Ranges of experimental values for honey physico-chemical characteristics.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"1695",leadTitle:null,fullTitle:"Morphometrics",title:"Morphometrics",subtitle:null,reviewType:"peer-reviewed",abstract:"It is human nature to measure things, and this holds true for science as well as everyday life. The five papers in this book demonstrate the usefulness of a morphometric approach to a variety of subjects in natural history, including systematics, phenotypic plasticity in response to environmental variation, and ontogenetic adaptation. As our understanding of genetic control mechanisms and epigenetics has matured over the last several decades, it has become clear that morphometric assessment continues to be important to our overall understanding of natural variability in growth and form. The tremendous growth of our knowledge base during the last century has necessitated that we find new ways to measure and track greater detail as well as greater numbers of parameters among populations and individuals.",isbn:null,printIsbn:"978-953-51-0172-7",pdfIsbn:"978-953-51-5222-4",doi:"10.5772/2138",price:119,priceEur:129,priceUsd:155,slug:"morphometrics",numberOfPages:122,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"5571690f6504452e782440929fdf8c45",bookSignature:"Christina Wahl",publishedDate:"March 2nd 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1695.jpg",numberOfDownloads:17848,numberOfWosCitations:42,numberOfCrossrefCitations:8,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:32,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:82,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 26th 2011",dateEndSecondStepPublish:"May 24th 2011",dateEndThirdStepPublish:"September 28th 2011",dateEndFourthStepPublish:"October 28th 2011",dateEndFifthStepPublish:"February 27th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"99223",title:"Prof.",name:"Christina",middleName:null,surname:"Wahl",slug:"christina-wahl",fullName:"Christina Wahl",profilePictureURL:"https://mts.intechopen.com/storage/users/99223/images/2088_n.jpg",biography:"Christina Wahl studies craniofacial development, in particular differentiation of the eye and periocular structures. Her other research interests include the visual ecology of larval and juvenile fishes, the effects of light regimes on sensory system development, and variations in the normal morphology of vertebrate ovaries. She teaches courses in anatomy and physiology, developmental biology, research methods, and vertebrate zoology at Wells College in Aurora, New York. Her husband Ellis Loew is a professor at the College of Veterinary Medicine at Cornell University. They have two daughters and they enjoy homebuilding and traveling together.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Wells College",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"315",title:"Ethology",slug:"ethology"}],chapters:[{id:"30104",title:"Applications of Morphometrics to the Hymenoptera, Particularly Bumble Bees (Bombus, Apidae)",doi:"10.5772/34745",slug:"applications-of-morphometrics-to-the-hymenoptera-particularly-bumble-bees-bombus-apidae-",totalDownloads:3921,totalCrossrefCites:2,totalDimensionsCites:7,hasAltmetrics:0,abstract:null,signatures:"Robin E. Owen",downloadPdfUrl:"/chapter/pdf-download/30104",previewPdfUrl:"/chapter/pdf-preview/30104",authors:[{id:"101485",title:"Dr.",name:"Robin",surname:"Owen",slug:"robin-owen",fullName:"Robin Owen"}],corrections:null},{id:"30105",title:"The Mosquito Fauna: From Metric Disparity to Species Diversity",doi:"10.5772/36142",slug:"the-mosquito-fauna-from-metric-disparity-to-species-diversity",totalDownloads:1801,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Jean-Pierre Dujardin, P. Thongsripong and Amy B. Henry",downloadPdfUrl:"/chapter/pdf-download/30105",previewPdfUrl:"/chapter/pdf-preview/30105",authors:[{id:"107247",title:"Dr.",name:"Jean-Pierre",surname:"Dujardin",slug:"jean-pierre-dujardin",fullName:"Jean-Pierre Dujardin"},{id:"108110",title:"MSc.",name:"Amy B.",surname:"Henry",slug:"amy-b.-henry",fullName:"Amy B. Henry"},{id:"108112",title:"MSc.",name:"Panpim",surname:"Thongsripong",slug:"panpim-thongsripong",fullName:"Panpim Thongsripong"}],corrections:null},{id:"30106",title:"Reproduction and Morphohlogy of the Travancore Tortoise (Indotestudo travancorica) Boulenger, 1907",doi:"10.5772/33993",slug:"breeding-the-travancore-tortoise-indotestudo-travancorica-in-captivity",totalDownloads:1623,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Nikhil Whitaker",downloadPdfUrl:"/chapter/pdf-download/30106",previewPdfUrl:"/chapter/pdf-preview/30106",authors:[{id:"98183",title:"Mr.",name:"Nikhil",surname:"Whitaker",slug:"nikhil-whitaker",fullName:"Nikhil Whitaker"}],corrections:null},{id:"30107",title:"Morphometrics and Allometry in Fishes",doi:"10.5772/34529",slug:"morphometrics-and-allometry-in-fishes",totalDownloads:8384,totalCrossrefCites:4,totalDimensionsCites:22,hasAltmetrics:0,abstract:null,signatures:"Paraskevi K. Karachle and Konstantinos I. Stergiou",downloadPdfUrl:"/chapter/pdf-download/30107",previewPdfUrl:"/chapter/pdf-preview/30107",authors:[{id:"100570",title:"Dr.",name:"Paraskevi",surname:"Karachle",slug:"paraskevi-karachle",fullName:"Paraskevi Karachle"},{id:"108047",title:"Prof.",name:"Konstantinos",surname:"Stergiou",slug:"konstantinos-stergiou",fullName:"Konstantinos Stergiou"}],corrections:null},{id:"30108",title:"Morphometry Applied to the Study of Morphological Plasticity During Vertebrate Development",doi:"10.5772/34213",slug:"morphological-plasticity-during-development",totalDownloads:2123,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Christina Wahl",downloadPdfUrl:"/chapter/pdf-download/30108",previewPdfUrl:"/chapter/pdf-preview/30108",authors:[{id:"99223",title:"Prof.",name:"Christina",surname:"Wahl",slug:"christina-wahl",fullName:"Christina Wahl"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"5385",title:"Herbivores",subtitle:null,isOpenForSubmission:!1,hash:"4a59620780a3f755435d27902b8d3049",slug:"herbivores",bookSignature:"Vonnie D. C. Shields",coverURL:"https://cdn.intechopen.com/books/images_new/5385.jpg",editedByType:"Edited by",editors:[{id:"82613",title:"Dr.",name:"Vonnie D.C.",surname:"Shields",slug:"vonnie-d.c.-shields",fullName:"Vonnie D.C. Shields"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2346",title:"Herbivory",subtitle:null,isOpenForSubmission:!1,hash:"68d3b1d66c7204c79bf288aca1b728c4",slug:"herbivory",bookSignature:"Breno Barros and Marcus E. B. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/2346.jpg",editedByType:"Edited by",editors:[{id:"147058",title:"Ph.D.",name:"Breno",surname:"Barros",slug:"breno-barros",fullName:"Breno Barros"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6473",title:"Animal Welfare",subtitle:null,isOpenForSubmission:!1,hash:"0814e6a1deeca43ab829e3ec1abb7402",slug:"animal-welfare",bookSignature:"Muhammad Abubakar and Shumaila Manzoor",coverURL:"https://cdn.intechopen.com/books/images_new/6473.jpg",editedByType:"Edited by",editors:[{id:"112070",title:"Dr.",name:"Muhammad",surname:"Abubakar",slug:"muhammad-abubakar",fullName:"Muhammad Abubakar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"80207",slug:"corrigendum-to-aspects-regarding-thermal-mechanical-fatigue-of-shape-memory-alloys",title:"Corrigendum To: Aspects Regarding Thermal-Mechanical Fatigue of Shape Memory Alloys",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/80207.pdf",downloadPdfUrl:"/chapter/pdf-download/80207",previewPdfUrl:"/chapter/pdf-preview/80207",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/80207",risUrl:"/chapter/ris/80207",chapter:{id:"62954",slug:"aspects-regarding-thermal-mechanical-fatigue-of-shape-memory-alloys",signatures:"Petrică Vizureanu and Dragoș-Cristian Achiței",dateSubmitted:"April 12th 2018",dateReviewed:"April 25th 2018",datePrePublished:null,datePublished:"September 26th 2018",book:{id:"7213",title:"Shape-Memory Materials",subtitle:null,fullTitle:"Shape-Memory Materials",slug:"shape-memory-materials",publishedDate:"September 26th 2018",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/7213.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",middleName:null,surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"12354",title:"Prof.",name:"Petrică",middleName:null,surname:"Vizureanu",fullName:"Petrică Vizureanu",slug:"petrica-vizureanu",email:"peviz2002@yahoo.com",position:null,institution:{name:"Gheorghe Asachi Technical University of Iași",institutionURL:null,country:{name:"Romania"}}},{id:"209329",title:"Dr.",name:"Mirabela Georgiana",middleName:null,surname:"Minciuna",fullName:"Mirabela Georgiana Minciuna",slug:"mirabela-georgiana-minciuna",email:"mirabela.minciuna@yahoo.ro",position:null,institution:{name:"Gheorghe Asachi Technical University of Iași",institutionURL:null,country:{name:"Romania"}}},{id:"245668",title:"Dr.",name:"Dragos Cristian",middleName:null,surname:"Achitei",fullName:"Dragos Cristian Achitei",slug:"dragos-cristian-achitei",email:"dragos_adc@tuiasi.ro",position:null,institution:null},{id:"245669",title:"Dr.",name:"Manuela Cristina",middleName:null,surname:"Perju",fullName:"Manuela Cristina Perju",slug:"manuela-cristina-perju",email:"cryss_ela@yahoo.com",position:null,institution:null}]}},chapter:{id:"62954",slug:"aspects-regarding-thermal-mechanical-fatigue-of-shape-memory-alloys",signatures:"Petrică Vizureanu and Dragoș-Cristian Achiței",dateSubmitted:"April 12th 2018",dateReviewed:"April 25th 2018",datePrePublished:null,datePublished:"September 26th 2018",book:{id:"7213",title:"Shape-Memory Materials",subtitle:null,fullTitle:"Shape-Memory Materials",slug:"shape-memory-materials",publishedDate:"September 26th 2018",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/7213.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",middleName:null,surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"12354",title:"Prof.",name:"Petrică",middleName:null,surname:"Vizureanu",fullName:"Petrică Vizureanu",slug:"petrica-vizureanu",email:"peviz2002@yahoo.com",position:null,institution:{name:"Gheorghe Asachi Technical University of Iași",institutionURL:null,country:{name:"Romania"}}},{id:"209329",title:"Dr.",name:"Mirabela Georgiana",middleName:null,surname:"Minciuna",fullName:"Mirabela Georgiana Minciuna",slug:"mirabela-georgiana-minciuna",email:"mirabela.minciuna@yahoo.ro",position:null,institution:{name:"Gheorghe Asachi Technical University of Iași",institutionURL:null,country:{name:"Romania"}}},{id:"245668",title:"Dr.",name:"Dragos Cristian",middleName:null,surname:"Achitei",fullName:"Dragos Cristian Achitei",slug:"dragos-cristian-achitei",email:"dragos_adc@tuiasi.ro",position:null,institution:null},{id:"245669",title:"Dr.",name:"Manuela Cristina",middleName:null,surname:"Perju",fullName:"Manuela Cristina Perju",slug:"manuela-cristina-perju",email:"cryss_ela@yahoo.com",position:null,institution:null}]},book:{id:"7213",title:"Shape-Memory Materials",subtitle:null,fullTitle:"Shape-Memory Materials",slug:"shape-memory-materials",publishedDate:"September 26th 2018",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/7213.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",middleName:null,surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11513",leadTitle:null,title:"Gas Sensors",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tWe are living in a society where automation in each electrical appliance/instrument is a great demand. We wish to have automatic devices/gadgets/instruments with no or minimal intervention from humans in their daily operation. Then only, these devices can qualify to call it is smart instruments. To fulfill this, one of the major requirements is to come up with highly sensitive, long-lasting, low-cost smart sensors. On the other hand, the healthcare industry demands low-cost, Lab-on-chip type biosensors for simple and rapid detection of various biomolecules or biogases. A sensor is an analytical device that detects the change in the environment and responds to some output in terms of a measurable analog resistance/voltage/current converted into a human-readable display or transmitted for further processing. In the last two decades, a significant amount of research has been devoted to the development of various types of gas sensors using different nanomaterials in the electronic and healthcare industry.
\r\n\r\n\tThis book aims to provide the reader (research scholars, scientists, and engineers working in the field of sensors) an overview of the recent advances made in the development of various gas sensors for the electronic and healthcare industries for the betterment of the human lifestyle. Also, this book will intend to address existing challenges and a few future directions of research for easy integration and cost-effective fast sensing of such
\r\n\tgas sensors.
In spite of the wealth of information regarding honey originating from different countries and continents, all of it available to the stakeholders connected to the production, commercialization, and consumption areas, Romanian honey has enjoyed much less attention. Given the increasing consumer attention to high-quality foodstuff and the intensive involvement of Romanian researchers in solving society-raised issues, an attentive analysis of the results obtained in the last decades is extremely necessary. It is our intention to put together key elements of the Romanian honey profile for those interested to develop new investigation pathways.
\nThe climatic and melliferous conditions are favourable for apiculture in Romania. Productions as high as 25,000 tonnes have been obtained in certain years, as the Food and Agriculture Organization Corporate Statistical database (FAOSTAT) signals [1]. The three major vegetation zones are the alpine, forest, and steppe [2]. Forests cover 29% of the country surface, with 218,500 ha of virgin forests. More than 69% are deciduous, oaks being present as
More than 60% of land in Romania is used for agriculture. One-third sustains permanent pastures, the rest is tillable. More than 50% of the arable land is planted with grains (wheat, oat, barley, and maize). Oilseeds occupy around 10%, mainly
Data on honey production in Europe is presently available from Food and Agriculture Organization Corporate Database, FAOSTAT, from 1961 until 2013; information on the European honey production is collected in \nFigure 1\n. In 1976, the production exceeded for the first time 100,000 tonnes, while in 2002, the 200,000 tonnes milestone has been reached. Production evolution has been constantly influenced by climatic conditions, agricultural practices, and honey-harvesting procedures. Their effects are visible in the production dynamic since 1961. According to the FAO data, the European production represented between 10 and 15% of the world production (\nFigure 2\n).
\nHoney production in Europe (source FAOSTAT).
Honey production in the 1961–2013 interval (source FAOSTAT).
Romania is present in the international production statistics since 1961, contributing from 6.6 (in 1961) to 13.5% (1977) to the European production (\nFigure 3\n). Some of the political events are reflected by these numbers, such as the average 11% contribution in the 1977–1987 decade, when reported production raised as high as 14,000 tonnes. This period corresponded to the political decision to pay the national debts by intensive production of high value foods. The system confusion in the 1990 has induced a dramatic decrease of production to less than 10,000 tonnes, despite the tradition and relatively good climatic conditions. Afterwards, production has increased constantly to return to the previous levels and even exceed it, in 2003. The positive trend continued in the following years, and in 2013, honey production overcame a level never reported before, of 26,000 tonnes. Since then, there has been another fall below 20,000 tonnes, connected to the decrease in the honeybee colonies and pesticide-induced diseases. Such a trend has been reported for all other honey-producing countries.
\nHoney production in Romania (data source FAOSTAT + MADR [
A quick look to the main types produced since 2006 to the date (\nFigure 4\n) shows that the dominant polyfloral honey has varied from 30.5% (2012) to 87.5% (2006).
\nRomanian honey production by type (source MADR).
2012 has been an exceptional year, the sunflower honey representing 46.4% of the production, thus exceeding the polyfloral. These variations are tightly connected to the climatic conditions and the vegetative cycles of the plants on which honeybees fed. Exceptional years for acacia honey have been 2009, 2011, and 2013, when its share in the total production exceeded 21%. Along time, this has been one of the most appreciated assortments by the European consumers.
\nSince 2012, the EUROSTAT database provides data concerning the actors involved in organic honey production in the European Union (EU) (\nFigure 5\n). The newcomers in the Union, Romania and Bulgaria, are, along with Italy and Spain, significant suppliers of organic honey. Intensive use of pesticides in developed European countries has led to the premature death of hundreds of thousands beehives, thus leading to a decline of production.
\nMain actors in the organic honey production in European Union (source EUROSTAT).
Even if European Union represents the largest global producer of honey, it is not self-sufficient and approximately 40% of Europe’s consumption is covered with imports from other regions (\nFigure 6\n). Only Romania, Hungary, and Spain can manage a self-supply rate of 100% [5]. China and Argentina have been on the key suppliers list for a long time, together with Mexico and Thailand. China is particularly known as Europe’s main supplier of low-priced honey for industrial use and blends targeted at the mainstream market. The history of quality issues has worsened the position of Chinese honey in the global honey market, making the European Union more cautious about buying Chinese honey. As for Argentina, until a decade ago it was Europe’s main honey supplier. Argentinean honey supplies have been affected lately by heavy loss of colonies and specialized forage. Furthermore, the European Union ruling in 2011 connected to detailed labelling and proofing that the pollen contained did not come from genetically modified crops increased the difficulties for Argentinean honey imports.
\nHoney trade in Europe (data source FAOSTAT).
Starting with 2010, there has been a systematic increase of several percentages in the European Union honey exports. Main destinations are mature European markets in Germany, Italy, Poland, and United Kingdom, as well as some Eastern European countries. Hungary has contributed with 46% annual increase, Bulgaria with 29%, and Romania with a 26%.
\nThe structure of trade in Romania has changed over time (\nFigure 7\n). A total of 298 tonnes of imported honey were reported in 1992, for the first time since the creation of FAO. A four times larger amount has been exported in the same year, the ratio undergoing continuous changes. 1996 stands out with a three orders of magnitude larger export of 6245 tonnes, compared with only 2 tonnes import. In the next decade, a significant increase in the import has been registered, to a maximum of 740 tonnes in 2002. This ratio between the yearly exported and imported amounts has never been achieved since, the export still exceeding the import. But in the last 5 years, imported amounts have increased steadily, so that in 2013, they reached 2967 tonnes, while exports were only 4.3 times higher.
\nRomanian honey sector between 1993 and 2013 (data source FAOSTAT).
