFT) from solid dispersions (SDs) of diclofenac sodium (DS) for upsurge the solubility and dissolution rate. ECRFT of DS was prepared by using SDs of DS and its SDs prepared with PEG as carrier using thermal method (simple fusion). SDs of DS was formulated in many ratios (1:1, 1:2, 1:3 and 1:4). Prepared SDs were optimised for its solubility, % drug content and % dissolution studies. Tablets were formulated by using optimised SDs products and all formulation was evaluated for various parameters. A clear rise in dissolution rate was detected with entirely SD, amid that the optimised SD (SD4) was considered for ECRFT. Among all the tablet formulations, its F3 formulation was better in all the terms of pre-compression and post-compression parameters. It had all the qualities of a good ECRFT, based on this F3 formulation was selected as the best formulation. Data of in vitro release were fitted in several kinetics models to explain release mechanism. The F3 formulation shows zero order release. From this study, we can conclude that ECRFT containing SDs of DS can be successfully used for achieving better therapeutic objective.",signatures:"Peeush Singhal, Rajneesh Dutt Kaushik and Vijay Jyoti Kumar",downloadPdfUrl:"/chapter/pdf-download/74007",previewPdfUrl:"/chapter/pdf-preview/74007",authors:[{id:"311606",title:"Dr.",name:"Peeush",surname:"Singhal",slug:"peeush-singhal",fullName:"Peeush Singhal"},{id:"315097",title:"Dr.",name:"Rajneesh Dutt",surname:"Kaushik",slug:"rajneesh-dutt-kaushik",fullName:"Rajneesh Dutt Kaushik"},{id:"315098",title:"Dr.",name:"Vijay Jyoti",surname:"Kumar",slug:"vijay-jyoti-kumar",fullName:"Vijay Jyoti Kumar"}],corrections:null},{id:"70777",title:"3D-Printed Modified-Release Tablets: A Review of the Recent Advances",doi:"10.5772/intechopen.90868",slug:"3d-printed-modified-release-tablets-a-review-of-the-recent-advances",totalDownloads:1057,totalCrossrefCites:3,totalDimensionsCites:5,hasAltmetrics:0,abstract:"The broad spectrum of applications of three-dimensional printing (3D printing, 3DP) has attracted the attention of researchers working in diverse fields. In pharmaceutics, the main idea behind 3D printing products is to design and develop delivery systems that are suited to an individual’s needs. In this way, the size, appearance, shape, and rate of delivery of a wide array of medicines could be easily adjusted. The aim of this chapter is to provide a compilation of the 3D printing techniques, used for the fabrication of oral drug delivery systems, and review the relevant scientific developments in particular those with modified-release characteristics.",signatures:"Angeliki Siamidi, Eleni Tsintavi, Dimitrios M. Rekkas and Marilena Vlachou",downloadPdfUrl:"/chapter/pdf-download/70777",previewPdfUrl:"/chapter/pdf-preview/70777",authors:[{id:"92059",title:"Dr.",name:"Dimitrios",surname:"Rekkas",slug:"dimitrios-rekkas",fullName:"Dimitrios Rekkas"},{id:"246279",title:"Associate Prof.",name:"Marilena",surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou"},{id:"246280",title:"Dr.",name:"Angeliki",surname:"Siamidi",slug:"angeliki-siamidi",fullName:"Angeliki Siamidi"},{id:"314500",title:"Ms.",name:"Eleni",surname:"Tsintavi",slug:"eleni-tsintavi",fullName:"Eleni Tsintavi"}],corrections:null},{id:"72692",title:"Integrated Molecular Profiling as an Approach to Identify PI3K Inhibitor Resistance Mechanisms",doi:"10.5772/intechopen.92875",slug:"integrated-molecular-profiling-as-an-approach-to-identify-pi3k-inhibitor-resistance-mechanisms",totalDownloads:662,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The identification of drug resistance pathways and approaches to target these pathways remains a significant and important challenge in cancer biology. Here, we address this challenge in the context of ongoing efforts to advance phosphatidylinositol 3-kinase (PI3K) inhibitors for the treatment of PI3K-aberrant cancers. While PI3K inhibitors have had tremendous success in some diseases, such as breast cancer, early clinical trials in other malignancies, such as head and neck squamous cell carcinoma (HNSCC), have not had the same level of success. Since HNSCC and other cancers display relatively high PI3K pathway alteration rates (>45%), these underwhelming results suggest that additional or unexpected factors may contribute to the lower response rates. Here, we highlight some of the emerging functional genomic and sequencing approaches being used to identify predictive biomarkers of PI3K inhibitor response using both cancer cell lines and clinical trial specimens. Importantly, these approaches have uncovered both innate genetic and adaptive mechanisms driving PI3K inhibitor resistance. In this chapter, we describe recent technological advances that have revolutionized our understanding of PI3K inhibitor resistance pathways in HNSCC and highlight how these and other approaches lay the groundwork to make significant strides in our understanding of molecular pharmacology in the cancer field.",signatures:"Nicole L. Michmerhuizen, Jiayu Wang and J. Chad Brenner",downloadPdfUrl:"/chapter/pdf-download/72692",previewPdfUrl:"/chapter/pdf-preview/72692",authors:[{id:"319407",title:"Associate Prof.",name:"Chad",surname:"Brenner",slug:"chad-brenner",fullName:"Chad Brenner"},{id:"319408",title:"Dr.",name:"Nicole",surname:"Michmerhuizen",slug:"nicole-michmerhuizen",fullName:"Nicole Michmerhuizen"},{id:"321153",title:"M.Sc.",name:"Jiayu",surname:"Wang",slug:"jiayu-wang",fullName:"Jiayu Wang"}],corrections:null},{id:"71546",title:"Allosteric Modulators for GPCRs as a Therapeutic Alternative with High Potential in Drug Discovery",doi:"10.5772/intechopen.91838",slug:"allosteric-modulators-for-gpcrs-as-a-therapeutic-alternative-with-high-potential-in-drug-discovery",totalDownloads:776,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:1,abstract:"The superfamily of G protein-coupled receptors (GPCRs) consists of biological microprocessors that can activate multiple signaling pathways. Most GPCRs have an orthosteric pocket where the endogenous ligand(s) typically binds. Conversely, allosteric ligands bind to GPCRs at sites that are distinct from the orthosteric binding region and they modulate the response elicited by the endogenous ligand. Allosteric ligands can also switch the response of a GPCR after ligand binding to a unique signaling pathway, these ligands are termed biased allosteric modulators. Thus, the development of allosteric ligands opens new and multiple ways in which the signaling pathways of GPCRs can be manipulated for potential therapeutic benefit. Furthermore, the mechanisms by which allosteric ligands modulate the effects of endogenous ligands have provided new insights into the interactions between allosteric ligands and GPCRs. These new findings have a high potential to improve drug discovery and development and, therefore, creating the need for better screening methods for allosteric drugs to increase the chances of success in the development of allosteric modulators as lead clinical compounds.",signatures:"Arfaxad Reyes-Alcaraz, Emilio Y. Lucero Garcia-Rojas, Richard A. Bond and Bradley K. McConnell",downloadPdfUrl:"/chapter/pdf-download/71546",previewPdfUrl:"/chapter/pdf-preview/71546",authors:[{id:"317795",title:"Dr.",name:"Arfaxad",surname:"Reyes-Alcaraz",slug:"arfaxad-reyes-alcaraz",fullName:"Arfaxad Reyes-Alcaraz"}],corrections:null},{id:"71907",title:"Potassium Channels as a Potential Target Spot for Drugs",doi:"10.5772/intechopen.92176",slug:"potassium-channels-as-a-potential-target-spot-for-drugs",totalDownloads:759,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Aberrant function or expression of potassium channels can be underlying in pathologies such as cardiac arrhythmia, diabetes mellitus, hypertension, preterm birth, and various types of cancer. The expression of potassium channels is altered in many types of diseases. Also, we have previously shown that natural polyphenols, such as resveratrol, and selective synthetic modulators of potassium channels, like pinacidil, can alter their function and lead to the desired outcome. Therefore, targeting potassium channels with substance, which has an influence on their function, is promising access to cancer, diabetes mellitus, preterm birth, or hypertension therapy. In this chapter, we could discuss strategies for targeting different types of potassium channels as potential targets for synthetic and natural molecules therapy.",signatures:"Vladimir Djokic and Radmila Novakovic",downloadPdfUrl:"/chapter/pdf-download/71907",previewPdfUrl:"/chapter/pdf-preview/71907",authors:[{id:"313382",title:"Ph.D.",name:"Radmila",surname:"Novakovic",slug:"radmila-novakovic",fullName:"Radmila Novakovic"}],corrections:[{id:"72181",title:"Corrigendum to: Potassium Channels as a Potential Target Spot for Drugs",doi:null,slug:"corrigendum-to-potassium-channels-as-a-potential-target-spot-for-drugs",totalDownloads:null,totalCrossrefCites:null,correctionPdfUrl:null}]},{id:"71473",title:"Fibril Formation by Glucagon in Solution and in Membrane Environments",doi:"10.5772/intechopen.91681",slug:"fibril-formation-by-glucagon-in-solution-and-in-membrane-environments",totalDownloads:690,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Glucagon is a 29-amino acid peptide hormone secreted by pancreatic α-cells and interacts with specific receptors located in various organs. Glucagon tends to form gel-like fibril aggregates that are cytotoxic because they activate apoptotic signaling pathways. First, fibril formation by glucagon in acidic solution is discussed in light of morphological and structural changes during elapsed time. Second, we provide kinetic analyses using a two-step autocatalytic reaction mechanism; the first step is a homogeneous nuclear formation process, and the second step is an autocatalytic heterogeneous fibril elongation process. Third, the processes of fibril formation by glucagon in a membrane environment are discussed based on the structural changes in the fibrils. In the presence of bicelles in acidic solution, glucagon interacts with the bicelles and forms fibril intermediates on the bicelle surface and grows into elongated fibrils. Glucagon-dimyristoylphosphatidylcholine (DMPC) bilayers in neutral solution mimic the environment for fibril formation by glucagon under near-physiological condition. Under these conditions, glucagon forms fibril intermediates that grow into elongated fibrils inside the lipid bilayer. Many days after preparing the glucagon-DMPC bilayer sample, the fibrils form networks inside and outside the bilayer. Furthermore, fibril intermediates strongly interact with lipid bilayers to form small particles.",signatures:"Akira Naito",downloadPdfUrl:"/chapter/pdf-download/71473",previewPdfUrl:"/chapter/pdf-preview/71473",authors:[{id:"315504",title:"Emeritus Prof.",name:"Akira",surname:"Naito",slug:"akira-naito",fullName:"Akira Naito"}],corrections:null},{id:"73727",title:"Integrating Nanotherapeutic Platforms to Image Guided Approaches for Management of Cancer",doi:"10.5772/intechopen.94391",slug:"integrating-nanotherapeutic-platforms-to-image-guided-approaches-for-management-of-cancer",totalDownloads:391,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"Cancer is a leading cause of mortality worldwide, accounting for 8.8 million deaths in 2015. The landscape of cancer therapeutics is rapidly advancing with development of new and sophisticated approaches to diagnostic testing. Treatment plan for early diagnosed patients include radiation therapy, tumor ablation, surgery, immunotherapy and chemotherapy. However the treatment can only be initiated when the cancer has been diagnosed thoroughly. Theranostics is a term that combines diagnostics with therapeutics. It embraces multiple techniques to arrive at comprehensive diagnosis, molecular images and an individualized treatment regimen. Recently, there is an effort to tangle the emerging approach with nanotechnologies, in an attempt to develop theranostic nanoplatforms and methodologies. Theranostic approach to management of cancer offers numerous advantages. They are designed to monitor cancer treatment in real time. A wide variety of theranostic nanoplatforms that are based on diverse nanostructures like magnetic nanoparticles, carbon nanotubes, gold nanomaterials, polymeric nanoparticles and silica nanoparticles showed great potential as cancer theranostics. Nano therapeutic platforms have been successful in integrating image guidance with targeted approach to treat cancer.",signatures:"Asad Ali, Zeeshan Ahmad, Usama Ahmad, Mohd Muazzam Khan, Md. Faheem Haider and Juber Akhtar",downloadPdfUrl:"/chapter/pdf-download/73727",previewPdfUrl:"/chapter/pdf-preview/73727",authors:[{id:"255360",title:"Dr.",name:"Usama",surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad"},{id:"252107",title:"Dr.",name:"Juber",surname:"Akhtar",slug:"juber-akhtar",fullName:"Juber Akhtar"},{id:"329245",title:"Dr.",name:"Asad",surname:"Ali",slug:"asad-ali",fullName:"Asad Ali"},{id:"329246",title:"Dr.",name:"Zeeshan",surname:"Ahmad",slug:"zeeshan-ahmad",fullName:"Zeeshan Ahmad"},{id:"329247",title:"Dr.",name:"Mohd",surname:"Muazzam Khan",slug:"mohd-muazzam-khan",fullName:"Mohd Muazzam Khan"},{id:"329248",title:"Dr.",name:"Md. Faheem",surname:"Haider",slug:"md.-faheem-haider",fullName:"Md. Faheem Haider"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"2553",title:"Lipid Peroxidation",subtitle:null,isOpenForSubmission:!1,hash:"b39734aa940b2d63ae5e8773d3dd5280",slug:"lipid-peroxidation",bookSignature:"Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/2553.jpg",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5769",title:"Fatty Acids",subtitle:null,isOpenForSubmission:!1,hash:"026ff00026816b4cca7116ca6e1e7fbd",slug:"fatty-acids",bookSignature:"Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/5769.jpg",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5959",title:"Liposomes",subtitle:null,isOpenForSubmission:!1,hash:"a9ceb39898197da848c05eb1fb7417b5",slug:"liposomes",bookSignature:"Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/5959.jpg",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8095",title:"Liposomes",subtitle:"Advances and Perspectives",isOpenForSubmission:!1,hash:"02b0d76190d551561ad19af0c80f98f2",slug:"liposomes-advances-and-perspectives",bookSignature:"Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/8095.jpg",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,isOpenForSubmission:!1,hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",slug:"endoplasmic-reticulum",bookSignature:"Angel Català",coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",editedByType:"Edited by",editors:[{id:"196544",title:"Prof.",name:"Angel",surname:"Catala",slug:"angel-catala",fullName:"Angel Catala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"672",title:"Topics on Drug Metabolism",subtitle:null,isOpenForSubmission:!1,hash:"bd8cec6a42109231eaa7a07ed1d58c71",slug:"topics-on-drug-metabolism",bookSignature:"James Paxton",coverURL:"https://cdn.intechopen.com/books/images_new/672.jpg",editedByType:"Edited by",editors:[{id:"67175",title:"Dr.",name:"James",surname:"Paxton",slug:"james-paxton",fullName:"James Paxton"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1515",title:"Readings in Advanced Pharmacokinetics",subtitle:"Theory, Methods and Applications",isOpenForSubmission:!1,hash:"19852157f4023e3c603cf420d40092d8",slug:"readings-in-advanced-pharmacokinetics-theory-methods-and-applications",bookSignature:"Ayman Noreddin",coverURL:"https://cdn.intechopen.com/books/images_new/1515.jpg",editedByType:"Edited by",editors:[{id:"98260",title:"Dr.",name:"Ayman",surname:"Noreddin",slug:"ayman-noreddin",fullName:"Ayman Noreddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"549",title:"Antihypertensive Drugs",subtitle:null,isOpenForSubmission:!1,hash:"876ded2432bdba8db384bc19409c11c4",slug:"antihypertensive-drugs",bookSignature:"Hossein Babaei",coverURL:"https://cdn.intechopen.com/books/images_new/549.jpg",editedByType:"Edited by",editors:[{id:"106830",title:"Prof.",name:"Hossein",surname:"Babaei",slug:"hossein-babaei",fullName:"Hossein Babaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8700",title:"Anticoagulation Drugs",subtitle:"the Current State of the Art",isOpenForSubmission:!1,hash:"436d368db26a1bb7c56a32524819feb2",slug:"anticoagulation-drugs-the-current-state-of-the-art",bookSignature:"Mina Kelleni",coverURL:"https://cdn.intechopen.com/books/images_new/8700.jpg",editedByType:"Edited by",editors:[{id:"247606",title:"Dr.",name:"Mina",surname:"Kelleni",slug:"mina-kelleni",fullName:"Mina Kelleni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10357",title:"Drug Metabolism",subtitle:null,isOpenForSubmission:!1,hash:"3bd3ae5041cab45020555b49152b1ddc",slug:"drug-metabolism",bookSignature:"Katherine Dunnington",coverURL:"https://cdn.intechopen.com/books/images_new/10357.jpg",editedByType:"Edited by",editors:[{id:"232694",title:"Dr.",name:"Katherine",surname:"Dunnington",slug:"katherine-dunnington",fullName:"Katherine Dunnington"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"erratum-application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodies",title:"Erratum - Application of Design for Manufacturing and Assembly: Development of a Multifeedstock Biodiesel Processor",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/68990.pdf",downloadPdfUrl:"/chapter/pdf-download/68990",previewPdfUrl:"/chapter/pdf-preview/68990",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/68990",risUrl:"/chapter/ris/68990",chapter:{id:"63204",slug:"application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodiesel-proce",signatures:"Ilesanmi Afolabi Daniyan and Khumbulani Mpofu",dateSubmitted:"March 15th 2018",dateReviewed:"July 9th 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"11921",title:"Prof.",name:"Khumbulani",middleName:null,surname:"Mpofu",fullName:"Khumbulani Mpofu",slug:"khumbulani-mpofu",email:"mpofuk@tut.ac.za",position:null,institution:{name:"Tshwane University of Technology",institutionURL:null,country:{name:"South Africa"}}},{id:"260269",title:"Dr.",name:"Ilesanmi Afolabi",middleName:null,surname:"Daniyan",fullName:"Ilesanmi Afolabi Daniyan",slug:"ilesanmi-afolabi-daniyan",email:"afolabiilesanmi@yahoo.com",position:null,institution:null}]}},chapter:{id:"63204",slug:"application-of-design-for-manufacturing-and-assembly-development-of-a-multifeedstock-biodiesel-proce",signatures:"Ilesanmi Afolabi Daniyan and Khumbulani Mpofu",dateSubmitted:"March 15th 2018",dateReviewed:"July 9th 2018",datePrePublished:"November 5th 2018",datePublished:"January 3rd 2019",book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"11921",title:"Prof.",name:"Khumbulani",middleName:null,surname:"Mpofu",fullName:"Khumbulani Mpofu",slug:"khumbulani-mpofu",email:"mpofuk@tut.ac.za",position:null,institution:{name:"Tshwane University of Technology",institutionURL:null,country:{name:"South Africa"}}},{id:"260269",title:"Dr.",name:"Ilesanmi Afolabi",middleName:null,surname:"Daniyan",fullName:"Ilesanmi Afolabi Daniyan",slug:"ilesanmi-afolabi-daniyan",email:"afolabiilesanmi@yahoo.com",position:null,institution:null}]},book:{id:"7460",title:"Applications of Design for Manufacturing and Assembly",subtitle:null,fullTitle:"Applications of Design for Manufacturing and Assembly",slug:"applications-of-design-for-manufacturing-and-assembly",publishedDate:"January 3rd 2019",bookSignature:"Ancuţa Păcurar",coverURL:"https://cdn.intechopen.com/books/images_new/7460.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"184794",title:"Dr.",name:"Ancuta Carmen",middleName:null,surname:"Păcurar",slug:"ancuta-carmen-pacurar",fullName:"Ancuta Carmen Păcurar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12301",leadTitle:null,title:"Ion Exchange - Newest Research and Advances",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThe goal of this book is to give the reader an overview of a field related to various applications in chemistry, chemical engineering, and nanotechnology. This book aims to provide information about the design of ion exchangers, their application in environmental technologies, and in biotechnology and pharmaceutical applications. This book will be written by authors in the field of experimental methods and critical reviews from multi-disciplines such as chemistry, membranes, and materials science. Among others, some of the topics covered will be Structure of ion exchangers, Synthesis of ion exchangers, Synthesis of inorganic ion exchangers, Properties of ion exchangers, Ion exchange voltammetry, Ion exchange as a separations method, Ion exchange in analytical chemistry, Ion exchange and extraction, Ion exchange membranes, Preparation of organic-inorganic hybrid ion exchangers, Application in environmental technologies, Application in biotechnology and pharmaceutical applications.
\r\n
\r\n\tIn this book, the authors will focus on recent studies, applications, and new technological developments on the fundamental properties of ion exchangers.
",isbn:"978-1-83768-391-8",printIsbn:"978-1-83768-390-1",pdfIsbn:"978-1-83768-392-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"8dd8a87a8e42422ab2f346d7d33f2f18",bookSignature:"Dr. Selcan Karakuş",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12301.jpg",keywords:"Selectivity, Diffusion, Isotherm, Electrodialyzer, Computer Simulation, Activity Coefficients, Thermodynamic, Kinetic Model, Semiempirical Models, Ion Exchange Resins, Ion Exchange Composites, Biosorbents",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 10th 2022",dateEndSecondStepPublish:"July 8th 2022",dateEndThirdStepPublish:"September 6th 2022",dateEndFourthStepPublish:"November 25th 2022",dateEndFifthStepPublish:"January 24th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"a month",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Multidisciplinary Nanoscience Technology Research Group Leader from Istanbul University (Cerrahpasa) and holder of three registered patents on advanced metal/ metal oxide-based nanostructures. Assoc. Prof. Selcan Karakuş has research experience in nanoparticles, nanocomposites, nanoemulsions, metal oxide nanostructures, and sensors.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"206110",title:"Dr.",name:"Selcan",middleName:null,surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş",profilePictureURL:"https://mts.intechopen.com/storage/users/206110/images/system/206110.jpeg",biography:"Assoc. Prof. Selcan Karakuş is currently working at the Department of Chemistry, Istanbul University - Cerrahpasa, Turkey. She obtained her Master of Science degree in Physical Chemistry from Istanbul University (IU) in 2006. She obtained her Doctor of Philosophy degree in Physical Chemistry from IU in 2011. She has worked as a visiting researcher at the University of Massachusetts, Department of Polymer Science and Engineering. She has research experience in nanoparticles, nanocomposites, nanoemulsions, metal oxide nanostructures, and sensors. She has worked on different projects funded by Istanbul University - Cerrahpasa and has published several research articles and book chapters in her area of interest.",institutionString:"Istanbul University Cerrahpaşa",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"Istanbul University Cerrahpaşa",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429341",firstName:"Paula",lastName:"Gavran",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"paula@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"6519",title:"Science and Technology Behind Nanoemulsions",subtitle:null,isOpenForSubmission:!1,hash:"f4dd10764e9841064827609a62952748",slug:"science-and-technology-behind-nanoemulsions",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6519.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9199",title:"Sonochemical Reactions",subtitle:null,isOpenForSubmission:!1,hash:"72f3010437d022fd2a932421ff4a9200",slug:"sonochemical-reactions",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/9199.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6694",title:"New Trends in Ion Exchange Studies",subtitle:null,isOpenForSubmission:!1,hash:"3de8c8b090fd8faa7c11ec5b387c486a",slug:"new-trends-in-ion-exchange-studies",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/6694.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7604",title:"Colloid Science in Pharmaceutical Nanotechnology",subtitle:null,isOpenForSubmission:!1,hash:"f3940914be015381c3928eae31c2457e",slug:"colloid-science-in-pharmaceutical-nanotechnology",bookSignature:"Selcan Karakuş",coverURL:"https://cdn.intechopen.com/books/images_new/7604.jpg",editedByType:"Edited by",editors:[{id:"206110",title:"Dr.",name:"Selcan",surname:"Karakuş",slug:"selcan-karakus",fullName:"Selcan Karakuş"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"53884",title:"Introductory Chapter: Therapies Based on Kidney Essence and Qi in Chinese Medicine",doi:"10.5772/67292",slug:"introductory-chapter-therapies-based-on-kidney-essence-and-qi-in-chinese-medicine",body:'\n
1. Introduction
\n
Traditional Chinese medicine (TCM) is the precious treasure that Chinese nation accumulated in the process of struggling with disease for thousands of years, and she knows life and disease phenomenon in a unique perspective, is the important guarantee for the thriving of the Chinese nation, and is an immortal legend in the process of human civilization development. TCM is both a treasure trove of Chinese wisdom and the medical science based on ancient Chinese philosophy. TCM will provide new philosophical thinking and selective application for modern medicine. TCM theory on which it is based involves entities like Essence (Jing), Qi (Chi), and “meridians” that appear ambiguous, and the internal organs like the kidney and the spleen are understood very differently from those of modern anatomy. Even today TCM practitioners use these essential theories to understand, diagnose, and treat health problems.
