Characteristic parameters of measured Nb/Py bilayers and relative critical magnetization values.
Abstract
Superconducting vortices are a well known class of vortices, each of them carrying a single magnetic flux quantum. In this chapter the authors present the results of low temperature Magnetic Force Microscopy experiments to investigate the nucleation and dynamics of superconducting vortices in magnetically coupled Superconductor/Ferromagnet (S/F) heterostructures made by Nb/Py. It is here shown that by controlling the thicknesses of both S and F layer, the formation of spontaneous vortex-antivortex pairs (V-AV) can be favored and their confinement and mobility can be tuned. The experimental results are compared with two theoretical models dealing with the spontaneous nucleation of V/AV pairs in the limits of S thickness respectively greater and smaller than the London penetration depth. It is shown that vortex nucleation and confinement is regulated by the intensity of the out-of-plane component of the magnetization with respect to a critical magnetization set by the thickness of both S and F layers. Additionally, external field cooling processes were used to probe in-field vortex nucleation and V-AV unbalancing, whereas the sweeping of an external magnetic field when below the superconducting critical temperature was used to force the vortex into motion, probing the vortex mobility/rigidity and the vortex avalanche events.
Keywords
- superconductivity
- ferromagnetism
- vortex‐antivortex
1. Introduction
Superconductivity has a great potential to play a significant role in the development of new clean energy technologies by minimizing the losses in electrical current transport. However, the widespread use of superconducting materials is still limited by a few critical parameters, such as critical current, critical magnetic field, and critical temperature and, therefore, the active research on new superconducting technologies is underway.
Conventional superconductors are well described in the framework of the Ginzburg‐Landau (G‐L) theory [1]. Within G‐L theory, the introduction of the G‐L parameter
Lattice defects, dopant inclusions or peculiar sample geometry, have been proposed in order to impose a pinning potential for the superconducting vortices [4]. An enhancement of the critical current has been reported by bulk processing of the superconductors to create pinning centers and by lithographic patterning of arrays of pinning centers. Magnetic pinning centers have also been widely used for enhancing vortex pinning properties since they locally suppress the superconducting order parameter (pair‐breaking effect of the local magnetic moment) and magnetically attract vortex lines. Several methods of introducing magnetic pinning centers have been employed from deposition of magnetic nanoparticles to lithographically defining magnetic nanotextures on the superconducting layer [5–30]. Magnetically coupled superconductor/ferromagnet thin film heterostructures in which the magnetic domains in the ferromagnet act as pinning centers have been of great interest due to ease of fabrication, scalability for future applications, and due to basic fundamental physics governing the superconductivity in these hybrid systems [31–52].
In the past decades a lot of effort has been focused on developing experimental techniques for studying vortex matter at the nanoscale. Since a collective behavior of vortex dynamics can be extracted, for example, from electronic and heat transport and magnetic measurements [53–61], the real challenge lies in the capability to investigate single vortex, lattice arrangements, and local mechanism of motion with a high spatial resolution. An overall view on the vortex lattice, and its structural characteristics, can be provided by small‐angle neutron scattering in the reciprocal space [62, 63], and by Bitter decoration [3, 64], time‐resolved magneto‐optic techniques [65–68], and holography electron microscopy [69] in real space. The first observation of isolated vortices was pioneered by Essman and Trauble [3] in 1967. In a low magnetic field, they used small magnetic particles to decorate the surfaces of different superconductors in order to get information on the arrangement of vortices in the vortex lattice. By using this technique, large areas hundreds of microns square of the sample surface can be investigated by taking a snapshot of the lattice. More recently, real space imaging of superconducting vortices has been obtained by using scanning probe microscopy and spectroscopy (SPM/S) techniques. Among all of them, scanning SQUID microscopy [70] and scanning Hall probe microscopy [71, 72], with a submicron spatial resolution, have been successfully used to study the geometries, dynamics, and interactions of vortices in different systems. On the other hand, scanning tunneling microscopy (STM), with a subnanometric resolution, is the only technique able to image individual vortex cores by spatially mapping the amplitude of the order parameter [73–75]. The STM method is sensitive to the electronic properties of the sample surface and thus requires clean and flat surfaces. Although it provides a unique opportunity to image vortices at high magnetic fields (due to sensitivity to the order parameter rather than the magnetic profiling), STM technique cannot distinguish between the polarity of the vortices. On the other hand, magnetic force microscopy (MFM) provides information about the vortex polarity and requires less stringent surface quality, albeit the method is constrained to low enough magnetic field as to distinguish the magnetic profiles of individual flux quantum [22, 23, 47–50, 76–79]. MFM measures the force between a magnetic tip and the local magnetic moment on the surface of the investigated sample. In vacuum, the MFM operates in the so‐called noncontact regime in which nonmagnetic short range tip‐sample interactions are undetected. Being directly sensitive to the strength and direction of the stray field, MFM provides information that is not easily available elsewhere.