Since 1990, the Romanian consumer has been exposed to an increasing penetration of supermarkets and advertising, while undergoing repeated swings in the socio-economic status [6]. Less than 15% of the population has enjoyed a real increase in income, while more than 20% has experienced severe falls. As a consequence, there are large segments of price-conscious consumers and developing clusters of high-income earners. Patterns of food consumption in East European countries signalled a fall as regards animal products consumption in the last 25 years and identified economic factors as the driving force responsible. Premium food products consumption has been neglected, so no information about honey in the area can be found before 2006. Arvanitoyannis and Krystallis [6] paid attention to the behaviour of the Romanian consumer as regards honey, a premium product with special dietary and health properties. They have investigated purchasing and consumption channels, preferences during the acquisition process, awareness regarding ‘organic food’, and sketched respondents’ profiles. A total of 220 respondents filled in a questionnaire regarding frequency, expenditure, and place of food purchase, mode of honey purchase and consumption, quality criteria, awareness and stated willingness to pay for organic honey and overall reasons for honey preferences and/or non-preferences. Answers revealed that in spite of changes in the eating habits (brought along by the changes in the retail commerce), honey is still a product purchased in bulk from individual beekeepers or in open markets. Motivation for purchasing laid in the dietary quality, medical benefits of regular consumption, suitability with the food consumption lifestyle, and ethical character of the product. Based on the consumer motivation to purchase, there is a ‘common honey consumer’, who uses honey regularly, a ‘younger consumer indifferent towards honey’, and an ‘enthusiastic honey consumer’, who values its therapeutic properties and is willing to pay the premium prices of the organic produce. The ‘common honey consumer’ is very keen on the price, while the ‘enthusiastic honey consumer’ is extremely attentive to the quality. Romanian consumers pay generally very low attention to the labels; content, aroma, colour, thickness, and taste represent the quality identifiers rather than warranties, such as brand name or country of origin sign (even when the product is sold in bulk). The scepticism of the Romanian consumers in connection with warranties and labels is probably linked to the long-time history of foodstuff forgery, starting with the 1980s.
\nInterviewing a focus group consisting of 2023 subjects from 18 cultural areas, living in three types of rural communities and four types of urban settlements in 2007 and 2010, Pocol and Tesalios [7] have reported that 11% of the adult population does not consume honey, while 35% of the population consumes less than 750 g/year. An average consumption between 750 and 2000 g/year is acknowledged by 20%, and only 20% consume more than 2000 g/year. A correlation between age and consumption has been identified, stating that subjects in the 46–60 years category consume average and large amounts; this age range is negligible in the non-consumers category. Median age subjects (32–45) reported a normal consumption, while people below 30 consume reduced amounts of honey. These signal that status and economic determinants play an important part in honey consumption in Romania. Unfortunately, no linear dependency could be found between the amount of honey purchased and consumed and the economic and status variables, higher consumption being associated with medium-high status and income. As for cultural, demographic, and environmental variables, only age, cultural area, and nationality discriminate between categories. The authors conclude that honey in Romania is not part of the general dietary habits, being associated with a medium to high welfare.
\nThe European Union has established food hygiene and safety regulations stricter than those in force in other regions of the world. Moreover, European buyers often apply even stricter requirements of their own, depending on the market. These can vary from composition specifications to colour and taste preferences and organic/fair trade certifications.
\nAs honey is generally used as food, the European Union legislation on food applies to all honey present on the European Union market, locally processed and imported. The basis for food legislation is laid down in the EU General Food Law, Regulation (EC) 178/2002 [8], defining responsibilities and requirements for food business operators supplying food to the European Union. Directive (EC) 110/2001 [9] sets European requirements concerning honey quality standards and labelling. It has been amended by Directive (EC) 63/2014 [10], stating that pollen is not considered an ingredient anymore and labelling of honey originating in more than one member state or third country is compulsory. It also defines the right of the commission to set methods of analysis in order to verify the compliance with provisions of the current directive and the procedures of issuing and applying new decisions.
\nRequirements regarding honey composition and quality standards on the Romanian market are stated in this SR 784, parts 1 and 2 [11, 12]. Part 3 of the standard establishes the analysis methods for the sensory evaluation and quantification of the mandatory physical and chemical parameters (moisture, ash, acidity, reducing and easily hydrolysable sugars, total water insoluble matter, diastase and invertase, hydroxymethyl furfural content, colour index, electrical conductivity, and palynological evaluation) [13]. It also states the methods for determining adulteration with industrial glucose, starch, gelatine, glues, and aniline pigments. In addition to these requirements, all honey must comply with the general food and safety regulations mentioned above. The Romanian standard requires evaluation of routine physico-chemical parameters and identification of handful of adulterants. The recommended methods for evaluation of hydroxymethyl furfural (HMF) content are based on its reaction with resorcinol in acidic conditions or with barbituric acid in the presence of the carcinogenic
As botanical and geographical authentication has become a marked feature of the national and international honey trade, conformity evaluation laboratories and different research groups in Romania have taken steps to evaluate a larger portfolio of parameters to be used for the classification of honey samples, including geographical origin traceability [14–20].
\nAs regards contaminants, the national Romanian regulations for beekeeping and honey do not give details, but on the European Union territory, the Regulation (EC) 470/2009 [21], in conjunction with the annexes of Regulation (EC) 2377/90 [22], is in function and establishes the maximum residue levels (MRLs) for use of authorized veterinary drugs (mainly antibiotics) applied to honeybees. The use of veterinary drugs containing pharmacological substances not listed in the annexes of the mentioned document is prohibited.
\nThe systematic use of pesticides in the European agriculture has led to worrying declines in bee colonies, phenomenon known as colony collapse disorder (CCD). Following the negative trend and the extensive research by the European Food Safety Authority (ESFA) [23], the European Union has decided to ban the clothianidin, imidacloprid, and thiametoxam pesticides. The European proposal targets pesticides used in the treatment of cereals and plants attractive for bees and other pollinators.
\nIn the European Union, there are strict guidelines concerning genetically modified organisms (GMO) used as food. The ruling issued by the European Court of Justice in September 2011 stipulated that honey with traces of pollen from genetically modified crops needed special authorization and labelling before it could be commercialized in Europe. Then European Parliament authorized the shift of pollen from the ‘constituent’ to the ‘ingredient’ category, in effect from July 2014 [10]. Therefore, honey containing genetically modified pollen should no longer be labelled as containing GMOs.
\nAn important segment of the European market is the organic honey. Regulations have become stricter in time and European honey importers will increasingly require proof of organic certification of honey before entering this market. If honey is to be marketed as ‘organic’, it has to comply with the Council Regulation (EC) 834/2007 [24]. The specified requirements for organic beekeeping are
\nbeehives should be located in an area, with a radius of 3 km, which is free of contamination with chemicals from industrial complexes, airports, or main roads;
hives should be built from natural materials;
crops on which the honeybees feed should not have been chemically treated;
artificial honeybee fodder should also be certified as organic;
diseases should not be treated with veterinary medicines, only with approved organic substances;
honeybees should not be stupefied while harvesting honey.
Honey laundering is an increasingly worrying issue and refers to the re-labelling of honey from one origin to allege that it comes from another region, perceived by honey buyers as offering better quality. There is a constant race to discover affordable markers and techniques for authenticating geographical origin, with authorities and researchers on one side and international traders on the other side. The 2011 dossier on the Chinese honey shipped to India and Thailand and re-labelled before entering the European Union and the USA has prompted for concerted measures over the world. European buyers have established a working group in the International Federation of Beekeepers’ Associations (Apimondia) with the aim to set up a consequent framework to prevent and fight unfair trading [25].
\nGenerating more than €400 million per annum, European beekeeping sector is a significant economic player. Therefore, it is assisted by the European Union through subsidies, as laid down in Council Regulation 917/2004 [26, 27]. These subsidies are mostly directed to national apiculture programmes, which support research in the field of beekeeping and physical and chemical analysis of honey, technical assistance for trade, etc. Unfortunately, current production levels within the union are falling. This trend is characteristic mainly to Western European countries such as Belgium, France, Germany, Switzerland, the United Kingdom, and the Netherlands, but it was also spotted in the South in Italy, Greece, and Cyprus.
\nApart from the mandatory characteristics imposed by Standardization Association of Romania [28], different research groups have been engaged in the last 25 years in studying honey effects on the human body, setting up new analytical procedures, optimizing and validating those destined to routine operation, and building up an image as detailed as possible of its chemical and biochemical profile. Starting with 2005, a significant national financial support has contributed to the creation of a solid infrastructure for research and conformity compliance purposes. Some contributions are further presented, shedding light on the achievements obtained so far in exhaustively characterizing Romanian honey.
\nWhile the major sugars present in honey are readily accessible titrimetrically or spectrophotometrically, minor carbohydrates in Transylvanian acacia honey have been determined by liquid chromatography, along with individual phenolics [29]. An elaborate extraction procedure has been used prior to the identification and quantification by refractive index, UV, and mass spectrometry (MS) detection. Fructose and glucose, amounting to 42.4 and 31.9%, respectively, have been accompanied by 2.94% maltose, 2.16% sucrose, and 0.91% trehalose. Out of the 13 phenolic acids and flavonoids identified in the black locust honey, ferulic acid, abscisic acid, pinobanksine, pinocembrine, chrysin, and acacetine have been found in all studied samples,
Marghitas et al. [18] were among the first to contribute to Romanian honey characterization in terms of antioxidant properties. Knowledge about phenols and flavonoids levels, as well as the radical scavenging activity completes the Romanian honey profile and helps understand and predict part of its dietary and health effects. Using a lot of 24 nectar and honeydew honey collected from beekeepers in 2005–2006, they determined the sugars profiles by high-performance liquid chromatography (HPLC), water, colour, and ash content according to the International Honey Commission recommendations [31]. The total phenolic content was accessible by a modification of Folin-Ciocalteu method, using gallic acids equivalents to report results, while the flavonoids were evaluated as quercitin equivalents in basic solution. All studied samples passed the Romanian quality requirements. The honeydew honey has higher ash content than the nectar honey samples evaluated. Melezitose is present only in the honeydew samples, being a good candidate as discriminant for honeydew. As for the fructose/glucose ratio, all samples with values below 1 were crystallized, while the rest were fluid at the moment of investigations. In the nectar honey category, sunflower samples contain the largest levels of phenols, as high as 45 mg gallic acid/100 g sample; this maximum is easily exceed by honeydew honey samples, whose content is 23–125 mg gallic acid/100 g sample. While the honeydew phenols content resembles that of other European studied samples [32], the Romanian nectar honey samples contain fewer phenols than the values reported by other groups [33]. A significant correlation between phenols and radical scavenging activity was found, which was better than the correlation between flavonoids and radical scavenging activity (0.94 as compared to 0.83). The honeydew honey presents the highest flavonoids content, the highest percent of inhibition towards free radicals, being followed by sunflower, lime, and acacia honey.
\nThe special situation of honeydew honey has been further addressed by Chis et al. [34], when they compared the total phenolic compounds, flavonoids, and vitamin C levels in 10 samples from Bihor, Romania, and Podcarpackie, Poland, collected from beekeepers in 2012–2013. Two Polish samples were labelled organic. Apart from the attempt to standardize the evaluation procedure for radical scavenging activity using 2,2-di(phenyl-1-hydrazyl-hydrate) by using the percentage concentration of honey inducing a 50% inhibition of the free radical, IC50%, and the inhibition degree induced by a 1% honey solution, AA1%, the authors reported higher homogeneity of the evaluated parameters for the Romanian samples, compared to the Polish samples. Even if the entire Polish lot was labelled as honeydew honey, samples were different in appearance: ‘usual’ samples were dark brown, highly viscous, opaque, and completely liquid, while the ‘organic’ samples were light brown, opaque, and crystallized. The hypothesis of floral honey addition has been rejected based on the lower levels of phenolic compounds in Polish colza and sunflower honey, the possible candidates for adulteration. Ascorbic acid, flavonoids, and polyphenols are present in significant amounts, Polish samples being richer in all three compounds. The good correlation between the polyphenols levels and the radical scavenging activity points out that polyphenols are the main contributors for the antioxidant properties of honey.
\nInformation on the polycyclic aromatic hydrocarbons is mainly required when exporting Romanian honey on European and American markets. Nectar honey samples and other by-products (propolis, royal jelly, bee venom, bee wax) are prone to contamination by products resulted from the partial combustion of organic matter during different industrial processes, polycyclic aromatic hydrocarbons. Since many of these hydrocarbons have been proved to have mutagenic and/or carcinogenic effect [35], there has been an increasing concern about the levels of polycyclic aromatic hydrocarbons in foodstuff, not only in water, air, and soil. Investigations of Dobrinas et al. [19] lead to a successful procedure for extraction of polycyclic aromatic hydrocarbons from honey and propolis originating from 15 Romanian regions using hexane, followed by separation on aluminium oxide and silica gel chromatographic column and gas spectrography-mass spectrophotometry (GS-MS) dosage. Fourteen different aromatic hydrocarbons were determined, acenaphthene, and fluorine being the most abundant, at levels ranging from 2.0 to 55.0 ng/g. According to Environment Protection Agency, benzo[α]anthracene, benzo[
How does organic honey perform from the quality parameters point of view had been reported by Badescu et al. [36] after measuring moisture, HMF, colour, and antibiotics residues of acacia, linden, and polyfloral honey samples collected in 2012–2015 from beekeepers members of the Romanian Beekeepers Association, in Bacau and Deva. Three samples were taken from each type of honey, for each year, amounting to 54 samples. Water content varied in the 17–19.5% range stating all samples as superior quality honeys. Only one acacia sample collected from Bacau region in 2014 out of 54 in the studied lot had 1.23 mg HMF/100 g samples. As for the antibiotics residues, they were not put in evidence, thus meeting the national requirements for antibiotics residues in food stuff. It is thus gratifying that the organic honey originating from Bacau and Deva regions observe the quality standards for honey, as well as the European provision for organic honey.
\nNext to the routine physico-chemical parameters, Stihi et al. [37] investigated the presence of a series of metals by energy dispersive X-ray fluorescence (Ca, K) and atomic absorption spectrometry (Fe, Cu, Zn, and Pb) in 18 unifloral honey samples (acacia, lime tree, colza, and sunflower) from different sites of Romania. The quality requirements according to the national and European requirements have been fulfilled by most of the lot, with the exception of four samples, some adulteration suspicions and the likelihood of fermentation being signalled. Using an yttrium internal standard, the authors have found an average potassium level of 269.8 mg/kg in 2012 and a 271.9 mg/kg in 2013 and almost five times less calcium. Iron and copper levels have been as high as 6.46 and 3.1 mg/kg, respectively. Only six honey samples contained copper up to 2.2 mg/kg, while lead exceed the limit imposed for drinking water and foodstuff of 1 mg/kg. Results evaluation by two-tailored
Volatile organic compounds are present in honey in very different amounts and their profile has been expected to vary with the botanical origin of the flowers supplying the nectar for honey production. Sample workup is crucial to the investigation success, so a variety of approaches has been used, such as solid phase microextraction [38], liquid-liquid extraction, static head space [39], or purge and trap [40]. Several Romanian acacia and linden honey samples, along with other samples originating from Slovakia, Serbia, Poland, Georgia, Germany, Ukraine, Czech Republic, Italy, France, Greece, and Moldavia have been subjected to two-dimensional GC-MS, the volatiles being first separated using a non-chiral stationary phase and further fed to a chromatographic system containing a chiral stationary phase [38]. Over 270 compounds have been detected: alkanes, alcohols, aldehydes, ketones, carboxylic acids, and their methyl and/or ethyl esters. Hotrienol, linalool, and linalool oxides have been present at the highest concentration levels, while α-terpineol, 4-terpineol, and isomers of lilac aldehydes have been reported at significantly lower amounts. All these compounds have been found in all investigated samples. Enantiomer ratios of these compounds have been determined by multidimensional GC, results demonstrating that distribution varies with the botanical origin. Although present at significant levels in all samples, (2R,5S)-
Given the characteristics of the vegetation zones in the country, 77 pollen types from 35 families were found in the 54 unifloral and polyfloral honey samples studied by Dobre et al. [41]. The international melissopalynological nomenclature recommends four different terms to be used when reporting a pollen spectrum:
The total pollen content was also investigated; it varied from 525 to 19,525 grains per gram of honey, thus placing the studied lot in the low and very low level categories. The differences in the pollen content is attributed to the climatic conditions, pollen production of the parent plant, distance between beehive and flower field, diameter of pollen grains, and even the procedure used for extraction of honey. A principal component analysis of the pollen spectrum demonstrated that 77.89% of the entire variability of the pollen spectrum is explained by the first four principal components. The main contribution in the new components comes from
The complex chemical composition has a large impact on the honey viscosity, as moisture, variable sugars ratios, acids, proteins, phenolics, minerals, and pigments contribute to yield a mixture with changing molecular structure. This issue has enjoyed special attention over the time, due to the part played in processing and storage operations. Crystallization is a serious issue, causing problems during the extraction, filtration, mixing, and packaging stages. As crystallization decreases with the temperature, it looks that heating may overcome some of the processing troubles, but at the same time induces hydroxymethyl furfural formation, a strictly regulated quality parameter [11, 12].
\nStudies have identified a temperature-dependent Newtonian behaviour for acacia, heather, sunflower, lime, and rape honey, as well as non-Newtonian behaviour for certain crystallized samples [42, 43]. Several anomalies in terms of yield point, shear thinning, and rheodynamic behaviour of the crystallized honey in the temperature range investigated have been detected. It has been concluded that crystallization is significantly affected by the botanic origin, temperature profile, and storage time. Modelling of the viscoelastic properties and their relation to moisture, palynological spectrum, and sugars have been addressed by several groups, using either domestic or European honey for study [44–48]. The declared objectives were correct prediction of the rheological behaviour and identification of further correlation with the botanical origin.
\nUsing a set of 52 artisanal honey samples collected directly from Romanian beekeepers during the 2009–2010 flowering season, Dobre et al. [46] have verified the pollen spectrum, moisture, carbohydrate composition, and rheological parameters. Six specific carbohydrates (fructose, glucose, sucrose, maltose, melezitose, and trehalose) and rheological parameters (loss modulus and shear stress) were used as predictors in the viscosity function. It was confirmed that granulation is favoured by a glucose/fructose ratio (F/G) larger than 1.3, as it is the case with sunflower and rape, while honeys with higher fructose content present a very low crystallization rate, maintaining the liquid appearance for years (typical for black locust honey). F/G ratio favours rapid solid phase formation: crystallization is slow or absent for a ratio lower than 1.7, but becomes complete if it exceeds two. Some correlations between pollen content and each type of carbohydrate were noticed for at least 45% pollen. On the other hand, significant amounts of crystallized glucose lead to lower deformation stress values, as the molecular network is already destroyed when the shear is applied. Colza and honeydew honeys present non-Newtonian shear thinning behaviour, as viscosity decreases with increasing shear rate. This is not a surprise, as honeydew honey contains large amounts of proteins (of high molecular mass), and sunflower honey presents the highest content of carbohydrates, in line with the findings of other groups for colza [42] and heather [43] honey.
