Monte Carlo simulation mean values of select coefficients for the three signal classes.
Abstract
This chapter introduces two new empirical methods for obtaining optimal smoothing of noise‐ridden stationary and nonstationary, linear and nonlinear signals. Both methods utilize an application of the spectral representation theorem (SRT) for signal decomposition that exploits the dynamic properties of optimal control. The methods, named as SRT1 and SRT2, produce a low‐resolution and a high‐resolution filter, which may be utilized for optimal long‐ and short‐run tracking as well as forecasting devices. Monte Carlo simulation applied to three broad classes of signals enables comparing the dual SRT methods with a similarly optimized version of the well‐known and reputed empirical Hilbert‐Huang transform (HHT). The results point to a more satisfactory performance of the SRT methods and especially the second, in terms of low and high resolution as compared to the HHT for any of the three signal classes, in many cases also for nonlinear and stationary/nonstationary signals. Finally, all of the three methods undergo statistical experimenting on eight select real‐time data sets, which include climatic, seismological, economic and solar time series.
Keywords
- signal analysis
- white and colored noise
- Monte Carlo simulation
- time series properties
- smoothing techniques
1. Introduction
The literature on time series smoothing and denoising techniques is vast and encompasses different disciplines, such as chemometrics, econometrics, seismology, signal analysis and many more. Among the most renown and utilized methods are the Savitzky‐Golay and Hodrick‐Prescott filters, the Hilbert‐Huang transform (HHT), wavelet analysis, as well as the ample class of kernel filters [1–6].
All of these techniques share an ample spectrum of degrees of resolution loss of the original raw signal, namely, a large family of filters addressed at separating from noise the stochastic or broken trend underlying the observed signal. The researcher is thus enabled to select the desired denoising frequency visually and/or by means of some prior information, like threshold selection, rescaling and data‐dependent smoothing weights. Automatic selection procedures are available in the context of Savitzky‐Golay filtering developed in the field of chemometrics [7] and quite a few in the field of image processing (e.g. [8]). Such procedures are utilized also for the stoppage criteria embedded in the HHT but are virtually absent in the field of econometrics [3, 8–11].
In general, however, the capability of balancing high‐ with low‐resolution characteristics in a world of different real‐time data (RTD) patterns is oftentimes questionable. In fact, in spite of their efficacy, all of these models contribute a common shortcoming by letting the researcher arbitrarily—and thus casually—select the degree of resolution, thereby risking over/under fitting of the slow mode with respect to the original signal. The immediate consequence is suboptimal denoising, namely, a signal extraction yielding a smoother that is statistically inconsistent with the original peak/trough pattern or that too closely replicates the original signal. For this purpose, automated and optimizing parameter selection must be utilized, based on the minimum squared distance between the actual and the smoothed series [12].
The goal of this chapter exactly addresses this problem, which may be defined as the search for statistical dynamic efficiency of the estimated smoother. This search, in practice, ends up with extracting from the available data set the optimal smoother, namely, the stochastic or broken trend, which minimizes the noise variance among many second‐best solutions. Section 2 introduces time series decomposition and the statistical taxonomy of stochastic noise. Sections 3 and 4 are devoted to an introduction and detailed description, respectively, of the HHT and of the SRT models for signal smoothing. Section 5 produces comparative efficiency results of the two new techniques with respect to HHT by using Monte Carlo simulations and reports descriptive statistics of some select climatic, seismological, economic and solar real‐time series. Section 6 concludes, while the Appendix produces the sources of the real‐time signals utilized.