\n
2. The concept of “Essence” and “Qi”
\n
“Essence” and “Qi,” important categories in the ancient Chinese philosophy, are simple understanding of natural phenomena. The connotation and denotation of the concepts “Essence” and “Qi” are consistent in the ancient Chinese philosophy; both are invisible subtle materials existing in the universe with continuous movement and are the primitive composition of the universe, i.e., “Essence” is “Qi” and is also known as “Essence Qi.” The concepts “Essence” and “Qi” in ancient Chinese philosophy were introduced into TCM, great changes about their connotation and denotation have taken place, and “Essence” and “Qi” became two concepts. “Essence” is the overall appellation on tangible materials inherited from the parents and acquired as useful subtle substances to the human body, is the most basic material that constitutes the Zang-Fu, tissues, and organs and maintains life activities of the human body, is the source of human life, and is also the origin of other life materials of the body.
\n
“Qi” in TCM is the overall appellation on all the invisible subtle energetic materials in constant motion in the human body and functional activities of internal organs, is both an important part of the body, and is the power source of vital activities. In terms of its source, Qi originated from Essence and can be converted by Essence and is a more subtle material than Essence; Qi can also produce Essence, Essence, and Qi can be interconverted. In terms of its function, Qi can stimulate and promote the functional activities of the Zang-Fu organs and control the process of the human body; Qi is the fundamental that supports the life activity of the body, so when the movement of Qi stops, the end of life will arrive. Essence belongs to Yin, is tangible, and tends to be a material property; Qi belongs to Yang, is intangible, and tends to be a functional property. Essence is the material basis of viscera functional activities, and Qi is the motive force of promoting and regulating physiological activities of Zang-Fu organs.
\n
Qi, as the master of the brain, regulates Yin-Yang and five elements, tonifies the five vital organs of the human body, keeps the six hollow viscera unobstructed, and is in charge of chemical and biological transformation and defenses. Qi of the human body comes from the congenital Essence inherited from parents, the refined food Essence transformed by the spleen, and the fresh air inhaled by the Lung. After birth, the congenital Essence is stored in the kidney to promote development and to control the reproductive activity of the human body. “Both life and death depend on Qi.” Qi always underpins the basic theory of TCM and acts as its cornerstone. Qi has been used as a healing technique in China for 4000 years. This shows that Qi is closely related to health, disease, and life.
\n
3. Qi and diseases
\n
According to TCM, “Qi is the root of the human”; “All the diseases originate from Qi.” Qi dominates the whole vital activities. Qi can make the human body work in an orderly fashion by promoting a variety of physiological activities; “Qi deficiency” will lead to a decline of physiological functions. As one part of a central medical classic The Yellow Emperor’s Inner Canon, “Plain Questions” pointed out that consumption of the vital Essence Qi leads to deficiency. The basic idea of TCM to prevent and cure diseases is strengthening vital Qi to eliminate pathogenic factors. Strengthening vital Qi can improve body’s resistance to disease, in order to eliminate weakness syndromes, ward off illnesses, and be physically strong. On the understanding of the etiology, TCM theory emphasizes the cause of disease—“vital Qi deficiency”—especially.
\n
Xing-Tai Li proposes a scientific hypothesis that “Qi is bioenergy” [1] and Qi deficiency can lead to bioenergetic dysfunction, which can be improved by Qi invigoration and demonstrates that Qi invigoration was achieved through improved mitochondrial bioenergetics [2].
\n
The central player in bioenergetics is the mitochondrion. Bioenergetic dysfunction is emerging as a cornerstone for understanding the pathophysiology of mitochondrial diseases. Mitochondrial dysfunction would undermine the function of cells, tissues, and organs, thereby causing cancer, diabetes, obesity, strokes, cardiovascular diseases, neurodegenerative diseases, aging, etc. Currently, there are no effective treatments, yet the causes of these diseases remain a mystery, while their incidence and morbidity either remain constant or are increasing. Huge investments in biomedical research in recent years have resulted in some striking accomplishments but have failed to reveal the anticipated causes for the diseases. Western medicine is in crisis [3]. According to TCM, Qi deficiency is the common cause of these diseases. Therefore, Qi-invigorating therapy can be used for mitochondrial diseases [4].
\n
4. Kidney stores Essence theory
\n
Essence Qi theory of ancient Chinese philosophy provides a premise condition to the birth of the Kidney stores Essence theory of TCM. Kidney stores Essence, Essence can be converted to Qi, and Qi converted by the Kidney Essence is Kidney Qi; therefore, if the Kidney Essence is sufficient, Kidney Qi is filling, and if the Kidney Essence is deficient, Kidney Qi fails. Kidney dominates growth, development, and reproduction of the body; this is the physiological function of Kidney Essence and Kidney Qi. Thus, the life processes of the human body, including birth, growth, prime, aging, and death, as well as reproductive ability, all depend on the rise and fall of Kidney Essence and Kidney Qi. Kidney Essence deficiency will result to insufficient reproductive Essence and ultimately lead to male infertility, female menopause, and infertility. Deficient Kidney Essence cannot produce enough Kidney Qi, so the sexual hypofunction will occur.
\n
Kidney Qi can be divided into Kidney Yin and Kidney Yang, whose material basis is Kidney Qi, and they are the two different attributes of the Kidney Qi, of which Kidney Yin is the source of Yin Qi in the whole body and Kidney Yang is the root of Yang Qi in the whole body; the balance and coordination between Kidney Yin and Kidney Yang maintain the function of Kidney in TCM [5].
\n
In Chapter 1, Shuang Ling et al. reviewed the effects of Kidney Essence-, Kidney Yang-, Kidney Yin-, Kidney Qi-, and kidney-nourishing Chinese herbal formulas and single herbs on the kidney endocrine substances and propose the idea that kidney endocrine substances, such as renin, kallikrein, erythropoietin (EPO), calcitriol, bone morphogenetic protein (BMP)-7, and klotho, are potential candidates of the material basis of Kidney Essence.
\n
5. Kidney Essence, Qigong, and diabetes
\n
Diabetes mellitus is a common degenerative disease and one of the leading causes of morbidity and mortality in developed countries. Diabetes has become a worldwide epidemic with a substantial social and economic burden [6]. The prevalence of this disorder is rising dramatically; an estimated 370 million people worldwide will be suffering from diabetes in 2030 [7]. Type 2 diabetes mellitus (T2DM) is a complex, chronic, metabolic disease with hyperglycemia and is the most common form of diabetes. The exact cause of T2DM is unknown in Western medicine. The modern studies show that bioenergetic dysfunction is emerging as a cornerstone for understanding T2DM. The mitochondria, whose main function is the production of the energy substance adenosine triphosphate (ATP), all the life activities depend on ATP, mitochondrial dysfunction is at the centre of understanding many metabolic disorders, such as obesity and T2DM [8, 9]. Imbalanced energy homeostasis is characteristic of obese and T2DM patients [10]. This suggests that mitochondrial dysfunction might contribute to metabolic inflexibility and insulin resistance [11]. The ability of pancreatic β-cells to regulate blood glucose levels relies on mitochondrial ATP generation. Adenylate energy charge was decreased in prediabetic rats, as were ATP and adenosine diphosphate (ADP) levels. Conversely, adenosine monophosphate (AMP) levels were increased, evidencing a decreased ATP/AMP ratio [12].
\n
Qigong is one of the major Chinese medical therapies used to strengthen Qi through self-practice and to manage the state of Qi to prevent and cure disease. Qigong therapies are popular in China as Qi therapies are in Asia. Medical Qigong is defined as the system of authentic Qi (vital energy) practice, which empowers the body to heal itself and to facilitate the healing process of others. Qigong exercises that focus on boosting Kidney and Spleen Qi can be particularly beneficial in managing T2DM [13–15].
\n
Genetic, dietary, lifestyle, and environmental factors play a role in T2DM. Improper diet, overeating of certain foods, and overtaxing the body can weaken the Qi energy and disrupt the balance of the Zang (organs). Likewise, a sedentary lifestyle can weaken the Qi because not enough Qi is generated to invest in the strengthening of the body. Medical Qigong involves appropriate management and regulation of all energetic and informational communications. Receiving acupuncture treatments from an experienced Chinese medical practitioner supports the management of T2DM by improving the energetic function of the internal organs.
\n
The kidney is central to the understanding of the pathogenesis of T2DM in Chinese medicine. Kidney is the root of Qi and the foundation of Yin and Yang in the body. The Kidney stores the Essence or one’s inherited original reserves of vital energy. If one has constitutional kidney deficiency, one may already be deficient in Yin and may be predisposed to other organ imbalances. In the view of TCM, the etiology of diabetes can originate with pre-heaven Kidney Essence or Kidney Yin deficiency and weakness of the five Zang organs that predispose a person to further imbalances such as Spleen Qi deficiency. Congenital Kidney Essence and vital Qi deficiency are the intrinsic factors to diabetes. In addition, chronic Kidney Yin deficiency can diminish the generation of Kidney Yang. Combined Kidney Yin and Yang deficiency can in the long run lead to Kidney Qi failure, making the kidney unable to regulate the exiting of body fluids and manifesting as the need to urinate directly after drinking [16]. In Chapter 3, Guan-Cheng Sun et al. look at how TCM views diabetes as well as new understandings of how Qigong can support the management of T2DM and discuss the changes of mitochondrial energy metabolism and bioenergetics in the process of T2DM onset.
\n
6. Kidney Essence and reproduction
\n
Infertility is a worldwide problem affecting people of all communities; infertility has a wide range of causes stemming from three general sources: physiological dysfunctions, preventable causes, and unexplained issues [17]. It is an important medical and social problem in the world as regards 15% of couples are infertile and 40% are infertile because of male factor infertility [18]. The ancient Chinese physicians think that the main pathogenesis of infertility is kidney deficiency; kidney-nourishing therapy is an effective method to the treatment of infertility. Kidney deficiency syndrome was positively correlated with Yin deficiency and Yang deficiency constitution. The Kidney stores Essence to control the reproductive activity. Kidney Essence is the basis of the conception; the Kidney Essence-, Kidney Qi-, Kidney Yin-, and Kidney Yang-tonifying therapies were often used according to treatment based on syndrome differentiation. Acupuncture and moxibustion work by regulating Qi flow over the meridians. According to the Yin and Yang theory, Kidney Essence pertains to Yin, while the Kidney Qi pertains to Yang. Kidney Essence is the most vital substance both constituting the human body and supporting its functional activities; it is the foundation of Kidney Yin and Kidney Yang. Kidney Yin provides material basis for the activities of human body, while Kidney Yang promotes the functions of the organs. In Chapter 4, Yen-Nung Liao et al. reviewed the scientific evidence that kidney-nourishing Chinese herbal formulas, single Chinese herbs, acupuncture, and moxibustion are used for female and male infertility.
\n
TCM, with its long history of clinical practice, occupies an important place among the “alternative medicine” that has been gaining attention in recent years. Because of the general mildness in nature and the emphasis on relief, balance, and harmonization rather than forceful suppression, many good Chinese medicines are particularly suited for pregnancy. Lu Li et al. summarize in details the Chinese medicines classified as contraindicated, not recommended and cautiously used for pregnancy in Chinese Pharmacopeia. The authors obtained the most specific safety information for pregnancy. They gathered information about the adverse effects and potential toxicity of the Chinese medicines for pregnancy.
\n
7. Silicosis and Qi deficiency
\n
Silicosis is the most common pneumoconiosis globally, with higher prevalence and incidence in developing countries. To date, there is no effective treatment to halt or reverse the disease progression caused by silica-induced lung injury [19]. Effective therapies have to be found in order to reduce morbidity and mortality related to silicosis. In TCM, the lung dominates Qi of the body, the kidney is the root of Qi, and silicosis has close relations with the lung and kidney. The occurrence and development of silicosis are a chronic evolution process from the lung to the spleen and from the spleen to the kidney; finally, the lung, spleen, and kidney were all injured. Both Qi and Yin were injured, and vital Qi was depleted gradually. In Chapter 5, Shengjun Jiang et al. propose a novel treatment method of silicosis by spraying with Chinese herbal kombucha, which is made by fermenting extracts of Chinese herbs with a kombucha culture.
\n
In summary, diabetes, infertility, and silicosis are either caused by or related to Kidney Essence and/or Qi deficiency in TCM, therefore, the introductory chapter subtitled “Therapies Based on Kidney Essence and Qi in Chinese Medicine.” We hope you are interested in this book.
\n',keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/53884.pdf",chapterXML:"https://mts.intechopen.com/source/xml/53884.xml",downloadPdfUrl:"/chapter/pdf-download/53884",previewPdfUrl:"/chapter/pdf-preview/53884",totalDownloads:1857,totalViews:856,totalCrossrefCites:0,totalDimensionsCites:0,totalAltmetricsMentions:0,introChapter:null,impactScore:0,impactScorePercentile:1,impactScoreQuartile:1,hasAltmetrics:0,dateSubmitted:null,dateReviewed:"December 19th 2016",datePrePublished:null,datePublished:"February 1st 2017",dateFinished:"January 16th 2017",readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/53884",risUrl:"/chapter/ris/53884",book:{id:"5494",slug:"chinese-medical-therapies-for-diabetes-infertility-silicosis-and-the-theoretical-basis"},signatures:"Xing-Tai Li",authors:[{id:"73821",title:"Dr.",name:"Xing-Tai",middleName:null,surname:"Li",fullName:"Xing-Tai Li",slug:"xing-tai-li",email:"xtli@dlnu.edu.cn",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/73821/images/system/73821.jpg",institution:{name:"Dalian Minzu University",institutionURL:null,country:{name:"China"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. The concept of “Essence” and “Qi”",level:"1"},{id:"sec_3",title:"3. Qi and diseases",level:"1"},{id:"sec_4",title:"4. Kidney stores Essence theory",level:"1"},{id:"sec_5",title:"5. Kidney Essence, Qigong, and diabetes",level:"1"},{id:"sec_6",title:"6. Kidney Essence and reproduction",level:"1"},{id:"sec_7",title:"7. Silicosis and Qi deficiency",level:"1"}],chapterReferences:[{id:"B1",body:'Li XT, Zhao J. An approach to the nature of Qi in TCM-Qi and bioenergy. In: Kuang H, editor. Recent Advances in Theories and Practice of Chinese Medicine. Rijeka: InTech Open Access Publisher, 2012. pp. 79–108.'},{id:"B2",body:'Li XT. Investigation on the mechanism of Qi-invigoration from a perspective of effects of Sijunzi decoction on mitochondrial energy metabolism. In: Sakagami H, editor. Alternative Medicine. Rijeka: InTech Open Access Publisher, 2012. pp. 247–275.'},{id:"B3",body:'Wallace DC. Mitochondria as chi. Genetics, 2008; 179(2): 727–735.'},{id:"B4",body:'Li XT, Kuang HX, Zhao J. Why is Qi-invigorating therapy in Chinese medicine suitable for mitochondrial diseases? A bioenergetic perspective. In: Saad M, editor. Complementary Therapies for the Body, Mind and Soul. Rijeka: InTech Open Access Publisher, 2015. pp. 243–283.'},{id:"B5",body:'Zhang L, Liu YY, Guo WX. Analysis of kidney Essence, Qi, Yin and Yang. Liaoning Journal of Traditional Chinese Medicine, 2013, 40(8): 1557–1560.'},{id:"B6",body:'Santos RX, Correia SC, Alves MG, et al. Mitochondrial quality control systems sustain brain mitochondrial bioenergetics in early stages of type 2 diabetes. Molecular and Cellular Biochemistry, 2014; 394(1–2): 13–22.'},{id:"B7",body:'Wild S, Roglic G, Green A, et al. Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes Care, 2004; 27(5): 1047–1053.'},{id:"B8",body:'Gao AW, Cantó C, Houtkooper RH. Mitochondrial response to nutrient availability and its role in metabolic disease. EMBO Molecular Medicine, 2014; 6(5): 580–589.'},{id:"B9",body:'Andreux PA, Houtkooper RH, Auwerx J. Pharmacological approaches to restore mitochondrial function. Nature Reviews Drug Discovery, 2013; 12(6): 465–483.'},{id:"B10",body:'Corpeleijn E, Saris WHM, Blaak EE. Metabolic flexibility in the development of insulin resistance and type 2 diabetes: effects of lifestyle. Obesity Reviews, 2009; 10(2): 178–193.'},{id:"B11",body:'Galgani JE, Moro C, Ravussin E. Metabolic flexibility and insulin resistance. American Journal of Physiology-Endocrinology and Metabolism, 2008; 295(5): E1009–E1017.'},{id:"B12",body:'Rato L, Duarte AI, Tomás GD, et al. Pre-diabetes alters testicular PGC1-α/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2014; 1837(3): 335–344.'},{id:"B13",body:'Sun GC, Zhou XH, Putiri AL, et al. Effects of Yi Ren medical Qigong on body weight in people with Type 2 diabetes mellitus: A secondary analysis of a randomized controlled pilot study. Journal of Integrative Medical Therapy. 2014; 1(1):1–5.'},{id:"B14",body:'Putiri AL, Lovejoy JC, Gillham S, et al. Psychological effects of Yi Ren Medical Qigong and progressive resistance training in adults with Type 2 diabetes mellitus: a randomized controlled pilot study. Alternative Therapies in Health and Medicine, 2012; 18(1): 30–34.'},{id:"B15",body:'Sun G. Cultivating the body’s information system and experiencing the meridians through Qigong practice. The Journal of Traditional Eastern Health and Fitness, 2004; 14(1): 22–29.'},{id:"B16",body:'Cho CS, Yue KM, Leung WN. An outline of diabetes mellitus and its treatment by traditional Chinese medicine and acupuncture. Journal of Chinese Medicine. 2005; (78): 33–41.'},{id:"B17",body:'Amin U, Khan N, Bhat IA. Prevalence and causes of infertility among women of Jammu and Kashmir. International Journal of Development Research, 2015; 5(3): 3771–3774.'},{id:"B18",body:'Mahat R K, Arora M, Bhale DV, et al. Risk factors and causes of male infertility – A review. Biochemistry & Analytical Biochemistry, 2016; 5(2): 271.'},{id:"B19",body:'Lopespacheco M, Bandeira E, Morales MM. Cell-based therapy for silicosis. Stem Cell International, 2016; 2016(5): 1–9.'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Xing-Tai Li",address:"xtli@dlnu.edu.cn",affiliation:'
College of Life Science, Dalian Nationalities University, Dalian, China