\nA deeper insight in the rheological behaviour of Romanian honey has been offered by Stoica-Guzun et al. [48]. They studied acacia, lime, coriander, peppermint, colza, sunflower, and polyfloral honey before and after heating at 50°C, looking for the compatibility degree with the Newtonian law of viscosity. Viscosity, Arrhenius constant at 20°C, and activation energies were measured for all unheated and heated samples. The qualitative analysis of the flow curves signalled the presence of a thixotropic behaviour for peppermint and colza honey, which diminished and even disappeared at higher temperatures. Using thixotropic relative areas (ratio of the thixotropic area to the area limited by the upper flow curves) at 30, 40, and 45°C, the authors attempted to classify honey samples using cluster analysis. Regardless the presences or absence of preheating, two clusters were formed, with cluster composition depended on the thermal regime. Thixotropy appears more often for unheated samples, but regresses with heating. The authors have pointed out that honey likely to crystallize (having higher glucose contents) are those prone to thixotropic behaviour.
\nThe general model proposed by Oroian et al. [44] to describe the viscoelastic properties of honey is a fourth-order polynomial equation, applicable to all honey types (unifloral, polyfloral, or honeydew), for a 5–40°C temperature range. Validation on a set of Spanish honey samples having 32–42% fructose, 24–35% glucose, 79–83% reducing sugars, 16–19% water, and 3.4% sucrose demonstrated a Newtonian behaviour of all samples [45]. The loss modulus, G″, and viscosity show increase with moisture content, and decrease with temperature. The fourth-order polynomial equation described the combined effect of fructose, glucose, other sugars content, and moisture. A series of exponential and power models were analysed, to fit the experimental data.
\nA Spanish-Romanian research group [47] extended the crystallization tendency study on 136 unifloral honey samples (bramble, chestnut, eucalyptus, heather, acacia, colza, honeydew, lime, and sunflower) originating from Romania and north-west of Spain, by adding a new descriptor to the customary pollen spectrum, sugars profile, and moisture: the ratio between the major carbohydrates. It has been found a close relation between the fructose/glucose, glucose/water, sum of the first two sugars and main pollen types in honey, namely
Adulteration means addition of external chemical compounds to a food product containing naturally similar substances. With more than 200 major and minor components, and a constantly increasing market value, honey ranks high in the category of merchandises subjected to forgery. Honey adulteration can be carried out directly, by deliberately adding certain substances into it, or indirectly, by feeding the honeybees with the adulterating compound. Although most adulterating agents do not represent health hazards, any change in the composition or physico-chemical parameters values outside the standardized intervals may be classified as a fraud attempt and are to be sanctioned accordingly in the trading activities.
\nMehryar and Esmaiili [49] have reviewed the normal values of principal physico-chemical honey parameters, drawing attention to adulteration possibilities and means of investigation. There are several possibilities to determine and report these parameters; they mainly refer to sugar content (total sugar, total reducing sugar, inverted sugar, fructose, glucose, fructose/glucose ratio), acidity (pH, free acidity, lactonic acidity, and total acidity), nitrogenous compounds (protein content, nitrogen content, proline content, diastase index, invertase index) phenolic compounds (total polyphenols, total flavonoids), HMF, minerals, and other trace elements, water content and water activity, viscosity, glass transition temperature, and colour. Authors point out that honey is adulterated directly by addition of inverted sugar or syrup (corn syrup, high fructose corn syrup, high fructose inulin syrup, and inverted syrup), intruders being difficult to detect by sugar analysis, as they have properties similar to those of natural honey. Many of the techniques involved in adulteration detection require specialized personnel and equipment, being prone to exceptional rather than routine analysis.
\nPlants, sources of substances used for indirect adulteration, are either C3 of C4 plants, a classification based on the carbon metabolism. The C3 plants are able to fix atmospheric carbon dioxide using the Calvin cycle, while the C4 plants use the Hatch-Slack cycle. C3 plants are characterized by a lower 13C/12C ratio than the C4 plants. Beet, rice, and wheat are C3 plants, whilst maize and sugarcane are C4 plants. Zabrodska and Vorlova [50] have discussed adulterant detection methods employed over the time, indirect adulteration of honey included, and botanical and geographical authentication issues. According to the national legislation [11] and European legislation, Council Regulation (EC) no. 797/2004 and Commission Regulation (EC) no. 917/2004 [26, 27] honey is defined as the product of the
Using a set of 10 acacia honey samples from Valea lui Mihai, Bihor County, Marghitas et al. [51] have concentrated on clarifying their biochemical profile in relation to adulteration. The discussion basis comprises selected physico-chemical parameters (moisture, electrical conductivity,
Indirect adulteration has gained momentum in the 1970, when high fructose corn syrup became available at low costs. With an oligosaccharides profile very similar to that of natural honey, these syrups have been used as bees fed with little restriction; direct sugar analysis could not make any difference between honey produced by honeybees fed on natural honey and those produced by honeybees fed on solutions of industrial sugars. Within less than a decade, a sensitive and precise technique based on analysis of 13C/12C stable isotopes ratio has been released [53], and proved to be effective for C3 and C4 sugars adulteration. The 13C/12C isotopic ratio (or δ13C, ‰) varies with the photosynthetic paths, so that the C4 plants, present δ13C values ranging from –8 to –12‰, while for C3 plants it varies between –22 and –30‰. If honey has not been pampered with by syrup honeybee feeding, δ13C of its protein extract is very close to the value of honey itself. Dordai et al. [54] have used Eq. (1) in calculating the adulteration degree, drawing the attention on the fact that C4 syrups affect only the honey isotopic ratio, with little effect on its protein composition:
\nThey have used an elemental analyser coupled with an isotope ratio mass spectrometer to gain access to experimentally determined δ13C values for 12 samples of Romanian acacia, linden, sunflower, and polyfloral honeys, and their corresponding protein extracts. Some δ13Cprotein–δ13Choney differences are positive, indicating no adulteration. Others present negative values (–0.06 to –0.98‰), thus leading to an apparent adulteration of 0.38 and 6.39%. Since –1‰ value (7% adulteration) is internationally accepted as critical threshold, only one of the 12 samples should be reported as adulterated up to 10.8% with high fructose corn syrup. The study gives access to an average δ13C value of –25.35‰ for Romanian honey, in line with values reported for other samples harvested in temperate climate areas of Europe. The authors point out that δ13C values vary with time, location, pollen content, but there is a levelling effect characteristic to the system itself. Honey is collected from more than one colony, over a period of several weeks. As the season starts, honeybees are fed with syrups, so there is high chance that the honey produced reflects the syrup isotopic ratio. Since hive population is renewed every 3–4 weeks, newer generations feed on the previously collected honey, so the adulterating effect of the syrup on the protein δ13C value will quickly decrease.
\nThe stable isotopic ratio methods for adulteration with C4 sugars is expensive in terms of time, consumables, personnel, and equipment, so the efforts of Puscas et al. [55] in developing a simple and reproducible high-performance thin-layer chromatographic method are welcome. It has been tested on some Romanian honey samples, being based on the F/G ratio and sucrose content evaluation. Using a suitable composition of ethyl acetate : pyridine : water : acetic acid, 6:3:1:0.5 volume ratios, high-performance thin-layer chromatographic aluminium silica gel sheets, a chromatographic twin through chamber, a dipping acetone solution of diphenylamine and aniline hydrochloride, and a visible light TLC visualization device, the authors have managed to validate the proposed procedure for the determination of the glucose, fructose, and sucrose levels. The newly validated method has given trustworthy results during the analysis of 15 Romanian acacia, linden, and polyfloral honey samples harvested by five individual producers. Almost half of the investigated samples have been declared adulterated with fructose from other sources than the natural ones. As F/G is 0.88, a polyfloral sample is declared adulterated with industrial glucose. When determined sucrose levels run above the admitted limit, there is an indication of adulteration by honeybees feeding with sucrose syrup. The acacia honey samples present a higher fructose/glucose ratio than the admitted value, effect of some producers’ initiative to improve sensory properties by fructose addition (acacia honey being not too sweet).
\nEC regulation 470/2009 [21] states that honey should be free from antibiotics residues, serious health hazard agents. Antibiotics are generally used for the treatment of bacterial brood diseases produced by
As mentioned before, Romania is one of the most important honey suppliers for the national and the European honey market. The quality regulation imposed for foodstuff, honey included, often requires highly specializes investigation techniques. As beekeepers are generally spread all over the country, the botanic origin is initially recorded according to the beekeepers’ declaration. Therefore, it is of great interest to find an affordable method for honey classification, based on currently measured physico-chemical properties, to confirm the declared botanic source. In this attempt, a thorough statistical study of honey properties variability is necessary. The European Union issued regulations concerning the general and specific characteristics important in assessing authenticity: moisture, sugar content (fructose, glucose, and sucrose), free acidity, diastase activity, and HMF content. These parameters are relatively simple to measure and provide a good information value.
\nChemometric methods (also known as multivariate statistical technique) allow identification of the natural clustering pattern and group variables based on similarities between samples. Their application aid in reducing the complexity of large data sets, and offer better interpretation and understanding of the data sets. In the last years, several chemometric techniques, such as principal component analysis and linear discriminant analysis were used for classification of various foodstuffs [57–60]. Principal component analysis is a multivariate technique, usually at the introductory level, permitting to reduce the dimensionality of multivariate data and to provide a preview of the data structure. It belongs to the group of so-called unsupervised pattern recognition techniques, where no assumption upon possible data clustering is considered. Linear discriminant analysis falls into the group of supervised pattern recognition techniques, and classes are assumed from the beginning. Discrimination relies on finding new co-ordinates where the original data can be projected in such a way to maximize the between-group variance with respect to within-group variance. Linear discriminant analysis results may be further used at building a classification model that could later predict the class of unknowns. Artificial neural networks, designed and trained for pattern recognition, are also used to create a tool that may be used for the identification of a given unknown honey type. The efficiency of the employed statistical tools was defined in terms of their capability to classify a large set of honey samples according to their botanic origin.
\nA significant data sample of four honey types (acacia, polyfloral, linden, and colza) was collected between 2014 and 2016 and the main physico-chemical characteristics were measured: HMF, acidity, diastase index, water content, inverted sugar, and sucrose. For each honey type, 90 samples (30 samples/year) were considered in the analysis, in total 360 data sets. The unifloral and polyfloral samples were delivered, received, and transferred to the laboratory in their original packages and kept at 20°C before analysis. Information on the botanical origin of the samples was provided by the beekeepers and later validated by pollen spectrum. Aliquots were homogenized by mixing with a glass rod, filtered through cheesecloth, and left to stand until complete clarification, in order to eliminate the incorporated air, as recommended in SR 784-3:2009 [13]. Physico-chemical parameters were analysed according to the national standard [13], as presented in the literature [60]. \nTable 1\n presents the means and ranges for all measured characteristics.
\nHoney type | \nYear | \nRange | \nWater,% | \nHMF mg/100 g honey | \nDiastatic index | \nInverted sugar, % | \nSucrose,% | \nAcidity mL 1N NaOH/100 g honey | \n
---|---|---|---|---|---|---|---|---|
Colza | \n2014 | \nMax | \n19.8 | \n1.76 | \n38.5 | \n80 | \n3.1 | \n2.2 | \n
\n | \n | Min | \n17 | \n0.11 | \n17.9 | \n75.5 | \n1.15 | \n1.2 | \n
\n | \n | Average | \n18.05 | \n0.61 | \n25.51 | \n77.68 | \n2.13 | \n1.75 | \n
\n | 2015 | \nMax | \n19.2 | \n1.86 | \n38.5 | \n80.27 | \n2.88 | \n2.3 | \n
\n | \n | Min | \n17 | \n0.19 | \n17.9 | \n76 | \n1.17 | \n1.3 | \n
\n | \n | average | \n17.96 | \n0.76 | \n27.05 | \n78.12 | \n2.00 | \n1.75 | \n
\n | 2016 | \nMax | \n19.6 | \n2.37 | \n38.5 | \n79.2 | \n2.68 | \n2.4 | \n
\n | \n | Min | \n17.2 | \n0.05 | \n17.9 | \n75.73 | \n1.42 | \n1.2 | \n
\n | \n | Average | \n18.16 | \n0.89 | \n27.91 | \n77.38 | \n1.98 | \n1.79 | \n
Acacia | \n2014 | \nMax | \n18.6 | \n4.4 | \n23.8 | \n75 | \n4.75 | \n1.9 | \n
\n | \n | Min | \n15.3 | \n0.19 | \n13.8 | \n70 | \n2.17 | \n0.8 | \n
\n | \n | Average | \n16.83 | \n0.79 | \n18.67 | \n72.89 | \n3.20 | \n1.16 | \n
\n | 2015 | \nMax | \n18.7 | \n2.53 | \n23.8 | \n74.73 | \n4.96 | \n1.7 | \n
\n | \n | Min | \n14.6 | \n0.01 | \n10.9 | \n70.29 | \n2.05 | \n1 | \n
\n | \n | Average | \n16.27 | \n0.62 | \n17.31 | \n73.08 | \n3.68 | \n1.27 | \n
\n | 2016 | \nMax | \n20 | \n3.11 | \n23.8 | \n75.73 | \n4.95 | \n1.9 | \n
\n | \n | Min | \n14 | \n0.09 | \n10.9 | \n70.55 | \n1.67 | \n0.9 | \n
\n | \n | Average | \n16.77 | \n0.65 | \n17.22 | \n73.50 | \n3.76 | \n1.23 | \n
Linden | \n2014 | \nMax | \n19.00 | \n3.11 | \n38.50 | \n77.00 | \n4.00 | \n4.00 | \n
\n | \n | Min | \n15.40 | \n0.19 | \n17.90 | \n72.00 | \n1.44 | \n1.00 | \n
\n | \n | Average | \n17.25 | \n1.10 | \n26.24 | \n74.03 | \n2.86 | \n2.24 | \n
\n | 2015 | \nMax | \n19.00 | \n2.76 | \n38.50 | \n79.20 | \n4.75 | \n3.50 | \n
\n | \n | Min | \n16.20 | \n0.03 | \n17.90 | \n70.23 | \n1.15 | \n1.20 | \n
\n | \n | Average | \n17.47 | \n0.61 | \n25.39 | \n75.02 | \n2.44 | \n2.25 | \n
\n | 2016 | \nMax | \n19.40 | \n2.76 | \n38.50 | \n76.70 | \n3.90 | \n3.50 | \n
\n | \n | Min | \n16.20 | \n0.03 | \n17.90 | \n70.35 | \n1.40 | \n1.30 | \n
\n | \n | Average | \n17.68 | \n0.61 | \n26.65 | \n73.66 | \n2.86 | \n2.27 | \n
Polyfloral | \n2014 | \nMax | \n19.80 | \n4.37 | \n50.00 | \n80.95 | \n3.97 | \n4.00 | \n
\n | \n | Min | \n14.60 | \n0.11 | \n17.90 | \n71.73 | \n1.17 | \n1.40 | \n
\n | \n | Average | \n16.96 | \n1.18 | \n31.89 | \n76.94 | \n2.48 | \n2.83 | \n
\n | 2015 | \nMax | \n20.00 | \n5.00 | \n50.00 | \n78.50 | \n4.07 | \n3.85 | \n
\n | \n | Min | \n14.30 | \n0.05 | \n13.90 | \n72.34 | \n1.17 | \n2.00 | \n
\n | \n | Average | \n17.02 | \n1.07 | \n31.13 | \n74.92 | \n2.61 | \n2.84 | \n
\n | 2016 | \nMax | \n20.00 | \n4.39 | \n50.00 | \n79.23 | \n4.27 | \n3.90 | \n
\n | \n | Min | \n14.50 | \n0.19 | \n13.90 | \n72.50 | \n1.42 | \n1.20 | \n
\n | \n | Average | \n16.64 | \n1.32 | \n30.24 | \n75.93 | \n2.76 | \n2.65 | \n
Ranges of experimental values for honey physico-chemical characteristics.
According to data recorded in \nTable 1\n, some general features can be underlined in accordance with general European Union regulations issued on the specific honey characteristics important in assessing authenticity and quality. Moisture is considered one of the basic parameters in evaluating the honey quality. According to Council Directive 2001/110/EC and Revised Codex Standard for Honey, water content may not be greater than 20%. As seen in \nTable 1\n, all honey types in the data set fulfil the quality requirements. The HMF content is indicative of honey freshness and/or overheating. The HMF content should not exceed 4 mg/100 g honey, but in some countries, as Germany or Romania, the maximum admitted value is lower, 1.5 mg HMF/100 g being the limit for unifloral honey samples. There are only about 5–8% individual samples in each honey type characterized by HMF values higher than 1.5 mg/100 g, thus raising possible freshness questions. The diastase activity is also indicative of freshness and is above 17 in all honey samples. Both HMF and diastase activity values determined are typical for unprocessed honey. The free acidity also varied among the four honey types investigated, but in all samples the acidity is below 4 mL NaOH solution, which is the upper limit admitted. Sugars practically consist of inverted sugar and sucrose. SR EN 784/2:2009 [12] regulates the minimum allowed inverted sugar to 70% in the flower honey. As for sucrose, the standard sets the limits to maximum 5%. All samples involved in the present study fulfil the inverted sugar and sucrose requirements (\nTable 1\n).
\nIn the first stage of statistical analysis, the measured data were investigated using descriptive statistic tools and one-way analysis of variance (ANOVA) factor analysis. A first attempt was to investigate whether the year of collection can be considered a factor that influences the honey physico-chemical properties or not. A one-way ANOVA test was performed for each honey type, results being summarized in \nTable 2\n.
\nHoney type | \n\n | Sucrose | \nInverted sugars | \nDiastatic index | \nHMF | \nAcidity | \nWater | \n
---|---|---|---|---|---|---|---|
Colza | \n\n | \n1.05 | \n3.91 | \n1.23 | \n2.61 | \n0.90 | \n0.57 | \n
\n | \n3.10 | \n3.10 | \n3.10 | \n3.10 | \n3.10 | \n3.10 | \n|
\n | \n0.35 | \n0.023 | \n0.28 | \n0.078 | \n0.90 | \n0.56 | \n|
Relevance | \nNo | \nYes | \nNo | \nNo | \nNo | \nNo | \n|
Acacia | \n\n | \n2.98 | \n1.52 | \n1.39 | \n0.36 | \n2.19 | \n2.43 | \n
\n | \n3.10 | \n3.10 | \n3.10 | \n3.10 | \n3.10 | \n3.10 | \n|
\n | \n0.055 | \n0.22 | \n0.25 | \n0.69 | \n0.11 | \n0.09 | \n|
Relevance | \nNo | \nNo | \nNo | \nNo | \nNo | \nNo | \n|
Linden | \n\n | \n2.98 | \n5.25 | \n0.38 | \n5.56 | \n0.2 | \n1.18 | \n
\n | \n3.10 | \n3.10 | \n3.10 | \n3.10 | \n3.10 | \n3.10 | \n|
\n | \n0.055 | \n0.007 | \n0.67 | \n0.005 | \n0.90 | \n0.28 | \n|
Relevance | \nNo | \nYes | \nNo | \nYes | \nNo | \nNo | \n|
Polyfloral | \n\n | \n0.87 | \n7.51 | \n0.21 | \n0.57 | \n0.86 | \n0.79 | \n
\n | \n3.10 | \n3.10 | \n3.10 | \n3.10 | \n3.10 | \n3.10 | \n|
\n | \n0.41 | \n0.0008 | \n0.81 | \n0.56 | \n0.42 | \n0.45 | \n|
Relevance | \nNo | \nYes | \nNo | \nNo | \nNo | \nNo | \n
One-way ANOVA results considering as factor the honey collection year.