2. Signal decomposition and statistical taxonomy, linearityand stationarity testing
Any observed signal, by means of additive decomposition [3, 13], may be modeled as the sum of three different random variables of unknown distribution such that
where
The signal may be linear or nonlinear, as well as stationary or nonstationary, depending on its components and on their distributional properties. Briefly, nonlinearity is a feature of a signal characterized by the presence of linear as well as quadratic and/or cubic variables and/or multiplicative variables, rendering the signal typically nonparametric and thus unsuitable for standard statistical testing such as variance analysis, prediction and stationarity. In addition, a linear or nonlinear signal is stationary (nonstationary) if its best linear trend fit is significantly flat (rising/falling over time). Nonlinearity and nonstationarity of the signal [17] can be tested by means of appropriate procedures [18–21]. The resulting number of regime switches, when applicable, is determined by computing single or multiple intercept and/or trend time breaks [22–24]. For details on the corresponding critical‐value statistics, the reader is redirected to the respective authors.
All components of the observed signal are stochastic and unobservable and must be retrieved from the raw data set by means of appropriate computational methods, some of which were invoked in Introduction. In particular, the slow‐mode term requires the use of some filtering procedures to possibly attain an optimal low‐resolution time‐varying trend, in fact the smoother (Section 3). In addition, if
Any observed signal in Eq. (1) is shown to pertain to one of the following three statistical taxonomic classes: (1) a random Gaussian white noise (RGS), (2) a colored (pink/red) random noise (RWS) and (3) a valid‐threshold regime‐switching Gaussian mixture constructed as a casually ordered sequence of two or more of the previous signals (RGWS).
Formally, the first kind of signal (RGS) may be expressed as follows:
where the constant term, which corresponds to the mean of the noise and the time‐slope coefficient, respectively, are
The second kind of signal (RWS) is
where the coefficients contribute the same characteristics as those in Eq. (2), but even if
The third kind of signal (RGWS) is represented by the Markov regime‐switching model [25–31], where the raw signal may undergo significant structural changes across its lifetime due to variability in its underlying probability transition matrix. Therefore, the signal, which is a combination of Eqs. (2) and (3), may experience some quiet and some turbulent states of nature, like stock‐market fluctuations and seismic signals. The obvious consequence is that the signal may fall short of standard parametric normality or stationarity statistical testing. Moreover, a threshold upper and lower limit must be imposed on regime‐switching dates to avoid spurious computation of clusters too close to each endpoint. The threshold is set in the present context to be 15–85% of the total number of observations with consequential “valid” dates comprised within the reduced‐size sample [24].
The RGWS noise class is represented by the following sequence
where
where, given an
The entire
Either of the three taxonomies enables empirical estimation of Eq. (1) by means of any of the smoothing procedures introduced in Section 1. Such procedures in different manners will find the smoother
Whereas by simple logic the extraction process of the smoother
As a matter of empirical fact, simulation outcomes of Monte Carlo iterations with 1000 draws indicate that around 60% of the RGWS signals with
3. The Hilbert‐Huang transform (HHT)
The Hilbert‐Huang transform (HHT) is an empirical procedure designed to correct for noise‐ridden signal smoothing, purported to work for both nonlinear and nonstationary time series [4–6, 32, 33]. The HHT is based on the so‐called ensemble empirical mode decomposition (EEMD), which consists, for any arbitrary number of steps 2 ≤ Q ≤ T, of producing at each step an intrinsic mode function (IMF). Each IMF is computed by consecutive “siftings” of the data, a procedure that involves finding the means of the high‐resolution envelopes constructed by cubic splining of the extreme values of the available data, possibly after correcting for endpoints [34]. The
where, given the upper and lower envelopes
which represents the family of all the sifted IMFs starting from the highest frequency. Subsequently, the matrix
In an HHT environment, the optimal high‐resolution smoother among the candidates of
which produce an inverse signal‐to‐noise ratio screeplot of length
where
which is the flagship of the efficiency indicators that shall be utilized on confrontational grounds with respect to the two SRTs discussed in Section 4.