'}],corrections:null},book:{id:"5494",type:"book",title:"Chinese Medical Therapies for Diabetes, Infertility, Silicosis and the Theoretical Basis",subtitle:null,fullTitle:"Chinese Medical Therapies for Diabetes, Infertility, Silicosis and the Theoretical Basis",slug:"chinese-medical-therapies-for-diabetes-infertility-silicosis-and-the-theoretical-basis",publishedDate:"February 1st 2017",bookSignature:"Xing-Tai Li",coverURL:"https://cdn.intechopen.com/books/images_new/5494.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:"978-953-51-2914-1",printIsbn:"978-953-51-2913-4",pdfIsbn:"978-953-51-7335-9",reviewType:"peer-reviewed",numberOfWosCitations:1,isAvailableForWebshopOrdering:!0,editors:[{id:"73821",title:"Dr.",name:"Xing-Tai",middleName:null,surname:"Li",slug:"xing-tai-li",fullName:"Xing-Tai Li"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"991"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"53884",type:"chapter",title:"Introductory Chapter: Therapies Based on Kidney Essence and Qi in Chinese Medicine",slug:"introductory-chapter-therapies-based-on-kidney-essence-and-qi-in-chinese-medicine",totalDownloads:1857,totalCrossrefCites:0,signatures:"Xing-Tai Li",reviewType:"peer-reviewed",authors:[{id:"73821",title:"Dr.",name:"Xing-Tai",middleName:null,surname:"Li",fullName:"Xing-Tai Li",slug:"xing-tai-li"}]},{id:"53694",type:"chapter",title:"The Connotation of Kidney Stores Essence Theory and Kidney Endocrine Substance",slug:"the-connotation-of-kidney-stores-essence-theory-and-kidney-endocrine-substance",totalDownloads:1722,totalCrossrefCites:0,signatures:"Shuang Ling, Yan-qi Dang, Rong-zhen Ni and Jin-wen Xu",reviewType:"peer-reviewed",authors:[{id:"141964",title:"Prof.",name:"Jin-Wen",middleName:null,surname:"Xu",fullName:"Jin-Wen Xu",slug:"jin-wen-xu"},{id:"191400",title:"Dr.",name:"Shuang",middleName:null,surname:"Ling",fullName:"Shuang Ling",slug:"shuang-ling"}]},{id:"53800",type:"chapter",title:"Overview of Contraindicated Chinese Medicines for Pregnancy",slug:"overview-of-contraindicated-chinese-medicines-for-pregnancy",totalDownloads:1773,totalCrossrefCites:1,signatures:"Lu Li, Ling Shan Han, Xue Lu Jiang, Ping Chung Leung and Chi Chiu\nWang",reviewType:"peer-reviewed",authors:[{id:"75692",title:"Prof.",name:"Chi Chiu",middleName:null,surname:"Wang",fullName:"Chi Chiu Wang",slug:"chi-chiu-wang"}]},{id:"53763",type:"chapter",title:"Qigong for the Management of Type 2 Diabetes Mellitus",slug:"qigong-for-the-management-of-type-2-diabetes-mellitus",totalDownloads:1995,totalCrossrefCites:0,signatures:"Guan‐Cheng Sun, Catherine Osgood and Harold Ryan Lilly",reviewType:"peer-reviewed",authors:[{id:"190904",title:"Dr.",name:"Guan-Cheng",middleName:null,surname:"Sun",fullName:"Guan-Cheng Sun",slug:"guan-cheng-sun"},{id:"192048",title:"Ms.",name:"Catherine",middleName:null,surname:"Osgood",fullName:"Catherine Osgood",slug:"catherine-osgood"},{id:"194502",title:"Mr.",name:"Ryan",middleName:null,surname:"Lilly",fullName:"Ryan Lilly",slug:"ryan-lilly"}]},{id:"53508",type:"chapter",title:"Complementary and Alternative Therapy with Traditional Chinese Medicine for Infertility",slug:"complementary-and-alternative-therapy-with-traditional-chinese-medicine-for-infertility",totalDownloads:2065,totalCrossrefCites:0,signatures:"Yen-Nung Liao, Wen-Long Hu and Yu-Chiang Hung",reviewType:"peer-reviewed",authors:[{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",fullName:"Wen-Long Hu",slug:"wen-long-hu"}]},{id:"53704",type:"chapter",title:"Clearance of Free Silica in Rat Lungs by Spraying with Chinese Herbal Kombucha",slug:"clearance-of-free-silica-in-rat-lungs-by-spraying-with-chinese-herbal-kombucha",totalDownloads:1492,totalCrossrefCites:1,signatures:"Sheng-jun Jiang, Nai-fang Fu, Zhi-chao Dong, Chang-hui Luo, Juncai\nWu, Yan-yan Zheng, Yong-jin Gan, Jian-an Ling, Heng-qiu Liang,\nDan-yu Liang, Jing Xie, Xiao-qin Chen, Xian-jun Li, Rui-hui Pan, Zuo-\nXing Chen and Lu-lu Zhang",reviewType:"peer-reviewed",authors:[{id:"191022",title:"Ph.D.",name:"Shengjun",middleName:null,surname:"Jiang",fullName:"Shengjun Jiang",slug:"shengjun-jiang"}]}]},relatedBooks:[{type:"book",id:"6302",title:"Herbal Medicine",subtitle:null,isOpenForSubmission:!1,hash:"b70a98c6748d0449a6288de73da7b8d9",slug:"herbal-medicine",bookSignature:"Philip F. Builders",coverURL:"https://cdn.intechopen.com/books/images_new/6302.jpg",editedByType:"Edited by",editors:[{id:"182744",title:"Dr.",name:"Philip",surname:"Builders",slug:"philip-builders",fullName:"Philip Builders"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"62180",title:"Introductory Chapter: Introduction to Herbal Medicine",slug:"introductory-chapter-introduction-to-herbal-medicine",signatures:"Philip F. Builders",authors:[{id:"182744",title:"Dr.",name:"Philip",middleName:null,surname:"Builders",fullName:"Philip Builders",slug:"philip-builders"}]},{id:"61866",title:"Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants",slug:"plants-secondary-metabolites-the-key-drivers-of-the-pharmacological-actions-of-medicinal-plants",signatures:"Rehab A. Hussein and Amira A. El-Anssary",authors:[{id:"212117",title:"Dr.",name:"Rehab",middleName:null,surname:"Hussein",fullName:"Rehab Hussein",slug:"rehab-hussein"},{id:"221140",title:"Dr.",name:"Amira",middleName:null,surname:"El-Anssary",fullName:"Amira El-Anssary",slug:"amira-el-anssary"}]},{id:"59405",title:"Ergastic Crystal Studies for Raw Drug Analysis",slug:"ergastic-crystal-studies-for-raw-drug-analysis",signatures:"Thara K. Simon and Justin R. Nayagam",authors:[{id:"211486",title:"Dr.",name:"Justin",middleName:null,surname:"R Nayagam",fullName:"Justin R Nayagam",slug:"justin-r-nayagam"},{id:"220837",title:"Dr.",name:"Thara",middleName:null,surname:"K Simon",fullName:"Thara K Simon",slug:"thara-k-simon"}]},{id:"58422",title:"Guidelines for the Development of Herbal-Based Sunscreen",slug:"guidelines-for-the-development-of-herbal-based-sunscreen",signatures:"Piergiacomo Buso, Matteo Radice, Anna Baldisserotto, Stefano\nManfredini and Silvia Vertuani",authors:[{id:"212100",title:"Prof.",name:"Stefano",middleName:null,surname:"Manfredini",fullName:"Stefano Manfredini",slug:"stefano-manfredini"},{id:"212101",title:"BSc.",name:"Piergiacomo",middleName:null,surname:"Buso",fullName:"Piergiacomo Buso",slug:"piergiacomo-buso"},{id:"212102",title:"Prof.",name:"Matteo",middleName:null,surname:"Radice",fullName:"Matteo Radice",slug:"matteo-radice"},{id:"212103",title:"Prof.",name:"Silvia",middleName:null,surname:"Vertuani",fullName:"Silvia Vertuani",slug:"silvia-vertuani"},{id:"220809",title:"Dr.",name:"Anna",middleName:null,surname:"Baldisserotto",fullName:"Anna Baldisserotto",slug:"anna-baldisserotto"}]},{id:"58270",title:"Toxicity and Safety Implications of Herbal Medicines Used in Africa",slug:"toxicity-and-safety-implications-of-herbal-medicines-used-in-africa",signatures:"Merlin L.K. Mensah, Gustav Komlaga, Arnold D. Forkuo, Caleb\nFirempong, Alexander K. Anning and Rita A. Dickson",authors:[{id:"190435",title:"Dr.",name:"Caleb",middleName:null,surname:"Firempong",fullName:"Caleb Firempong",slug:"caleb-firempong"},{id:"212111",title:"Dr.",name:"Gustav",middleName:null,surname:"Komlaga",fullName:"Gustav Komlaga",slug:"gustav-komlaga"},{id:"217045",title:"Dr.",name:"Arnold Forkuo",middleName:null,surname:"Donkor",fullName:"Arnold Forkuo Donkor",slug:"arnold-forkuo-donkor"},{id:"217049",title:"Prof.",name:"Merlin Lincoln Kwao",middleName:null,surname:"Mensah",fullName:"Merlin Lincoln Kwao Mensah",slug:"merlin-lincoln-kwao-mensah"},{id:"217488",title:"Dr.",name:"Alexander K.",middleName:null,surname:"Anning",fullName:"Alexander K. Anning",slug:"alexander-k.-anning"},{id:"223959",title:"Prof.",name:"Akosua Rita",middleName:null,surname:"Dickson",fullName:"Akosua Rita Dickson",slug:"akosua-rita-dickson"}]},{id:"58431",title:"Application of Herbal Medicine as Proliferation and Differentiation Effectors of Human Stem Cells",slug:"application-of-herbal-medicine-as-proliferation-and-differentiation-effectors-of-human-stem-cells",signatures:"Preethi Vidya Udagama and Vindya Udalamaththa",authors:[{id:"181671",title:"Prof.",name:"Preethi",middleName:null,surname:"Udagama",fullName:"Preethi Udagama",slug:"preethi-udagama"},{id:"214245",title:"Ms.",name:"Vindya",middleName:null,surname:"Udalamaththa",fullName:"Vindya Udalamaththa",slug:"vindya-udalamaththa"}]},{id:"61138",title:"Herbal Medicine Use during Pregnancy: Benefits and Untoward Effects",slug:"herbal-medicine-use-during-pregnancy-benefits-and-untoward-effects",signatures:"Tariku Laelago",authors:[{id:"211130",title:null,name:"Tariku",middleName:"Laelago",surname:"Ersado",fullName:"Tariku Ersado",slug:"tariku-ersado"}]},{id:"58513",title:"Plant-Derived Medicines with Potential Use in Wound Treatment",slug:"plant-derived-medicines-with-potential-use-in-wound-treatment",signatures:"Tina Maver, Manja Kurečič, Dragica Maja Smrke, Karin Stana\nKleinschek and Uroš Maver",authors:[{id:"142060",title:"Prof.",name:"Uroš",middleName:null,surname:"Maver",fullName:"Uroš Maver",slug:"uros-maver"},{id:"175361",title:"Dr.",name:"Karin",middleName:null,surname:"Stana Kleinschek",fullName:"Karin Stana Kleinschek",slug:"karin-stana-kleinschek"},{id:"227392",title:"Dr.",name:"Tina",middleName:null,surname:"Maver",fullName:"Tina Maver",slug:"tina-maver"},{id:"227393",title:"Prof.",name:"Manja",middleName:null,surname:"Kurečič",fullName:"Manja Kurečič",slug:"manja-kurecic"},{id:"227394",title:"Prof.",name:"Dragica Maja",middleName:null,surname:"Smrke",fullName:"Dragica Maja Smrke",slug:"dragica-maja-smrke"}]},{id:"58115",title:"Plant-Based Ethnopharmacological Remedies for Hypertension in Suriname",slug:"plant-based-ethnopharmacological-remedies-for-hypertension-in-suriname",signatures:"Dennis R.A. Mans, Angela Grant and Nicholaas Pinas",authors:[{id:"193905",title:"Dr.",name:"Dennis",middleName:"R. A.",surname:"R.A. Mans",fullName:"Dennis R.A. Mans",slug:"dennis-r.a.-mans"},{id:"219349",title:"BSc.",name:"Angela",middleName:null,surname:"Grant",fullName:"Angela Grant",slug:"angela-grant"},{id:"224838",title:"MSc.",name:"Nicholaas",middleName:null,surname:"Pinas",fullName:"Nicholaas Pinas",slug:"nicholaas-pinas"}]},{id:"64851",title:"Herbal Medicines in African Traditional Medicine",slug:"herbal-medicines-in-african-traditional-medicine",signatures:"Ezekwesili-Ofili Josephine Ozioma and Okaka Antoinette Nwamaka\nChinwe",authors:[{id:"191264",title:"Prof.",name:"Josephine",middleName:"Ozioma",surname:"Ozioma Ezekwesili-Ofili",fullName:"Josephine Ozioma Ezekwesili-Ofili",slug:"josephine-ozioma-ezekwesili-ofili"},{id:"211585",title:"Prof.",name:"Antoinette",middleName:null,surname:"Okaka",fullName:"Antoinette Okaka",slug:"antoinette-okaka"}]},{id:"59484",title:"Herbal Medicine",slug:"herbal-medicine",signatures:"Nontokozo Z. Msomi and Mthokozisi B.C. Simelane",authors:[{id:"193091",title:"Dr.",name:"Mthokozisi",middleName:null,surname:"Simelane",fullName:"Mthokozisi Simelane",slug:"mthokozisi-simelane"},{id:"195504",title:"Ms.",name:"Nontokozo",middleName:null,surname:"Msomi",fullName:"Nontokozo Msomi",slug:"nontokozo-msomi"}]},{id:"58960",title:"Powerful Properties of Ozonated Extra Virgin Olive Oil",slug:"powerful-properties-of-ozonated-extra-virgin-olive-oil",signatures:"Elisabetta Carata, Bernardetta Anna Tenuzzo and Luciana Dini",authors:[{id:"103116",title:"Prof.",name:"Luciana",middleName:null,surname:"Dini",fullName:"Luciana Dini",slug:"luciana-dini"},{id:"206595",title:"Dr.",name:"Bernardetta Anna",middleName:null,surname:"Tenuzzo",fullName:"Bernardetta Anna Tenuzzo",slug:"bernardetta-anna-tenuzzo"},{id:"206596",title:"Dr.",name:"Elisabetta",middleName:null,surname:"Carata",fullName:"Elisabetta Carata",slug:"elisabetta-carata"}]},{id:"58339",title:"Taraxacum Genus: Potential Antibacterial and Antifungal Activity",slug:"taraxacum-genus-potential-antibacterial-and-antifungal-activity",signatures:"María Eugenia Martínez Valenzuela, Katy Díaz Peralta, Lorena\nJorquera Martínez and Rolando Chamy Maggi",authors:[{id:"165784",title:"Dr.",name:"Rolando",middleName:null,surname:"Chamy",fullName:"Rolando Chamy",slug:"rolando-chamy"},{id:"219869",title:"MSc.",name:"María Eugenia",middleName:null,surname:"Martínez",fullName:"María Eugenia Martínez",slug:"maria-eugenia-martinez"},{id:"219871",title:"Dr.",name:"Katy",middleName:null,surname:"Díaz",fullName:"Katy Díaz",slug:"katy-diaz"},{id:"219872",title:"Dr.",name:"Lorena",middleName:null,surname:"Jorquera",fullName:"Lorena Jorquera",slug:"lorena-jorquera"}]},{id:"58560",title:"Taraxacum Genus: Extract Experimental Approaches",slug:"taraxacum-genus-extract-experimental-approaches",signatures:"María Eugenia Martínez Valenzuela, Katy Díaz Peralta, Lorena\nJorquera Martínez and Rolando Chamy Maggi",authors:[{id:"165784",title:"Dr.",name:"Rolando",middleName:null,surname:"Chamy",fullName:"Rolando Chamy",slug:"rolando-chamy"}]}]}],publishedBooks:[{type:"book",id:"542",title:"A Compendium of Essays on Alternative Therapy",subtitle:null,isOpenForSubmission:!1,hash:"a805c1d2d8449dcecd52eb7a48d2e6b1",slug:"a-compendium-of-essays-on-alternative-therapy",bookSignature:"Arup Bhattacharya",coverURL:"https://cdn.intechopen.com/books/images_new/542.jpg",editedByType:"Edited by",editors:[{id:"66982",title:"Dr.",name:"Arup",surname:"Bhattacharya",slug:"arup-bhattacharya",fullName:"Arup Bhattacharya"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"631",title:"Quality Control of Herbal Medicines and Related Areas",subtitle:null,isOpenForSubmission:!1,hash:"5ced81d454b4a5ded2a0aa02e0d7621d",slug:"quality-control-of-herbal-medicines-and-related-areas",bookSignature:"Yukihiro Shoyama",coverURL:"https://cdn.intechopen.com/books/images_new/631.jpg",editedByType:"Edited by",editors:[{id:"35812",title:"Prof.",name:"Yukihiro",surname:"Shoyama",slug:"yukihiro-shoyama",fullName:"Yukihiro Shoyama"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"643",title:"Recent Advances in Theories and Practice of Chinese Medicine",subtitle:null,isOpenForSubmission:!1,hash:"499a7fabf489d2502de4616a4c7f3da0",slug:"recent-advances-in-theories-and-practice-of-chinese-medicine",bookSignature:"Haixue Kuang",coverURL:"https://cdn.intechopen.com/books/images_new/643.jpg",editedByType:"Edited by",editors:[{id:"44740",title:"Prof.",name:"Haixue",surname:"Kuang",slug:"haixue-kuang",fullName:"Haixue Kuang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2975",title:"Complementary Therapies for the Contemporary Healthcare",subtitle:null,isOpenForSubmission:!1,hash:"604c4ba43197c3ba1506c55c763d4ca7",slug:"complementary-therapies-for-the-contemporary-healthcare",bookSignature:"Marcelo Saad and Roberta de Medeiros",coverURL:"https://cdn.intechopen.com/books/images_new/2975.jpg",editedByType:"Edited by",editors:[{id:"51991",title:"Prof.",name:"Marcelo",surname:"Saad",slug:"marcelo-saad",fullName:"Marcelo Saad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5494",title:"Chinese Medical Therapies for Diabetes, Infertility, Silicosis and the Theoretical Basis",subtitle:null,isOpenForSubmission:!1,hash:"7b3b6a2700d7fd0511770bf77290a422",slug:"chinese-medical-therapies-for-diabetes-infertility-silicosis-and-the-theoretical-basis",bookSignature:"Xing-Tai Li",coverURL:"https://cdn.intechopen.com/books/images_new/5494.jpg",editedByType:"Edited by",editors:[{id:"73821",title:"Dr.",name:"Xing-Tai",surname:"Li",slug:"xing-tai-li",fullName:"Xing-Tai Li"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"643",title:"Recent Advances in Theories and Practice of Chinese Medicine",subtitle:null,isOpenForSubmission:!1,hash:"499a7fabf489d2502de4616a4c7f3da0",slug:"recent-advances-in-theories-and-practice-of-chinese-medicine",bookSignature:"Haixue Kuang",coverURL:"https://cdn.intechopen.com/books/images_new/643.jpg",editedByType:"Edited by",editors:[{id:"44740",title:"Prof.",name:"Haixue",surname:"Kuang",slug:"haixue-kuang",fullName:"Haixue Kuang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3369",title:"Alternative Medicine",subtitle:null,isOpenForSubmission:!1,hash:"e5a330fdcaea1dbe6b571b1f2ee93b56",slug:"alternative-medicine",bookSignature:"Hiroshi Sakagami",coverURL:"https://cdn.intechopen.com/books/images_new/3369.jpg",editedByType:"Edited by",editors:[{id:"82603",title:"Prof.",name:"Hiroshi",surname:"Sakagami",slug:"hiroshi-sakagami",fullName:"Hiroshi Sakagami"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4625",title:"Complementary Therapies for the Body, Mind and Soul",subtitle:null,isOpenForSubmission:!1,hash:"48cd88cd7a6ffb4ade0088448e5ac56b",slug:"complementary-therapies-for-the-body-mind-and-soul",bookSignature:"Marcelo Saad",coverURL:"https://cdn.intechopen.com/books/images_new/4625.jpg",editedByType:"Edited by",editors:[{id:"51991",title:"Prof.",name:"Marcelo",surname:"Saad",slug:"marcelo-saad",fullName:"Marcelo Saad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5494",title:"Chinese Medical Therapies for Diabetes, Infertility, Silicosis and the Theoretical Basis",subtitle:null,isOpenForSubmission:!1,hash:"7b3b6a2700d7fd0511770bf77290a422",slug:"chinese-medical-therapies-for-diabetes-infertility-silicosis-and-the-theoretical-basis",bookSignature:"Xing-Tai Li",coverURL:"https://cdn.intechopen.com/books/images_new/5494.jpg",editedByType:"Edited by",editors:[{id:"73821",title:"Dr.",name:"Xing-Tai",surname:"Li",slug:"xing-tai-li",fullName:"Xing-Tai Li"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"81525",title:"Current Strategies and Future of Mutation Breeding in Soybean Improvement",doi:"10.5772/intechopen.104796",slug:"current-strategies-and-future-of-mutation-breeding-in-soybean-improvement",body:'
1. Introduction
Soybean (Glycine max (L.) Merrill.) has a central position in agriculture along with barley, cassava, groundnut, maize, millet, potato, oil palm, rapeseed, rice, rye, sorghum, sugar beet, sugarcane, sunflower, and wheat which were considered as the most cultivated plants worldwide. Its central role is not only constituted due to the dense protein and high-quality oil contents but also industrial raw material supply. Tofu, soy milk, soy sauce, and miso are the main nutritious human soy products. Also, extracted soy oil, with over 75% oleic acid and under 10% polyunsaturated fatty acids, is one of the most preferred oils sold commercially in the United States today [1]. Long shelf-life required fry, spray, and ingredient oils should preferably contain higher oleic acid due to the better persistence to oxidation. Soy meal is also a major source of protein used in pig and poultry industries. The companion animal industry prefers soy meal as a protein source in animal diet, especially for dogs. High-quality amino acid composition and highly digestible protein content leads to the use of soy meal in aquaculture diets [2]. On the other hand, soy oil has various industrial uses as pharmaceuticals, plastics, papers, inks, paints, varnishes, and cosmetics.
In the verge of global warming effects, renewable energy sources as an alternative to fossil fuel are getting importance. Soybean is also an important biodiesel crop in many countries along with maize, especially in South America countries [3]. Besides the alternative bioenergy crop role, it has also environmental effects as being capable of utilizing atmospheric nitrogen through biological nitrogen fixation and is therefore less dependent on synthetic nitrogen fertilizers. While drought is one of the most plant growth and development limiting factors in present days, nitrogen deficiency is equally crippling for plants, as well, due to its structural, genetic, and metabolic functions in crop yield. Highly stable and non-reactive N2 is the most abundant constituent of the Earth’s atmosphere, still no eukaryotic organism can use it directly. Some members of Leguminosae (Fabaceae) family including soybean have adopted the ability to establish symbiotic interactions with diazotrophic bacteria known as rhizobia in evolutionary adaptations. By this means, a process called ‘biological nitrogen fixation is a low-cost N source that sufficiently increases soybean yield with low environmental impact and avoids the use of synthetic N fertilizers [4].
Soybean (G. max (L.) Merr) as a member of the family Fabaceae/Leguminosae, subfamily Papilionoideae, and the tribe Phaseoleae contains two subgenera as Glycine which has 26 perennial species and Soja (Moench) F.J. Herm. having four annual species [5]. Domestication of cultivated soybean can be traced back to China in 5000 years ago, however, the geographical origin of Glycine genus can be traced back to putative ancestor (2n = 2x = 20) which was presumably migrated and formed unknown or extinct wild perennials (2n = 4x = 40) in China. Wild annuals (2n = 4x = 40; Glycine soja) and domesticated soybean (2n = 4x = 40; G. max) subsequently evolved [6]. The genetic diversity of G. max is assumed to regress due to man-made genetic bottlenecks through selection for high yielding lines in modern plant breeding applications. Indeed, yield is the backbone of the profitability and the feasibility. Varieties with other superior traits are not significant in industrial scale unless they have a high yield. As well as yield, maturity, herbicide, and pest resistance, lodging resistance, shattering resistance, seed quality and composition, abiotic stress tolerance are other breeding selection targets [7]. While the wild relative G. soja grows in various environmental conditions and have not been exposed to the selective bottlenecks, it retained significant genetic diversity over time.
On the other hand, soybean flowers represent cleistogamous characteristics. Cleistogamy, which is described as the production of both open (chasmogamous, CH) and closed (cleistogamous, CL) floral forms by one species, is very common among angiosperms. Soybean is pseudocleistogamous cleistogamy in which no morphological differences between CL and CH flowers occur other than a lack of expansion of petals and anthesis in CL flowers. It may also be induced by environmental stress factors, occasionally. Cleistogamy is observed both in cultivated soybean [G. max (L.) Merr.] and its wild relative [G. soja Sieb. & Zucc.]. Soybean usually produces both CH and CL flowers on the same plant. In these plants, fertilization occurs within closed petals of CL flowers [8, 9, 10]. The rates of natural cross-pollination have been observed between ranges of 0.03–1.14% in natural conditions for self-pollinating soybean plant [11]. Thus, cleistogamy may have influenced the genomic homogeneity and reduced genomic variation further in soybean along with domestication practices.
In this context, improving genomic variations is crucial in soybean breeding. This chapter will summarize present conventional and biotechnological methods in soybean breeding and emphasize on mutation breeding practices with the concluding discussion on future prospective.
2. Improving genomic variations
2.1 Conventional methods
In soybean breeding, oil and protein content, resistance to biotic and abiotic stresses have been the main breeding objectives in past decades. In conventional breeding practices variability of desired traits is based on the detection of novel genotypes which contains enhanced characteristic for the trait. Hybridization of these novel genotypes with the varieties which are already in use for commercial production is the base of the process. Subsequent, the selfing of progenies, which contain traits distributed according to basic genetical segregation rules, provide novel genotypes. Detection of the most favorable recombination in those progenies which is also referred as homozygosity by selection is based on numerous selection methods including pedigree selection, single-seed descent, bulk breeding, mass selection, selection among half-sib families, selection within half-sib families. However, the traditional pedigree method and the single-seed descent method (SSD) are the most successful and preferred in soybean breeding. The last step in the process is yield testing. Available genotypes and technical infrastructure (agricultural machines, greenhouses, and experienced stuff) as well as breeding objective are deciding factors in method selection. Breeding objectives generally depend on the local agroecological conditions, available acreage, production intensity, market demand, and economical value [11, 12, 13].
Pedigree selection is a highly labor-intensive method that depends on visual selection by the appearance in each generation. In this method, desirable genotypes are selected in each generation and the limited number of selected genotypes are advanced to the next generation by inbreeding/selfing. The labor intensity of the method is limiting for large scale breeding practices [14]. Single-seed descent (SSD) is the most preferred method with pedigree selection to increase homozygosity in soybean. Single pod descent (SPD) accelerates the SSD for harvesting process even further. This method is mostly preferred for high seed yield, oil content and quality, resistance to biotic and abiotic stresses and maturity duration breeding objectives [15].