As data in \nTable 2\n show, the honey characteristic properties are not influenced by the year of collection. An exception is the influence upon the inverted sugar content in colza, linden, and polyfloral honey, and upon the HMF in the linden honey. As the time period Investigated was rather short, and climatic condition were similar, the ANOVA results obtained, considering the collection year a possible influencing factor, are not unexpected.
\nFor further statistical analysis, the data collected for each honey type in the 3 years mentioned were lumped together. Descriptive statistics tools were further used for univariate distribution analysis of each honey group. The mean, variance, skewness, and kurtosis were calculated from the data samples to evaluate the lack of symmetry and the flatness in the experimental data sets (\nTable 3\n).
\n\n | Statistics | \nColza | \nAcacia | \nLinden | \nPolyfloral | \n
---|---|---|---|---|---|
HMF, mg/100 g | \nMean | \n0.75 | \n0.69 | \n0.78 | \n1.17 | \n
St. deviation | \n0.48 | \n0.80 | \n0.69 | \n0.98 | \n|
Skewness | \n0.96 | \n2.43 | \n1.66 | \n2.04 | \n|
Kurtosis | \n0.69 | \n4.29 | \n2.08 | \n2.66 | \n|
Acidity, mL 1 N NaOH/100 g | \nMean | \n1.79 | \n1.23 | \n2.27 | \n2.65 | \n
St. deviation | \n0.31 | \n0.25 | \n0.60 | \n0.68 | \n|
Skewness | \n0.12 | \n1.34 | \n0.42 | \n0.07 | \n|
Kurtosis | \n−0.89 | \n1.80 | \n−0.58 | \n−0.31 | \n|
Diastatic index | \nMean | \n26.82 | \n17.73 | \n26.09 | \n31.04 | \n
St. deviation | \n5.92 | \n3.78 | \n5.65 | \n9.03 | \n|
Skewness | \n0.71 | \n0.29 | \n0.64 | \n0.36 | \n|
Kurtosis | \n−0.07 | \n−0.66 | \n0.22 | \n−0.10 | \n|
Inverted sugar, % | \nMean | \n77.73 | \n73.16 | \n74.24 | \n75.95 | \n
St. deviation | \n1.06 | \n1.40 | \n1.76 | \n2.18 | \n|
Skewness | \n0.11 | \n0.53 | \n−0.39 | \n0.38 | \n|
Kurtosis | \n−0.46 | \n−0.60 | \n0.09 | \n−0.56 | \n|
Sucrose, % | \nMean | \n2.04 | \n3.55 | \n2.72 | \n2.62 | \n
St. deviation | \n0.42 | \n0.97 | \n0.78 | \n0.81 | \n|
Skewness | \n0.25 | \n0.10 | \n−0.08 | \n−0.07 | \n|
Kurtosis | \n−0.09 | \n−1.30 | \n−0.33 | \n−0.90 | \n|
Water, % | \nMean | \n18.06 | \n16.62 | \n17.47 | \n16.87 | \n
St. deviation | \n0.69 | \n1.09 | \n0.82 | \n1.21 | \n|
Skewness | \n0.45 | \n0.57 | \n0.02 | \n0.29 | \n|
Kurtosis | \n−0.49 | \n0.87 | \n−0.28 | \n0.46 | \n
Descriptive statistic estimations for the honey types investigated.
As it can be noticed, the univariate distributions for all six characteristics can be considered normal for all honey types as, according to a rule of thumb generally accepted, the skewness and kurtosis are mainly in the −1 to +1 range, with few values outside this range, but still between −2 and 2 [61]. Only the HMF distribution for acacia and polyfloral honey is an exception to this pattern. The higher positive skewness of the HMF distribution is caused by some honey samples (approximately 10 out of 90 samples) with higher content (between 2 and 4.9 mg/100 g honey).
\nTo estimate the botanical origin influence upon the main measured characteristics, the one-way ANOVA was performed in the frame of EXCEL software. The factor considered in the analysis was the honey type. The tests were carried at a significance level of 0.05. The results are presented in \nTable 4\n. Results show that honey type is a factor with statistic significance in the variation of honey physico-chemical properties. Starting from this consideration, multivariate statistical analysis is expected to give more insight concerning the possibility of honey type classification using a complex mathematical treatment of all measured variables.
\nMeasured characteristic | \nSugar | \nInverted sugars | \nDiastatic index | \nHMF | \nAcidity | \nWater | \n
---|---|---|---|---|---|---|
\n | \n58.20 | \n132.23 | \n68.64 | \n7.33 | \n45.71 | \n38.88 | \n
\n | \n2.63 | \n2.63 | \n2.63 | \n2.63 | \n2.63 | \n2.63 | \n
\n | \n1.2E-30 | \n1.5E-57 | \n4.8E-35 | \n8.8E-05 | \n1.4E-19 | \n9.4E-22 | \n
Relevance | \nYes | \nYes | \nYes | \nYes | \nYes | \nYes | \n
One-way ANOVA considering as factor the honey type.
Principal component analysis, as unsupervised method, is generally first performed as it can lead to a data reduction and highlight the measured characteristics most responsible for data variability. As the original variables have different units, the dimensionless standardized data matrix was used in principal component analysis. All computing tasks were implemented in Matlab® [62]. Principal component analysis practically defines an orthogonal linear transformation of the original data set into a new set of coordinates, named principal components. The first PC encompasses the largest data variability, the second PC the second largest variance, and so on. According to principal component analysis, the first eigenvectors of the covariance matrix correspond to the ‘directions’ of highest variability in the data set. The first three eigenvalues are larger than 1 for the data investigated, meaning that the first three PCs explain more variability in the data set than the variables themselves. The first three principal components considered explain almost 70% of the variability (PC1 reflects 32.1%, PC2 20.7%, and PC3 15.8%) as represented by the Pareto plot (\nFigure 8\n).
\nPrincipal component contribution in the data variability.
The bi-plot representation (\nFigure 9\n) simultaneously shows the variables represented as vectors and the points corresponding to all samples in the data set projected in the PC1-PC2 space. The coordinates of each variable are proportional to its contribution (loading) in PC1 and PC2. The samples are displayed as points normalized in [−1, 1] interval, thus only the relative position in the graphical representation is relevant. The bi-plot allows visualization of the magnitude and sign of each variable contribution in the first two PCs. For instance, sucrose and inverted sugar have opposite signs loading, indicating that PC1 distinguishes between samples with low sucrose content and high inverted sugar content, and vice versa. As \nFigure 9\n shows, the loadings in the first PC have high values for sucrose and inverted sugar (about 0.6), signalling that these two variables account for the most variability in the data set. HMF and water content have very small loadings in PC1, but quite high ones in PC2, revealing a smaller contribution in samples variability.
\nBi-plot representation in the frame of principal component analysis.
In order to visualize a possible data clustering, the projection of samples in the first two principal components space is presented of \nFigure 10\n, for the data samples in the four honey types. The ellipses cover about 95% of each honey type population. As \nFigure 10\n shows, acacia and colza honey are clearly separated on PC1 direction, where sucrose and diastase activity present the highest loadings. These two characteristics are able to differentiate between these two botanic origins. Polyfloral honey is somehow separated from acacia and colza honey on PC2 direction, meaning that the water and HMF are responsible for the differentiation. Principal component analysis could not achieve a good discrimination between the honey types: the polyfloral honey completely overlap linden, and the other honey types also partially overlap as shown in \nFigure 10\n. \nFigure 11\n presents the principal component analysis classification capability for the case when only unifloral honey (270 samples) is considered. \nFigure 11\n shows that the overlapping of acacia, linden, and colza samples is more or less similar to the case previously described (\nFigure 10\n).
\nData projection of four honey type samples in the principal components space.
Data projection of unifloral honey samples in the PC1-PC2 space.
As not always the directions of highest data variability are the same with those for better data discrimination, the classification efficiency of Fisher linear discriminant analysis was also investigated. Linear discriminant analysis considers from the beginning the data samples grouped in classes, and projects the data onto a lower-dimensional vector space, such that the ratio of the between-class distance to the within-class distance is maximized, thus attempting to achieve maximum discrimination. The optimal projection is computed by applying the eigendecomposition on the scatter matrices. The method is recommended for large data sets and for the case when the univariate distributions are relatively close to Gaussian repartition, which is the case for the current experimental data set. The discrimination between groups (honey types) is presented in \nFigures 12\n and \n13\n. \nFigure 12\n corresponds to the discrimination of the four honey types that includes the polyfloral honey, while \nFigure 13\n reflects the linear discriminant analysis classification capacity for unifloral honey.
\nData discrimination along the first and second linear discriminant analysis functions for the four honey type samples.
Data discrimination along the first and second linear discriminant analysis functions for unifloral honey samples.
When comparing the representations in \nFigures 10\n and \n12\n, the linear discriminant analysis proves to be a better classification method for the investigated unifloral honey samples. Analysing the samples graphical representation (\nFigure 12\n), it can be noticed that while colza and acacia samples form distinct groups, approximately 30–40% of linden and polyfloral samples are miss-classified. When only unifloral samples are subjected to classification (\nFigure 13\n), about 25% of the linden samples are represented in the acacia and colza region. Even if better results were obtained compared to principal component analysis, linear discriminant analysis does not seem accurate enough to achieve classification of unifloral honey samples based on physico-chemical properties.
\nThe pattern recognition technique using artificial neural networks should be also tested as classification tool. A neural network with 6 input nodes (the 6 physico-chemical honey characteristics), 4 output nodes (each node corresponding to a given honey group), and 12 nodes in the hidden layer was defined in the frame of Matlab® neural network toolbox. The 360 samples were divided in 252 (70%) samples for training, 54 samples (15%) for testing, and 54 samples (15%) for validation. In this way, the results obtained are reliable, and the final fitted network would be capable to assign unknown samples to a given category. The selected training algorithm was the scaled conjugated gradient. The performance was appreciated based on mean squared error evaluation.
\nThe best results obtained after repeated training steps are represented with the aid of the confusion matrix in \nFigure 14\n. The number of samples correctly assigned is listed in the green boxes on the diagonal of this matrix, while the red boxes contain the number of incorrect prediction. The overall incorrect assignments represented 10.3%. For individual honey types, 96.7% of acacia honey samples, 81.2% of linden samples, 98.9% colza sets, and 82.2% polyfloral ones were correctly classified.
\nConfusion matrix for unifloral and polyfloral samples classification (1–acacia, 2–linden, 3–colza, 4–polyfloral).
For unifloral honey samples classification, a similar pattern recognition artificial neural network was built, with 6 neurons in the input layer, 3 neurons in the outer layer, and 10 neurons in the hidden layer. A total of 70% of the 270 unifloral honey samples were used for training, 15% for testing, and 15% for validation. The best results obtained led to a correct group assignment with a total error of only 3.3%. For each honey type, the errors in the sample recognition were: 4.4% for acacia, 5.6% for linden, and 0% for colza (\nFigure 15\n).
\nConfusion matrix for unifloral samples classification (1–acacia, 2–linden, 3–colza).
This case study, as well as those published by other Romanian researchers point out the necessity to set up a comprehensive database containing parameters of honey samples from different regions and harvesting seasons, containing not only the standardized physico-chemical parameters but also details on volatile organic compounds, phenolics, flavonoids, and stable isotopic ratios. Supervised and unsupervised classification tools would benefit from such large statistic samples, allowing a higher degree of generalization for the conclusions drawn.
\nThe complexity of honey characterization, control, and classification has been presented using a large pool of scientific evidence, brought in by many Romanian researchers. Compared to the honey from other European countries, the Romanian honey has good market qualities due to its organic character and various botanic sources responsible for the specific flavour and consistency. The original case study presented confirms the possibility of discrimination between different honey types, based only on physico-chemical properties measurements, as demanded by the quality control.
\nIntracellular and blood potassium levels have crucial effects on cardiovascular system homeostasis. At the most fundamental level, the potassium concentration gradient across cardiac muscle cell (cardiomyocyte) cell membranes is a chief determinant of cardiomyocyte resting membrane potentials. Indeed, disruptions to this concentration gradient (e.g. via increasing or decreasing extracellular blood potassium levels) can lead to altered cardiomyocyte contractility and excitability. Potassium is also vasoactive, with different effects at different extracellular concentrations. At low (5-8 mM) to moderate (8-16 mM) extracellular levels, potassium relaxes the smooth muscle in blood vessel walls by promoting hyperpolarization of vascular smooth muscle. However, at higher levels (16-25 mM and above) (e.g. cardioplegic concentrations), potassium promotes vasoconstriction by facilitating depolarization. Moreover, potassium is released by vascular endothelial cells in response to various chemical mediators and shear stress, thereby contributing to the action of endothelium-derived hyperpolarizing factor [1]. For all of these reasons and more, keeping track of daily potassium intake is often recommended as a lifestyle modification for chronic cardiovascular diseases such as hypertension.
Harnessing the pivotal role of potassium in cardiovascular physiology has proved quite useful for cardiovascular surgery, namely in the form of hyperkalemic (high potassium) cardioplegia. Indeed, throughout the past several decades, a large body of research has testified to the ability of externally administered hyperkalemic solutions to arrest cardiac contractility [2]. This, in conjunction with the development of cardiopulmonary bypass (CPB, also known as the “heart-lung machine”), revolutionized cardiac surgery [3]. These days, many highly invasive procedures like coronary artery bypass grafting are routine with minimal risk of postoperative mortality.
However, hyperkalemic cardioplegia is not without its consequences. Hyperkalemic cardioplegia and reperfusion following CPB have been associated with perioperative and postoperative tissue damage and microvascular dysfunction across several different vascular beds. Moreover, hyperkalemic cardioplegia is also associated with postoperative myocardial dysfunction and reduced cardiac output. Furthermore, blood potassium abnormalities after hyperkalemic cardioplegia-reperfusion, chiefly hypokalemia (but also hyperkalemia, to a lesser degree) are common postoperative challenges in the cardiac ICU. Both abnormalities significantly elevate the risk of arrythmias and, if not managed properly, cardiac arrest and sudden death.
This chapter will discuss the basics of potassium cardioplegia with an emphasis on clinical relevance, beginning with a brief history. Subsequent sections will elaborate on the basic physiology, before considering several perioperative and postoperative adverse effects of hyperkalemic cardioplegia. When possible, information about treatment and clinical management is included. The chapter will conclude with a brief mention of up-and-coming alternatives to hyperkalemic cardioplegia.
As early as the late 1800s, physiologists were starting to become aware of the ability of potassium compounds to arrest cardiac contractility, beginning with individuals like Sidney Ringer who observed that potassium chloride froze the heart in diastole and calcium stimulated the heart during systole [2]. Moving into the start of the 20th century, further investigations revealed associations between high serum potassium and cardiac arrest following ventricular fibrillation; studies also revealed associations between cardioplegia and restoration of sinus rhythm following coronary artery administration of potassium chloride solution and subsequent washout [2]. However, in most of these cardioplegic experiments (often conducted in dogs), refractory ventricular fibrillation and post-procedure reperfusion damage to the myocardium limited discussion of the clinical usefulness of these findings.
During the 1950s, British physician Dennis Melrose hypothesized that the problem with potassium chloride cardioplegia was chloride; therefore, he created a cardioplegic solution using potassium citrate, and tested it on a canine model of cardiopulmonary bypass [4]. Injection of the “Melrose solution”, of potassium citrate plus warm oxygenated whole blood in a 9:1 blood:potassium ratio, into the aortic roots of hypothermic dogs, produced near-immediate cardiac arrest. Reperfusion and washout of cardioplegic solution resulted in restoration of heart function to pre-procedure levels [2]. Within a few years, the Melrose group successfully induced potassium citrate cardioplegia in humans.
Unfortunately, future studies would reveal that in many cases, the Melrose potassium citrate solution still produced post-cardioplegia ventricular fibrillation and myocardial dysfunction [5]. This led to a general pause in clinical application of potassium cardioplegia between the 1960s and early 1980s, in favor of other options mostly involving induction of hypothermic cardiac arrest, which turned out to be no better with respect to postoperative damage than the Melrose solution.
Eventually, research into techniques for potassium cardioplegia would pick up again, and the result would be development of novel solutions for cardioplegia and intraoperative organ preservation. Numerous studies in animal models have validated the principles of diastolic cardiac arrest due to depolarizing potassium cardioplegia [2, 3, 6, 7, 8, 9, 10]. In addition, invention and refinement of heart-lung machines to accompany cardioplegia in the operative room (CPB) opened many new possibilities for cardiac surgery. Today, potassium cardioplegia is an integral tool for cardiac surgeons performing a variety of highly invasive procedures such as coronary artery bypass grafting and aortic valve replacements.
Despite variability in composition, delivery, and temperature, most cardioplegic solutions in use today involve some level of potassium chloride as the main inducer of cardiac arrest, along with ions such as magnesium, low-dose calcium and bicarbonate, the latter of which is particularly important for controlling solution pH [6]. The “original” hyperkalemic cardioplegic solution was the Melrose formula of the 1950s that was discussed earlier, consisting of potassium citrate and warm blood in a 9:1 blood:potassium ratio. However, due to the high incidence of postoperative complications including ventricular fibrillation, this solution is no longer in major clinical use.
In general, cardioplegic solutions fall under two broad umbrellas: crystalloid vs. blood, and warm vs. cold (Table 1). Two crystalloid cardioplegic solutions worth noting are the Custodiol (also known as Bretschneider) and St. Thomas solutions [7]. The St. Thomas solution, introduced first by Hearse and colleagues in 1975, is an example of a short acting cardioplegic solution involving potassium chloride concentrations between 10 and 30 mM [8]. In general, the St. Thomas solution requires repeat dosing, roughly every 20 minutes, to sustain cardioplegia for long durations [7, 9]. Furthermore, myocardial acidosis has been noted between doses of St. Thomas solution [10].