4. The spectral representation transform (SRT)
By virtue of the spectral representation theorem, the signal
which depicts a harmonic waveform continuous function, where
where
where
The fitted signal of Eq. (14), which is the smoother estimable by ordinary least squares [25], is actually the SRT of the original signal with time‐varying amplitude and lag
where
Similar to the technique utilized for identifying the optimal smoother in the PRMSE sense exhibited in Section 3, also here a matrix of smoother candidates may be obtained depending on the
If we let
Hence, the Hamiltonian problem may be expressed as follows:
where the first element within the curly braces is of obvious reading and represents a resolution index that picks up the high frequencies of the problem. The second and the third elements capture the AR(1) dynamics of the processes involved in the Hamiltonian problem, namely, those of the prediction error and those of the signal itself. Eq. (17) is a cubic spline smoother that partly resembles the Hodrick‐Prescott filter in the inclusion of both a cyclical and a trend part [3]. Moreover, Eq. (17) forms the basis for a screeplot [36] similar in kind to that of Eq. (11), whereby the optimal lag
such that
From this smoother the dual high‐resolution SRT smoother, named SRT2, may be easily constructed by means of envelope augmentation, a procedure knowingly embedded into the HHT sifting process (Section 3). Let the upper and the lower envelopes of the actual signal be defined as the unique cubic splines
where the first error is associated with SRT1 and the second is associated with SRT2.
From Eq. (19), the PRMSEs of both models may be found by the same means as those employed to obtain Eq. (12), namely
where the first (second) index is associated with SRT1 (SRT2).
5. Smoother analysis applied to artificial and real‐time signals
Figure 1 depicts six signals pertaining to the three taxonomic classes (Section 2). The first three signals are 300 observation artificial RGS, RWS and RGWS, drawn from standard normal distributions. The other three are real‐world signals, of which the first two are recent Japanese earthquake seismographic waveforms collected from a specific web directory [41]. The last signal represents the Qualcomm NASDAQ‐traded stock close price on a weekly basis from the year 1995 to date. In particular, with regard to the first two real‐time signals (Figure 1, panels 4 and 5), the reported seismographs concern two earthquakes, respectively, occurred in Makurazaki (Kagoshima prefecture) on November 13, 2015 at 20:51 UTC, with moment magnitude

Figure 1.
Artificial and real‐time random signals, all smoothers and linear trends. Vertical axes represent signal magnitudes, horizontal axes represent time in calendar years (1, 2, 3 and 6) or in seconds (4, 5).
Horizontal (vertical) measurements in Figure 1 represent time lengths (magnitudes). All of the three smoothers (HHT, SRT1 and SRT2) are included together with a linear best‐fit trend. The first two signals (RGS and RWS) are linear while the third (RGWS) is nonlinear (Figure 1, panels 1–3). Among them, only RGS is stationary and none exhibits a valid time break. Of the three real‐time signals (Makurazaki and Tohoku earthquakes, Qualcomm), all are nonlinear and one is nonstationary as well (Tohoku earthquake). Moreover, all of these signals exhibit one single valid time break each, respectively, located at observation 57, 1123 and 261. Finally, from unreported results, SRT2 prevails as the least‐PRMSE smoother for the first four signals, while the quirky behavior of the last two signals (Tohoku and Qualcomm) finds HHT as the most efficient smoother.
Table 1, columns A–C, exhibits the efficiency performance and other coefficients of the three smoothers (HHT, SRT1 and SRT2) for the three signal classes (RGS, RWS and RGWS). The results shown are the mean values obtained from empirical Monte Carlo signal simulations with 1000 draws each and length of 300 observations. The PRMSE coefficients reported in line 1 have received attention in Eqs. (12) and (20), whereas the coefficients reported in line 2 show the simulated mean error variance appearing in their numerators. The variance of the smoothed trends is exhibited in line 3. In all cases, simple eyeballing points to SRT2 as the most efficient, that is, the variance minimizing smoothing method (Table 1, third column of columns A–C).