2.2 Biotechnological approaches
Although, the improvement of plants by conventional breeding methods is one of the most preferred breeding strategies, the limited hybridization among species, transfer of undesirable genomic segments together with genes of interest (e.g., linkage drag) and the fact that diversity in species is based on spontaneous mutations with a very low frequency necessitated the development of new breeding strategies. Plant breeding has often benefited from new technologies to overcome such limitations. Molecular breeding as one of these strategies can be extensively defined as the utilization of genetic manipulation of DNA at the molecular level to improve of trait of interest in plants, including genetic engineering, molecular marker-assisted selection, marker-assisted backcrossing, marker-assisted recurrent selection, genome wide selection [16, 17]. Molecular breeding requires more complex equipment and molecular tools compared to conventional breeding approaches. The identification of functional genes and DNA markers associated with variation at the genomic level is an important part of molecular breeding. Marker-assisted breeding (MAB) which utilized marker-assisted selection involves the use of molecular markers in conjunction with linkage maps and genomics, and the improvement of crop plant traits based on genotypic analyses. Moreover, MAB requires minimum phenotypic information during the training phase. The convenience of use and analysis, low cost, a small amount of DNA requirement, co-dominance, reproducibility, high-rate polymorphism and genome-wide distribution are the most important factors for molecular tools used in marker-assisted breeding (MAB) in plants [18]. Along with the emergence of marker-assisted selection (MAS) after the mid-1980s, rapid improvement of plant yield and quality has been achieved thanks to the development of molecular maps by utilizing structural and functional genomics in plant breeding. MAS can be classified into five broad areas: marker-assisted evaluation of breeding material; marker-assisted backcrossing; marker-assisted pyramiding; early generation selection and combined MAS [19].
DNA markers have made significant contributions to increasing the efficiency of conventional and mutation breeding through marker-assisted selection and have been integrated into traditional schemes to develop novel varieties or used instead of traditional phenotypic selection. Many DNA marker techniques have been developed based on different polymorphism detection techniques or methods (such as nucleic acid hybridization, restriction enzyme digestion, PCR, DNA sequencing) such as RFLP, AFLP, RAPD, SSR, SNP. Advances in molecular marker techniques and the creation of large-scale marker datasets provide a reliable way to identify and trace the genetic basis of important agricultural traits. Molecular markers developed from functional genes have been used for the development of soybean varieties by improving important agricultural traits such as yield, disease resistance and abiotic stress tolerance [20]. Breeders can combine all the suitable alleles in a single variety to develop desired crops, thanks to molecular markers closely related to particular traits. However, although soybean yield remains the most important selection criterion for soybean breeders and the primary factor for profitability, it is very difficult to acquire complex traits such as yield, quality and abiotic stresses with marker-assisted selection. Genomic selection (GS) is a promising approach that leverages molecular genetic markers to design new breeding programs and develop new marker-based models for genetic evaluation. GS, which has high selection accuracy, reduced selection duration, greater gain per unit time, precise and accurate results provide breeders with opportunity faster development of improved crop varieties for complex traits. New marker technologies, such as NGS-based genotyping, have made the use of genomic selection as routine for crop improvement while increasing the efficiency of marker applications. The availability of genome-wide high-throughput, low-cost and flexible markers, usability for crop species with or without a reference genome sequence with a large population size are the most important factors for its successful and effective implementation in crop species [21].
Plant breeders have begun to take advantage of molecular breeding more through advances in the identification of QTLs/genes responsible for important agronomic traits. Numerous quantitative character loci (QTL) mapping studies performed for a variety of agricultural crops have resulted in the association of DNA markers and traits. The most notable high-throughput genotyping system is single-nucleotide polymorphisms (SNPs), which are heavily used in quantitative character locus (QTL) discovery. More than 10,000 QTLs using different marker systems have been reported in more than 120 studies involved 12 plant species aimed at improving quantitative properties with economic importance [22]. Linkage analysis for QTL mapping is frequently preferred in two-parent populations. Genotyping by next-generation sequencing become prominent as a promising technology and is also used for genome-wide association studies (GWAS) to identify useful genes to increase crop productivity. Soybean genome sequence information, as one of the most substantial resources, is the basis of genomic studies and has allowed the significant development of genomic applications for soybean breeding.
As in transgenesis, studies involving the transfer of a limited number of loci from one genetic background to another are also within the scope of molecular breeding. Especially in the last two decades, genetic engineering approaches that generate novel genetic variations in plant genome or enable the transfer of gene of interest for obtaining original traits to plants have been frequently preferred among the biotechnological approaches that have been successfully applied in plant breeding [23, 24, 25]. Along with recent developments in recombinant DNA technology, it has been paved the way for transferring the desired characteristics to plants within plant breeding in a short time. These genetic engineering and plant transformation approaches which make plant breeding faster, more predictable and improvable for a wide variety of species, include successful characterization, cloning, modification and transfer of DNA expressed the desired trait into cells. The gene pool utilized by plant breeders in conventional breeding since the mid-1990s has been considerably expanded by genetic transformation approaches and many different transgenic plants have been developed by transferring traits that are tough to transfer [26, 27, 28]. Genetically Modified Organisms (GMOs), whose agricultural traits have been improved through inter-species gene transfer by utilizing genetic engineering techniques, have been increasingly planted, globally. The total cultivation areas of approved GM plants have increased approximately 113 times, from 1.7 million hectares in 1996 to 191.7 million hectares in 2018. This increase reveals that transgenic technology is the fastest adopted technology in recent years. A total of 2.5 billion hectares or 6.3 billion acres GM crops have been planted in the first 23 years (1996–2018) of commercialization of transgenic plants [29]. Especially soybean (95.9 million hectares) which comprises 50% of the global area of GM crops, corn (58.9 million hectares), cotton (24.9 million hectares) and canola (10.1 million hectares) are the four main transgenic crops cultivated. Transgenic crops, which were initially developed for only producers/farmers on the purpose of agriculture such as insect resistance and herbicide tolerance, afterwards were developed for other traits such as disease resistance, abiotic stress tolerance, modified product quality for both the producers/farmers and consumers. Especially cultivation of stacked events which are GM crops with more than one genetic modification, gather momentum.
During the 23-year period from 1996 to 2018, herbicide tolerance has accounted for the majority of transgenic crops area planted. Only herbicide tolerance cultivation areas of transgenic crops have been gradually decreasing over the years with the increasing importance of stacked cultivars with multiple traits (e.g., both insect resistance and herbicide tolerance; IR/HT). In 2018, stacked (IR/HT) traits used in soybean, maize and cotton have accounted for 42% of the total transgenic acreage, up 4% annually. Traits such as herbicide tolerance, insect resistance, disease resistance, pollination control, modified crop quality, anti-allergy, delayed fruit softening, delayed ripening, enhancement of vitamin A content, modified alpha-amylase, modified amino acid, modified oil/fatty acid, modified starch/carbohydrate, nicotine reduction, non-browning phenotype, phytase production, reduced acrylamide potential, reduced black spot bruising have been transferred to plants and many of these have been combined in various combinations [29]. Thanks to these features brought to agricultural plants, the product yield obtained from the cultivation areas increases significantly. Along with the acceleration of the transfer of the appropriate gene combinations to plants with high added value, products that can provide significant gains in the agricultural economy have been developed. In this process, about 30 different types of transgenic plants such as particularly G. max (soybean), Zea mays (corn), Gossypium hirsutum (cotton), Bassica napus (canola) and including fruits and vegetables such as Phaseolus vulgaris (bean), Prunus domestica (plum), Beta vulgaris (sugar beet), Solanum melongen (eggplant), Cucumis melo (melon), Carica papaya (papaya) have been approved [30]. Stacked traits such as Intacta™Roundup Ready™ 2 Pro, Enlist E3™ and Vistive Gold™ soybeans are favored by farmers for their cost-saving technologies. In 2018, the planting of crops with novel stacked traits in various combinations, including herbicide-tolerant and high-oleic acid soybean, herbicide-tolerant and salt-tolerant soybean varieties were approved. The global acreage of soybeans in 2018 was 123.5 million hectares, of which 78% (95.9 million hectares) were GM soybeans. GM soybeans have been planted on 95.9 million hectares, 50% of the global cultivated area for GM crops; USA (34.1 million hectares), Brazil (34.9 million hectares), Argentina (18.0 million hectares), Paraguay (3.35 million hectares), Canada (2.42 million hectares), Uruguay (1.26 million hectares), Bolivia (1.26 million hectares) and Southern Africa (694,000 hectares). In the USA, soybean is the second most important crop with a total cultivated area of 36.26 million hectares in 2018, with 94% GM. These GM soybeans contain herbicide-tolerant traits that control a variety of weed species depending on the genes deployed. Other features incorporated into HT soybeans include consumer properties such as high monounsaturated oleic acid and enriched omega-fatty acid. In Brazil which has the second-largest GM crop cultivation area with 51.3 million hectares in 2018, GM soybean was planted in an area of 34.86 million hectares. As for Argentina which was the third country to plant the most GM crops in 2018, 18 million hectares of soybeans were planted [29, 30].
2.3 Mutation breeding
Term of mutation was first introduced by de Vries as the sudden and unexpected emergence of hereditary alterations in defining traits apart from recombination in Mutation Theory Vol. I [31]. In 1920s, following Stadler’s experiments on genetic effects of X-rays on maize, plant breeders started to use physical and chemical mutagens to induce heritable mutations in plants [32]. As a term, mutation breeding is introduced to the scientific world by Freisleben and Lein defined as the deliberate exposure of biological materials to mutagens for induction of mutation frequency exceeding the natural mutation frequency to develop new varieties [33].
Mutations that cause genetic variation among living organisms can be categorized under spontaneous and induced mutation terms. Spontaneous mutations, which occur in low frequency and accumulate for a long time, allow plants to adapt very distinct environments apart from their original habitat [34, 35, 36].
The spontaneous mutation may occur due to the exposure to physical (cosmic radiation, natural background radiation of earth), chemical (alkylating agents, base analogs, antibiotics) mutagens and biological factors (transposon activation) during the reproductive stage. Spontaneous mutation frequency is calculated as 10−6 in plants during DNA replication, repair, or genomic element activities [37]. In vitro and in vivo propagation processes may also trigger gene methylation and cause epigenetic alterations while transposon mobility may trigger somoclonal variation and increase spontaneous mutations. Loss or activation of gene through transposable elements (TEs) regulate many biological processes. There are various studies on somoclonal variation-based trait improvement in plants. However, low mutation frequency is a real draw back for considering this method as common breeding alternative [35, 37]. Mutations can also be induced through physical and chemical mutagens. The use of mutagens may induce 103-fold more mutants comparing to the spontaneous mutations. Ossowski et al. [38] calculated spontaneous mutation frequency as 7x10−9 substitutions per site per generation for Arabidospsis plant in 30 generations. This frequency was increased by ethyl methanesulfonate (EMS) treatment to 3x10−5 substitutions per site per generation. EMS is a mutagenic, teratogenic, and carcinogenic organic compound with formula C3H8SO3 which produces random mutations, mostly G:C to A:T transitions induced by guanine alkylation, in genetic material by nucleotide substitution. EMS typically produces only point mutations. Genetic alterations due to physical and chemical mutagens can be classified as genome, chromosome, and gene mutations [31, 35, 39, 40, 41, 42].
Genome mutations not only affect genome size (ploidy) but also genome re-arrangement in plants. Many plant species as bread wheat: 6X; durum wheat: 4X, cotton: 4X, potato: 4X have polyploidy in nature. Polyploidy leads various advantages as enhanced nucleus size, enlargement on cell and organism basis, yield, increase in gene variations. Polyploidy can be induced as genome duplication (autoploidy) and increase in genome size (alloploidy) through use of mutagens [34, 43].
Chromosome mutations occur during meiotic cell division in very low frequencies. In euploidy state of plants, one set of chromosomes are present, while radiation exposure may result whole or partial chromosome deletions, insertions or translocations and cause aneuploidy. Besides, chromosome inversions, which are characterized as a chromosome rearrangement in which a segment of a chromosome is reversed 180 degrees end-to-end, cause very high gene recombination. In chromosome translocations, break off chromosome parts may attach to the same chromosome (intra-chromosomal) or different chromosome (inter-chromosomal). Both, inter- and intra-chromosomal translocations lead to devastating effects on gene expression.
Gene mutations can be either as gene copy number alterations or as point-mutations, insertions, deletions on nucleotides of gene sequence. Plants may increase gene copy numbers to enhance protein expression during metabolic functions. Mutagens can affect gene expression profiles through either by increasing or decreasing gene copy numbers. Point-mutations occur particularly in chemical mutagen applications. Single or set of nucleoid alterations cause silent mutations if they do not occur in genic regions. Alternatively, they can also cause nonfunctional gene products or nonsense mutations. Nucleotide insertions or deletions can alter codon structure and cause shift in open reading frames. These alterations can also occur on promotor regions, coding sequences or intron regions of genes, therefore, significantly effect protein expression [34, 35].
Single nucleotide changes as deletions generally cause functional gene mutations by the leading formation of novel alleles. Hence, they are particularly important for plant breeding studies for inducing genetic variations. There are numerous examples of plant height, abiotic stress tolerance, pesticide and herbicide resistance improvement cases in rice, wheat, barley, soybean plants, and more [44, 45, 46, 47]. Nucleotide mutations can also occur in non-genic regions and cause silent mutations which have no apparent effect on gene expression. Silent mutations generally occur following the alkylating chemical applications and do not affect translation [37]. Deletions among intergenic regions remain silent as long as they do not affect regulating sequences. Still, the possibility of open reading frame shift is present and may lead to nonfunctioning peptide formation [35].
In mutation breeding studies, whole plant, meristem tips, pollens, in vitro explants, embryos, microspores, callus cultures can be selected as initial materials. However, seeds are mostly preferred materials by plant breeders due to the advantages as metabolic inactivity, easy transport, ease of application, low space requirement, ease of storage comparing to others.
2.3.1 Mutagens
Choice of appropriate mutagen is one of the deciding factors on succession of the mutation breeding program. Physical, chemical, or biological agents are viable alternatives. Among physical mutagens ionizing radiation sources, particle (electrons, protons, neutrons, alpha and beta particles) or electromagnetic (X-rays, gamma rays), are widely used. Ionizing radiation interacts with genetic material and cause mutations on DNA sequences. Magnitude of mutagenic effect is proportional to the radiation dose. It is crucial to determine and optimize the effective radiation dose based on experimental plant variety, plant part, and radiation source. 80% of mutation breeding studies prefer physical mutagens and of 60% of this use gamma radiation [35].
Chemical mutagens offer much larger alternative choices. However, the most widespread use of chemical mutagens is among alkylating agents. Ethyl methane sulphonate (EMS), diethyl sulphate (DES), ethylene imine (EI), N-ethyl-N-nitroso urea (ENU), ethyl nitrite urethane (ENU), N-methyl-N-nitrosourea (MNU) are the most generally preferred chemicals. O6-alkylguanine, N3-alkyladenine, N3-alkylcitosine leads to alternative allele formation. Besides methylating agents, nitric acid, nucleic acid analogs, some antibiotics (streptozotocin, mitomycin C, azaserine) are other important chemical mutagens. 60% of registered chemically induced mutant plants are developed by use of EMS, MNU and EMU. One-third of these mutants are obtained by EMU which has ease of supply among others.
Among physical mutagens, gamma radiation has the most frequent use. In nature, there are various gamma-emitting isotopes such as potassium-40 (40K), however, in plant breeding applications cobalt-60 (60Co) and cesium-137 (137Cs) are the common choices.
In the last 20 years, there are 599 different developed mutant plants belonging to 78 different plant species registered to International Atomic Energy Agency (IAEA) Mutant Variety Database [48]. Soybean is in the third place among these plants with 46 registered mutants (8%) after 247 rice (42%) and 55 wheat (9%) mutants. In the category referred as others, chickpea, carnation, tomato, mung bean, Hibiscus, rapeseed, sesame, orchid, pepper, cowpea, glory bush and sunflower have the most mutants (Figure 1).
Figure 1.
Mutation variety database of IAEA registered mutant plants in last 20 years [48].
Among the soybean mutants, there are 15 different improved traits. They can be listed as; high yield, high protein content, resistance to soybean mosaic virus (SMV), early maturity, resistance to leaf rust, resistance to purple seed stain, resistance to cyst nematode (SCN), resistance to lodging, drought tolerance, super nodulation, absence of lipoxygenase, temperature tolerance, low allergenicity and higher nitrogen fixation (Figure 2). Thirty-six of these traits were improved by the use of gamma rays as physical mutagens, while 7 of them were developed by chemical mutagens. In this period, China is the leading country with 9 registered soybean mutants while Japan (9), Viet Nam (5), Bulgaria (3), India (3), Indonesia (3), Republic of Moldova (3)Republic of Korea (1) and Thailand (1) are the followers.
Figure 2.
Radiation-induced trait improvements achieved and registered to MVD in last 20 years.
2.3.2 Present applications of mutation breeding in soybean
In the last decades of mutation breeding, radiosensitivity of different plant species and tissues were investigated and dose limits were determined for various plants. In present days, molecular marker-based techniques were widely applied to estimate genetic diversity and population structure. Among these techniques restriction fragment length polymorphisms (RFLPs), random amplified polymorphic DNAs (RAPDs), amplified fragment length polymorphisms (AFLPs), and inter-simple sequence repeats (ISSRs) are viable options depending on the advantages and limitations of each technique. SNPs, which are spread across in both non-coding and coding regions of the genome, are also preferred in many mutation studies [49]. Present applications of the marker-based techniques include even transposable elements (TEs). The target region amplification polymorphism (TRAP) is a novel, polymerase chain reaction (PCR)-based marker system which exploits the available EST database sequence data to generate polymorphic markers targeting candidate genes. This method utilizes an 18-mer primer derived from the EST sequence and pairs it with an arbitrary primer that targets the intron and/or exon region. TRAP method is useful for germplasm genotyping and producing markers associated with desirable agronomic traits in mutation breeding. Hung et al. [50] employed this simple rapid method by using the consensus terminal inverted repeat sequences of PONG, miniature inverted-repeat transposable element (MITE)-Tourist (M-t) and MITE-Stowaway (M-s) as target region amplification polymorphism (TE-TRAP) markers to investigate the mobility of TEs in a gamma-irradiated soybean mutant pool. They concluded that MITEs were significant enough to confirm their practical utility as molecular markers for investigating mutant populations which were induced by random variations caused through physical mutagenesis (X-ray or gamma-ray). Also, the TE-TRAP marker system was suggested as it provides a simple, rapid, and cost-effective alternative for investigating genetic diversity and identifying mutant lines in irradiated soybean mutant breeding. Kim et al. [51] conducted a genetic diversity and association analysis of soybean mutants to assess elite mutant lines which were induced by 250 Gy of gamma rays using a 60Co gamma-irradiator. They have chosen 208 soybean mutants by phenotypic traits to mutant diversity pool (MDP) and investigated the genetic diversity and inter-relationships of these MDP lines using TRAP markers. MDP has been suggested to have great potential for soybean genetic resources. TRAP markers were found useful for the selection of soybean mutants in mutation breeding applications [51].
Besides the genetic diversity and population structure analysis, genetic characterization of improved mutants and the determination of the source of the gained trait in sequence basis studies have taken over the course of mutation breeding in present days. Before the genomic era which was ignited through the breakthrough discovery of DNA sequencing by Sanger et al. [52], the heteroduplex mismatch cleavage assay which is based on mismatch-specific endonuclease Cel I, was the standard method to detect point mutations. As a simple, rapid, and cheaper mutant discovery method, high resolution melting (HRM) analysis was applied to many agronomical crops. Following the Sanger sequencing, the final step of mutation screening was changed to Sanger to evaluate the changes in the genome and effects of mutation on amino acid substitutions. Today, next generation sequencing (NGS) technologies are the gold standard in the mutation detection field with various options as Roche 454 pyrosequencing, sequencing-by-synthesis, SOLiD sequencing and the HiSeq 2000, which is the gold standard of high-throughput sequencing. Tsuda et al. [53] reported the construction of a high-density mutant library in soybean and the development of a mutant retrieval method referred as amplicon sequencing which is an alternative, cheaper method for sequencing the PCR amplicons in targeted regions. The library of DNA and seeds of EMS-induced plants revealed large morphological and physiological variations. They retrieved the mutants through HRM and indexed amplicon sequencing analysis and confirmed by Sanger sequencing in the final step. They concluded that indexed amplicon sequencing allows researchers to scan a longer sequence range and skip screening steps and also, to know the sequence information of mutation due to the utilization of systematic DNA pooling and the index of NGS reads, which simplifies the discovery of mutants with amino acid substitutions comparing to the HRM screening [53].
MutMap method which utilizes the sequencing technique for mapping the mutated genes responsible for the desired trait was introduced for mutation breeding studies. The first application of the method has been developed by Abe et al. [54] to identify the mutated gene responsible for the change in leaf color from dark green to light green in rice [54]. Thereafter, it has been commonly used for mapping the monogenic recessive genes. In this method, a cultivar with a known reference sequence can be mutagenized by either chemical or physical mutagens. After the selfing and homozygosity experiment for the desired trait between M3 to M6 generations, mutants are crossed with their parental or wild type varieties. F2 population is obtained by selfing of F1. If the desired trait is inherited through a single recessive gene, the segregation ratio should be of 3:1 in wild and mutant phenotype in F2 population. In MutMap method, DNA of homozygous mutant plants are extracted and subjected to whole genome sequencing. The mutant genomes are compared to the publicly accessible reference sequences to determine single nucleotide polymorphic (SNPs) variations. The linkage between mutants and wild type plants can be evaluated according to SNP ratios in which the ratio infer that the SNP variation is not linked to the mutation if ranged between 0.1 and 0.5, while it can be linked to the mutation when ranges are between 0.51 to 1 [54, 55]. Kato et al. [56] introduced Lumi-Map, which is a high-throughput platform for identifying causative SNPs for studying pathogen-associated molecular patterns (PAMP) triggered immunity (PTI) signaling components, in combination with MutMap. In Lumi-Map method, they generated nine transgenic Arabidopsis reporter lines expressing the LUC gene fused to multiple promoter sequences of defense-related genes, that generates luminescence upon activation of FLAGELLIN-SENSING 2 (FLS2) by flg22, a PAMP derived from bacterial flagellin treatment. Mutagenesis of the line as achieved through EMS treatment and the mutants with altered luminescence patterns were screened by a high-throughput real-time bioluminescence monitoring system. They subjected MutMap method on selected mutants to identify the causative SNP responsible for the luminescence pattern alterations. WRKY29-promoter reporter line was selected to identify mutants in the signaling pathway downstream of FLS2. Twenty-two mutants with altered WRKY29 expression upon flg22 treatment among 24,000 EMS-induced mutants of the reporter line were isolated. In this mutagenesis study, Lumi-Map method combined with MutMap revealed three genes not previously associated with PTI and suggested as a potential alternative to identify novel PAMPs and their receptors as well as signaling components downstream of the receptors [56]. Takagi et al. [57] exploited the rapid and versatile properties of MutMap for more than 20,000 ha of rice paddy field which was inundated with seawater, resulting in salt contamination of the land in Japan following the 2011 earthquake and tsunami that affected Japan. They needed an improved rice variety at short notice as local rice landraces were not tolerant of high salt concentrations caused by seawater. They obtained 6000 EMS-induced mutant lines of a local elite cultivar, ‘Hitomebore’. MutMap method was used to rapidly identify a loss-of-function mutation responsible for the salt tolerance of hst1 rice. The detected salt-tolerant hst1 mutant was used to breed a salt-tolerant Kaijin variety which differs from Hitomebore by only 201 SNPs. Conducted field trials presented that improved variety had the equal growth and yield performance as the parental line under normal growth conditions. The whole process was completed only in 2 years which proves the efficiency of MutMap in mutation breeding studies [57]. Fekih et al. [58] improved the method even further and introduced the MutMap+ which is a modified version of MutMap developed for the cases in which obtaining F2 mapping population is impossible due to the lethal mutations or sterility. MutMap+ has advantages over MutMap as it is less complex, time-consuming, and costly especially in large mapping population. Also, hybridization step of MutMap can be relatively compelling especially in small flower plant species and in crops that are recalcitrant to artificial crosses, therefore, MutMap+, which notably does not necessitate artificial crossing between mutants and the wild-type parental line, is advantageous. In MutMap+ method, again, a cultivar with known reference sequence can be mutagenized by either chemical or physical mutagens. M1 plants are selfed to develop M2 generation. However, in MutMap+ mutants are not crossed with their parental or wild type varieties. The heterozygous M2 mutant plants are selfed to develop M3 generation in which the segregation ratio of 3:1 for wild and mutant phenotype is expected. DNAs of tagged mutants and parental varieties are extracted, and pooled. Following the whole genome sequencing, data is compared to the reference genome and SNP profiles are determined. They identified causal nucleotide changes of rice mutants of NAP6 gene that is responsible for change in leaf color and consequent lethality after germination. This versatile extension of MutMap method, also allow determination of recessive lethal alleles [58].