St. Thomas Cardioplegia | Custodiol Cardioplegia | Del Nido Cardioplegia | Buckberg Cardioplegia | Warm Calafiore Cardioplegia (one variant) | |
---|---|---|---|---|---|
K+ | 16 mM | 9 mM | 26 mM | Cold induction: 36 mM Maintenance: 36 mM Reperfusion: 15 mM | 18–20 mM for inducing arrest, repeat delivery every 20 min with decreasing K concentrations |
Ca | 1.2 mM | 0.015 mM | 1.3 mM | ||
Mg | 16 mM | 4 mM | 2 g of 50% magnesium sulfate | 15.5 mM | |
Na | 110 mM | 15 mM | |||
NaHCO3 | 10 mM | 13 mM | |||
Other Components | 18 mM Histidine hydrochloride 18 mM histidine 2 mM tryptophan 30 mM mannitol 1 mM potassium hydrogen 2-ketoglutarate | 13 mL of 1% lidocaine 3.2 g/L of 20% mannitol | 62.5 mL glutamate/aspartate | 500 mL 5% dextrose 4 mM tris(hydroxymethyl)aminomethane Core body temperature maintained at 37 degrees Celsius | |
Blood vs. Crystalloid | Crystalloid | Crystalloid | 4:1 crystalloid: blood ratio | 4:1 crystalloid: blood ratio | Normothermic blood |
Composition of common potassium-based cardioplegic solutions.
In contrast, the Custodiol solution is a form of long acting, single dose cardioplegia consisting primarily of potassium chloride, sodium chloride, and magnesium sulfate as the chief electrolytes [11]. Additional components of the Custodiol solution include tryptophan (membrane stabilization) and histidine buffer (to maintain pH and buffer against byproducts of anaerobic glycolysis that build up during cardioplegia). Curiously, the relatively low levels of potassium (9 mM) and sodium (15 mM) in Custodiol appear to induce cardioplegia through a form of hyperpolarized arrest as opposed to depolarized arrest, unlike most other potassium cardioplegic solutions that have potassium concentrations in the range of 16-36 mM and sodium concentrations in the range of 10-110 mM (see Table 1 for detailed solution ion concentrations).
The general rationale for blood-based cardioplegia has centered on the theory that cardioplegic solutions containing blood are more “physiologic” than crystalloid solutions. For example, blood can support aerobic respiration and may be able to preserve normal myocardial metabolism during surgery. Therefore, blood cardioplegia may reduce the negative consequences of prolonged ischemia during CPB [11]. However, insufficient evidence exists currently to verify that hypothesis, and so any purported advantages of blood over crystalloid cardioplegia are for the time being mainly speculative.
Three hyperkalemic cardioplegic solutions in clinical use that contain blood are the Del Nido, Buckberg, and Calafiore solutions. The Del Nido solution uses a crystalloid:blood ratio of 4:1, and like the Custodiol solution is a long-acting cardioplegic solution, with one dose of 20 ml/kg providing myocardial protection for up to 60–90 minutes [7, 12]. Chief ionic ingredients include potassium chloride for rapid depolarized arrest, sodium bicarbonate to scavenge protons and buffer intracellular pH, and magnesium to block calcium channels and prevent intracellular calcium accumulation during cardioplegic arrest, thereby promoting postoperative myocardial recovery [12, 13]. Lidocaine in the Del Nido solution acts as a sodium channel blocker to mitigate against the sodium “window current” and reduce intracellular sodium accumulation [14].
Buckberg’s cardioplegia is a dextrose and saline-based solution that, similar to the Del Nido solution, consists of a crystalloid:blood ratio of 4:1 [15]. Other components include potassium chloride as the primary depolarizing agent, a tromethamine buffer, and citrate phosphate double dextrose to serve as a calcium chelator. However, unlike the Del Nido solution, Buckberg cardioplegia must be given as three separate formulations, some of which must be administered in multiple doses [15]. First, an induction solution stops the heart, and additional infusions of induction solution must be given every 15 to 20 minutes throughout the procedure. Second, a maintenance solution must be administered to sustain cardiac arrest and provide oxygen and nutrients to the cardiomyocytes. Finally, a reperfusion solution containing glutamate and aspartate is administered prior to removal of the aortic cross clamp to provide the heart with nutrients prior to restarting myocardial contractions.
Calafiore cardioplegia differs from Buckberg and Del Nido in that blood forms the sole foundation of Calafiore cardioplegic solution [16]. Indeed, the original rational proposed by Calafiore et al. was that blood alone, without any crystalloid component, contained everything necessary to prevent ischemia–reperfusion damage. Therefore, simply administering a cardioplegic solution consisting of blood plus extra potassium would be enough to safely stop and later, restart the heart [16]. Moreover, unlike most other forms of cardioplegia in use, the original Calafiore solution was normothermic throughout administration; however, some subsequent variations of Calafiore cardioplegia have used cold blood [16, 17].
Most current methods for administering cardioplegic solutions involve cold cardioplegia, most often cold crystalloid solutions delivered after reducing core body temperature to hypothermic levels [18]. For example, the induction and maintenance solutions for Buckberg cardioplegia are delivered at 4 degrees Celsius after cooling core temperature to below 30 degrees Celsius, with reperfusion solution delivered at 37 degrees Celsius [15]. Similarly, del Nido and Custodiol cardioplegia are often given at 4 degrees Celsius after induction of systemic hypothermia [15, 19].
This practice stems from experimental evidence suggesting that mild hypothermia can protect the myocardium from ischemic damage during cardioplegia [20]. Hypothermia reduces the basal metabolic rate of the heart, which in turn reduces oxygen consumption—an effect augmented by potassium-induced arrest during hyperkalemic cardioplegia [21]. A variety of potential mechanisms may be at play. In animal models of cardiac arrest, mild hypothermia (32–35 degrees Celsius) has been shown to reduce post-arrest infarct size, possibly through various signal transduction pathways, such as Akt and mTOR signaling, both of which are altered during the course of hypothermia [20]. Another potential cardioprotective mechanism of hypothermia may be reduced phosphorylation of various mitogen activated protein kinases (MAPK) like ERK1/2 that normally activate pro-inflammatory mediators like COX-2 (arachidonic acid metabolism) [18]. In general, many details concerning mechanisms of hypothermic myocardial protection during cardioplegia remain to be elucidated.
However, cold hyperkalemic cardioplegia may also inhibit myocardial enzymes that are important for the metabolic and functional recovery of the heart after surgery [22, 23]. Moreover, sustained systemic hypothermia (especially at temperatures below 20 degrees Celsius) during cardiac surgery has also been associated with ventricular fibrillation after rewarming [21]. Given these negative consequences, an increasing amount of attention has been given to the possibility of warm hyperkalemic cardioplegia, primarily warm blood hyperkalemic cardioplegia. Unlike cold hyperkalemic cardioplegic solutions, warm cardioplegic solution is typically administered at between 30 and 35 degrees Celsius under normothermic, as opposed to hypothermic, CPB [24]. Potential advantages of warm blood hyperkalemic cardioplegia over cold crystalloid may include improved myocardial restoration, reduced intracellular swelling, improved membrane stabilization, and reduced hypoxic red blood cell deformation [25].
Of course, warm hyperkalemic cardioplegia is not without its own consequences. Some studies have reported increased likelihoods of perioperative strokes and encephalopathy [26]. Moreover, warm hyperkalemic cardioplegia may contribute to vasodilation during cardiopulmonary bypass, requiring increased use of alpha agonists during operation to maintain stable arterial perfusion pressures [25]. There are also several variations of warm cardioplegia; one common technical variant is “hot shot” cardioplegia, which involves warm induction and subsequent cold cardioplegia, followed by a warm reperfusion [27].
Comparing the effectiveness of warm vs. cold hyperkalemic cardioplegia remains an inconclusive subject of intense debate. A meta-analysis by Fan et al., reported no differences between length of stay, stroke incidence, and atrial fibrillation between patients undergoing warm vs. cold cardioplegia [28]. However, warm cardioplegia correlated with better postoperative cardiac indices and lower peak creatine kinase MB concentrations than cold cardioplegia [28]. The latter findings, along with reduced postoperative cardiac troponin levels, have been replicated in other studies [29, 30]. Meanwhile, other studies comparing warm blood and cold crystalloid hyperkalemic cardioplegia do not show significant differences with respect to perioperative myocardial infarction and low cardiac output syndrome [31].
In general, administration of hyperkalemic cardioplegic solution can be done in either retrograde or anterograde fashion. Prior to both, IV heparin is administered, and the patient’s core body temperature is lowered to hypothermic levels, after which the aortic cross-clamp is placed and cardiopulmonary bypass is initiated [7]. Anterograde cardioplegia refers to delivering cardioplegic solution through a cannula inserted just proximal to the aortic cross-clamp. From there, the solution can flow into the left and right coronary arteries that supply the myocardium [32]. With anterograde cardioplegia, arrest usually occurs within 30 to 60 seconds. Retrograde cardioplegia may be considered in patients with complications such as severe coronary artery damage (e.g. severe stenosis) or aortic valve damage. Unlike anterograde administration, in retrograde administration the cardioplegia catheter is inserted into the coronary sinus from the right atrium, and solution is injected at a lower pressure (given the lower tolerance of the coronary sinus walls to turbulent flow) to avoid coronary sinus perforation [32].
Under physiological circumstances, the cardiomyocyte resting membrane potential is largely determined by two key factors: action of the sodium-potassium ATPase, and the high resting permeability of cardiomyocyte cell membranes to potassium [33]. First, the sodium-potassium ATPase hydrolyzes ATP to continuously pump potassium into the cell and sodium out of the cell, with a relative ratio of 3Na out/2 K in per molecule of ATP. Because it is the primary ion pump active while the cell is at rest, the sodium-potassium ATPase plays a critical role in generating the characteristic sodium and potassium electrochemical gradients across the cardiomyocyte cell membrane (high potassium and low sodium inside the cell relative to out). Second, at rest the cardiomyocyte cell membrane is most permeable to potassium while being relatively impermeable to other ions. This results in a resting membrane potential for cardiomyocytes that is close to the Nernst equilibrium potential for potassium, roughly −85 to -90 mV.
During cardiac muscle contraction, sinoatrial node stimulation induces a transient increase in the resting membrane potential of cardiomyocytes, which in turn opens voltage-gated sodium channels once the membrane potential surmounts -65 mV. Due to the high inward ion driving force on sodium (based on the considerable difference between the Nernst potential for sodium and the resting membrane potential), sodium ions flow through the sodium channels into the cardiomyocyte and further depolarize the cell until it reaches about 20 mV. At this point, sodium channels inactivate and L-type voltage gated calcium channels take over the maintenance of the action potential, allowing influx of calcium ions and producing the classic plateau depolarization of cardiac ventricular action potentials. Eventually, as calcium channels close and membrane potential begins to dip, delayed rectifier potassium channels open and restore membrane potential to the resting state. By this point, enough calcium has entered the cardiomyocyte to promote calcium-induced calcium release from intracellular calcium stores in the cardiomyocyte sarcoplasmic reticula, allowing muscle contraction to occur.
Extracellular hyperkalemia is the core principle underpinning most warm blood and cold crystalloid cardioplegic solutions. Essentially, administration of hyperkalemic solution takes advantage of the pivotal role of the potassium electrochemical gradient in determining cardiomyocyte resting membrane potential in order to elevate the resting membrane potential to a less negative value than typical baseline level. For example, physiologic extracellular potassium levels are often in the range of 3.5–5 mM, producing a resting membrane potential around -85 mV. During cardiac surgery involving cardioplegia, hyperkalemic solutions often raise extracellular potassium to the range of 10-40 mM (often midway in this range, around the 25 mM level), elevating cardiomyocyte resting membrane potentials to anywhere between −65 to -40 mV [34]. Arresting cardiomyocytes at this new range of elevated membrane potentials promotes fast sodium channel inactivation, thereby blocking myocardial action potential conduction. It also blocks repolarization, which is why hyperkalemic cardioplegia induces what is called “depolarized arrest.” Finally, it is important to note that cardioplegic arrest also significantly reduces cardiomyocyte oxygen consumption in a manner reminiscent of how severe ischemia depletes cellular ATP reserves [33].
Despite its clinical usefulness in reversibly arresting the heart during cardiac surgery, sustained depolarized hyperkalemic cardioplegia is not without some negative perioperative consequences. First, while most voltage-gated “fast” sodium channels are inactivated at membrane potentials above -50 mV (a frequent target cardiomyocyte membrane potential for potassium cardioplegia), resulting in generally poor membrane sodium conductance, not
Similarly, ATP depletion and reduced myocardial oxygen consumption during hyperkalemic cardioplegia leads to myocardial ischemia. Ischemia forces myocardial cells to resort to anaerobic glycolysis for energy production, which generates lactate as a byproduct. Increasing lactate levels in cardiomyocytes produces a metabolic acidosis and promotes increased activity of the H+/Na antiporter to move protons out of the cells at the expense of bringing in more sodium [36]. Finally, the combination of high extracellular potassium, intracellular acidosis, and hypothermia due to cold cardioplegic solution inhibits action of the sodium-potassium ATPase, which further facilitates the buildup of intracellular sodium [34].
Note that -50 mV is also in the vicinity of the reversal potential of the sodium/calcium exchanger [37, 38]. Under normal circumstances, the sodium/calcium exchanger moves 3 Na in for every 1 Ca moved out of the cell. However, due to the sodium window current and depolarized arrest in hyperkalemic cardioplegia, the sodium/calcium exchanger eventually begins operating in reverse, moving 3 Na out for every 1 Ca in, producing a so-called calcium “window current.” Moreover, if the hyperkalemic cardioplegic solution holds cardiomyocyte membrane potentials above -50 mV, e.g. at around -40 mV, then voltage-gated slow calcium channels will begin to activate, causing further calcium influx [39]. All of these reasons help explain why many hyperkalemic cardioplegic solutions in clinical practice are also hypocalcemic relative to physiological extracellular calcium levels (or contain calcium channel blockers), to attempt to mitigate the severity of myocardial calcium loading [34].
Cytosolic calcium loading during hyperkalemic cardioplegia contributes to cardiomyocyte damage through several mechanisms [40]. Enhanced activation of calcium dependent proteases and lipases (e.g. phospholipases) contributes to plasma membrane phospholipid degradation, ultrastructural changes in the sarcolemmal membrane, and accumulation of pathological catabolic byproducts. Enhanced activation of calcium-dependent ATPases accelerates depletion of intracellular ATP stores that have already been lowered following hypothermic arrest. This further perturbs cardiomyocyte sarcolemmal calcium transport channels that rely on ATP to maintain intracellular calcium homeostasis. Moreover, hypoxia during hyperkalemic cardioplegia increases mitochondrial calcium uptake via reversal of mitochondrial sodium/calcium exchangers in a manner akin to reversal of cardiomyocyte cell membrane sodium/calcium exchangers [41].
Mitochondria can only endure so much calcium uptake before the onset of irreversible damage. Indeed, following reperfusion after hyperkalemic cardioplegia arrest, mitochondria exhibit increased oxygen free radical production and reduced superoxide dismutase activity, indicative of heightened oxidative stress [41]. Sustained oxidative stress can lead to opening of mitochondrial permeability transition pores (MPTP), which promote mitochondrial swelling and mitochondrial membrane rupture. An assortment of mitochondrial enyzmes and molecules, such as cytochrome c, leak out into the cytosol through the MPTPs [41]. Cytochrome c is implicated in intrinsic apoptotic pathways through activation of cytosolic caspases and subsequent formation of myocardial apoptosomes [41].
Myocardial apoptosis during hyperkalemic cardioplegic ischemia–reperfusion merits further consideration for two major reasons. First, several studies have shown associations between hyperkalemic cardioplegic arrest and endothelial cell and cardiomyocyte apoptosis [42, 43, 44]. Second, several independent pathways of myocardial cell injury converge on apoptosis. Examples include mitochondrial oxidative stress and activation of an intrinsic apoptotic pathway (introduced earlier), or an extrinsic pathway driven by elevated humoral factors such as Fas or TNF-alpha acting on pro-apoptosis cell membrane receptors [44, 45]. Both intrinsic and extrinsic pathways converge upon a similar final common pathway that is chiefly regulated by two key protein groups: the Bcl-2 and cysteine protease caspase families [46, 47].
Within the Bcl-2 family, two proteins are particularly significant: Bcl-2 itself, and Bad. The former is anti-apoptotic while the latter is pro-apoptotic. Phosphorylation inhibits Bad, blocking it from inactivating Bcl-2 [48]. Farther downstream in apoptotic signaling, cleavage of caspase 3 and poly ADP-ribose polymerase (PARP) is essential for ensuring final progression towards apoptosis. Meanwhile, apoptosis may also proceed via a caspase-independent pathway involving release of the mitochondrial flavoprotein apoptosis-inducing factor (AIF) from the mitochondria into the cytosol through MPTPs [49, 50].
A possible framework for understanding myocardial apoptosis after hyperkalemic CPB is as follows [48]. Activation of the intrinsic (mitochondrial) pathway leads to increased Bad activation/decreased Bcl-2 activation, which initiates the caspase cascade. Activation of the extrinsic pathway bypasses Bcl-2/Bad to directly activate the caspase cascade. As more and more caspases become activated, eventually terminal caspases, such as caspase 3, will be cleaved, leading to PARP cleavage. By this point, apoptosis has been irreversibly induced; DNA fragmentation and cell death quickly follow. In contrast, AIF translocation from the mitochondria to the cytosol may directly activate downstream/terminal caspases, bypassing initial/intermediary constituents of the caspase cascade.
Studies have shown that caspase 3 cleavage and Bcl-2/Bad phosphorylation are significantly increased in myocardial tissue following hyperkalemic cold-blood cardioplegia and reperfusion, even as total protein levels do not change [48]. Meanwhile, myocardial AIF levels increase slightly, accompanied by a trend towards nuclear translocation, consistent with a model of AIF induced chromatin condensation and DNA fragmentation as a mechanism of cell injury [48]. Note that both pro-apoptotic (e.g. caspase 3) and anti-apoptotic (e.g. phosphorylated Bad) mediators are activated—nevertheless, given the downstream terminal position of caspase 3, the overall balance in myocardial cells appears to be tipped in favor of pro-apoptotic signaling.
Different formulations of hyperkalemic cardioplegia (e.g. cold crystalloid, warm blood, etc.) may exhibit differing degrees of myocardial protection and prevention of apoptosis. Indeed, evidence exists suggesting that cold blood hyperkalemic cardioplegia is superior to warm blood, warm crystalloid, and cold crystalloid cardioplegia, in terms of increased Bad phosphorylation and decreased caspase 3 activation [51]. Taken together, this combination of events appears to result in less apoptosis. In addition, these effects are associated with improved left ventricular function following cardioplegic arrest. However, this is not a universal finding in the literature. More work must be done to verify these conclusions and confirm if there truly is a definitive benefit to any one technique of hyperkalemic cardioplegia with respect to prevention of apoptosis.