Tables | A. RGS Monte Carlo simulations, 300 observations each | B. RWS Monte Carlo simulations, 300 observations each | C. RGWS Monte Carlo simulations, 300 observations each | ||||||
---|---|---|---|---|---|---|---|---|---|
Signal/coefficient | HHT | SRT1 | SRT2 | HHT | SRT1 | SRT2 | HHT | SRT1 | SRT2 |
0.924 | 0.973 | 0.875 | 0.224 | 0.228 | 0.164 | 0.288 | 0.355 | 0.221 | |
0.854 | 0.952 | 0.771 | 1.633 | 1.844 | 0.911 | 4.459 | 5.533 | 1.973 | |
0.924 | 0.978 | 0.881 | 7.290 | 8.088 | 5.554 | 15.482 | 15.586 | 8.928 | |
-3.138 | 1.472 | -6.851 | -4.088 | -3.243 | -4.067 | -1.831 | -1.565 | -3.104 |
Table 1.
Stationarity of the error variances in Eqs. (9) and (19) is crucial for establishing the goodness‐of‐fit of the estimated smoothers of all signal classes. Here, stationarity is tested by means of a novel technique, which corrects the conventional augmented Dickey‐Fuller test statistic [19] after accounting for overtime changes in subsample variances, cycles and growing/falling linear trends in the signal [12]. This technique exhibits a similar nonparametric distribution as the ADF test statistic, such that the critical test statistics for stationarity of the untransformed signal are -2.79 and -2.51 for
In order to further compare the HHT and the SRT performances, select real‐time signals are being put to empirical testing for the sake of optimal smoothing analysis. The entire data set of the real‐time data (RTD) includes eight signals of different nature: climatic, economic, seismic and solar. The RTD proposed are mostly high resolution and long term, ranging from a minimum of 315 to a maximum of 1915 observations of which one is yearly and all the others are monthly. The last access to the web for all available data was November 30, 2015.
The full source list and related time intervals are contained in the RTD Appendix, while the synthetic acronymed list of the select signals is the following: AMO (Atlantic Multidecadal Oscillation), GISS (Global Land‐Ocean Temperature Index), Yamalia (Yamal Peninsula Temperature Reconstructions), S&P500 (Standard & Poor's 500 Composite Index), SPI (U.S. Standardized Precipitation Index), Banda (Banda Aceh earthquake, 2004), NASDAQ ( Close values of the NASDAQ Stock Index) and finally SSN (Sunspot Numbers).
Among these RTDs, worth of more details than those provided in the Appendix is the earthquake of Banda Aceh, Indonesia, which occurred on December 26, 2014 at 00:58 UTC with
The relevant descriptive statistics and visual performances of the RTDs are exhibited, respectively, in Table 2 and in Figure 2a and b. From Table 2, a very diverse pattern emerges in terms of mean and standard deviation with estimated volatilities ranging from 1.0 (NASDAQ) to 101.0 (Banda). Moreover, skewness appears mild everywhere, barring two cases where it is relatively high (S&P500 and NASDAQ), whereas kurtosis hovers for all RTDs around its critical value of three. All but two of the RTDs (AMO and SSN) are nonstationary and all exhibit zero valid regime switches, exclusion made for Banda and NASDAQ. Finally, they are all nonlinear except for AMO and SPI, as subsumed from the Harvey linearity test statistic whose critical value is close to 3.0. Optimal smoothing of the RTDs is achieved in the last two cases (Banda and NASDAQ) by means of subsample cluster analysis whereas for the other RTDs full‐sample computation is more efficient (Section 2). The SRT2 smoother is found to exhibit the smallest PRMSEs in 75% of the cases proposed, whereas only three of them prefer the HHT method (S&P500, NASDAQ and SSN).
Signal/Statistic | Number of observations | Mean | Standard deviation | Skewness | Kurtosis | Harvey linearity test statistic | Corrected stationarity test statistic | Number of valid regime switches |
---|---|---|---|---|---|---|---|---|
1915 | -0.030 | 0.241 | 0.046 | 3.499 | 2.994 | -4.107 | 0 | |
1627 | 1.508 | 32.994 | 0.608 | 2.698 | 1627.0 | 27.299 | 0 | |
356 | -0.714 | 1.790 | -0.421 | 3.230 | 355.90 | 5.408 | 0 | |
789 | 478.650 | 550.361 | 1.121 | 2.977 | 789.000 | 83.865 | 0 | |
1407 | -0.233 | 1.039 | -0.334 | 2.995 | 1.751 | 1.825 | 0 | |
3000 | 584.863 | 59 × 103 | 0.279 | 2.896 | 3000.0 | 21.821 | 2 | |
536 | 1267.57 | 1263.04 | 1.048 | 3.299 | 536.0 | 38.445 | 3 | |
315 | 54.365 | 40.457 | 0.663 | 2.440 | 315.000 | -4.748 | 0 |
Table 2.