In soybean, Liu et al. [59] investigated two types of resistant sources which are widely used against soybean cyst nematode (SCN, Heterodera glycines Ichinohe). Peking-type soybean requires both rhg1-a and Rhg4 alleles, while PI 88788-type soybean requires only the rhg1-b allele for resistance. Instead of MutMap, they preferred the region-specific extraction sequencing (RSE-Seq) method which is developed to enrich a targeted chromosomal segment for genome sequencing to identify SCN resistance genes within the identified 300 kb chromosomal segment carrying the rhg1 locus, due to the requirement of MutMap to an additional procedure of backcross of phenotypic mutants with the wild-type. They suggested GmSNAP18 gene as a candidate for the resistance of two various resistant types of soybeans for SCN [59]. RSE is a cost-effective, long-range DNA target capture methodology that relies on the specific hybridization of short (20–25 base) oligonucleotide primers to selected sequence motifs within the DNA target region This target enrichment method can produce sequencing templates more than 20 kbp in length. These capture primers are then enzymatically extended on the 3′-end, incorporating biotinylated nucleotides into DNA. Streptavidin-coated beads are subsequently used to pull down the original, long DNA template molecules through synthesized, biotinylated DNA that is bound to them [60]. QTL-seq is another method adapted from MutMap to identify quantitative trait loci. In presence of pooled two segregating progeny populations with opposite traits as resistant and susceptible and single whole-genome resequencing of either of the parental cultivars, it utilizes pooled sequences. Also, modified QTL-seq using high-resolution mapping has been developed to cover the weakness of original QTL-seq which do not assume a highly heterozygous genome [61]. Direct whole genome re-sequencing (WGRS) is also utilized effectively to identify candidate genes involved in resistance to SCN in soybean due to the requirement of time-consuming backcrosses in MutMap and QTL-seq methods. Two EMS-induced soybean mutants and six relevant whole genomes were re-sequenced to determine genomic variants as SNPs and InDels. Comparison by this method eliminated many genomic variants from the mutant lines that overlapped non-phenotypic but mutant progeny plants. Therefore, the method was suggested as simple but effective to the identify other trait genes in soybean, even in other organisms [62]. Likewise, comparative genomic analyses of two segregating soybean mutants which were selected among 500 EMS-induced candidates revealed seven genes potentially involved in resistance to Fusarium equiseti through WGRS. These genes were suggested to facilitate the breeding of resistant germplasm resources and the identification of resistance to Fusarium spp. in soybean [63].
3. Future Prospect and conclusion
Soybean genetic variation improvement is important for the development of superior cultivars. One of the greatest challenges in mutation breeding is random (uncontrolled) nature of induced mutagenesis. Large population requirement for desired mutant selection brings intensive labor. The emergence of clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) technology has brought wider insight to the field through allowing targeted mutagenesis. It has been widely used in numerous plants as rice, wheat, maize, oilseed rape, barley, cotton, tomato and soybean as well. However, utilization of CRISPR/Cas9 system in soybean is still limited due to the transformation challenges in soybean. As summarized in Table 1, most of the targets which were successfully applied to soybean were single gene edits. Paleopolyploid genome of soybean in which approximately 75% of the genes have multiple copies, requires multiple genes or paralogous genes to regulate many important traits. Therefore, these traits may only be targeted by editing which requires the engineering of homologous sequences using more than one sgRNA for recognition. Introducing multiple constructs simultaneously to soybean is relatively limiting in terms of genome editing associated soybean breeding approaches. Recently, Zhang et al. [73] successfully optimized one sgRNA CRISPR/Cas9 system in soybean for the target-specific mutations at multiple loci of GmFAD2 and GmALS. They evaluated the efficiency, type, specificity, and patterns of multiple targeted mutations by selecting three different genes with known functions in soybean and suggested that CRISPR/Cas9 could specifically and efficiently induce targeted mutations at one locus or multiple loci in the T0 generation. Moreover, they demonstrated the necessity of simultaneous modification of different homoeologous gene copies in polyploid soybean for successful CRISPR-Cas9-mediated breeding [73]. Therefore, induced mutagenesis is still a major method to produce new alleles and new desired traits within the crop genomes. Physical and chemical mutagen protocols are still improving and mutation breeding proves its value to be fast, flexible, and viable in crop sciences.
Targeted mutagenesis application examples for soybean.
The second most limiting prospect of induced mutagenesis was the requirement of at least three generation before any stable selection of desired traits in mutants which leads to 7−9 years of average mutation breeding study, previously. However, as described in previous sections NGS based approaches as MutMap accelerated the selection periods significantly. Novel non-destructive measurement methods allow automated imaging and optical measurements of the same plants for desired periods. These approaches provide high measurement densities and fill the gap between genotype and phenotype in mutation breeding studies which is still another limitation in this field. Repeated imaging of particular genotypes under different environmental conditions leads to the generation of development models for biologically relevant parameters. In the present omics era, future procedures may shorten the selection procedures even further [79].
In conclusion, mutation breeding passed important cross-roads successfully during recent advances in plant biotechnology, transformation and targeted mutagenesis by its particular great advantages. Mutagenesis will retain its place in crop science in next decades especially for the plants as soybean for which cross breeding is limited or not applicable.
\n',keywords:"soybean, mutation breeding, mutagens, induced mutagenesis, next generation sequencing",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/81525.pdf",chapterXML:"https://mts.intechopen.com/source/xml/81525.xml",downloadPdfUrl:"/chapter/pdf-download/81525",previewPdfUrl:"/chapter/pdf-preview/81525",totalDownloads:66,totalViews:0,totalCrossrefCites:0,dateSubmitted:"March 21st 2022",dateReviewed:"April 4th 2022",datePrePublished:"April 26th 2022",datePublished:null,dateFinished:"April 26th 2022",readingETA:"0",abstract:"Soybean, which has many foods, feed, and industrial raw material products, has relatively limited genetic diversity due to the domestication practices which mainly focused on higher yield for many centuries. Besides, cleistogamy in soybean plant reduces genetic variations even further. Improving genetic variation in soybean is crucial for breeding applications to improve traits such as higher yield, early maturity, herbicide, and pest resistance, lodging and shattering resistance, seed quality and composition, abiotic stress tolerance and more. In the 21st century, there are numerous alternatives from conventional breeding to biotechnological approaches. Among these, mutation breeding is still a major method to produce new alleles and desired traits within the crop genomes. Physical and chemical mutagen protocols are still improving and mutation breeding proves its value to be fast, flexible, and viable in crop sciences. In the verge of revolutionary genome editing era, induced mutagenesis passed important cross-roads successfully with the help of emerging supportive NGS based-methods and non-destructive screening approaches that reduce the time-consuming labor-intensive selection practices of mutation breeding. Induced mutagenesis will retain its place in crop science in the next decades, especially for plants such as soybean for which cross breeding is limited or not applicable.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/81525",risUrl:"/chapter/ris/81525",signatures:"Alp Ayan, Sinan Meriç, Tamer Gümüş and Çimen Atak",book:{id:"11364",type:"book",title:"Soybean - Recent Advances in Research and Applications",subtitle:null,fullTitle:"Soybean - Recent Advances in Research and Applications",slug:null,publishedDate:null,bookSignature:"Prof. Takuji Ohyama, Dr. Yoshihiko Takahashi, Dr. Norikuni Ohtake, Dr. Takashi Sato and Dr. Sayuri Tanabata",coverURL:"https://cdn.intechopen.com/books/images_new/11364.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-80355-700-7",printIsbn:"978-1-80355-699-4",pdfIsbn:"978-1-80355-701-4",isAvailableForWebshopOrdering:!0,editors:[{id:"30061",title:"Prof.",name:"Takuji",middleName:null,surname:"Ohyama",slug:"takuji-ohyama",fullName:"Takuji Ohyama"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"147364",title:"Prof.",name:"Çimen",middleName:null,surname:"Atak",fullName:"Çimen Atak",slug:"cimen-atak",email:"c.atak@iku.edu.tr",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Istanbul Kültür University",institutionURL:null,country:{name:"Turkey"}}},{id:"191695",title:"Dr.",name:"Alp",middleName:null,surname:"Ayan",fullName:"Alp Ayan",slug:"alp-ayan",email:"a.ayan@iku.edu.tr",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191695/images/14607_n.jpg",institution:{name:"Istanbul Kültür University",institutionURL:null,country:{name:"Turkey"}}},{id:"191696",title:"Dr.",name:"Sinan",middleName:null,surname:"Meriç",fullName:"Sinan Meriç",slug:"sinan-meric",email:"s.meric@iku.edu.tr",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Istanbul Kültür University",institutionURL:null,country:{name:"Turkey"}}},{id:"333168",title:"MSc.",name:"Tamer",middleName:null,surname:"Gümüş",fullName:"Tamer Gümüş",slug:"tamer-gumus",email:"t.gumus@iku.edu.tr",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Istanbul Kültür University",institutionURL:null,country:{name:"Turkey"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Improving genomic variations",level:"1"},{id:"sec_2_2",title:"2.1 Conventional methods",level:"2"},{id:"sec_3_2",title:"2.2 Biotechnological approaches",level:"2"},{id:"sec_4_2",title:"2.3 Mutation breeding",level:"2"},{id:"sec_4_3",title:"2.3.1 Mutagens",level:"3"},{id:"sec_5_3",title:"2.3.2 Present applications of mutation breeding in soybean",level:"3"},{id:"sec_8",title:"3. Future Prospect and conclusion",level:"1"}],chapterReferences:[{id:"B1",body:'Knowlton S. High-oleic soybean oil. In: Flider FJ, editor. High Oleic Oils. IL, USA: AOCS Press; 2022. pp. 53-87. DOI: 10.1016/B978-0-12-822912-5.00007-1'},{id:"B2",body:'Willis S. The use of soybean meal and full fat soybean meal by the animal feed industry. In: 12th Australian Soybean Conference. Bundaberg: Soy Australia; 2003'},{id:"B3",body:'Costantini M, Bacenetti J. Soybean and maize cultivation in South America: Environmental comparison of different cropping systems. Cleaner Environmental Systems. 2021;2:100017. DOI: 10.1016/j.cesys.2021.100017'},{id:"B4",body:'de Freitas VF, Cerezini P, Hungria M, Nogueira MA. Strategies to deal with drought-stress in biological nitrogen fixation in soybean. Applied Soil Ecology. 2022;172:104352. DOI: 10.1016/j.apsoil.2021.104352'},{id:"B5",body:'Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, et al. NCBI taxonomy: A comprehensive update on curation, resources and tools. Database. 2020;2020:1-21'},{id:"B6",body:'Hymowitz T. The history of the soybean. In: Soybeans. IL, USA: AOCS Press; 2008. pp. 1-31. DOI: 10.1016/B978-1-893997-64-6.50004-4'},{id:"B7",body:'Bilyeu K, Ratnaparkhe MB, Kole C. Genetics, Genomics, and Breeding of Soybean. Genet Genomics, Breed Soybean. London, UK: CRC Press; 2016. pp. 1-362'},{id:"B8",body:'Valliyodan B, Qiu D, Patil G, Zeng P, Huang J, Dai L, et al. Landscape of genomic diversity and trait discovery in soybean. Scientific Reports. 2016;6(1):1. DOI: 10.1038/srep23598'},{id:"B9",body:'Valliyodan B, Brown AV, Wang J, Patil G, Liu Y, Otyama PI, et al. Genetic variation among 481 diverse soybean accessions, inferred from genomic re-sequencing. Scientific Data. 2021;8(1):1-9. DOI: 10.1038/s41597-021-00834-w'},{id:"B10",body:'Takahashi R, Kurosaki H, Yumoto S, Han OK, Abe J. Genetic and linkage analysis of cleistogamy in soybean. Journal of Heredity. 2001;92(1):89-92. DOI: 10.1093/jhered/92.1.89'},{id:"B11",body:'Pratap A, Gupta SK, Kumar J, Solanki RK. Soybean. In: Gupta S, editor. Technological Innovations in Major World Oil Crops. Vol. 1. New York, NY: Springer; 2012. pp. 293-321. DOI: 10.1007/978-1-4614-0356-2_12'},{id:"B12",body:'Miladinovic J, Burton JW, Tubic SB, Miladinovic D, Djordjevic V, Djukic V. Soybean breeding: Comparison of the efficiency of different selection methods. Turkish Journal of Agriculture and Forestry. 2011;35(5):469-480. DOI: 10.3906/tar-1011-1474'},{id:"B13",body:'Yuhong G, Rasheed A, Zhao ZH, Gardiner JJ, Ilyas M, Akram M, et al. Role of conventional and molecular techniques in soybean yield and quality improvement: A critical review. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2021;49(4):12555. DOI: 10.15835/nbha49412555'},{id:"B14",body:'Beaver JS, Osorno JM. Achievements and limitations of contemporary common bean breeding using conventional and molecular approaches. Euphytica. 2009;168(2):145-175. DOI: 10.1007/s10681-009-9911-x'},{id:"B15",body:'Lavanya C, Ushakiran B, Sarada C, Manjunatha T, Senthilvel S, Ramya KT, et al. Use of single seed descent versus pedigree selection for development of elite parental lines in castor (Ricinus communis L.). Genetic Resources and Crop Evolution. 2021;68(1):295-305. DOI: 10.1007/s10722-020-00985-6'},{id:"B16",body:'Jiang GL. Molecular markers and marker-assisted breeding in plants. Plant Breeding from Laboratories to Fields. 2013;3:45-83. DOI: 10.5772/52583'},{id:"B17",body:'Ribaut JM, De Vicente MC, Delannay X. Molecular breeding in developing countries: Challenges and perspectives. Current Opinion in Plant Biology. 2010;13(2):213-218. DOI: 10.1016/j.pbi.2009.12.011'},{id:"B18",body:'Jiang GL. Molecular markers and marker-assisted breeding in plants. Plant Breeding from Laboratories to Fields. 2013;3:45-83. DOI: 10.5772/52583'},{id:"B19",body:'Collard BC, Mackill DJ. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society, B: Biological Sciences. 2008;363(1491):557-572. DOI: 10.1098/rstb.2007.2170'},{id:"B20",body:'Anderson EJ, Ali ML, Beavis WD, Chen P, Clemente TE, Diers BW, et al. Soybean [Glycine max (L.) Merr.] breeding: History, improvement, production and future opportunities. In: Advances in Plant Breeding Strategies: Legumes. Cham: Springer; 2019. pp. 431-516. DOI: 10.1007/978-3-030-23400-3_12'},{id:"B21",body:'Bhat JA, Ali S, Salgotra RK, Mir ZA, Dutta S, Jadon V, et al. Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Frontiers in Genetics. 2016;7:221. DOI: 10.3389/fgene.2016.00221'},{id:"B22",body:'Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, De Los CG, et al. Genomic selection in plant breeding: Methods, models, and perspectives. Trends in Plant Science. 2017;22(11):961-975. DOI: 10.1016/j.tplants.2017.08.011'},{id:"B23",body:'Alok A, Sharma S, Kumar J, Verma S, Sood H. Engineering in plant genome using Agrobacterium: Progress and future. In: Metabolic Engineering for Bioactive Compounds. Singapore: Springer; 2017. pp. 91-111. DOI: 10.1007/978-981-10-5511-9_5'},{id:"B24",body:'Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods. 2013;9(1):1. DOI: 10.1186/1746-4811-9-39'},{id:"B25",body:'Benning C, Sweetlove L. Synthetic biology for basic and applied plant research. The Plant Journal. 2016;87(1):3-4. DOI: 10.1111/tpj.13245'},{id:"B26",body:'Çelik Ö, Meriç S, Ayan A, Atak Ç. Biotic stress-tolerant plants through small RNA technology. In: Plant Small RNA. Massachusetts, USA: Academic Press; 2020. pp. 435-468. DOI: 10.1016/B978-0-12-817112-7.00020-1'},{id:"B27",body:'Meriç S, Ayan A, Atak Ç. Molecular abiotic stress Tolerans strategies: From genetic engineering to genome editing era. In: Abiotic Stress in Plants. London, UK: IntechOpen; 2020. p. 91. DOI: 10.5772/intechopen.94505'},{id:"B28",body:'Ayan A, Meriç S, Gümüş T, Atak Ç. Next generation of transgenic plants: From farming to pharming. In: Genetically Modified Plants and beyond. London, UK: IntechOpen; 2022. DOI: 10.5772/intechopen.102004'},{id:"B29",body:'James C. Brief 54: Global Status of Commercialized Biotech/GM Crops in 2018: Biotech Crops Continue to Help Meet the Challenges of Increased Population and Climate Change. Ithaca, NY: ISAAA; 2018'},{id:"B30",body:'ISAAA. GM Approval Database. GMO Database. Available on: https://www.isaaa.org/gmapprovaldatabase/'},{id:"B31",body:'Oladosu Y, Rafii MY, Abdullah N, Hussin G, Ramli A, Rahim HA, et al. Principle and application of plant mutagenesis in crop improvement: A review. Biotechnology and Biotechnological Equipment. 2016;30(1):1-6. DOI: 10.1080/13102818.2015.1087333'},{id:"B32",body:'Stadler LJ. Genetic effects of X-rays in maize. Proceedings of the National Academy of Sciences of the United States of America. 1928;14(1):69. DOI: 10.1073/pnas.14.1.69'},{id:"B33",body:'Freisleben R, Lein A. Über die Auffindung einer mehltauresistenten Mutante nach Röntgenbestrahlung einer anfälligen reinen Linie von Sommergerste. Die Naturwissenschaften. 1942;30(40):608. DOI: 10.1007/BF01488231'},{id:"B34",body:'Shu QY, Forster BP, Nakagawa H, Nakagawa H. Plant Mutation Breeding and Biotechnology. Wallingford, UK: Cabi; 2012'},{id:"B35",body:'Bado S, Forster BP, Nielen S, Ali AM, Lagoda PJ, Till BJ, et al. Plant mutation breeding: Current progress and future assessment. Plant Breeding Reviews. 2015;39:23-88. DOI: 10.1002/9781119107743.ch02'},{id:"B36",body:'Jankowicz-Cieslak J, Tai TH, Kumlehn J, Till BJ. Biotechnologies for Plant Mutation Breeding: Protocols. Berlin, Germany: Springer Nature; 2017'},{id:"B37",body:'Lehnert S. Biomolecular Action of Ionizing Radiation. London, UK: CRC Press; 2007'},{id:"B38",body:'Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG, et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science. 2010;327(5961):92-94. DOI: 10.1126/science.1180677'},{id:"B39",body:'Lagoda PJ. Effects of mutagenic agents on the DNA sequence in plants. Plant Breeding and Genetics Newsletter. 2007;19:13-14'},{id:"B40",body:'Jain SM, Brar DS, Ahloowalia BS. Somaclonal Variation and Induced Mutations in Crop Improvement. Berlin, Germany: Springer Science & Business Media; 2013. DOI: 10.1007/978-94-015-9125-6_11'},{id:"B41",body:'Azman AS, Mhiri C, Tam S. Transposable elements and the detection of somaclonal variation in plant tissue culture: A review. Malaysian Applied Biology. 2014;43(1):1-2'},{id:"B42",body:'Raina A, Laskar RA, Khursheed S, Amin R, Tantray YR, Parveen K, et al. Role of mutation breeding in crop improvement-past, present and future. Asian Research Journal of Agriculture. 2016;2(2):1-3. DOI: 10.9734/ARJA/2016/29334'},{id:"B43",body:'Dhawan OP, Lavania UC. Enhancing the productivity of secondary metabolites via induced polyploidy: A review. Euphytica. 1996;87(2):81-89. DOI: 10.1007/BF00021879'},{id:"B44",body:'Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, et al. Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Molecular Genetics and Genomics. 2005;274(5):515-527. DOI: 10.1007/s00438-005-0046-z'},{id:"B45",body:'Jehan T, Lakhanpaul S. Single nucleotide polymorphism (SNP)–methods and applications in plant genetics: A review. Indian Journal of Biotechnology. 2006;5:435-459'},{id:"B46",body:'Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner JS, Stockinger EJ, et al. Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theoretical and Applied Genetics. 2006;112(3):445-454. DOI: 10.1007/s00122-005-0144-7'},{id:"B47",body:'Tuberosa R, Salvi S. Genomics-based approaches to improve drought tolerance of crops. Trends in Plant Science. 2006;11(8):405-412. DOI: 10.1016/j.tplants.2006.06.003'},{id:"B48",body:'IAEA. Mutanat Variety Database (MVD) [Internet]. 2022. Available from: https://mvd.iaea.org/#!Home [Accessed: 07-02-2022]'},{id:"B49",body:'Atak Ç, Alikamanoğlu S, Açık L, Canbolat Y. Induced of plastid mutations in soybean plant (Glycine max L. Merrill) with gamma radiation and determination with RAPD. Mutation Research: Fundamental and Molecular Mechanisms of Mutagenesis. 2004;556(1-2):35-44. DOI: 10.1016/j.mrfmmm.2004.06.037'},{id:"B50",body:'Hung NN, Kim DG, Lyu JI, Park KC, Kim JM, Kim JB, et al. Detecting genetic mobility using a transposon-based marker system in gamma-ray irradiated soybean mutants. Plants. 2021;10(2):373. DOI: 10.3390/plants10020373'},{id:"B51",body:'Kim DG, Lyu JI, Lee MK, Kim JM, Hung NN, Hong MJ, et al. Construction of soybean mutant diversity pool (MDP) lines and an analysis of their genetic relationships and associations using TRAP markers. Agronomy. 