An extensive body of research has established that hyperkalemic solutions induce significant vasoconstriction when experimentally applied to coronary artery and aortic ring preparations [2]. Thus, it is no surprise that hyperkalemic cardioplegia induces significant functional changes to the microcirculation, especially the coronary circulation [52]. For example, a sizeable number of patients undergoing hyperkalemic cardioplegia experience coronary artery spasm [52].
Potassium can influence coronary vasoconstriction in several ways. Holding coronary vascular smooth muscle membrane potentials at sustained depolarization during hyperkalemic cardioplegia increases the likelihood of generating contractions [53]. Potassium may also act indirectly to cause vasospasm through action on the coronary endothelium. Indeed, endothelial vasoconstrictive and vasorelaxant factors govern homeostatic regulation of coronary vasomotor tone. These factors influence vascular smooth muscle through modulation of various cell membrane potassium channels, including calcium-activated potassium channels and ATP-activated potassium channels [54, 55]. Important endothelial-derived relaxing factors include nitric oxide, endothelial-derived hyperpolarizing factor (EDHF), and cyclooxygenase enzymes. Important endothelial-derived constricting factors include endothelin-1 and thromboxane A2.
Porcine models of hyperkalemic cardioplegia showed that hyperkalemia significantly attenuated EDHF-mediated relaxation in coronary artery preparations [56, 57]. Moreover, hyperkalemic vasoconstriction has also been linked with impaired nitric oxide release [58] and impaired acetylcholine-dependent vascular relaxation [59, 60]. Potential mechanisms at play may involve potassium-induced inhibition of G protein and non-G protein signal transduction pathways, increased reactive oxygen and nitrogen species generation, decreased activity of endothelial nitric oxide synthase, and increased arachidonic acid metabolism [2]. Curiously, hyperkalemic cardioplegia has also been associated with decreased responsiveness of human coronary arterioles to the endothelial vasoconstrictors endothelin-1 and thromboxane A2 [61, 62]. These findings testify to the complexity of mechanisms underpinning coronary vasomotor dysfunction following hyperkalemic cardioplegia, most of which remain to be elaborated.
Despite its cardioprotective effects, hyperkalemic cardioplegia-reperfusion can exert detrimental effects on the myocardial and coronary endothelium, promoting endothelial dysfunction [63, 64]. One aspect of endothelial dysfunction—production of various endothelium-derived relaxing and contracting factors—was discussed earlier due to its relevance in coronary vasospasm. Other important features of endothelial dysfunction during hyperkalemic cardioplegic arrest include endothelial injury, inflammation, reactive oxygen species production, coagulation cascade dysfunction, and endothelial tight junction degradation [52, 65, 66, 67]. All these adverse effects may occur with potassium levels as low as 10 mM, well within the realm of most hyperkalemic cardioplegic solutions [2]. To elaborate, potassium concentrations of 30 mM in St. Thomas and Custodiol cardioplegic solutions proved considerably more damaging to the vascular endothelium than potassium concentrations of 20 mM, demonstrating the importance of strict potassium limits in hyperkalemic cardioplegic solutions [6].
A variety of structural changes to the vascular endothelium have been observed in experimental models of hyperkalemic cardioplegia. Key examples include endothelial intracellular vacuolization, membrane blebbing, adventitial fibrosis, and overall reduced viability [68, 69]. Furthermore, hyperkalemic cardioplegia promotes increased lipid uptake and cholesterol deposition in vascular intimae in primate models of post-graft venous atherosclerosis [70]. In addition, compromised endothelial adherens junctions during hyperkalemic cardioplegia mediate increased vascular permeability and tissue edema [67]. Indeed, animal models of cardioplegia/CPB show increased post-procedure VE cadherin, beta-catenin, and gamma-catenin fragments, all of which are important structural components of adherens junctions [71]. In humans, increased endothelial cadherin phosphorylation, and decreased overall beta-catenin levels, have been observed in atrial tissue following hyperkalemic cardioplegia/CPB [72].
Details of specific mechanisms underlying these endothelial disturbances remain largely unclear; however, many possibilities exist. For example, it is generally agreed that depolarization induced by hyperkalemic cardioplegia is a critical initiating step of the underlying pathophysiology [2]. Endothelial depolarization increases activation of neutrophils, inflammation, voltage sensitive NAPDH oxidases, and platelets [62, 63, 73, 74]. Inflammation and neutrophil activation often reinforce each other, as pro-inflammatory cytokines like IL-1, IL-6, and TNF-alpha further stimulate endothelial changes that promote neutrophil extravasation. NADPH oxidase catalyzes formation of important reactive oxygen species such as superoxide anions, which if left unchecked are severely cytotoxic. The amount of superoxide production during hyperkalemic cardioplegia has been linked to the extent of endothelial depolarization and translocation of the small G protein Rac from the cytosol to plasma membrane [75].
With respect to coagulation, potassium depolarization appears to have a direct stimulatory effect via enhancing ADP and collagen-induced platelet aggregation, along with an indirect effect through increased superoxide production [76, 77]. The latter appears to act through inhibition of endothelial NTPDases [78]. Membrane hyperpolarization reverses all these actions.
When left unchecked, sustained myocardial dysfunction following hyperkalemic cardioplegia-reperfusion may lead to myocardial stunning, a form of postoperative left ventricular dysfunction [1]. Myocardial stunning often manifests as markedly reduced cardiac output without obvious evidence of infarction or injury (e.g. no signs of elevated troponin or CKMB in blood). Like myocardial apoptosis, myocardial stunning represents another final common pathway of convergence for several different pathophysiological mechanisms of hyperkalemic cardioplegia, chiefly dysregulated free radical production, coagulation imbalances, and excessive catecholamine release [1]. However, unlike with apoptosis, in this scenario injury results from abnormal myocardial contractility as opposed to myocardial cell death.
Postoperative imbalances in a variety of different electrolytes, including calcium, magnesium, potassium, and phosphate, have been observed following cardioplegia/CPB. Here, we will focus on potassium, beginning with hypokalemia. Hypokalemia can be defined as a serum potassium level that is less than 3.5 mEq/L [78]. Postoperative hypokalemia is a common finding after cardiac surgery involving hyperkalemic cardioplegia and CPB, and manifests almost immediately after the patient is weaned off the bypass circuitry [79]. Hence IV potassium supplementation during cardioplegia is extremely important to mitigate against the most severe manifestations [80].
However, even with electrolyte supplementation in the operating room, CPB poses a high risk of post-procedure electrolyte depletion [81]. The pivotal role of potassium in normal cardiac contractility means that disturbances in potassium homeostasis significantly increase the risk of arrythmias and, in severe cases, sudden cardiac arrest. Indeed, arrythmias, especially atrial tachyarrhythmias (e.g. atrial fibrillation, atrial flutter) and, less frequently, ventricular arrhythmias, are a major source of morbidity and mortality following cardiac surgery [82, 83].
Specific mechanisms underpinning this phenomenon remain largely unclear; however, a variety of possibilities exist [78]. For example, poor oral intake of potassium-rich foods prior to cardiac surgery may contribute to enhanced depletion during surgery. In addition, prolonged preoperative use of digoxin, along with thiazide and loop diuretics may play a role. These agents may cause hypomagnesemia (low magnesium levels), which can contribute to extracellular potassium depletion. Under normal circumstances, intracellular magnesium binds to and blocks the pores of renal outer medullary potassium (ROMK) channels in the distal nephron, preventing outward flux of potassium into the renal tubular network [78]. Thus hypomagnesemia may remove this physiologic limiter, leading to increased renal clearance of potassium.
A hyperactive aldosterone response to stress may also be implicated, particularly in the context of congestive heart failure [78, 80]. Moreover, increased catecholamine (norepinephrine and epinephrine) release during cardiopulmonary bypass may facilitate hypokalemia given the influence of catecholamines on plasma potassium [84, 85]. Animal models have shown that elevated catecholamine levels can produce first, a transient hyperkalemia due to activation of hepatic calcium-dependent potassium channels by alpha adrenergic stimulation and second, a sustained hypokalemia by stimulation of skeletal muscle Na-K ATPase [86]. Such studies need to be replicated in humans undergoing cardiopulmonary bypass-hyperkalemic cardioplegia in order to verify the applicability of these putative mechanisms.
Because glucose is often given during cardioplegia, insulin may also be administered to minimize the chances of hyperglycemia. However, given that insulin acts as a regulator of potassium distribution between intracellular and extracellular fluid compartments by stimulating Na-K ATPase activity, it is possible that insulin administration during and after cardioplegia may contribute to potassium depletion [87]. Next, given that many cardioplegic solutions in current practice are cold hyperkalemic solutions, any potential impact of hypothermia on potassium homeostasis during cardiac surgery cannot be ignored. As with insulin, hypothermia has been linked to an intracellular shift of potassium away from the extracellular space through as-yet unelaborated mechanisms [88]. Finally, the CPB circuit itself has been shown to significantly dilute overall blood plasma protein concentrations, which may also affect plasma ion homeostasis [89].
In general, treatment of postoperative hypokalemia largely centers on administration of potassium chloride (KCl) solution to elevate extracellular potassium concentrations to physiologic levels. Indeed, in the case of pediatric cardiac ICU patients for whom enteral potassium supplementation is contraindicated, IV KCl administration is one of the only available tools for correcting hypokalemia [90]. For most patients, this proves sufficient to correct the imbalance and stave off the development of hypokalemia-induced arrhythmias. However, in a small minority, external KCl solution does not reverse the hypokalemia—and so in these patients, the chances of arrhythmias increase exponentially.
Although hypokalemia is the most common potassium electrolyte abnormality following hyperkalemic cardioplegia-CPB, postoperative hyperkalemia may occur under certain, albeit rarer, circumstances. In general, postoperative hyperkalemia is a concern mainly in patients with renal failure undergoing CPB, most likely due to renal tubular dysfunction [91]. Severe hyperkalemia may be treated with IV calcium gluconate, an insulin-dextrose regimen, and diuretics [92]. If a patient has end-stage renal disease, dialysis may be the best option to treat hyperkalemia, along with IV calcium to stabilize the myocardium and IV insulin to shift potassium into cells [93].
Hyperkalemic cardioplegia is by far the most widely used method of cardioplegia in current clinical practice. However, because of the numerous perioperative repercussions of hyperkalemic cardioplegia, a variety of attempts have been made to explore alternative approaches. Given that many adverse effects of hyperkalemic cardioplegia stem from its induction of depolarized arrest, one popular avenue of investigation has been the possibility of hyperpolarized arrest. Hyperpolarization is the natural resting state of cardiomyocytes, so in theory, arresting the heart at its baseline hyperpolarized state may better preserve physiological integrity. In isolated animal heart models, hyperpolarized arrest has been achieved via pharmacologic activation of ATP-sensitive potassium channels [94, 95]. Following reperfusion, this form of hyperpolarized arrest appeared to lead to improved postischemic functional recovery when compared to hearts protected with depolarized arrest.
Meanwhile, so-called “polarized arrest” has been proposed as another alternative to hyperkalemic cardioplegia. The core principle behind this concept is administration of sodium channel blockers, such as procaine in humans or tetrodotoxin in animal models [96]. Sodium channel blockade prevents depolarization-induced activation of calcium currents, which normally carry out the bulk of the cardiomyocyte action potential. Overall, in animal models, tetrodotoxin-induced polarized arrest reduces metabolic demands during ischemia, including myocardial oxygen consumption, more so than hyperkalemic cardioplegia [96]. Furthermore, polarized arrest may produce less significant postoperative ionic imbalances, with further protection provided by coincident administration of sodium/potassium/chloride transporter and sodium/proton exchanger inhibitors [96]. Nonetheless, more work needs to be done to verify the broader clinical applicability of these alternatives to hyperkalemic cardioplegia.
By taking advantage of the pivotal role of potassium in cardiomyocyte physiology, hyperkalemic cardioplegia has become an integral tool for cardiac surgery. From the early days of Dennis Melrose’s simple potassium citrate solution to complex modern-day formulations such as the Del Nido and Buckberg media, approaches to developing and administering hyperkalemic cardioplegic solutions have evolved considerably, with a continuing focus on developing the most cardioprotective and least damaging solutions possible. While initial approaches to hyperkalemic cardioplegia revolved around hypothermic solutions, normothermic/“warm” solutions, along with blood as opposed to crystalloid-based solutions, are gaining momentum as potential alternatives to mitigate adverse perioperative consequences of cold hyperkalemic cardioplegia. Some of those consequences include myocardial calcium loading, myocardial apoptosis, coronary vasomotor dysfunction, myocardial endothelial dysfunction, and myocardial stunning. With any form of hyperkalemic cardioplegia, plasma potassium abnormalities following reperfusion, mainly postoperative hypokalemia, remain a persistent clinical concern. And while most patients respond well to IV KCl supplementation, some do not and proceed to develop fatal arrythmias, underscoring the need for further research to understand the mechanisms at play and develop new treatments. In the future, it is possible that other approaches such as hyperpolarized or polarized arrest may challenge the widespread use of depolarized hyperkalemic cardioplegic arrest. Nevertheless, for the time being, hyperkalemic cardioplegia remains dominant in cardiac surgery, and will likely continue to be so for some time to come.
The authors have no acknowledgements.
The authors declare no conflicts of interest.
The authors have no other notes or declarations.
At IntechOpen, we not only specialize in the publication of Book Chapters as part of our Edited Volumes, but also the publication and dissemination of longer manuscripts, known as Long Form Monographs. Monographs allow Authors to focus on presenting a single subject or a specific aspect of that subject and publish their research in detail.
\n\nEven if you have an area of research that does not at first sight fit within a previously defined IntechOpen project, we can still offer support and help you in publishing your individual research. Publishing your IntechOpen book in the form of a Long Form Monograph is a viable alternative.