Recently, low temperature magnetic force microscopy experiments (MFM) have been performed by the authors to observe “spontaneous” vortex‐antivortex pairs (V‐AV), appearing in the absence of an external magnetic field, in magnetically coupled superconductor/ferromagnet (S/F) heterostructures made by niobium and permalloy (Py, Ni80Fe20) [47–50]. A thin film of SiO2 separates S and F layers in order to prevent proximity effect [80]. Since the Curie temperature
2. Theoretical models
In this chapter, the MFM results will be discussed in quantitative comparison with two different theoretical models dealing with the two opposite limits of superconductor film thickness greater [51] and smaller [52] than the penetration depth,
On the other hand, in the opposite limit of
Spontaneous vortex formation will thus be energetically regulated by the threshold condition
Close to the superconducting critical temperature
3. S/F heterostructures
In this chapter, we focus on Nb/SiO2/Py heterostructures with 1 and 2 μm thick Py layers and Nb thickness in the range of 50–360 nm. In all cases, a 10 nm thin insulating SiO2 was placed between the S and F layers in order to have only a magnetic coupling between Nb and Py. The choice of the insulating material is not as crucial as the choice of its thickness. It should be thick enough to prevent electrical proximity effects, which are, in general, short‐range (Å to few nanometers) but not as much to reduce the magnetic coupling between F and S layers, which is a long‐range interaction. The experiments brought us to the conclusion that 10 nm of SiO2 is sufficient to reach such a goal. All the heterostructures were made by sputtering deposition as described in [47–50].
Nb films were characterized by both transport and magnetic measurements, showing a superconducting critical temperature of
Py is a ferromagnetic material where competing magnetic energies (magnetostatic, exchange, magneto‐elastic, domain wall, and anisotropy) determine the domain configurations. In thin films, periodic stripe‐like domains occur above a critical thickness of
In our experiments, the choice of Py as ferromagnetic material is thus due to the high control we can exert on
The magnetic properties of the Nb/Py hybrids were analyzed by means of a vibrating sample magnetometer insert of a Quantum Design PPMS and a cryogenic ultrahigh vacuum scanning force microscope equipped with a magnetic tip and operating in frequency modulation‐magnetic force microscopy (FM‐MFM) mode. Figure 3 illustrates the working principle of the FM‐MFM technique: the frequency shift
The tip coercivity
Typical magnetic hysteresis loop of Py‐1 µm and Py‐1 µm, in perpendicular (Figure 4a and b) and parallel (Figure 4c and d) configurations with respect to the film plane are reported in Figure 4.
By measuring the saturation fields
The MFM maps shown in the insets of Figure 4(a) and (b), respectively, on Nb/Py(1 μm) and Nb/Py(2 μm) samples, were taken at
In order to quantitatively compare the MFM results with the theoretical threshold conditions for vortex nucleation, the thickness
Nb (nm) | Py (μm) | ||||||
---|---|---|---|---|---|---|---|
50 | 1.0 | 490 ± 2% | 7 | 0.74 | – | – | 15.9 |
100 | 1.5 | 15.1 | 32.6 | – | |||
150 | 2.2 | 24.9 | 33.9 | – | |||
200 | 2.9 | 33.9 | 34.2 | – | |||
360 | 5.3 | 61.5 | 34.3 | – | |||
120 | 2.0 | 790 ± 4% | 12 | 1.8 | 11.9 | 26.1 | – |
200 | 2.9 | 21.1 | 25.2 | – |
In Table 1, the thickness of the superconducting films and the magnetic domain width are compared to the magnetic size of the vortex and the strength of the critical magnetizations is derived. For all the analyzed hybrids, the ratio
In Figure 5, we report the plot of the ratio
4. Superconducting vortex nucleation
In Figure 6(a) and (b), the MFM images of Nb(100 nm)/Py(1 um) and Nb(50 nm)/Py(1 um) below the superconducting critical temperature are shown. As expected, Nb(100 nm)/Py(1 µm) (Figure 6a) forms spontaneous vortices and antivortices in the center of the oppositely polarized stripes, with a vortex polarity collinear with the magnetization of the underlying stripe domain [50]. In a scan area of 3.8 µm × 3.8 µm, we observe a small vortex density, with unequal number of vortices and antivortices, with “up” polarity vortices dominating. To gain further insight into the imbalanced vortex–antivortex phenomenon, field cooling (FC) measurements in both positive and negative magnetic fields were performed. In general, a change in the relative density of vortices and antivortices is always expected after a field cooling process. Indeed, the effect of the external magnetic field on the magnetization vectors is to enhance the collinear magnetization components and compensate (partially or totally) the anticollinear ones. When the external magnetic field totally compensates the stray field of the ferromagnet, vortices will not nucleate on the top of them, as it happens in Figure 6(c). If the stripe stray field is only partially compensated, vortices might be still induced. However, their density will result lower with respect to the vortex family nucleated on stripes collinear to the external field.