2020;10(2):253. DOI: 10.3390/agronomy10020253'},{id:"B52",body:'Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences. 1977;74(12):5463-5467. DOI: 10.1073/pnas.74.12.5463'},{id:"B53",body:'Tsuda M, Kaga A, Anai T, Shimizu T, Sayama T, Takagi K, et al. Construction of a high-density mutant library in soybean and development of a mutant retrieval method using amplicon sequencing. BMC Genomics. 2015;16(1):1-8. DOI: 10.1186/s12864-015-2079-y'},{id:"B54",body:'Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, et al. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology. 2012;30(2):174-178. DOI: 10.1038/nbt.2095'},{id:"B55",body:'Tribhuvan KU, Kumar K, Sevanthi AM, Gaikwad K. MutMap: A versatile tool for identification of mutant loci and mapping of genes. Indian Journal of Plant Physiology. 2018;23(4):612-621. DOI: 10.1007/s40502-018-0417-1'},{id:"B56",body:'Kato H, Onai K, Abe A, Shimizu M, Takagi H, Tateda C, et al. Lumi-map, a real-time luciferase bioluminescence screen of mutants combined with MutMap, reveals Arabidopsis genes involved in PAMP-triggered immunity. Molecular Plant-Microbe Interactions. 2020;33(12):1366-1380. DOI: 10.1094/MPMI-05-20-0118-TA'},{id:"B57",body:'Takagi H, Tamiru M, Abe A, Yoshida K, Uemura A, Yaegashi H, et al. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nature Biotechnology. 2015;33(5):445-449. DOI: 10.1038/nbt.3188'},{id:"B58",body:'Fekih R, Takagi H, Tamiru M, Abe A, Natsume S, Yaegashi H, et al. MutMap+: Genetic mapping and mutant identification without crossing in rice. PLoS One. 2013;8(7):e68529. DOI: 10.1371/journal.pone.0068529'},{id:"B59",body:'Liu S, Kandoth PK, Lakhssassi N, Kang J, Colantonio V, Heinz R, et al. The soybean GmSNAP18 gene underlies two types of resistance to soybean cyst nematode. Nature Communications. 2017;8(1):1. DOI: 10.1038/ncomms14822'},{id:"B60",body:'Dapprich J, Ferriola D, Mackiewicz K, Clark PM, Rappaport E, D’Arcy M, et al. The next generation of target capture technologies-large DNA fragment enrichment and sequencing determines regional genomic variation of high complexity. BMC Genomics. 2016;17(1):1-4. DOI: 10.1186/s12864-016-2836-6'},{id:"B61",body:'Sugihara Y, Young L, Yaegashi H, Natsume S, Shea DJ, Takagi H, et al. High-performance pipeline for MutMap and QTL-seq. PeerJ. 2022;10:e13170. DOI: 10.7717/peerj.13170'},{id:"B62",body:'Liu S, Ge F, Huang W, Lightfoot DA, Peng D. Effective identification of soybean candidate genes involved in resistance to soybean cyst nematode via direct whole genome re-sequencing of two segregating mutants. Theoretical and Applied Genetics. 2019;132(9):2677-2687. DOI: 10.1007/s00122-019-03381-6'},{id:"B63",body:'Zhang L, Huang W, Peng D, Liu S. Comparative genomic analyses of two segregating mutants reveal seven genes likely involved in resistance to Fusarium equiseti in soybean via whole genome re-sequencing. Theoretical and Applied Genetics. 2019;132(11):2997-3008. DOI: 10.1007/s00122-019-03401-5'},{id:"B64",body:'Butler KJ, Fliege C, Zapotocny R, Diers B, Hudson M, Bent AF. Soybean cyst nematode resistance quantitative trait locus cqSCN-006 alters the expression of a γ-SNAP protein. Molecular Plant-Microbe Interactions. 2021;34(12):1433-1445. DOI: 10.1094/MPMI-07-21-0163-R'},{id:"B65",body:'Chen X, Yang S, Zhang Y, Zhu X, Yang X, Zhang C, et al. Generation of male-sterile soybean lines with the CRISPR/Cas9 system. The Crop Journal. 2021;9(6):1270-1277. DOI: 10.1016/j.cj.2021.05.003'},{id:"B66",body:'Huang Y, Xuan H, Yang C, Guo N, Wang H, Zhao J, et al. GmHsp90A2 is involved in soybean heat stress as a positive regulator. Plant Science. 2019;285:26-33. DOI: 10.1016/j.plantsci.2019.04.016'},{id:"B67",body:'Li M, Chen R, Jiang Q , Sun X, Zhang H, Hu Z. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Molecular Biology. 2021;105(3):333-345. DOI: 10.1007/s11103-020-01091-y'},{id:"B68",body:'Do PT, Nguyen CX, Bui HT, Tran LT, Stacey G, Gillman JD, et al. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biology. 2019;19(1):1-4. DOI: 10.1186/s12870-019-1906-8'},{id:"B69",body:'Chen L, Nan H, Kong L, Yue L, Yang H, Zhao Q , et al. Soybean AP1 homologs control flowering time and plant height. Journal of Integrative Plant Biology. 2020;62(12):1868-1879. DOI: 10.1111/jipb.12988'},{id:"B70",body:'Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, et al. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnology Journal. 2018;16(1):176-185. DOI: 10.1111/pbi.12758'},{id:"B71",body:'Wang J, Kuang H, Zhang Z, Yang Y, Yan L, Zhang M, et al. Generation of seed lipoxygenase-free soybean using CRISPR-Cas9. The Crop Journal. 2020;8(3):432-439. DOI: 10.1016/j.cj.2019.08.008'},{id:"B72",body:'Sugano S, Hirose A, Kanazashi Y, Adachi K, Hibara M, Itoh T, et al. Simultaneous induction of mutant alleles of two allergenic genes in soybean by using site-directed mutagenesis. BMC Plant Biology. 2020;20(1):1-5. DOI: 10.1186/s12870-020-02708-6'},{id:"B73",body:'Zhang L, Wang Y, Li T, Qiu H, Xia Z, Dong Y. Target-specific mutations efficiency at multiple loci of CRISPR/Cas9 system using one sgRNA in soybean. Transgenic Research. 2021;30(1):51-62. DOI: 10.1007/s11248-020-00228-5'},{id:"B74",body:'Ma J, Sun S, Whelan J, Shou H. CRISPR/Cas9-mediated knockout of GmFATB1 significantly reduced the amount of saturated fatty acids in soybean seeds. International Journal of Molecular Sciences. 2021;22(8):3877. DOI: 10.3390/ijms22083877'},{id:"B75",body:'Han J, Guo B, Guo Y, Zhang B, Wang X, Qiu LJ. Creation of early flowering germplasm of soybean by CRISPR/Cas9 technology. Frontiers in Plant Science. 2019;1446. DOI: 10.3389/fpls.2019.01446'},{id:"B76",body:'Bao A, Chen H, Chen L, Chen S, Hao Q , Guo W, et al. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biology. 2019;19(1):1-2. DOI: 10.1186/s12870-019-1746-6'},{id:"B77",body:'Yang C, Huang Y, Lv W, Zhang Y, Bhat JA, Kong J, et al. GmNAC8 acts as a positive regulator in soybean drought stress. Plant Science. 2020;293:110442. DOI: 10.1016/j.plantsci.2020.110442'},{id:"B78",body:'Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L, et al. Cas9-guide RNA directed genome editing in soybean. Plant Physiology. 2015;169(2):960-970. DOI: 10.1104/pp.15.00783'},{id:"B79",body:'Schunk CR, Eberius M. Phenomics in plant biological research and mutation breeding. Plant Mutation Breeding and Biotechnology. 2012:535-560. DOI: 10.1079/9781780640853.0535'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Alp Ayan",address:"a.ayan@iku.edu.tr",affiliation:'
Faculty of Science and Letters, Department of Molecular Biology and Genetic, Istanbul Kultur University, Istanbul, Turkey
Faculty of Science and Letters, Department of Molecular Biology and Genetic, Istanbul Kultur University, Istanbul, Turkey
'}],corrections:null},book:{id:"11364",type:"book",title:"Soybean - Recent Advances in Research and Applications",subtitle:null,fullTitle:"Soybean - Recent Advances in Research and Applications",slug:null,publishedDate:null,bookSignature:"Prof. Takuji Ohyama, Dr. Yoshihiko Takahashi, Dr. Norikuni Ohtake, Dr. Takashi Sato and Dr. Sayuri Tanabata",coverURL:"https://cdn.intechopen.com/books/images_new/11364.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-80355-700-7",printIsbn:"978-1-80355-699-4",pdfIsbn:"978-1-80355-701-4",isAvailableForWebshopOrdering:!0,editors:[{id:"30061",title:"Prof.",name:"Takuji",middleName:null,surname:"Ohyama",slug:"takuji-ohyama",fullName:"Takuji Ohyama"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"12483",title:"Prof.",name:"Igor",middleName:null,surname:"Denisyuk",email:"denisiuk@mail.ifmo.ru",fullName:"Igor Denisyuk",slug:"igor-denisyuk",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"2",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"38561",title:"Optical Nanocomposites Based on High Nanoparticles Concentration and Its Holographic Application",slug:"optical-nanocomposites-based-on-high-nanoparticles-concentration-and-its-holographic-application",abstract:null,signatures:"Igor Yu. Denisyuk, Julia A. Burunkova, Sandor Kokenyesi, Vera G. Bulgakova and Mari Iv. Fokina",authors:[{id:"12483",title:"Prof.",name:"Igor",surname:"Denisyuk",fullName:"Igor Denisyuk",slug:"igor-denisyuk",email:"denisiuk@mail.ifmo.ru"},{id:"12868",title:"Dr.",name:"Mari",surname:"Fokina",fullName:"Mari Fokina",slug:"mari-fokina",email:"mari2506@rambler.ru"},{id:"148953",title:"Dr.",name:"Julia",surname:"Burunkova",fullName:"Julia Burunkova",slug:"julia-burunkova",email:"burunj@list.ru"},{id:"148954",title:"Dr.",name:"Nadejda",surname:"Vorzobova",fullName:"Nadejda Vorzobova",slug:"nadejda-vorzobova",email:"vorzobova@mail.ifmo.ru"},{id:"148955",title:"Prof.",name:"Sandor",surname:"Kokenyesi",fullName:"Sandor Kokenyesi",slug:"sandor-kokenyesi",email:"kiki@tigris.unideb.hu"},{id:"153982",title:"Ms.",name:"Vera",surname:"Bulgakova",fullName:"Vera Bulgakova",slug:"vera-bulgakova",email:"vera-bulgakova@yandex.ru"}],book:{id:"2165",title:"Nanocrystals",slug:"nanocrystals-synthesis-characterization-and-applications",productType:{id:"1",title:"Edited Volume"}}},{id:"57665",title:"Sorption Properties of Clay and Pectin-Containing Hydrogels",slug:"sorption-properties-of-clay-and-pectin-containing-hydrogels",abstract:"As is known, polymeric polyelectrolyte hydrogels are superabsorbents that are capable of absorbing moisture in amounts many times greater than their own mass. Numerous studies have shown that besides water absorption and retention, they can also be effectively used as sorbents to purify water from heavy metals. In many works, attempts are made to improve the sorption properties of polyelectrolyte hydrogels by creating polymer composites based on them. Organic/inorganic composite materials frequently exhibited desired hybrid performance superior to their individual components and cost-efficient characteristics. The composites derived from natural polysaccharides and inorganic clay minerals are of special interest by virtue of their unique commercial and environmental advantages, which means that the design and development of environmentally friendly superabsorbents, introducing natural ingredients, have long been necessary. In this paper, we consider polymer hydrogels based on a copolymer of acrylic acid and acrylamide filled with pectin and bentonite. The aim of this study is to investigate the influence of chemical conditions on hydrogels and their composites, kinetic, and absorption behavior toward metal ions in the presence of the chelating agent. In this chapter, an investigation of the kinetic patterns of swelling, deswelling, and sorption of the hydrogels and their composites will be presented.",signatures:"Mayya V. Uspenskaya, Vera E. Sitnikova, Michael A. Dovbeta,\nRoman O. Olekhnovich and Igor Yu. Denisyuk",authors:[{id:"12483",title:"Prof.",name:"Igor",surname:"Denisyuk",fullName:"Igor Denisyuk",slug:"igor-denisyuk",email:"denisiuk@mail.ifmo.ru"},{id:"215365",title:"Prof.",name:"Mayya",surname:"Uspenskaya",fullName:"Mayya Uspenskaya",slug:"mayya-uspenskaya",email:"mv_uspenskaya@mail.ru"},{id:"215367",title:"Dr.",name:"Roman",surname:"Olekhnovich",fullName:"Roman Olekhnovich",slug:"roman-olekhnovich",email:"romanart@inbox.ru"},{id:"215371",title:"MSc.",name:"Michael",surname:"Dovbeta",fullName:"Michael Dovbeta",slug:"michael-dovbeta",email:"mdov@bk.ru"},{id:"215372",title:"Dr.",name:"Vera",surname:"Sitnikova",fullName:"Vera Sitnikova",slug:"vera-sitnikova",email:"kresenka@gmail.com"}],book:{id:"6141",title:"Polymerization",slug:"recent-research-in-polymerization",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"12182",title:"Dr.",name:"Ricardo",surname:"Souza da Silva",slug:"ricardo-souza-da-silva",fullName:"Ricardo Souza da Silva",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12868",title:"Dr.",name:"Mari",surname:"Fokina",slug:"mari-fokina",fullName:"Mari Fokina",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"13001",title:"Dr.",name:"Noelio",surname:"Oliveira Dantas",slug:"noelio-oliveira-dantas",fullName:"Noelio Oliveira Dantas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},{id:"13002",title:"Prof.",name:"Ernesto",surname:"Freitas Neto",slug:"ernesto-freitas-neto",fullName:"Ernesto Freitas Neto",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/13002/images/3844_n.jpg",biography:null,institutionString:null,institution:{name:"Federal University of Itajubá",institutionURL:null,country:{name:"Brazil"}}},{id:"148511",title:"Prof.",name:"Qinglin",surname:"Wu",slug:"qinglin-wu",fullName:"Qinglin Wu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"148512",title:"Dr.",name:"Chengjun",surname:"Zhou",slug:"chengjun-zhou",fullName:"Chengjun Zhou",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Louisiana State University",institutionURL:null,country:{name:"United States of America"}}},{id:"148953",title:"Dr.",name:"Julia",surname:"Burunkova",slug:"julia-burunkova",fullName:"Julia Burunkova",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"148954",title:"Dr.",name:"Nadejda",surname:"Vorzobova",slug:"nadejda-vorzobova",fullName:"Nadejda Vorzobova",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"148955",title:"Prof.",name:"Sandor",surname:"Kokenyesi",slug:"sandor-kokenyesi",fullName:"Sandor Kokenyesi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}},{id:"153982",title:"Ms.",name:"Vera",surname:"Bulgakova",slug:"vera-bulgakova",fullName:"Vera Bulgakova",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"OA-publishing-fees",title:"Open Access Publishing Fees",intro:"
The Open Access model is applied to all of our publications and is designed to eliminate subscriptions and pay-per-view fees. This approach ensures free, immediate access to full text versions of your research.
As a gold Open Access publisher, an Open Access Publishing Fee is payable on acceptance following peer review of the manuscript. In return, we provide high quality publishing services and exclusive benefits for all contributors. IntechOpen is the trusted publishing partner of over 140,000 international scientists and researchers.
\\n\\n
The Open Access Publishing Fee (OAPF) is payable only after your book chapter, monograph or journal article is accepted for publication.
\\n\\n
OAPF Publishing Options
\\n\\n
\\n\\t
1,400 GBP Chapter - Edited Volume
\\n\\t
850 GBP Chapter - Book Series Topic (Annual Volume)
\\n\\t
10,000 GBP Monograph - Long Form
\\n\\t
4,000 GBP Compacts Monograph - Short Form
\\n\\t
850 GBP Journal Article (Across Portfolio)
\\n
\\n\\n
During the launching phase journals do not charge an APC, rather they will be funded by IntechOpen.
\\n\\n
*These prices do not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT as long as provision of the VAT registration number is made during the application process. This is made possible by the EU reverse charge method.
\\n\\n
Services included are:
\\n\\n
\\n\\t
An online manuscript tracking system to facilitate your work
\\n\\t
Personal contact and support throughout the publishing process from your dedicated Author Service Manager
\\n\\t
Assurance that your manuscript meets the highest publishing standards
\\n\\t
English language copyediting and proofreading, including the correction of grammatical, spelling, and other common errors
\\n\\t
XML Typesetting and pagination - web (PDF, HTML) and print files preparation
\\n\\t
Discoverability - electronic citation and linking via DOI
\\n\\t
Permanent and unrestricted online access to your work
\\n
\\n\\n
What isn't covered by the Open Access Publishing Fee?
\\n\\n
If your manuscript:
\\n\\n
\\n\\t
Exceeds the number of pages defined by the publishing guidelines, an additional fee per page may be required
\\n\\t
If a manuscript requires Heavy Editing or Language Polishing, this will incur additional fees.
\\n
\\n\\n
Your Author Service Manager will inform you of any items not covered by the OAPF and provide exact information regarding those additional costs before proceeding.
\\n\\n
Open Access Funding
\\n\\n
To explore funding opportunities and learn more about how you can finance your IntechOpen publication, go to our Open Access Funding page. IntechOpen offers expert assistance to all of its Authors. We can support you in approaching funding bodies and institutions in relation to publishing fees by providing information about compliance with the Open Access policies of your funder or institution. We can also assist with communicating the benefits of Open Access in order to support and strengthen your funding request and provide personal guidance through your application process. You can contact us at funders@intechopen.com for further details or assistance.
\\n\\n
For Authors who are still unable to obtain funding from their institutions or research funding bodies for individual projects, IntechOpen does offer the possibility of applying for a Waiver to offset some or all processing feed. Details regarding our Waiver Policy can be found here.
\\n\\n
Added Value of Publishing with IntechOpen
\\n\\n
Choosing to publish with IntechOpen ensures the following benefits:
\\n\\n
\\n\\t
Indexing and listing across major repositories, see details ...
\\n\\t
Long-term archiving
\\n\\t
Visibility on the world's strongest OA platform
\\n\\t
Live Performance Metrics to track readership and the impact of your chapter
\\n\\t
Dissemination and Promotion
\\n
\\n\\n
Benefits of Publishing with IntechOpen
\\n\\n
\\n\\t
Proven world leader in Open Access book publishing with over 10 years experience
\\n\\t
+5,700 OA books published
\\n\\t
Most competitive prices in the market
\\n\\t
Fully compliant with OA funding requirements
\\n\\t
Optimized processes that assure your research is made available to the scientific community without delay
\\n\\t
Personal support during every step of the publication process
\\n\\t
+184,650 citations in Web of Science databases
\\n\\t
Currently strongest OA platform with over 175 million downloads
As a gold Open Access publisher, an Open Access Publishing Fee is payable on acceptance following peer review of the manuscript. In return, we provide high quality publishing services and exclusive benefits for all contributors. IntechOpen is the trusted publishing partner of over 140,000 international scientists and researchers.
\n\n
The Open Access Publishing Fee (OAPF) is payable only after your book chapter, monograph or journal article is accepted for publication.
\n\n
OAPF Publishing Options
\n\n
\n\t
1,400 GBP Chapter - Edited Volume
\n\t
850 GBP Chapter - Book Series Topic (Annual Volume)
\n\t
10,000 GBP Monograph - Long Form
\n\t
4,000 GBP Compacts Monograph - Short Form
\n\t
850 GBP Journal Article (Across Portfolio)
\n
\n\n
During the launching phase journals do not charge an APC, rather they will be funded by IntechOpen.
\n\n
*These prices do not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT as long as provision of the VAT registration number is made during the application process. This is made possible by the EU reverse charge method.
\n\n
Services included are:
\n\n
\n\t
An online manuscript tracking system to facilitate your work
\n\t
Personal contact and support throughout the publishing process from your dedicated Author Service Manager
\n\t
Assurance that your manuscript meets the highest publishing standards
\n\t
English language copyediting and proofreading, including the correction of grammatical, spelling, and other common errors
\n\t
XML Typesetting and pagination - web (PDF, HTML) and print files preparation
\n\t
Discoverability - electronic citation and linking via DOI
\n\t
Permanent and unrestricted online access to your work
\n
\n\n
What isn't covered by the Open Access Publishing Fee?
\n\n
If your manuscript:
\n\n
\n\t
Exceeds the number of pages defined by the publishing guidelines, an additional fee per page may be required
\n\t
If a manuscript requires Heavy Editing or Language Polishing, this will incur additional fees.
\n
\n\n
Your Author Service Manager will inform you of any items not covered by the OAPF and provide exact information regarding those additional costs before proceeding.
\n\n
Open Access Funding
\n\n
To explore funding opportunities and learn more about how you can finance your IntechOpen publication, go to our Open Access Funding page. IntechOpen offers expert assistance to all of its Authors. We can support you in approaching funding bodies and institutions in relation to publishing fees by providing information about compliance with the Open Access policies of your funder or institution. We can also assist with communicating the benefits of Open Access in order to support and strengthen your funding request and provide personal guidance through your application process. You can contact us at funders@intechopen.com for further details or assistance.
\n\n
For Authors who are still unable to obtain funding from their institutions or research funding bodies for individual projects, IntechOpen does offer the possibility of applying for a Waiver to offset some or all processing feed. Details regarding our Waiver Policy can be found here.
\n\n
Added Value of Publishing with IntechOpen
\n\n
Choosing to publish with IntechOpen ensures the following benefits:
\n\n
\n\t
Indexing and listing across major repositories, see details ...