",metaTitle:"Publish a Whole Book",metaDescription:"At IntechOpen, we not only specialize in the publication of book chapters as part of our Edited Volumes, but also the publication and dissemination of long form manuscripts, known as monographs. Monographs allow authors to focus on presenting a single subject or a specific aspect of that subject and publish their research at length.\n\nPerhaps you have an area of research that does not fit within a previously defined IntechOpen project, but rather need help in publishing your individual research? Publishing your IntechOpen book in the form of a long form monograph is a great alternative.",metaKeywords:null,canonicalURL:"/page/publish-a-whole-book",contentRaw:'[{"type":"htmlEditorComponent","content":"MONOGRAPH - LONG FORM MANUSCRIPT
\\n\\nFORMATS
\\n\\nCOST
\\n\\n10,000 GBP Monograph - Long Form
\\n\\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'MONOGRAPH - LONG FORM MANUSCRIPT
\n\nFORMATS
\n\nCOST
\n\n10,000 GBP Monograph - Long Form
\n\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5945},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17701}],offset:12,limit:12,total:133951},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"12"},books:[{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",subtitle:null,isOpenForSubmission:!0,hash:"a58c7b02d07903004be70f744f2e1835",slug:null,bookSignature:"Prof. Mohamed Nageeb Rashed and Prof. Wafaa M. Abd El-Rahim",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",editedByType:null,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11457",title:"Forest Degradation Under Global Change",subtitle:null,isOpenForSubmission:!0,hash:"8df7150b01ae754024c65d1a62f190d9",slug:null,bookSignature:"Dr. Pavel Samec",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",editedByType:null,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11650",title:"Aquifers - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"27c1a2a053cb1d83de903c5b969bc3a2",slug:null,bookSignature:"Dr. Abhay Soni and Dr. Prabhat Jain",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,editors:[{id:"271093",title:"Dr.",name:"Abhay",surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11664",title:"Recent Advances in Sensing Technologies for Environmental Control and Monitoring",subtitle:null,isOpenForSubmission:!0,hash:"cf1ee76443e393bc7597723c3ee3e26f",slug:null,bookSignature:"Dr. Toonika Rinken and Dr. Kairi Kivirand",coverURL:"https://cdn.intechopen.com/books/images_new/11664.jpg",editedByType:null,editors:[{id:"24687",title:"Dr.",name:"Toonika",surname:"Rinken",slug:"toonika-rinken",fullName:"Toonika Rinken"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11665",title:"Recent Advances in Wildlife Management",subtitle:null,isOpenForSubmission:!0,hash:"73da0df494a1a56ab9c4faf2ee811899",slug:null,bookSignature:"Dr. Farzana Khan Perveen",coverURL:"https://cdn.intechopen.com/books/images_new/11665.jpg",editedByType:null,editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11666",title:"Soil Contamination - Recent Advances and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"c8890038b86fb6e5af16ea3c22669ae9",slug:null,bookSignature:"Dr. Adnan Mustafa and Dr. Muhammad Naveed",coverURL:"https://cdn.intechopen.com/books/images_new/11666.jpg",editedByType:null,editors:[{id:"299110",title:"Dr.",name:"Adnan",surname:"Mustafa",slug:"adnan-mustafa",fullName:"Adnan Mustafa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11668",title:"Mercury Pollution",subtitle:null,isOpenForSubmission:!0,hash:"0bd111f57835089cad4a9741326dbab7",slug:null,bookSignature:"Dr. Ahmed Abdelhafez and Dr. Mohamed Abbas",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",editedByType:null,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12130",title:"Sustainable Built Environment",subtitle:null,isOpenForSubmission:!0,hash:"ed1dbae71b967e06efb049208f0c1068",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12130.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12131",title:"Climate Change and Fires",subtitle:null,isOpenForSubmission:!0,hash:"ea0858f07a3e87aaf9e5eaa75b4b44bd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12131.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12180",title:"Wetlands",subtitle:null,isOpenForSubmission:!0,hash:"8957c5c2baaed32223f911a6d4aa5a03",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12180.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12221",title:"Air Pollution",subtitle:null,isOpenForSubmission:!0,hash:"439a018ee0c4960560cb798601f2a372",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12221.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:40},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:26},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:124},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:8},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:10},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:15},popularBooks:{featuredBooks:[{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10787",title:"Hepatocellular Carcinoma",subtitle:"Challenges and Opportunities of a Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bc00a66513e51003e5dbbc0294e0fc3d",slug:"hepatocellular-carcinoma-challenges-and-opportunities-of-a-multidisciplinary-approach",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/10787.jpg",editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!1,hash:"4e868cde273d65a7ff54b1817d640629",slug:"hydrolases",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",isOpenForSubmission:!1,hash:"2c628f4757f9639a4450728d839a7842",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10193",title:"Multidisciplinary Experiences in Renal Replacement Therapy",subtitle:null,isOpenForSubmission:!1,hash:"3c4738671bb3e815744d1e04df7ba879",slug:"multidisciplinary-experiences-in-renal-replacement-therapy",bookSignature:"Ane C.F. Nunes",coverURL:"https://cdn.intechopen.com/books/images_new/10193.jpg",editors:[{id:"55270",title:"Prof.",name:"Ane",middleName:null,surname:"Claudia Fernandes Nunes",slug:"ane-claudia-fernandes-nunes",fullName:"Ane Claudia Fernandes Nunes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10983",title:"Conifers",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"3e524d29fc3f95c3389efbd41463dab6",slug:"conifers-recent-advances",bookSignature:"Ana Cristina Gonçalves and Teresa Fonseca",coverURL:"https://cdn.intechopen.com/books/images_new/10983.jpg",editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",middleName:null,surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10539",title:"Ginseng",subtitle:"Modern Aspects of the Famed Traditional Medicine",isOpenForSubmission:!1,hash:"5f388543a066b617d2c52bd4c027c272",slug:"ginseng-modern-aspects-of-the-famed-traditional-medicine",bookSignature:"Christophe Hano and Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:"Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"eca3f2d5ca97b457d38a2442b36d3ac7",slug:"drug-repurposing-molecular-aspects-and-therapeutic-applications",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4423},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2204,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",publishedDate:"June 15th 2022",numberOfDownloads:1182,editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10787",title:"Hepatocellular Carcinoma",subtitle:"Challenges and Opportunities of a Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bc00a66513e51003e5dbbc0294e0fc3d",slug:"hepatocellular-carcinoma-challenges-and-opportunities-of-a-multidisciplinary-approach",bookSignature:"Georgios Tsoulfas",coverURL:"https://cdn.intechopen.com/books/images_new/10787.jpg",publishedDate:"June 15th 2022",numberOfDownloads:1006,editors:[{id:"57412",title:"Prof.",name:"Georgios",middleName:null,surname:"Tsoulfas",slug:"georgios-tsoulfas",fullName:"Georgios Tsoulfas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!1,hash:"4e868cde273d65a7ff54b1817d640629",slug:"hydrolases",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",publishedDate:"June 15th 2022",numberOfDownloads:863,editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",isOpenForSubmission:!1,hash:"2c628f4757f9639a4450728d839a7842",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",bookSignature:"Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",publishedDate:"June 15th 2022",numberOfDownloads:793,editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10193",title:"Multidisciplinary Experiences in Renal Replacement Therapy",subtitle:null,isOpenForSubmission:!1,hash:"3c4738671bb3e815744d1e04df7ba879",slug:"multidisciplinary-experiences-in-renal-replacement-therapy",bookSignature:"Ane C.F. Nunes",coverURL:"https://cdn.intechopen.com/books/images_new/10193.jpg",publishedDate:"June 15th 2022",numberOfDownloads:730,editors:[{id:"55270",title:"Prof.",name:"Ane",middleName:null,surname:"Claudia Fernandes Nunes",slug:"ane-claudia-fernandes-nunes",fullName:"Ane Claudia Fernandes Nunes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2167,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10983",title:"Conifers",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"3e524d29fc3f95c3389efbd41463dab6",slug:"conifers-recent-advances",bookSignature:"Ana Cristina Gonçalves and Teresa Fonseca",coverURL:"https://cdn.intechopen.com/books/images_new/10983.jpg",publishedDate:"June 15th 2022",numberOfDownloads:600,editors:[{id:"194484",title:"Prof.",name:"Ana Cristina",middleName:null,surname:"Gonçalves",slug:"ana-cristina-goncalves",fullName:"Ana Cristina Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10539",title:"Ginseng",subtitle:"Modern Aspects of the Famed Traditional Medicine",isOpenForSubmission:!1,hash:"5f388543a066b617d2c52bd4c027c272",slug:"ginseng-modern-aspects-of-the-famed-traditional-medicine",bookSignature:"Christophe Hano and Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",publishedDate:"June 15th 2022",numberOfDownloads:583,editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10881",title:"Drug Repurposing",subtitle:"Molecular Aspects and Therapeutic Applications",isOpenForSubmission:!1,hash:"eca3f2d5ca97b457d38a2442b36d3ac7",slug:"drug-repurposing-molecular-aspects-and-therapeutic-applications",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/10881.jpg",publishedDate:"June 1st 2022",numberOfDownloads:2231,editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"919",title:"Tissue Engineering",slug:"biomaterials-tissue-engineering",parent:{id:"154",title:"Biomaterials",slug:"biomaterials"},numberOfBooks:7,numberOfSeries:0,numberOfAuthorsAndEditors:270,numberOfWosCitations:615,numberOfCrossrefCitations:285,numberOfDimensionsCitations:768,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"919",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",isOpenForSubmission:!1,hash:"c85e82851e80b40282ff9be99ddf2046",slug:"extracellular-matrix-developments-and-therapeutics",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",editedByType:"Edited by",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6141",title:"Polymerization",subtitle:null,isOpenForSubmission:!1,hash:"6253d53d2d87cf7917080428071127f0",slug:"recent-research-in-polymerization",bookSignature:"Nevin Cankaya",coverURL:"https://cdn.intechopen.com/books/images_new/6141.jpg",editedByType:"Edited by",editors:[{id:"175645",title:"Associate Prof.",name:"Nevin",middleName:null,surname:"Çankaya",slug:"nevin-cankaya",fullName:"Nevin Çankaya"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5922",title:"Materials, Technologies and Clinical Applications",subtitle:null,isOpenForSubmission:!1,hash:"6fe31fadb436b2596163e60fd63dedbd",slug:"scaffolds-in-tissue-engineering-materials-technologies-and-clinical-applications",bookSignature:"Francesco Baino",coverURL:"https://cdn.intechopen.com/books/images_new/5922.jpg",editedByType:"Edited by",editors:[{id:"188475",title:"Dr.",name:"Francesco",middleName:null,surname:"Baino",slug:"francesco-baino",fullName:"Francesco Baino"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3420",title:"Advances in Biomaterials Science and Biomedical Applications",subtitle:null,isOpenForSubmission:!1,hash:"381d506a331ddc9ae4d423dea265e0a2",slug:"advances-in-biomaterials-science-and-biomedical-applications",bookSignature:"Rosario Pignatello",coverURL:"https://cdn.intechopen.com/books/images_new/3420.jpg",editedByType:"Edited by",editors:[{id:"64447",title:"Prof.",name:"Rosario",middleName:null,surname:"Pignatello",slug:"rosario-pignatello",fullName:"Rosario Pignatello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2300",title:"Microwave Materials Characterization",subtitle:null,isOpenForSubmission:!1,hash:"25921c01ddbac11535ce589c4007a695",slug:"microwave-materials-characterization",bookSignature:"Sandra Costanzo",coverURL:"https://cdn.intechopen.com/books/images_new/2300.jpg",editedByType:"Edited by",editors:[{id:"51071",title:"Prof.",name:"Sandra",middleName:null,surname:"Costanzo",slug:"sandra-costanzo",fullName:"Sandra Costanzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1508",title:"The Transmission Electron Microscope",subtitle:null,isOpenForSubmission:!1,hash:"40719eadb88b36d3aab9d67fbef67fe3",slug:"the-transmission-electron-microscope",bookSignature:"Khan Maaz",coverURL:"https://cdn.intechopen.com/books/images_new/1508.jpg",editedByType:"Edited by",editors:[{id:"107765",title:"Dr.",name:"Maaz",middleName:null,surname:"Khan",slug:"maaz-khan",fullName:"Maaz Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1464",title:"Advanced Plasma Spray Applications",subtitle:null,isOpenForSubmission:!1,hash:"ae66339c844ea8b473cc76ad34b38b04",slug:"advanced-plasma-spray-applications",bookSignature:"Hamidreza Salimi Jazi",coverURL:"https://cdn.intechopen.com/books/images_new/1464.jpg",editedByType:"Edited by",editors:[{id:"102953",title:"Dr.",name:"Hamidreza",middleName:null,surname:"Salimi Jazi",slug:"hamidreza-salimi-jazi",fullName:"Hamidreza Salimi Jazi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:7,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"32974",doi:"10.5772/34448",title:"Thermal Sprayed Coatings Used Against Corrosion and Corrosive Wear",slug:"thermal-sprayed-coatings-used-against-corrosion-and-corrosive-wear",totalDownloads:21938,totalCrossrefCites:38,totalDimensionsCites:89,abstract:null,book:{id:"1464",slug:"advanced-plasma-spray-applications",title:"Advanced Plasma Spray Applications",fullTitle:"Advanced Plasma Spray Applications"},signatures:"P. Fauchais and A. Vardelle",authors:[{id:"100195",title:"Dr",name:null,middleName:null,surname:"Vardelle",slug:"vardelle",fullName:"Vardelle"},{id:"100197",title:"Dr.",name:"Pierre",middleName:null,surname:"Fauchais",slug:"pierre-fauchais",fullName:"Pierre Fauchais"}]},{id:"43739",doi:"10.5772/54125",title:"Biofabrication of Tissue Scaffolds",slug:"biofabrication-of-tissue-scaffolds",totalDownloads:9384,totalCrossrefCites:24,totalDimensionsCites:62,abstract:null,book:{id:"3420",slug:"advances-in-biomaterials-science-and-biomedical-applications",title:"Advances in Biomaterials Science and Biomedical Applications",fullTitle:"Advances in Biomaterials Science and Biomedical Applications"},signatures:"Ning Zhu and Xiongbiao Chen",authors:[{id:"160401",title:"Prof.",name:"Xiongbiao",middleName:null,surname:"Chen",slug:"xiongbiao-chen",fullName:"Xiongbiao Chen"}]},{id:"43736",doi:"10.5772/53542",title:"Cell Adhesion to Biomaterials: Concept of Biocompatibility",slug:"cell-adhesion-to-biomaterials-concept-of-biocompatibility",totalDownloads:5163,totalCrossrefCites:20,totalDimensionsCites:59,abstract:null,book:{id:"3420",slug:"advances-in-biomaterials-science-and-biomedical-applications",title:"Advances in Biomaterials Science and Biomedical Applications",fullTitle:"Advances in Biomaterials Science and Biomedical Applications"},signatures:"M. Lotfi, M. Nejib and M. Naceur",authors:[{id:"162561",title:"Dr.",name:"Mhamdi",middleName:null,surname:"Lotfi",slug:"mhamdi-lotfi",fullName:"Mhamdi Lotfi"},{id:"166829",title:"Dr.",name:"M.",middleName:null,surname:"Nejib",slug:"m.-nejib",fullName:"M. Nejib"},{id:"166830",title:"Dr.",name:"M.",middleName:null,surname:"Naceur",slug:"m.-naceur",fullName:"M. Naceur"}]},{id:"43678",doi:"10.5772/53461",title:"Overview on Biocompatibilities of Implantable Biomaterials",slug:"overview-on-biocompatibilities-of-implantable-biomaterials",totalDownloads:5874,totalCrossrefCites:14,totalDimensionsCites:49,abstract:null,book:{id:"3420",slug:"advances-in-biomaterials-science-and-biomedical-applications",title:"Advances in Biomaterials Science and Biomedical Applications",fullTitle:"Advances in Biomaterials Science and Biomedical Applications"},signatures:"Xiaohong Wang",authors:[{id:"161770",title:"Prof.",name:"Xiaohong",middleName:null,surname:"Wang",slug:"xiaohong-wang",fullName:"Xiaohong Wang"},{id:"161774",title:"Dr.",name:"Yan-Ru",middleName:null,surname:"Lou",slug:"yan-ru-lou",fullName:"Yan-Ru Lou"},{id:"161775",title:"Dr.",name:"Carmen",middleName:null,surname:"Escobedo-Lucea",slug:"carmen-escobedo-lucea",fullName:"Carmen Escobedo-Lucea"},{id:"161776",title:"Prof.",name:"Arto",middleName:null,surname:"Urtti",slug:"arto-urtti",fullName:"Arto Urtti"},{id:"161777",title:"Prof.",name:"Marjo",middleName:null,surname:"Yliperttula",slug:"marjo-yliperttula",fullName:"Marjo Yliperttula"}]},{id:"43728",doi:"10.5772/53681",title:"Degradation of Polyurethanes for Cardiovascular Applications",slug:"degradation-of-polyurethanes-for-cardiovascular-applications",totalDownloads:7702,totalCrossrefCites:4,totalDimensionsCites:44,abstract:null,book:{id:"3420",slug:"advances-in-biomaterials-science-and-biomedical-applications",title:"Advances in Biomaterials Science and Biomedical Applications",fullTitle:"Advances in Biomaterials Science and Biomedical Applications"},signatures:"Juan V. Cauich-Rodríguez, Lerma H. Chan-Chan, Fernando Hernandez-Sánchez and José M. Cervantes-Uc",authors:[{id:"62414",title:"Dr.",name:"Juan",middleName:"Valerio",surname:"Cauich-Rodríguez",slug:"juan-cauich-rodriguez",fullName:"Juan Cauich-Rodríguez"}]}],mostDownloadedChaptersLast30Days:[{id:"57279",title:"Thermoplastic Foams: Processing, Manufacturing, and Characterization",slug:"thermoplastic-foams-processing-manufacturing-and-characterization",totalDownloads:3322,totalCrossrefCites:9,totalDimensionsCites:19,abstract:"Polymer foams have wide application area due to their light weight, resistance to impact, high thermal insulation, and damping properties. Automotive, packing industry, electronic, aerospace, building construction, bedding, and medical applications are some of the fields that polymer foams have been used. However, depending on their cell structure—open or closed cell—polymer foams have different properties and different application areas. In this work, the most used thermoplastic foams with closed cells such as polypropylene, polyethylene, and polystyrene or polylactic acid have been focused. Their melt strength, degree of crystallinity for semi-crystalline ones, and viscosity have great importance on cell morphology. Cells in small diameter with high dense in polymer matrix are preferable. However, obtaining fine cells is not easy in each case, and it is still under investigation for some polymers. There are several ways to improve cell morphology, and one of them is addition of nanoparticle to the polymer. During foaming process, nanoparticles behave like nucleating agent that cells nucleate at the boundary between polymer and the nanoparticle. Besides, foaming agents contribute the homogenous dispersion of the nanoparticles in the polymer matrix, and this improves the properties of the polymer foams and generates multifunctional material as polymer nanocomposite foams.",book:{id:"6141",slug:"recent-research-in-polymerization",title:"Polymerization",fullTitle:"Recent Research in Polymerization"},signatures:"Mihrigul Altan",authors:[{id:"209557",title:"Associate Prof.",name:"Mihrigul",middleName:null,surname:"Altan",slug:"mihrigul-altan",fullName:"Mihrigul Altan"}]},{id:"57833",title:"Emulsion Polymerization Mechanism",slug:"emulsion-polymerization-mechanism",totalDownloads:3813,totalCrossrefCites:3,totalDimensionsCites:11,abstract:"Emulsion polymerization is a polymerization process with different applications on the industrial and academic scale. It involves application of emulsifier to emulsify hydrophobic polymers through aqueous phase by amphipathic emulsifier, then generation of free radicals with either a water or oil soluble initiators. It characterized by reduction of bimolecular termination of free radicals due to segregation of free radicals among the discrete monomer-swollen polymer particles. The latex particles size ranged from 10 nm to 1000 nm in a diameter and are generally spherical. A typical of particle consist of 1–10,000 macromolecules, where macromolecule contains about 100–106 monomer units.",book:{id:"6141",slug:"recent-research-in-polymerization",title:"Polymerization",fullTitle:"Recent Research in Polymerization"},signatures:"Abdelaziz Nasr Moawed Bakr El-hoshoudy",authors:[{id:"201556",title:"Dr.",name:"Abdelaziz",middleName:"Nasr",surname:"El-Hoshoudy",slug:"abdelaziz-el-hoshoudy",fullName:"Abdelaziz El-Hoshoudy"}]},{id:"34877",title:"Advanced Techniques in TEM Specimen Preparation",slug:"advanced-techniques-in-tem-specimen-preparation",totalDownloads:4863,totalCrossrefCites:1,totalDimensionsCites:6,abstract:null,book:{id:"1508",slug:"the-transmission-electron-microscope",title:"The Transmission Electron Microscope",fullTitle:"The Transmission Electron Microscope"},signatures:"Jian Li",authors:[{id:"112508",title:"Dr.",name:"Jian",middleName:null,surname:"Li",slug:"jian-li",fullName:"Jian Li"}]},{id:"57574",title:"Polymerizable Materials for Diffractive Optical Elements Recording",slug:"polymerizable-materials-for-diffractive-optical-elements-recording",totalDownloads:1491,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The technologies based on holographic and photonic techniques related to the optical storage and optical processing of information are rapidly evolving. One of the key points of this evolution are the new recording materials able to perform under the most specific situations and applications. In this sense, the importance of the photopolymers is growing spectacularly. This is mainly due to their versatility in terms of composition and design together with other interesting properties such as self-processing capabilities. In this chapter, we introduce the diffractive optical elements (DOE) generation in these materials and some of the most important parameters involved in this process. The deep knowledge of the material is essential to model its behavior during and after the recording process and we present different techniques to characterize the recording materials. We also present a 3D theoretical diffusion model able to reproduce and predict the experimental behavior of the recording process of any kind of DOE onto the photopolymers. The theoretical results will be supported by experimental analysis using a hybrid optical-digital setup, which includes a liquid crystal on silicon display. Besides this analysis, we study a method to improve the conservation and characteristics of these materials, an index-matching system.",book:{id:"6141",slug:"recent-research-in-polymerization",title:"Polymerization",fullTitle:"Recent Research in Polymerization"},signatures:"Roberto Fernández Fernández, Víctor Navarro Fuster, Francisco J.\nMartínez Guardiola, Sergi Gallego Rico, Andrés Márquez Ruiz,\nCristian Neipp López, Inmaculada Pascual Villalobos and Augusto\nBeléndez Vázquez",authors:[{id:"46619",title:"Prof.",name:"Andrés",middleName:null,surname:"Márquez",slug:"andres-marquez",fullName:"Andrés Márquez"},{id:"191593",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martínez",slug:"francisco-javier-martinez",fullName:"Francisco Javier Martínez"},{id:"192588",title:"Prof.",name:"Sergi",middleName:null,surname:"Gallego",slug:"sergi-gallego",fullName:"Sergi Gallego"},{id:"192589",title:"Dr.",name:"Roberto",middleName:null,surname:"Fernández",slug:"roberto-fernandez",fullName:"Roberto Fernández"},{id:"192592",title:"Prof.",name:"Inmaculada",middleName:null,surname:"Pascual",slug:"inmaculada-pascual",fullName:"Inmaculada Pascual"},{id:"192593",title:"Prof.",name:"Augusto",middleName:null,surname:"Beléndez",slug:"augusto-belendez",fullName:"Augusto Beléndez"},{id:"222305",title:"Prof.",name:"Cristian",middleName:null,surname:"Neipp López",slug:"cristian-neipp-lopez",fullName:"Cristian Neipp López"},{id:"222306",title:"Dr.",name:"Victor",middleName:null,surname:"Navarro Fuster",slug:"victor-navarro-fuster",fullName:"Victor Navarro Fuster"}]},{id:"56625",title:"Glass and Glass-Ceramic Scaffolds: Manufacturing Methods and the Impact of Crystallization on In-Vitro Dissolution",slug:"glass-and-glass-ceramic-scaffolds-manufacturing-methods-and-the-impact-of-crystallization-on-in-vitr",totalDownloads:1662,totalCrossrefCites:0,totalDimensionsCites:3,abstract:"Synthetic biomaterials mimicking bone morphology have expanded at a tremendous rate. Among all, one stands out: bioactive glass. Bioactive glasses opened the door to a new genre of research into materials able to promote the regeneration of functioning bone tissue. However, despite their ability to promote cell attachment, proliferation and differentiation, these materials are mainly used as granules. However to promote loaded and sustained bone repair, a 3D structure, with open and highly interconnected pores, is desirable. 3D scaffolds are generally produced into green bodies via various techniques. The particles are then bound together via sintering. However, the highly disrupted silica network of the typical bioactive glasses composition leads to crystallization. Therefore, sintering of the most commonly used bioactive glass compositions (i.e. 45S5 and S53P4) leads to partly to fully crystallize bodies. The impact of crystallization on bioactivity still leads to large debate among the scientific community. Does crystallization reduce or suppress the materials bioactivity? Within this chapter, the processing routes for scaffold manufacture are presented, as well as an introduction to the thermal processing of glasses to form glass and glass-ceramics and the consequent effect on bioactivity is discussed.",book:{id:"5922",slug:"scaffolds-in-tissue-engineering-materials-technologies-and-clinical-applications",title:"Materials, Technologies and Clinical Applications",fullTitle:"Scaffolds in Tissue Engineering - Materials, Technologies and Clinical Applications"},signatures:"Amy Nommeots-Nomm and Jonathan Massera",authors:[{id:"205555",title:"Dr.",name:"Jonathan",middleName:null,surname:"Massera",slug:"jonathan-massera",fullName:"Jonathan Massera"},{id:"213341",title:"Dr.",name:"Amy",middleName:null,surname:"Nommeots-Nomm",slug:"amy-nommeots-nomm",fullName:"Amy Nommeots-Nomm"}]}],onlineFirstChaptersFilter:{topicId:"919",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:17,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"23",title:"Education and Human Development",doi:"10.5772/intechopen.100360",issn:null,scope:"\r\n\tEducation and Human Development is an interdisciplinary research area that aims to shed light on topics related to both learning and development. This Series is intended for researchers, practitioners, and students who are interested in understanding more about these fields and their applications.