Descriptive and select test statistics of the real‐time dataset (RTD).

Figure 2.
Real‐time select random signals (a) vertical axes represent signal magnitudes, horizontal axes represent time in calendar years) and (b) vertical axes represent signal magnitudes, horizontal axes represent time in years (5, 7 and 8) or seconds (6).
For each RTD, the actual signal, its optimal smoother (HHT or SRT2) and its linear trend are exhibited in Figure 2a and b. In Figure 1, horizontal (vertical) measurements represent time lengths (magnitudes). Among the three HHT optimal smoothers found above, two are related to quirky signals, S&P500 and NASDAQ (Figure 2a, panel 4 and Figure 2b, panel 7). They exhibit however different frequencies, in spite of being estimated by the same subsample cluster technique. In fact the former (latter) is a low‐ (high‐) resolution signal. Both signals exhibit in any case broken trends characterized by a long period of quiet followed by wild gyrations, which reflect the highly varying moods of both the stock market and of the Federal Reserve Board. The third signal associated with optimal smoothing attained through the HHT is the time series of sunspots (SSN). Full‐sample estimation of the smoother was preferred, while broken trends clearly emerge from visual inspection (Figure 2b, panel 8). Significant regime switches are found to occur at the observations 1810 and 1902, in occasion of the Dalton and of the Modern Minimum, respectively [12].
Among the other five RTDs whose optimal smoother is of the SRT2 brand, only one (Banda) requires subsample cluster computation. The optimal smoother exhibits a dramatic regime switch in the passage from foreshocks to the main shocks and somewhat later (Figure 2b, panel 6). The two major break dates were found to be placed at observations 1833 and 1905 of 3000 observations. All of the RTD optimal smoothers, including Banda, exhibit high resolution and, at least visually, manifest considerable accuracy in tracking the original signal. This is particularly true for AMO, GISS, Yamalia and SPI, which are sizably noise‐ridden (Figure 2a, panels 1–3 and 5).
6. Conclusions
This chapter has introduced and described in detail two new dual empirical methods for obtaining optimal smoothing of random signals pertaining to three broad taxonomic classes. Both methods utilize an application of the spectral representation theorem for signal decomposition that exploits the dynamic properties of optimal control. The two methods, named SRT1 and SRT2, produce a low‐ and a high‐resolution filter, which may be utilized for optimal long‐ and short‐run tracking as well as forecasting devices. The methods proven by Monte Carlo simulation found to be more efficient than the empirical Hilbert‐Huang transform (HHT) for all of the taxonomic classes. The methods are also comparatively tested by using random artificial and a bunch of real‐time signals, particularly eight select data sets including climatic, seismological and economic time series. HHT is proven to be more efficient in few cases of quirky, multiple regime‐switch signals, like the Standard & Poor's 500 and the NASDAQ indexes.
References
- 1.
Savitzky A. and Golay M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry. 1964; 36 : 1627–1639. DOI: 10.1021/ac60214a047 - 2.
Daubechies I. Ten Lectures on Wavelets. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA. 1992. p. xix + 357. DOI: 10.1137/1.9781611970104; 10.1137/1.9781611970104#_blank#Opens new window - 3.
Hodrick R. and Prescott E.C. Postwar U.S. business cycles: an empirical investigation. Journal of Money, Credit and Banking. 1997; 29 : 1–16. - 4.
Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., Yen N.‐C., Tung C.C. and Liu H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proceedings of the Royal Society in London. 1998; 454A : 903–993. DOI: 10.1098/rspa.1998.0193 - 5.
Huang N.E., Wu M.-L., Qu W., Long S.R., Shen S.S.P., and Zhang J.E. Applications of Hilbert–Huang transform to non-stationary financial time series analysis. Applied Stochastic Models in Business and Industry. 2003; 19 : 245–268. DOI: 10.1002/asmb.506 - 6.
Huang N.E. and Wu Z. A review on Hilbert‐Huang transform: method and its applications to geophysical studies. Review of Geophysics. 2008; 46 : RG2006. DOI: 10.1029/2007RG000228 - 7.
Vivó‐Truyols G. and Schoenmakers P.J. Automatic selection of optimal Savitzky‐Golay smoothing. Analytical Chemistry. 2006; 78 : 4598–4608. DOI: 10.1021/ac0600196 - 8.
Xiang Z. and Peyman M. Automatic parameter selection for denoising algorithms using a no‐reference measure of image content. IEEE Transactions on Image Processing. 2010; 19 : 3116–3132. DOI: 10.1109/TIP.2010.2052820 - 9.
Baxter M. and King R.G. Measuring business cycles: approximate band‐pass filters for economic time series. Review of Economics and Statistics. 1999; 81 : 575–593. DOI: 10.3386/w5022 - 10.
Ravn M.O. and Uhlig H. On adjusting the Hodrick‐Prescott filter for the frequency of observations. Review of Economics and Statistics. 2002; 84 : 371–376. - 11.
McElroy T. Exact formulas for the Hodrick Prescott filter. The Econometrics Journal. 2008; 11 : 209–217. DOI: 10.1111/j.1368‐423X.2008.00230.x - 12.
Travaglini G. An econometric investigation of the sunspot number record since the year 1700 and its prediction into the 22nd century. Advances in Space Research. 2015; 56 : 992–1002. DOI: 10.1016/ j.asr. 2015. 05.012. - 13.
Cramér H. On some classes of nonstationary stochastic processes. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley and Los Angeles, University of Los Angeles Press. 1961, pp. 57–77. - 14.
Ng S. and Perron P. Lag length selection and the construction of unit root tests with good size and power. Econometrica. 2001; 69 : 1519–1554. DOI: 10.1111/1468‐0262.00256 - 15.
Su J.‐J., Cheung A.W.‐K. and Roca E. Lag selection of the augmented Kapetanios‐Shin‐Snell nonlinear unit root test. Journal of Mathematics and Statistics. 2013; 9 : 102–111. DOI: 10.3844/jmssp.2013 - 16.
Rappoport P. and Reichlin L. On broken trends, random walks and non‐stationary cycles. Technological and Social Factors in Long‐Term Fluctuations. Di Marco M., et al. editors, Siena, IT. Springer-Verlag. 1989, pp. 305–331. DOI: 10.1007/978‐3‐642‐48360‐816 - 17.
Nason G.P. Stationary and nonstationary time series. Ch. 11, Statistics in Volcanology.Mader H. and Coles S.C. editors. The Geological Society, London. 2006, pp. 129–142. - 18.
Harvey D.I., Leybourne S.J. and Xiao B. A powerful test for linearity when the order of integration is unknown. Studies in Nonlinear Dynamics & Econometrics. 2008; 12: Article 2. DOI: 10.2202/1558‐3708.1582 - 19.
Said E. and Dickey D.A. Testing for unit roots in autoregressive moving average models of unknown order. Biometrika. 1984; 71 : 599–607. DOI: 10.1093/biomet/71.3.599 - 20.
Kapetanios G., Shin Y. and Snell A. Testing for a unit root in the nonlinear STAR framework. Journal of Econometrics. 2003; 112 : 359–379. DOI: 10.1016/S0304‐4076(02)00202‐6 - 21.