\n\t
Long-term archiving
\n\t
Visibility on the world's strongest OA platform
\n\t
Live Performance Metrics to track readership and the impact of your chapter
\n\t
Dissemination and Promotion
\n
\n\n
Benefits of Publishing with IntechOpen
\n\n
\n\t
Proven world leader in Open Access book publishing with over 10 years experience
\n\t
+5,700 OA books published
\n\t
Most competitive prices in the market
\n\t
Fully compliant with OA funding requirements
\n\t
Optimized processes that assure your research is made available to the scientific community without delay
\n\t
Personal support during every step of the publication process
\n\t
+184,650 citations in Web of Science databases
\n\t
Currently strongest OA platform with over 175 million downloads
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11661},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"-dateEndThirdStepPublish"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12456",title:"Arthroscopis Surgery",subtitle:null,isOpenForSubmission:!0,hash:"7c8c783b20d7e2e1ee6cf53df3bf0750",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12456.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit B Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12172",title:"Health Risks of Food Additives - Recent Developments and Trends in Food Sector",subtitle:null,isOpenForSubmission:!0,hash:"f6aa23b1045d266d0928fcef04fa3417",slug:null,bookSignature:"Dr. Muhammad Sajid Arshad and Mr. Waseem Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/12172.jpg",editedByType:null,editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12196",title:"Sepsis - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"3590e6f6047122bd96d1d57da29c4054",slug:null,bookSignature:"Dr. Lixing Huang, Dr. Youyu Zhang and Dr. Lingbin Sun",coverURL:"https://cdn.intechopen.com/books/images_new/12196.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12113",title:"Tendons - Trauma, Inflammation, Degeneration, and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"2387a4e0d2a76883b16dcccd452281ab",slug:null,bookSignature:"Dr. Nahum Rosenberg",coverURL:"https://cdn.intechopen.com/books/images_new/12113.jpg",editedByType:null,editors:[{id:"68911",title:"Dr.",name:"Nahum",surname:"Rosenberg",slug:"nahum-rosenberg",fullName:"Nahum Rosenberg"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:24},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:39},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:15},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:64},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:5},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:480},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"235",title:"Gerontology",slug:"gerontology",parent:{id:"21",title:"Psychology",slug:"psychology"},numberOfBooks:4,numberOfSeries:0,numberOfAuthorsAndEditors:72,numberOfWosCitations:29,numberOfCrossrefCitations:42,numberOfDimensionsCitations:80,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"235",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7904",title:"Aging",subtitle:"Life Span and Life Expectancy",isOpenForSubmission:!1,hash:"4507619de679dfa85bc6e073d163f3c8",slug:"aging-life-span-and-life-expectancy",bookSignature:"Robert J. Reynolds and Steven M. Day",coverURL:"https://cdn.intechopen.com/books/images_new/7904.jpg",editedByType:"Edited by",editors:[{id:"220737",title:"Dr.",name:"Robert",middleName:null,surname:"J. Reynolds",slug:"robert-j.-reynolds",fullName:"Robert J. Reynolds"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6704",title:"Geriatrics Health",subtitle:null,isOpenForSubmission:!1,hash:"7cac7767e0b34391318cd4a680ca0d68",slug:"geriatrics-health",bookSignature:"Hülya Çakmur",coverURL:"https://cdn.intechopen.com/books/images_new/6704.jpg",editedByType:"Edited by",editors:[{id:"190636",title:"Associate Prof.",name:"Hülya",middleName:null,surname:"Çakmur",slug:"hulya-cakmur",fullName:"Hülya Çakmur"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6381",title:"Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"bf232563c8fe15ef0848ed6ffb8f832d",slug:"gerontology",bookSignature:"Grazia D’Onofrio, Antonio Greco and Daniele Sancarlo",coverURL:"https://cdn.intechopen.com/books/images_new/6381.jpg",editedByType:"Edited by",editors:[{id:"272628",title:"Dr.",name:"Grazia",middleName:null,surname:"D'Onofrio",slug:"grazia-d'onofrio",fullName:"Grazia D'Onofrio"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5925",title:"Perception of Beauty",subtitle:null,isOpenForSubmission:!1,hash:"11f483d631557ad26d48b577e23a724f",slug:"perception-of-beauty",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/5925.jpg",editedByType:"Edited by",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"60564",doi:"10.5772/intechopen.76249",title:"Ageing Process and Physiological Changes",slug:"ageing-process-and-physiological-changes",totalDownloads:7003,totalCrossrefCites:19,totalDimensionsCites:34,abstract:"Ageing is a natural process. Everyone must undergo this phase of life at his or her own time and pace. In the broader sense, ageing reflects all the changes taking place over the course of life. These changes start from birth—one grows, develops and attains maturity. To the young, ageing is exciting. Middle age is the time when people notice the age-related changes like greying of hair, wrinkled skin and a fair amount of physical decline. Even the healthiest, aesthetically fit cannot escape these changes. Slow and steady physical impairment and functional disability are noticed resulting in increased dependency in the period of old age. According to World Health Organization, ageing is a course of biological reality which starts at conception and ends with death. It has its own dynamics, much beyond human control. However, this process of ageing is also subject to the constructions by which each society makes sense of old age. In most of the developed countries, the age of 60 is considered equivalent to retirement age and it is said to be the beginning of old age. In this chapter, you understand the details of ageing processes and associated physiological changes.",book:{id:"6381",slug:"gerontology",title:"Gerontology",fullTitle:"Gerontology"},signatures:"Shilpa Amarya, Kalyani Singh and Manisha Sabharwal",authors:[{id:"226573",title:"Ph.D.",name:"Shilpa",middleName:null,surname:"Amarya",slug:"shilpa-amarya",fullName:"Shilpa Amarya"},{id:"226593",title:"Dr.",name:"Kalyani",middleName:null,surname:"Singh",slug:"kalyani-singh",fullName:"Kalyani Singh"},{id:"243264",title:"Dr.",name:"Manisha",middleName:null,surname:"Sabharwal",slug:"manisha-sabharwal",fullName:"Manisha Sabharwal"}]},{id:"55388",doi:"10.5772/intechopen.68944",title:"Beauty, Body Image, and the Media",slug:"beauty-body-image-and-the-media",totalDownloads:7768,totalCrossrefCites:5,totalDimensionsCites:12,abstract:"This chapter analyses the role of the mass media in people’s perceptions of beauty. We summarize the research literature on the mass media, both traditional media and online social media, and how they appear to interact with psychological factors to impact appearance concerns and body image disturbances. There is a strong support for the idea that traditional forms of media (e.g. magazines and music videos) affect perceptions of beauty and appearance concerns by leading women to internalize a very slender body type as ideal or beautiful. Rather than simply being passive recipients of unrealistic beauty ideals communicated to them via the media, a great number of individuals actually seek out idealized images in the media. Finally, we review what is known about the role of social media in impacting society’s perception of beauty and notions of idealized physical forms. Social media are more interactive than traditional media and the effects of self‐presentation strategies on perceptions of beauty have just begun to be studied. This is an emerging area of research that is of high relevance to researchers and clinicians interested in body image and appearance concerns.",book:{id:"5925",slug:"perception-of-beauty",title:"Perception of Beauty",fullTitle:"Perception of Beauty"},signatures:"Jennifer S. Mills, Amy Shannon and Jacqueline Hogue",authors:[{id:"202110",title:"Dr.",name:"Jennifer S.",middleName:null,surname:"Mills",slug:"jennifer-s.-mills",fullName:"Jennifer S. Mills"}]},{id:"59227",doi:"10.5772/intechopen.73385",title:"Differentiating Normal Cognitive Aging from Cognitive Impairment No Dementia: A Focus on Constructive and Visuospatial Abilities",slug:"differentiating-normal-cognitive-aging-from-cognitive-impairment-no-dementia-a-focus-on-constructive",totalDownloads:1353,totalCrossrefCites:3,totalDimensionsCites:6,abstract:"Constructive and visuospatial abilities in normal and in pathological aging (cognitive impairment, no dementia, CIND) are investigated. The sample includes 188 participants over 60 years of age, divided in 2 groups: healthy subjects (MMSE ≥28), without cognitive complaints, and individuals with CIND (MMSE between 24 and 27 and subjective cognitive complains). Drawing of cube and drawing of house, Benton Visual Retention Test (BVRT), and Block design are used to test the hypothesis that short visuoconstructive and visuospatial tests can distinguish normal from pathological cognitive aging in its very early stages. Results proved the discriminative sensitivity of BVRT general assessment criteria and of omissions and distortions in CIND. The diagnostic sensitivity of a modification of Moore and Wike [1984] scoring system for house and cube drawing tasks was confirmed as well. Drawing of cube and house could be used for quick screening of CIND in subjects over 60. Principal component analysis with oblimin rotation was performed to explore the different dimensions in the visuospatial and visuoconstructive abilities in old age. A four-factor structure was established, all four factors explaining 71% of the variance.",book:{id:"6381",slug:"gerontology",title:"Gerontology",fullTitle:"Gerontology"},signatures:"Radka Ivanova Massaldjieva",authors:[{id:"75907",title:"Associate Prof.",name:"Radka Ivanova",middleName:null,surname:"Massaldjieva",slug:"radka-ivanova-massaldjieva",fullName:"Radka Ivanova Massaldjieva"}]},{id:"59658",doi:"10.5772/intechopen.74748",title:"Ageing Better in the Netherlands",slug:"ageing-better-in-the-netherlands",totalDownloads:1193,totalCrossrefCites:1,totalDimensionsCites:4,abstract:"The Dutch National Care for the Elderly Programme was an initiative organized by the Netherlands Organisation for Health Research and Development (ZonMw) between 2008 and 2016. The aim of the programme was to collect knowledge about frail elderly, to assess their needs and to provide person-centred and integrated care better suited to their needs. The budget of EUR 88 million was provided by the Dutch Ministry of Health, Welfare and Sports. Putting the needs of elderly people at the heart of the programme and ensuring their active participation were key to the programme’s success. The programme outcomes included the establishment of eight geriatric networks around the medical universities with 650 organisations and the completion of 218 projects. These projects, involving 43,000 elderly people and 8500 central caregivers, resulted in the completion of 45 PhD theses and the publication of more than 400 articles and the development of 300 practice toolkits, one database and a website, www.beteroud.nl. The Dutch National Care for the Elderly Programme has since developed into a movement and continues under the consortium Ageing Better, made up of eight organisations. Through the use of ambassadors, Ageing Better promotes the message that ageing is not a disease but a new phase of life.",book:{id:"6381",slug:"gerontology",title:"Gerontology",fullTitle:"Gerontology"},signatures:"Betty Meyboom-de Jong, Klaske Wynia and Anjo Geluk-Bleumink",authors:[{id:"224997",title:"Emeritus Prof.",name:"Betty",middleName:null,surname:"Meyboom-De Jong",slug:"betty-meyboom-de-jong",fullName:"Betty Meyboom-De Jong"},{id:"232900",title:"Dr.",name:"Klaske",middleName:null,surname:"Wynia",slug:"klaske-wynia",fullName:"Klaske Wynia"},{id:"232901",title:"Mrs.",name:"Anjo",middleName:null,surname:"Geluk-Bleumink",slug:"anjo-geluk-bleumink",fullName:"Anjo Geluk-Bleumink"}]},{id:"55890",doi:"10.5772/intechopen.69529",title:"Mindfulness Meditation and the Perception of Beauty: Implications for an Ecological Well-Being",slug:"mindfulness-meditation-and-the-perception-of-beauty-implications-for-an-ecological-well-being",totalDownloads:1428,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Meditation is a first-person method for contemplating ourselves and the world, with more than 2500 years of history, rooted in the philosophical and contemplative traditions of the east. The present chapter aims to explore this worldview in order to demonstrate its relevance to our capacity for the appreciation of beauty. To this end, the aesthetic experience, the contemplative experience and their relationship with the practice of mindfulness are analysed. We suggest that the contemplative meditative experience bestows a state of consciousness and acceptance of life which places the practitioner in a progressive encounter with a self-concept that begins to detach from a static sense of the self and from the categories that define it, so that it may be experienced as an ongoing mental event, removed from cultural ideals of beauty or positivity. The result of this de-identification from the static self is a greater degree of psychological flexibility and a more genuine way of seeing the world, leading to a new perception of the self that is connected to an experience of freedom, and contributes to one’s own well-being, as well as to that of others and of the environment.",book:{id:"5925",slug:"perception-of-beauty",title:"Perception of Beauty",fullTitle:"Perception of Beauty"},signatures:"Álvaro I. Langer, Carlos Schmidt and Edwin Krogh",authors:[{id:"199843",title:"Dr.",name:"Álvaro",middleName:null,surname:"Langer",slug:"alvaro-langer",fullName:"Álvaro Langer"},{id:"201865",title:"MSc.",name:"Carlos",middleName:null,surname:"Schmidt",slug:"carlos-schmidt",fullName:"Carlos Schmidt"},{id:"201866",title:"Dr.",name:"Edwin",middleName:null,surname:"Krogh",slug:"edwin-krogh",fullName:"Edwin Krogh"}]}],mostDownloadedChaptersLast30Days:[{id:"60564",title:"Ageing Process and Physiological Changes",slug:"ageing-process-and-physiological-changes",totalDownloads:6996,totalCrossrefCites:19,totalDimensionsCites:34,abstract:"Ageing is a natural process. Everyone must undergo this phase of life at his or her own time and pace. In the broader sense, ageing reflects all the changes taking place over the course of life. These changes start from birth—one grows, develops and attains maturity. To the young, ageing is exciting. Middle age is the time when people notice the age-related changes like greying of hair, wrinkled skin and a fair amount of physical decline. Even the healthiest, aesthetically fit cannot escape these changes. Slow and steady physical impairment and functional disability are noticed resulting in increased dependency in the period of old age. According to World Health Organization, ageing is a course of biological reality which starts at conception and ends with death. It has its own dynamics, much beyond human control. However, this process of ageing is also subject to the constructions by which each society makes sense of old age. In most of the developed countries, the age of 60 is considered equivalent to retirement age and it is said to be the beginning of old age. In this chapter, you understand the details of ageing processes and associated physiological changes.",book:{id:"6381",slug:"gerontology",title:"Gerontology",fullTitle:"Gerontology"},signatures:"Shilpa Amarya, Kalyani Singh and Manisha Sabharwal",authors:[{id:"226573",title:"Ph.D.",name:"Shilpa",middleName:null,surname:"Amarya",slug:"shilpa-amarya",fullName:"Shilpa Amarya"},{id:"226593",title:"Dr.",name:"Kalyani",middleName:null,surname:"Singh",slug:"kalyani-singh",fullName:"Kalyani Singh"},{id:"243264",title:"Dr.",name:"Manisha",middleName:null,surname:"Sabharwal",slug:"manisha-sabharwal",fullName:"Manisha Sabharwal"}]},{id:"55388",title:"Beauty, Body Image, and the Media",slug:"beauty-body-image-and-the-media",totalDownloads:7764,totalCrossrefCites:5,totalDimensionsCites:12,abstract:"This chapter analyses the role of the mass media in people’s perceptions of beauty. We summarize the research literature on the mass media, both traditional media and online social media, and how they appear to interact with psychological factors to impact appearance concerns and body image disturbances. There is a strong support for the idea that traditional forms of media (e.g. magazines and music videos) affect perceptions of beauty and appearance concerns by leading women to internalize a very slender body type as ideal or beautiful. Rather than simply being passive recipients of unrealistic beauty ideals communicated to them via the media, a great number of individuals actually seek out idealized images in the media. Finally, we review what is known about the role of social media in impacting society’s perception of beauty and notions of idealized physical forms. Social media are more interactive than traditional media and the effects of self‐presentation strategies on perceptions of beauty have just begun to be studied. This is an emerging area of research that is of high relevance to researchers and clinicians interested in body image and appearance concerns.",book:{id:"5925",slug:"perception-of-beauty",title:"Perception of Beauty",fullTitle:"Perception of Beauty"},signatures:"Jennifer S. Mills, Amy Shannon and Jacqueline Hogue",authors:[{id:"202110",title:"Dr.",name:"Jennifer S.",middleName:null,surname:"Mills",slug:"jennifer-s.-mills",fullName:"Jennifer S. Mills"}]},{id:"56505",title:"Aesthetics of the Naked Human Body: From Pornography (Sexualised Lust Object) to Iconography (Aesthetics of Human Nobility and Wisdom) in an Anthropology of Physical Beauty",slug:"aesthetics-of-the-naked-human-body-from-pornography-sexualised-lust-object-to-iconography-aesthetics",totalDownloads:2100,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In many religious circles and philosophies of life, the human body is excluded from the realm of spirituality and meaning. Due to a dualistic approach, nudity is viewed as merely a physical and corporeal category. In social media, there is the real danger that the naked human body is exploited for commercial gain. Advertisements often leave the impression that the body, very specifically the genitals, is designed merely for physical desire and corporeal chemistry. They become easily objects for lust, excluded from the beauty of graceful existence and noble courage. It is argued that the naked human body is not designed for pornographic exploitation and promiscuous sensuality but for compassionate intimacy and nurturing care in order to instil a humane dimension in human and sexual encounters. In this regard, antiquity and the Michelangelesque perspective can contribute to a paradigm shift from abusive exploitation to the beauty of vulnerable sensitivity. In order to foster an integrative approach to theory formation in anthropology, the methodology of stereometric thinking is proposed.",book:{id:"5925",slug:"perception-of-beauty",title:"Perception of Beauty",fullTitle:"Perception of Beauty"},signatures:"Daniel J Louw",authors:[{id:"200645",title:"Prof.",name:"Daniel",middleName:"Johannes",surname:"Louw",slug:"daniel-louw",fullName:"Daniel Louw"}]},{id:"56059",title:"A Plastic Surgeon’s Perspective on Stereotyping and the Perception of Beauty",slug:"a-plastic-surgeon-s-perspective-on-stereotyping-and-the-perception-of-beauty",totalDownloads:1918,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"In the world of plastic surgery, misconceptions may lead to irrational requests or outcomes not appreciated by patients. Those who manage aesthetics should always listen and recognize the variability of cultural identities, desires, attitudes, anxieties and uncertainties of the patient. Emerging from a diversity of cultures and its transforming trends, the scope of cosmetic surgery and its practice reflect not only the individual’s personality, but also the culture as a whole. When counseling an individual, one has to recognize that even in groups of seemingly identical social or cultural standards; there are subtle differences in expectations. To illustrate the potential for inaccuracy of ethnic profiling in the field of plastic surgery authors quote their own work on Asian subjects and facial beauty and resort to experience of others. To reaffirm their opinion and to exemplify how sometimes “fine” differences in the perception of beauty exist, an original study that evaluates the preferences among selected groups of Latina women in respect to buttock aesthetics has been included. This dissertation will focus on how cultural factors influence beauty perception; strengthen the fact that beauty is in the eye of the beholder and how variable differences exist even between small subgroups.",book:{id:"5925",slug:"perception-of-beauty",title:"Perception of Beauty",fullTitle:"Perception of Beauty"},signatures:"Johanna D’Agostino and Marek Dobke",authors:[{id:"17590",title:"Dr.",name:"Marek K.",middleName:null,surname:"Dobke",slug:"marek-k.-dobke",fullName:"Marek K. Dobke"},{id:"201244",title:"Dr.",name:"Johanna",middleName:null,surname:"D'Agostino",slug:"johanna-d'agostino",fullName:"Johanna D'Agostino"}]},{id:"80326",title:"Anti-Senescence Therapy",slug:"anti-senescence-therapy",totalDownloads:110,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The development of therapeutic strategies aimed at the aging process of cells has attracted increasing attention in recent decades due to the involvement of this process in the development of many chronic and age-related diseases. Interestingly, preclinical studies have shown the success of a number of anti-aging approaches in the treatment of a range of chronic diseases. These approaches are directed against aging processes such as oxidative stress, telomerase shortening, inflammation, and deficient autophagy. Many strategies has been shown to be effective in delaying aging, including antiaging strategies based on establishing healthy lifestyle habits and pharmacological interventions aimed at disrupting senescent cells and senescent-associated secretory phenotype. Caloric restriction and intermittent fasting were reported to activate autophagy and reduce inflammation. In turn, immune-based strategies, senolytic agents, and senomorphics mediate their effects either by eliminating senescent cells through inducing apoptosis or by disrupting pathways by which senescent cells mediate their detrimental effects. In addition, given the association of the decline in the regenerative potential of stem cells with aging, many experimental and clinical studies indicate the effectiveness of stem cell transplantation in preventing or slowing the progress of age-related diseases by enhancing the repairing mechanisms and the secretion of many growth factors and cytokines.",book:{id:"10935",slug:null,title:"Mechanisms and Management of Senescence",fullTitle:"Mechanisms and Management of Senescence"},signatures:"Raghad Alshadidi",authors:null}],onlineFirstChaptersFilter:{topicId:"235",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82112",title:"Comparative Senescence and Lifespan",slug:"comparative-senescence-and-lifespan",totalDownloads:17,totalDimensionsCites:0,doi:"10.5772/intechopen.105137",abstract:"The word senescence is derived from the Latin word “senex” (meaning old). In biology, senescence is a process by which a cell ages and permanently stops dividing. Senescence is a natural universal phenomenon affecting all living organisms (e.g., humans, animals, and plants). It is the process of growing old (aging). The underlying mechanisms of senescence and aging at the cellular level are not fully understood. Senescence is a multifactorial process that can be induced by several stimuli including cellular stress, DNA damage, telomere shortening, and oncogene activation. The most popular theory to explain aging is the free radical theory. Senescence plays a role in the development of several age-related chronic diseases in humans (e.g., ischemic heart disease, osteoporosis, and cancer). Lifespan is a biological characteristic of every species. The lifespan of living organisms ranges from few hours (with mayfly) to potential eternity (with jellyfish and hydra). The maximum theoretical lifespan in humans is around 120 years. The lifespan in humans is influenced by multiple factors including genetic, epigenetic, lifestyle, environmental, metabolic, and endocrine factors. There are several ways to potentially extend the lifespan of humans and eventually surpass the maximum theoretical lifespan of 120 years. The tools that can be proposed include lifestyle, reduction of several life-threatening diseases and disabilities, hormonal replacement, antioxidants, autophagy inducers, senolytic drugs, stem cell therapy, and gene therapy.",book:{id:"10935",title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg"},signatures:"Hassan M. Heshmati"},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:30,totalDimensionsCites:0,doi:"10.5772/intechopen.103102",abstract:"The increasing trend of life-expectancy is becoming a significant demographic, societal and economic challenge. Currently, global number of people above sixty years of age is 900 million, while United Nations expect this number to rise to over 1.4 billion in 2030 and over 2.5 billion by 2050. Concordant to this trend, numerous physiological changes are associated with aging and brain-related ones are associated with neuropsychiatric diseases. The main goal of this chapter is to identify the most important neuropsychiatric diseases to assess in older patients to help to promote health and prevent diseases and complications associated with chronic illness, as these changes are progressive and require important psychological and setting-related social adjustments. Findings identify several health-aspects highly present in elderly: stroke, white matter lesions, dementia rise with age, changes in levels of neurotransmitters and hormones, depression as well as the bereavement following loss of the loved one, and the most common neurodegenerative disease—Alzheimer’s disease and Parkinson’s. In conclusion, studying the aging process should include all developmental, circumstantial, and individual aspects of aging. This offers opportunities to improve the health of elderly by using a wide range of skills and knowledge. Thus, further studies are necessary to elucidate what can be done do to improve the aging process and health of elderly in the future.",book:{id:"10935",title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg"},signatures:"Jelena Milić"},{id:"80326",title:"Anti-Senescence Therapy",slug:"anti-senescence-therapy",totalDownloads:110,totalDimensionsCites:0,doi:"10.5772/intechopen.101585",abstract:"The development of therapeutic strategies aimed at the aging process of cells has attracted increasing attention in recent decades due to the involvement of this process in the development of many chronic and age-related diseases. Interestingly, preclinical studies have shown the success of a number of anti-aging approaches in the treatment of a range of chronic diseases. These approaches are directed against aging processes such as oxidative stress, telomerase shortening, inflammation, and deficient autophagy. Many strategies has been shown to be effective in delaying aging, including antiaging strategies based on establishing healthy lifestyle habits and pharmacological interventions aimed at disrupting senescent cells and senescent-associated secretory phenotype. Caloric restriction and intermittent fasting were reported to activate autophagy and reduce inflammation. In turn, immune-based strategies, senolytic agents, and senomorphics mediate their effects either by eliminating senescent cells through inducing apoptosis or by disrupting pathways by which senescent cells mediate their detrimental effects. In addition, given the association of the decline in the regenerative potential of stem cells with aging, many experimental and clinical studies indicate the effectiveness of stem cell transplantation in preventing or slowing the progress of age-related diseases by enhancing the repairing mechanisms and the secretion of many growth factors and cytokines.",book:{id:"10935",title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg"},signatures:"Raghad Alshadidi"},{id:"79828",title:"Cellular Senescence in Bone",slug:"cellular-senescence-in-bone",totalDownloads:119,totalDimensionsCites:0,doi:"10.5772/intechopen.101803",abstract:"Senescence is an irreversible cell-cycle arrest process induced by environmental, genetic, and epigenetic factors. An accumulation of senescent cells in bone results in age-related disorders, and one of the common problems is osteoporosis. Deciphering the basic mechanisms contributing to the chronic ailments of aging may uncover new avenues for targeted treatment. This review focuses on the mechanisms and the most relevant research advancements in skeletal cellular senescence. To identify new options for the treatment or prevention of age-related chronic diseases, researchers have targeted hallmarks of aging, including telomere attrition, genomic instability, cellular senescence, and epigenetic alterations. First, this chapter provides an overview of the fundamentals of bone tissue, the causes of skeletal involution, and the role of cellular senescence in bone and bone diseases such as osteoporosis. Next, this review will discuss the utilization of pharmacological interventions in aging tissues and, more specifically, highlight the role of senescent cells to identify the most effective and safe strategies.",book:{id:"10935",title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg"},signatures:"Danielle Wang and Haitao Wang"},{id:"79668",title:"Identification of RNA Species That Bind to the hnRNP A1 in Normal and Senescent Human Fibroblasts",slug:"identification-of-rna-species-that-bind-to-the-hnrnp-a1-in-normal-and-senescent-human-fibroblasts",totalDownloads:81,totalDimensionsCites:0,doi:"10.5772/intechopen.101525",abstract:"hnRNP A1 is a member of the hnRNPs (heterogeneous nuclear ribonucleoproteins) family of proteins that play a central role in regulating genes responsible for cell proliferation, DNA repair, apoptosis, and telomere biogenesis. Previous studies have shown that hnRNPA1 had reduced protein levels and increased cytoplasmic accumulation in senescent human diploid fibroblasts. The consequence of reduced protein expression and altered cellular localization may account for the alterations in gene expression observed during senescence. There is limited information for gene targets of hnRNP A1 as well as its in vivo function. In these studies, we performed RNA co-immunoprecipitation experiments using hnRNP A1 as the target protein to identify potential mRNA species in ribonucleoprotein (RNP) complexes. Using this approach, we identified the human double minute 2 (HDM2) mRNA as a binding target for hnRNP A1 in young and senescent human diploid fibroblasts cells. It was also observed that alterations of hnRNP A1 expression modulate HDM2 mRNA levels in young IMR-90 cells. We also demonstrated that the levels of HDM2 mRNA increased with the downregulation of hnRNP A1 and decrease with the overexpression of hnRNP A1. Although we did not observe a significant decrease in HDM2 protein level, a concomitant increase in p53 protein level was detected with the overexpression of hnRNP A1. Our studies also show that hnRNP A1 directly interacts with HDM2 mRNA at a region corresponding to its 3′ UTR (untranslated region of a gene). The results from this study demonstrate that hnRNP A1 has a novel role in participating in the regulation of HDM2 gene expression.",book:{id:"10935",title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg"},signatures:"Heriberto Moran, Shanaz A. Ghandhi, Naoko Shimada and Karen Hubbard"},{id:"79295",title:"Genetic and Epigenetic Influences on Cutaneous Cellular Senescence",slug:"genetic-and-epigenetic-influences-on-cutaneous-cellular-senescence",totalDownloads:136,totalDimensionsCites:0,doi:"10.5772/intechopen.101152",abstract:"Skin is the largest human organ system, and its protective function is critical to survival. The epithelial, dermal, and subcutaneous compartments are heterogeneous mixtures of cell types, yet they all display age-related skin dysfunction through the accumulation of an altered phenotypic cellular state called senescence. Cellular senescence is triggered by complex and dynamic genetic and epigenetic processes. A senescence steady state is achieved in different cell types under various and overlapping conditions of chronological age, toxic injury, oxidative stress, replicative exhaustion, DNA damage, metabolic dysfunction, and chromosomal structural changes. These inputs lead to outputs of cell-cycle withdrawal and the appearance of a senescence-associated secretory phenotype, both of which accumulate as tissue pathology observed clinically in aged skin. This review details the influence of genetic and epigenetic factors that converge on normal cutaneous cellular processes to create the senescent state, thereby dictating the response of the skin to the forces of both intrinsic and extrinsic aging. From this work, it is clear that no single biomarker or process leads to senescence, but that it is a convergence of factors resulting in an overt aging phenotype.",book:{id:"10935",title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg"},signatures:"Tapash Jay Sarkar, Maiko Hermsmeier, Jessica L. Ross and G. Scott Herron"}],onlineFirstChaptersTotal:6},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:"2753-6580",scope:"
\r\n\tTransforming our World: the 2030 Agenda for Sustainable Development endorsed by United Nations and 193 Member States, came into effect on Jan 1, 2016, to guide decision making and actions to the year 2030 and beyond. Central to this Agenda are 17 Goals, 169 associated targets and over 230 indicators that are reviewed annually. The vision envisaged in the implementation of the SDGs is centered on the five Ps: People, Planet, Prosperity, Peace and Partnership. This call for renewed focused efforts ensure we have a safe and healthy planet for current and future generations.