",coverUrl:"https://cdn.intechopen.com/series/covers/23.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:0,editor:{id:"280770",title:"Dr.",name:"Katherine K.M.",middleName:null,surname:"Stavropoulos",slug:"katherine-k.m.-stavropoulos",fullName:"Katherine K.M. Stavropoulos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRdFuQAK/Profile_Picture_2022-05-24T09:03:48.jpg",biography:"Katherine Stavropoulos received her BA in Psychology from Trinity College, in Connecticut, USA. Dr. Stavropoulos received her Ph.D. in Experimental Psychology from the University of California, San Diego. She completed her postdoctoral work at the Yale Child Study Center with Dr. James McPartland. Dr. Stavropoulos’ doctoral dissertation explored neural correlates of reward anticipation to social versus nonsocial stimuli in children with and without autism spectrum disorders (ASD). She has been a faculty member at the University of California, Riverside in the School of Education since 2016. Her research focuses on translational studies to explore the reward system in ASD, as well as how anxiety contributes to social challenges in ASD. She also investigates how behavioral interventions affect neural activity, behavior, and school performance in children with ASD. She is also involved in the diagnosis of children with ASD and is a licensed clinical psychologist in California. She is the Assistant Director of the SEARCH Center at UCR and is a Faculty member in the Graduate Program in Neuroscience.",institutionString:null,institution:{name:"University of California, Riverside",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:2,paginationItems:[{id:"89",title:"Education",coverUrl:"https://cdn.intechopen.com/series_topics/covers/89.jpg",isOpenForSubmission:!1,editor:{id:"260066",title:"Associate Prof.",name:"Michail",middleName:null,surname:"Kalogiannakis",slug:"michail-kalogiannakis",fullName:"Michail Kalogiannakis",profilePictureURL:"https://mts.intechopen.com/storage/users/260066/images/system/260066.jpg",biography:"Michail Kalogiannakis is an Associate Professor of the Department of Preschool Education, University of Crete, and an Associate Tutor at School of Humanities at the Hellenic Open University. He graduated from the Physics Department of the University of Crete and continued his post-graduate studies at the University Paris 7-Denis Diderot (D.E.A. in Didactic of Physics), University Paris 5-René Descartes-Sorbonne (D.E.A. in Science Education) and received his Ph.D. degree at the University Paris 5-René Descartes-Sorbonne (PhD in Science Education). His research interests include science education in early childhood, science teaching and learning, e-learning, the use of ICT in science education, games simulations, and mobile learning. He has published over 120 articles in international conferences and journals and has served on the program committees of numerous international conferences.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorTwo:{id:"422488",title:"Dr.",name:"Maria",middleName:null,surname:"Ampartzaki",slug:"maria-ampartzaki",fullName:"Maria Ampartzaki",profilePictureURL:"https://mts.intechopen.com/storage/users/422488/images/system/422488.jpg",biography:"Dr Maria Ampartzaki is an Assistant Professor in Early Childhood Education in the Department of Preschool Education at the University of Crete. Her research interests include ICT in education, science education in the early years, inquiry-based and art-based learning, teachers’ professional development, action research, and the Pedagogy of Multiliteracies, among others. She has run and participated in several funded and non-funded projects on the teaching of Science, Social Sciences, and ICT in education. She also has the experience of participating in five Erasmus+ projects.",institutionString:"University of Crete",institution:{name:"University of Crete",institutionURL:null,country:{name:"Greece"}}},editorThree:null},{id:"90",title:"Human Development",coverUrl:"https://cdn.intechopen.com/series_topics/covers/90.jpg",isOpenForSubmission:!0,editor:{id:"191040",title:"Dr.",name:"Tal",middleName:null,surname:"Dotan Ben-Soussan",slug:"tal-dotan-ben-soussan",fullName:"Tal Dotan Ben-Soussan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBf1QAG/Profile_Picture_2022-03-18T07:56:11.jpg",biography:"Tal Dotan Ben-Soussan, Ph.D., is the director of the Research Institute for Neuroscience, Education and Didactics (RINED) – Paoletti Foundation. Ben-Soussan leads international studies on training and neuroplasticity from neurophysiological and psychobiological perspectives. As a neuroscientist and bio-psychologist, she has published numerous articles on neuroplasticity, movement and meditation. She acts as an editor and reviewer in several renowned journals and coordinates international conferences integrating theoretical, methodological and practical approaches on various topics, such as silence, logics and neuro-education. She lives in Assisi, Italy.",institutionString:"Research Institute for Neuroscience, Education and Didactics, Patrizio Paoletti Foundation",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:5,paginationItems:[{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:1,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11578",title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",hash:"3731c009f474c6ed4293f348ca7b27ac",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12086",title:"Cattle Diseases - Molecular and Biochemical Approach",coverURL:"https://cdn.intechopen.com/books/images_new/12086.jpg",hash:"afdbf57e32d996556a94528c06623cf3",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 5th 2022",isOpenForSubmission:!0,editors:[{id:"219081",title:"Dr.",name:"Abdulsamed",surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:45,paginationItems:[{id:"82135",title:"Carotenoids in Cassava (Manihot esculenta Crantz)",doi:"10.5772/intechopen.105210",signatures:"Lovina I. Udoh, Josephine U. Agogbua, Eberechi R. Keyagha and Itorobong I. Nkanga",slug:"carotenoids-in-cassava-manihot-esculenta-crantz",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"82112",title:"Comparative Senescence and Lifespan",doi:"10.5772/intechopen.105137",signatures:"Hassan M. Heshmati",slug:"comparative-senescence-and-lifespan",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hassan M.",surname:"Heshmati"}],book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Mechanisms and Management of Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81298",title:"Roles of Extracellular Vesicles in Cancer Metastasis",doi:"10.5772/intechopen.103798",signatures:"Eman Helmy Thabet",slug:"roles-of-extracellular-vesicles-in-cancer-metastasis",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}}]},subseriesFiltersForOFChapters:[{caption:"Plant Physiology",value:13,count:6,group:"subseries"},{caption:"Human Physiology",value:12,count:13,group:"subseries"},{caption:"Cell Physiology",value:11,count:26,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:4},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"91",type:"subseries",title:"Sustainable Economy and Fair Society",keywords:"Sustainable, Society, Economy, Digitalization, KPIs, Decision Making, Business, Digital Footprint",scope:"\r\n\tGlobally, the ecological footprint is growing at a faster rate than GDP. This phenomenon has been studied by scientists for many years. However, clear strategies and actions are needed now more than ever. Every day, humanity, from individuals to businesses (public and private) and governments, are called to change their mindset in order to pursue a virtuous combination for sustainable development. Reasoning in a sustainable way entails, first and foremost, managing the available resources efficiently and strategically, whether they are natural, financial, human or relational. In this way, value is generated by contributing to the growth, improvement and socio-economic development of the communities and of all the players that make up its value chain. In the coming decades, we will need to be able to transition from a society in which economic well-being and health are measured by the growth of production and material consumption, to a society in which we live better while consuming less. In this context, digitization has the potential to disrupt processes, with significant implications for the environment and sustainable development. There are numerous challenges associated with sustainability and digitization, the need to consider new business models capable of extracting value, data ownership and sharing and integration, as well as collaboration across the entire supply chain of a product. In order to generate value, effectively developing a complex system based on sustainability principles is a challenge that requires a deep commitment to both technological factors, such as data and platforms, and human dimensions, such as trust and collaboration. Regular study, research and implementation must be part of the road to sustainable solutions. Consequently, this topic will analyze growth models and techniques aimed at achieving intergenerational equity in terms of economic, social and environmental well-being. It will also cover various subjects, including risk assessment in the context of sustainable economy and a just society.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",hasOnlineFirst:!0,hasPublishedBooks:!1,annualVolume:11975,editor:{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo",profilePictureURL:"https://mts.intechopen.com/storage/users/181603/images/system/181603.jpg",biography:"Antonella Petrillo is a Professor at the Department of Engineering of the University of Naples “Parthenope”, Italy. She received her Ph.D. in Mechanical Engineering from the University of Cassino. Her research interests include multi-criteria decision analysis, industrial plant, logistics, manufacturing and safety. She serves as an Associate Editor for the International Journal of the Analytic Hierarchy Process. She is a member of AHP Academy and a member of several editorial boards. She has over 160 Scientific Publications in International Journals and Conferences and she is the author of 5 books on Innovation and Decision Making in Industrial Applications and Engineering.",institutionString:null,institution:{name:"Parthenope University of Naples",institutionURL:null,country:{name:"Italy"}}},editorTwo:null,editorThree:null,series:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null},editorialBoard:[{id:"179628",title:"Prof.",name:"Dima",middleName:null,surname:"Jamali",slug:"dima-jamali",fullName:"Dima Jamali",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSAIlQAO/Profile_Picture_2022-03-07T08:52:23.jpg",institutionString:null,institution:{name:"University of Sharjah",institutionURL:null,country:{name:"United Arab Emirates"}}},{id:"170206",title:"Prof.",name:"Dr. Orhan",middleName:null,surname:"Özçatalbaş",slug:"dr.-orhan-ozcatalbas",fullName:"Dr. Orhan Özçatalbaş",profilePictureURL:"https://mts.intechopen.com/storage/users/170206/images/system/170206.png",institutionString:null,institution:{name:"Akdeniz University",institutionURL:null,country:{name:"Turkey"}}},{id:"250347",title:"Associate Prof.",name:"Isaac",middleName:null,surname:"Oluwatayo",slug:"isaac-oluwatayo",fullName:"Isaac Oluwatayo",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVIVQA4/Profile_Picture_2022-03-17T13:25:32.jpg",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},{id:"141386",title:"Prof.",name:"Jesús",middleName:null,surname:"López-Rodríguez",slug:"jesus-lopez-rodriguez",fullName:"Jesús López-Rodríguez",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRBNIQA4/Profile_Picture_2022-03-21T08:24:16.jpg",institutionString:null,institution:{name:"University of A Coruña",institutionURL:null,country:{name:"Spain"}}},{id:"208657",title:"Dr.",name:"Mara",middleName:null,surname:"Del Baldo",slug:"mara-del-baldo",fullName:"Mara Del Baldo",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLMUQA4/Profile_Picture_2022-05-18T08:19:24.png",institutionString:"University of Urbino Carlo Bo",institution:null}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82005",title:"Non-Invasive Approach for Glucose Detection in Urine Quality using Its Image Analysis",doi:"10.5772/intechopen.104791",signatures:"Anton Yudhana, Liya Yusrina Sabila, Arsyad Cahya Subrata, Hendriana Helda Pratama and Muhammad Syahrul Akbar",slug:"non-invasive-approach-for-glucose-detection-in-urine-quality-using-its-image-analysis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:51,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80643",title:"EEG Authentication System Using Fuzzy Vault Scheme",doi:"10.5772/intechopen.102699",signatures:"Fatima M. Baqer and Salah Albermany",slug:"eeg-authentication-system-using-fuzzy-vault-scheme",totalDownloads:45,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80529",title:"Effective EEG Artifact Removal from EEG Signal",doi:"10.5772/intechopen.102698",signatures:"Vandana Roy",slug:"effective-eeg-artifact-removal-from-eeg-signal",totalDownloads:75,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80505",title:"Soft Tissue Image Reconstruction Using Diffuse Optical Tomography",doi:"10.5772/intechopen.102463",signatures:"Umamaheswari K, Shrichandran G.V. and Jebaderwin D.",slug:"soft-tissue-image-reconstruction-using-diffuse-optical-tomography",totalDownloads:54,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79881",title:"Control of Cytoskeletal Dynamics in Cancer through a Combination of Cytoskeletal Components",doi:"10.5772/intechopen.101624",signatures:"Ban Hussein Alwash, Rawan Asaad Jaber Al-Rubaye, Mustafa Mohammad Alaaraj and Anwar Yahya Ebrahim",slug:"control-of-cytoskeletal-dynamics-in-cancer-through-a-combination-of-cytoskeletal-components",totalDownloads:117,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79580",title:"Dotting the “i” of Interoperability in FAIR Cancer-Registry Data Sets",doi:"10.5772/intechopen.101330",signatures:"Nicholas Nicholson, Francesco Giusti, Luciana Neamtiu, Giorgia Randi, Tadeusz Dyba, Manola Bettio, Raquel Negrao Carvalho, Nadya Dimitrova, Manuela Flego and Carmen Martos",slug:"dotting-the-i-of-interoperability-in-fair-cancer-registry-data-sets",totalDownloads:114,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"79550",title:"Urologic Cancer Molecular Biology",doi:"10.5772/intechopen.101381",signatures:"Pavel Onofrei, Viorel Dragoș Radu, Alina-Alexandra Onofrei, Stoica Laura, Doinita Temelie-Olinici, Ana-Emanuela Botez, Vasile Bogdan Grecu and Elena Carmen Cotrutz",slug:"urologic-cancer-molecular-biology",totalDownloads:104,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8094",title:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8094.jpg",slug:"aflatoxin-b1-occurrence-detection-and-toxicological-effects",publishedDate:"June 3rd 2020",editedByType:"Edited by",bookSignature:"Xi-Dai Long",hash:"44f4ad52d8a8cbb22ef3d505d6b18027",volumeInSeries:14,fullTitle:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",editors:[{id:"202142",title:"Prof.",name:"Xi-Dai",middleName:null,surname:"Long",slug:"xi-dai-long",fullName:"Xi-Dai Long",profilePictureURL:"https://mts.intechopen.com/storage/users/202142/images/system/202142.jpeg",institutionString:"Youjiang Medical University for Nationalities",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8004",title:"Nitrogen Fixation",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8004.jpg",slug:"nitrogen-fixation",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Everlon Cid Rigobelo and Ademar Pereira Serra",hash:"02f39c8365ba155d1c520184c2f26976",volumeInSeries:11,fullTitle:"Nitrogen Fixation",editors:[{id:"39553",title:"Prof.",name:"Everlon",middleName:"Cid",surname:"Rigobelo",slug:"everlon-rigobelo",fullName:"Everlon Rigobelo",profilePictureURL:"https://mts.intechopen.com/storage/users/39553/images/system/39553.jpg",institutionString:"São Paulo State University",institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8028",title:"Flavonoids",subtitle:"A Coloring Model for Cheering up Life",coverURL:"https://cdn.intechopen.com/books/images_new/8028.jpg",slug:"flavonoids-a-coloring-model-for-cheering-up-life",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Farid A. Badria and Anthony Ananga",hash:"6c33178a5c7d2b276d2c6af4255def64",volumeInSeries:10,fullTitle:"Flavonoids - A Coloring Model for Cheering up Life",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8170",title:"Chemical Properties of Starch",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8170.jpg",slug:"chemical-properties-of-starch",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Martins Emeje",hash:"0aedfdb374631bb3a33870c4ed16559a",volumeInSeries:9,fullTitle:"Chemical Properties of Starch",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Emeje",slug:"martins-emeje",fullName:"Martins Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8019",title:"Alginates",subtitle:"Recent Uses of This Natural Polymer",coverURL:"https://cdn.intechopen.com/books/images_new/8019.jpg",slug:"alginates-recent-uses-of-this-natural-polymer",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Leonel Pereira",hash:"61ea5c1aef462684a3b2215631b7dbf2",volumeInSeries:7,fullTitle:"Alginates - Recent Uses of This Natural Polymer",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8504",title:"Pectins",subtitle:"Extraction, Purification, Characterization and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/8504.jpg",slug:"pectins-extraction-purification-characterization-and-applications",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Martin Masuelli",hash:"ff1acef627b277c575a10b3259dd331b",volumeInSeries:6,fullTitle:"Pectins - Extraction, Purification, Characterization and Applications",editors:[{id:"99994",title:"Dr.",name:"Martin",middleName:"Alberto",surname:"Masuelli",slug:"martin-masuelli",fullName:"Martin Masuelli",profilePictureURL:"https://mts.intechopen.com/storage/users/99994/images/system/99994.png",institutionString:"National University of San Luis",institution:{name:"National University of San Luis",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",institutionString:"Kogakuin University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:16,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:4,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 24th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:314,numberOfPublishedBooks:31,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/53203",hash:"",query:{},params:{id:"53203"},fullPath:"/chapters/53203",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()