Kapeitanos G. and Shin Y. Testing the null hypothesis of nonstationary long memory against the alternative hypothesis of a nonlinear ergodic model. Econometrics Review. 2011; 30 : 620–645. DOI: 10.1080/07474938.2011.553568 DOI:10.1080/07474938.2011.553568#_self - 22.
Perron P. The great crash, the oil price shock and the unit root hypothesis. Econometrica. 1989; 57 : 1361–1401. DOI: 10.2307/1913712 - 23.
Bai J. and Perron P. Computation and analysis of multiple structural change models. Journal of Applied Econometrics. 2003; 18 : 1–22. DOI: 10.1002/jae.659 - 24.
Kim D. and Perron P. Unit root tests allowing for a break in the trend function at an unknown time under both the null and alternative hypotheses. Journal of Econometrics. 2009; 148 : 1–13. DOI: 10.1016/j.jeconom.2008.08.019 - 25.
Hamilton J.D. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica. 1989; 57 : 357–384. DOI: 10.2307/1912559 - 26.
Hamilton J.D. Time Series Analysis. Princeton University Press, Princeton, NJ. 1994, pp. xiv + 799. DOI: 10.1017/S0266466600009440; 10.1017/S0266466600009440#_blank - 27.
Hamilton J.D. Regime switching models. The New Palgrave Dictionary of Economics, 2nd ed., Durlauf S.N. and Blume L.E. editors. Palgrave Macmillan, London. 2008. DOI: 10.1057/9780230226203.1411 - 28.
Kanas A. Purchasing power parity and Markov regime switching. Journal of Money Credit and Banking. 2006; 38 : 1669–1687. DOI: 10.1353/mcb.2006.0083 - 29.
Mizrach B. Nonlinear time series analysis. The New Palgrave Dictionary of Economics, 2nd ed., Durlauf S.N. and Blume L.E. editors. Palgrave Macmillan, London, UK. 2008, pp. 169–177. - 30.
Mizrach B. Nonlinear mean reversion in EMS exchange rates. Brussels Economic Review. 2010; 53 : 187–198. - 31.
Lee H.‐T. and Yoon G. Does purchasing power parity hold sometimes? Regime switching in real exchange rates. Applied Economics. 2013; 45 : 2279–2294. DOI: 10.1080/00036846.2012661399 - 32.
Wu Z., Huang N.E., Long S.R. and Peng C.‐K. On the trend, detrending and variability of nonlinear and nonstationary time series. PNAS. 2007; 104 : 14889–14894. DOI: 10.1073/ pnas.0701020104 - 33.
Wu Z. and Huang N.E. Ensemble empirical mode decomposition: a noise‐assisted data analysis method. Advances in Adaptive Data Analysis. 2009; 1 : 1–41. DOI: 10.1142/S1793536909000047 - 34.
Dätig M. and Schlurmann T. Performance and limitations of the Hilbert‐Huang transformation (HHT) with an application to irregular water waves. Ocean Engineering. 2004; 31 : 1783–1834. - 35.
Jolliffe I.T. A note on the use of principal components in regression. Applied Statistics. 1982; 31 : 300–303. - 36.
Jolliffe I.T. Principal Component Analysis, 2nd ed., Springer‐Verlag, New York. 2002, pp. xxix + 427. - 37.
Ahn S.C. and Horenstein A.R. Eigenvalue ratio test for the number of factors. Econometrica. 2013; 81 : 1203–1227. DOI: 10.3982/ECTA8968 - 38.
Miller R.E. Dynamic Optimization and Economic Applications. McGraw‐Hill, New York, NY. 1979, pp. vii + 332. - 39.
Athans M. and Falb P. Optimal Control: An Introduction to the Theory and Its Applications. Dover Publications, New York. 2007, pp. xvi + 879. - 40.
Ross I.M. A Primer on Pontryagin's Principle in Optimal Control. Collegiate Publishers, San Francisco, CA. 2009, p. 102. - 41.
IRIS, Incorporated Research Institutions for Seismology, 2015. Available from: https:/ds.iris.edu.ds.nodes.dmc [Accessed: 2016‐09‐11].