\r\n
\r\n\t
\r\n
\r\n\tThis Series focuses on covering research and applied research involving the five Ps through the following topics:
\r\n
\r\n\t
\r\n
\r\n\t1. Sustainable Economy and Fair Society that relates to SDG 1 on No Poverty, SDG 2 on Zero Hunger, SDG 8 on Decent Work and Economic Growth, SDG 10 on Reduced Inequalities, SDG 12 on Responsible Consumption and Production, and SDG 17 Partnership for the Goals
\r\n
\r\n\t
\r\n
\r\n\t2. Health and Wellbeing focusing on SDG 3 on Good Health and Wellbeing and SDG 6 on Clean Water and Sanitation
\r\n
\r\n\t
\r\n
\r\n\t3. Inclusivity and Social Equality involving SDG 4 on Quality Education, SDG 5 on Gender Equality, and SDG 16 on Peace, Justice and Strong Institutions
\r\n
\r\n\t
\r\n
\r\n\t4. Climate Change and Environmental Sustainability comprising SDG 13 on Climate Action, SDG 14 on Life Below Water, and SDG 15 on Life on Land
\r\n
\r\n\t
\r\n
\r\n\t5. Urban Planning and Environmental Management embracing SDG 7 on Affordable Clean Energy, SDG 9 on Industry, Innovation and Infrastructure, and SDG 11 on Sustainable Cities and Communities.
\r\n
\r\n\t
\r\n
\r\n\tThe series also seeks to support the use of cross cutting SDGs, as many of the goals listed above, targets and indicators are all interconnected to impact our lives and the decisions we make on a daily basis, making them impossible to tie to a single topic.
",coverUrl:"https://cdn.intechopen.com/series/covers/24.jpg",latestPublicationDate:"August 2nd, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:1,editor:{id:"262440",title:"Prof.",name:"Usha",middleName:null,surname:"Iyer-Raniga",slug:"usha-iyer-raniga",fullName:"Usha Iyer-Raniga",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRYSXQA4/Profile_Picture_2022-02-28T13:55:36.jpeg",biography:"Usha Iyer-Raniga is a professor in the School of Property and Construction Management at RMIT University. Usha co-leads the One Planet Network’s Sustainable Buildings and Construction Programme (SBC), a United Nations 10 Year Framework of Programmes on Sustainable Consumption and Production (UN 10FYP SCP) aligned with Sustainable Development Goal 12. The work also directly impacts SDG 11 on Sustainable Cities and Communities. She completed her undergraduate degree as an architect before obtaining her Masters degree from Canada and her Doctorate in Australia. Usha has been a keynote speaker as well as an invited speaker at national and international conferences, seminars and workshops. Her teaching experience includes teaching in Asian countries. She has advised Austrade, APEC, national, state and local governments. She serves as a reviewer and a member of the scientific committee for national and international refereed journals and refereed conferences. She is on the editorial board for refereed journals and has worked on Special Issues. Usha has served and continues to serve on the Boards of several not-for-profit organisations and she has also served as panel judge for a number of awards including the Premiers Sustainability Award in Victoria and the International Green Gown Awards. Usha has published over 100 publications, including research and consulting reports. Her publications cover a wide range of scientific and technical research publications that include edited books, book chapters, refereed journals, refereed conference papers and reports for local, state and federal government clients. She has also produced podcasts for various organisations and participated in media interviews. She has received state, national and international funding worth over USD $25 million. Usha has been awarded the Quarterly Franklin Membership by London Journals Press (UK). Her biography has been included in the Marquis Who's Who in the World® 2018, 2016 (33rd Edition), along with approximately 55,000 of the most accomplished men and women from around the world, including luminaries as U.N. Secretary-General Ban Ki-moon. In 2017, Usha was awarded the Marquis Who’s Who Lifetime Achiever Award.",institutionString:null,institution:{name:"RMIT University",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:5,paginationItems:[{id:"91",title:"Sustainable Economy and Fair Society",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",isOpenForSubmission:!0,editor:{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo",profilePictureURL:"https://mts.intechopen.com/storage/users/181603/images/system/181603.jpg",biography:"Antonella Petrillo, Ph.D., is a professor in the Department of Engineering, University of Naples “Parthenope,” Italy. She received her Ph.D. in Mechanical Engineering from the University of Cassino and Southern Lazio, Italy. Her research interests include multi-criteria decision analysis, industrial plants, logistics, manufacturing, and safety. She serves as an associate editor for the International Journal of the Analytic Hierarchy Process and is an editorial board member for several other journals. She is also a member of the Analytic Hierarchy Process (AHP) Academy.",institutionString:"Parthenope University of Naples",institution:{name:"Parthenope University of Naples",institutionURL:null,country:{name:"Italy"}}},editorTwo:null,editorThree:null},{id:"92",title:"Health and Wellbeing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",isOpenForSubmission:!0,editor:{id:"348225",title:"Prof.",name:"Ann",middleName:null,surname:"Hemingway",slug:"ann-hemingway",fullName:"Ann Hemingway",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035LZFoQAO/Profile_Picture_2022-04-11T14:55:40.jpg",biography:"Professor Hemingway is a public health researcher, Bournemouth University, undertaking international and UK research focused on reducing inequalities in health outcomes for marginalised and excluded populations and more recently focused on equine assisted interventions.",institutionString:null,institution:{name:"Bournemouth University",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"93",title:"Inclusivity and Social Equity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/93.jpg",isOpenForSubmission:!0,editor:{id:"210060",title:"Prof. Dr.",name:"Ebba",middleName:null,surname:"Ossiannilsson",slug:"ebba-ossiannilsson",fullName:"Ebba Ossiannilsson",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6LkBQAU/Profile_Picture_2022-02-28T13:31:48.png",biography:"Professor Dr. Ebba Ossiannilsson is an independent researcher, expert, consultant, quality auditor and influencer in the fields of open, flexible online and distance learning (OFDL) and the 'new normal'. Her focus is on quality, innovation, leadership, and personalised learning. She works primarily at the strategic and policy levels, both nationally and internationally, and with key international organisations. She is committed to promoting and improving OFDL in the context of SDG4 and the future of education. Ossiannilsson has more than 20 years of experience in her current field, but more than 40 years in the education sector. She works as a reviewer and expert for the European Commission and collaborates with the Joint Research Centre for Quality in Open Education. Ossiannilsson also collaborates with ITCILO and ICoBC (International Council on Badges and Credentials). She is a member of the ICDE Board of Directors and has previously served on the boards of EDEN and EUCEN. Ossiannilsson is a quality expert and reviewer for ICDE, EDEN and the EADTU. She chairs the ICDE OER Advocacy Committee and is a member of the ICDE Quality Network. She is regularly invited as a keynote speaker at conferences. She is a guest editor for several special issues and a member of the editorial board of several scientific journals. She has published more than 200 articles and is currently working on book projects in the field of OFDL. Ossiannilsson is a visiting professor at several international universities and was recently appointed Professor and Research Fellow at Victoria University of Wellington, NZ. Ossiannilsson has been awarded the following fellowships: EDEN Fellows, EDEN Council of Fellows, and Open Education Europe. She is a ICDE OER Ambassador, Open Education Europe Ambassador, GIZ Ambassador for Quality in Digital Learning, and part of the Globe-Community of Digital Learning and Champion of SPARC Europe. On a national level, she is a quality developer at the Swedish Institute for Standards (SIS) and for ISO. She is a member of the Digital Skills and Jobs Coalition Sweden and Vice President of the Swedish Association for Distance Education. She is currently working on a government initiative on quality in distance education at the National Council for Higher Education. She holds a Ph.D. from the University of Oulu, Finland.",institutionString:"Swedish Association for Distance Education, Sweden",institution:null},editorTwo:null,editorThree:null},{id:"94",title:"Climate Change and Environmental Sustainability",coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",isOpenForSubmission:!0,editor:{id:"61855",title:"Dr.",name:"Yixin",middleName:null,surname:"Zhang",slug:"yixin-zhang",fullName:"Yixin Zhang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYWJgQAO/Profile_Picture_2022-06-09T11:36:35.jpg",biography:"Professor Yixin Zhang is an aquatic ecologist with over 30 years of research and teaching experience in three continents (Asia, Europe, and North America) in Stream Ecology, Riparian Ecology, Urban Ecology, and Ecosystem Restoration and Aquatic Conservation, Human-Nature Interactions and Sustainability, Urbanization Impact on Aquatic Ecosystems. He got his Ph.D. in Animal Ecology at Umeå University in Sweden in 1998. He conducted postdoc research in stream ecology at the University of California at Santa Barbara in the USA. After that, he was a postdoc research fellow at the University of British Columbia in Canada to do research on large-scale stream experimental manipulation and watershed ecological survey in temperate rainforests of BC. He was a faculty member at the University of Hong Kong to run ecological research projects on aquatic insects, fishes, and newts in Tropical Asian streams. He also conducted research in streams, rivers, and caves in Texas, USA, to study the ecology of macroinvertebrates, big-claw river shrimp, fish, turtles, and bats. Current research interests include trophic flows across ecosystems; watershed impacts of land-use change on biodiversity and ecosystem functioning; ecological civilization and water resource management; urban ecology and urban/rural sustainable development.",institutionString:null,institution:{name:"Soochow University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"95",title:"Urban Planning and Environmental Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/95.jpg",isOpenForSubmission:!0,editor:{id:"181079",title:"Dr.",name:"Christoph",middleName:null,surname:"Lüthi",slug:"christoph-luthi",fullName:"Christoph Lüthi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHSqQAO/Profile_Picture_2022-04-12T15:51:33.png",biography:"Dr. Christoph Lüthi is an urban infrastructure planner with over 25 years of experience in planning and design of urban infrastructure in middle and low-income countries. He holds a Master’s Degree in Urban Development Planning from the University College of London (UCL), and a Ph.D. in Urban Planning & Engineering from TU Berlin. He has conducted applied research on urban planning and infrastructure issues in over 20 countries in Africa and Asia. In 2005 he joined Eawag-Sandec as Leader of the Strategic Environmental Sanitation Planning Group. Since 2015 he heads the research department Sanitation, Water and Solid Waste for Development (Sandec) at the Swiss Federal Institute of Aquatic Research and Technology (Eawag).",institutionString:"Swiss Federal Institute of Aquatic Science and Technology, Switzerland",institution:{name:"Swiss Federal Institute of Aquatic Science and Technology",institutionURL:null,country:{name:"Switzerland"}}},editorTwo:{id:"290571",title:"Dr.",name:"Rui Alexandre",middleName:null,surname:"Castanho",slug:"rui-alexandre-castanho",fullName:"Rui Alexandre Castanho",profilePictureURL:"https://mts.intechopen.com/storage/users/290571/images/system/290571.jpg",biography:"Rui Alexandre Castanho has a master\\'s degree in Planning, Audit, and Control in Urban Green Spaces and an international Ph.D. in Sustainable Planning in Borderlands. Currently, he is a professor at WSB University, Poland, and a visiting professor at the University of Johannesburg, South Africa. Dr. Castanho is a post-doc researcher on the GREAT Project, University of Azores, Ponta Delgada, Portugal. He collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx), Spain; VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; Centre for Tourism Research, Development and Innovation (CITUR), Madeira, Portugal; and AQUAGEO Research Group, University of Campinas (UNICAMP), Brazil.",institutionString:"University of Johannesburg, South Africa and WSB University, Poland",institution:{name:"University of Johannesburg",institutionURL:null,country:{name:"South Africa"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:9,paginationItems:[{id:"82936",title:"Soil Degradation Processes Linked to Long-Term Forest-Type Damage",doi:"10.5772/intechopen.106390",signatures:"Pavel Samec, Aleš Kučera and Gabriela Tomášová",slug:"soil-degradation-processes-linked-to-long-term-forest-type-damage",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}},{id:"82777",title:"Sustainability and Social Investment: Community Microhydropower Systems in the Dominican Republic",doi:"10.5772/intechopen.105995",signatures:"Michela Izzo, Alberto Sánchez and Rafael Fonseca",slug:"sustainability-and-social-investment-community-microhydropower-systems-in-the-dominican-republic",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82387",title:"Kept Promises? The Evolution of the EU Financial Contribution to Climate Change",doi:"10.5772/intechopen.105541",signatures:"Cecilia Camporeale, Roberto Del Ciello and Mario Jorizzo",slug:"kept-promises-the-evolution-of-the-eu-financial-contribution-to-climate-change",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Mario",surname:"Jorizzo"},{name:"Cecilia",surname:"Camporeale"},{name:"ROBERTO",surname:"DEL CIELLO"}],book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82524",title:"Italy’s Small Exporting Companies: Globalization and Sustainability Issues",doi:"10.5772/intechopen.105542",signatures:"Roberta Pace and Francesca Mandanici",slug:"italy-s-small-exporting-companies-globalization-and-sustainability-issues",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},overviewPagePublishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10897",title:"Food Systems Resilience",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",slug:"food-systems-resilience",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Ana I. Ribeiro-Barros, Daniel S. Tevera, Luís F. Goulao and Lucas D. Tivana",hash:"ae9dd92f53433e4607f1db188dc649b4",volumeInSeries:1,fullTitle:"Food Systems Resilience",editors:[{id:"171036",title:"Dr.",name:"Ana I.",middleName:null,surname:"Ribeiro-Barros",slug:"ana-i.-ribeiro-barros",fullName:"Ana I. Ribeiro-Barros",profilePictureURL:"https://mts.intechopen.com/storage/users/171036/images/system/171036.jpg",biography:"Ana I. Ribeiro-Barros, Ph.D., is the director of the Tropical College, University of Lisbon (ULisboa). She obtained a Ph.D. in Plant Molecular Biology from Wageningen University, the Netherlands. She is also a senior researcher, head of the lab, and professor at the School of Agriculture, ULisboa, and an invited professor at Nova University Lisbon (NOVA), Eduardo Mondlane University (UEM), and Gorongosa National Park (GNP). She is a member of the Coordination and Scientific Committees of the doctoral program “Tropical Knowledge and Management” (NOVA), Master in Biotechnology (UEM), and Master in Conservation Biology (GNP); and a national expert for Food and Nutrition Security and Sustainable Agriculture - High-Level Policy Dialogue EU-Africa. Her research expertise and interests are centered on biodiversity, environmental sustainability, agro-ecological approaches, and food and nutritional security.",institutionString:"University of Lisbon",institution:{name:"University of Lisbon",institutionURL:null,country:{name:"Portugal"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:42,paginationItems:[{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"82751",title:"Mitochondria-Endoplasmic Reticulum Interaction in Central Neurons",doi:"10.5772/intechopen.105738",signatures:"Liliya Kushnireva and Eduard Korkotian",slug:"mitochondria-endoplasmic-reticulum-interaction-in-central-neurons",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82709",title:"Fatty Acid Metabolism as a Tumor Marker",doi:"10.5772/intechopen.106072",signatures:"Gatot Nyarumenteng Adhipurnawan Winarno",slug:"fatty-acid-metabolism-as-a-tumor-marker",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82716",title:"Advanced glycation end product induced endothelial dysfunction through ER stress: Unravelling the role of Paraoxonase 2",doi:"10.5772/intechopen.106018",signatures:"Ramya Ravi and Bharathidevi Subramaniam Rajesh",slug:"advanced-glycation-end-product-induced-endothelial-dysfunction-through-er-stress-unravelling-the-rol",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82388",title:"Epigenetics: Science of Changes without Change in DNA Sequences",doi:"10.5772/intechopen.105039",signatures:"Jayisha Dhargawe, Rita Lakkakul and Pradip Hirapure",slug:"epigenetics-science-of-changes-without-change-in-dna-sequences",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"82583",title:"Leukaemia: The Purinergic System and Small Extracellular Vesicles",doi:"10.5772/intechopen.104326",signatures:"Arinzechukwu Ude and Kelechi Okeke",slug:"leukaemia-the-purinergic-system-and-small-extracellular-vesicles",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82531",title:"Abnormal Iron Metabolism and Its Effect on Dentistry",doi:"10.5772/intechopen.104502",signatures:"Chinmayee Dahihandekar and Sweta Kale Pisulkar",slug:"abnormal-iron-metabolism-and-its-effect-on-dentistry",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Chemical Biology",value:15,count:2,group:"subseries"},{caption:"Proteomics",value:18,count:2,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Metabolism",value:17,count:18,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10897",title:"Food Systems Resilience",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",slug:"food-systems-resilience",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Ana I. Ribeiro-Barros, Daniel S. Tevera, Luís F. Goulao and Lucas D. Tivana",hash:"ae9dd92f53433e4607f1db188dc649b4",volumeInSeries:1,fullTitle:"Food Systems Resilience",editors:[{id:"171036",title:"Dr.",name:"Ana I.",middleName:null,surname:"Ribeiro-Barros",slug:"ana-i.-ribeiro-barros",fullName:"Ana I. Ribeiro-Barros",profilePictureURL:"https://mts.intechopen.com/storage/users/171036/images/system/171036.jpg",institutionString:"University of Lisbon",institution:{name:"University of Lisbon",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Sustainable Economy and Fair Society",value:91,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ghana Health Service",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Brasília",country:{name:"Brazil"}}},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Brasília",country:{name:"Brazil"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"24",type:"subseries",title:"Computer Vision",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",hasOnlineFirst:!0,hasPublishedBooks:!1,annualVolume:11420,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"1177",title:"Prof.",name:"António",middleName:"J. R.",surname:"José Ribeiro Neves",slug:"antonio-jose-ribeiro-neves",fullName:"António José Ribeiro Neves",profilePictureURL:"https://mts.intechopen.com/storage/users/1177/images/system/1177.jpg",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"220565",title:"Dr.",name:"Jucheng",middleName:null,surname:"Yang",slug:"jucheng-yang",fullName:"Jucheng Yang",profilePictureURL:"https://mts.intechopen.com/storage/users/220565/images/5988_n.jpg",institutionString:null,institution:{name:"Tianjin University of Technology",institutionURL:null,country:{name:"China"}}},{id:"29299",title:"Prof.",name:"Serestina",middleName:null,surname:"Viriri",slug:"serestina-viriri",fullName:"Serestina Viriri",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOalQAG/Profile_Picture_1620817405517",institutionString:null,institution:{name:"University of KwaZulu-Natal",institutionURL:null,country:{name:"South Africa"}}},{id:"315933",title:"Dr.",name:"Yalın",middleName:null,surname:"Baştanlar",slug:"yalin-bastanlar",fullName:"Yalın Baştanlar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002qpr7hQAA/Profile_Picture_1621430127547",institutionString:null,institution:{name:"Izmir Institute of Technology",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:3,paginationItems:[{id:"82903",title:"Walking Accessibility to Primary Healthcare Services: An Inequity Factor for Olders in the Lisbon Metropolitan Area (Portugal)",doi:"10.5772/intechopen.106265",signatures:"Eduarda Marques da Costa, Ana Louro, Nuno Marques da Costa, Mariana Dias and Marcela Barata",slug:"walking-accessibility-to-primary-healthcare-services-an-inequity-factor-for-olders-in-the-lisbon-met",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"82622",title:"Contemporary Geographical Gerontology: Reconciling Space and Place in Population Ageing",doi:"10.5772/intechopen.105863",signatures:"Hamish Robertson",slug:"contemporary-geographical-gerontology-reconciling-space-and-place-in-population-ageing",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hamish",surname:"Robertson"}],book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10897",title:"Food Systems Resilience",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",slug:"food-systems-resilience",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Ana I. Ribeiro-Barros, Daniel S. Tevera, Luís F. Goulao and Lucas D. Tivana",hash:"ae9dd92f53433e4607f1db188dc649b4",volumeInSeries:1,fullTitle:"Food Systems Resilience",editors:[{id:"171036",title:"Dr.",name:"Ana I.",middleName:null,surname:"Ribeiro-Barros",slug:"ana-i.-ribeiro-barros",fullName:"Ana I. Ribeiro-Barros",profilePictureURL:"https://mts.intechopen.com/storage/users/171036/images/system/171036.jpg",institutionString:"University of Lisbon",institution:{name:"University of Lisbon",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:141,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/53884",hash:"",query:{},params:{id:"53884"},fullPath:"/chapters/53884",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()