Figure 6(c) shows a MFM image acquired after a FC in H = +6 Oe. Antivortices appear above the proper stripes whereas no vortices are present above oppositely polarized magnetic stripes. On the other hand, the map acquired after a FC in higher negative field H = -27 Oe (Figure 6d) still shows the presence of both V and AV, even though the density of vortices with the same polarity as the external applied field becomes higher. The absence of vortices after a field cooling in H = 6 G (Figure 6c) and the presence of antivortices after a field cooling in H = −27G (Figure 6d) suggest the local unbalancing of Py out‐of‐plane magnetization components. Indeed, while a positive field of 6 G is enough to compensate the “negative stripe,” preventing vortex formation, a negative field of 27 G has only a partial effect, still letting some antivortices to pierce the Nb film. This result points out a local residual out‐of‐plane magnetization of −16.5 G.
No clear evidence of spontaneous V‐AV formation was shown by Nb(50 nm)/Py(1 µm) but instabilities or jumps in the MFM image (marked with arrows in Figure 6b), and contrast modulation along the stripes were measured. In reference [50], it was shown that these jumps, which always appear in the direction of the fast‐scan axis, are due to the interaction of the vortex with the magnetic tip itself. Jumps due to the vortex motion are also visible in Figure 6(c) and (d) and their geometrical confinement inside the stripes is proof of the role of the Py out‐of‐plane component as a strong magnetic pinning source acting against the possibility for the vortices to move perpendicularly to the stripe domains, by crossing the domain wall barrier. The behavior below the superconducting critical temperature of the thickest superconductor samples, Nb(360 nm)/Py(1 µm), Nb(200 nm)/Py(1 µm), and Nb(150 nm)/Py(1 µm) is presented in Figure 7 [50].
The Nb diamagnetism causes the attenuation of the stripe contrast as the thickness of the superconducting layer grows. Keeping the tip‐sample separation fixed at
Finally, the formation of spontaneous V‐AV pairs due to thicker Py layer was demonstrated in Nb(200 nm)/Py(2 µm) (Figure 8a)and Nb(120 nm)/Py(2 µm) (Figure 8b). The experimental evidence of spontaneous V‐AV nucleation and its comparison with the model [51], to which these samples within the limit
In these samples we observe a high and almost uniform vortex density along the stripes as well as the tendency for spontaneous vortices and antivortices to be paired with each other. We correlate these experimental results to the stronger magnetic template, together with wider magnetic stripe domains, and the thickest superconducting layer. As compared to the 1 µm‐Py layer samples, the stripe conformation in 2 µm‐Py samples is more straight and regular, the magnetic signal coming out from the surface is stronger and the magnetic roughness along the single stripe is smaller, thus highlighting a much more uniform canting of the ferromagnet's magnetization. The frequency signal of the vortex compared to the stripe's magnetic background is 0.97 mHz in Nb(200 nm)/Py(2 µm), 0.3 mHz in Nb(120 nm)/Py(2 µm), and 0.4 mHz in Nb(100 nm)/Py(1 µm), indicating that, as expected, superconducting leaks occur in the thinnest samples.
We speculate that the decoupling of V‐AV pairs in Nb(100 nm)/Py(1 µm) may be affected by the tendency of the magnetic field lines coming out from a vortex to close inside the leak, instead of the paired antivortex. As well as by the presence of smaller magnetic stripe domains so that any inhomogeneity in the stripe width induces very inhomogeneous vortex density. In Figure 8(c), the low temperature MFM map of Nb(200 nm)/Py(2 µm) after a field cooling in H = −60 Oe is shown. The strength of the field is not enough to completely compensate the
5. Superconducting vortex dynamics
In Figure 9, the comparison between vortex motion in Nb(360 nm)/Py(1 µm) and Nb(200 nm)/Py(2 µm) under the sweeping of the magnetic field is reported. Figure 9(a)–(d) shows the behavior of vortices in Nb(360 nm)/Py(1 µm), after a field cooling in H = −21 Oe and by sweeping the field up to positive values. After an initial phase, where the vortex configuration appeared rigid, we noticed that few vortices start moving and, at H = +80 Oe (Figure 9a), a nonuniform spatial distribution of the vortex density takes place. As a consequence of jamming events or influenced by the intrinsic pinning, anomalous accumulations of vortices can occur. We speculate that the presence of few higher‐energy pinning centers acts as an obstacle against the possibility for other vortices to move along a stripe. By further increasing the external field pressure, a switching event happened at H = +122 Oe, that was captured in Figure 9(b), and an antivortex avalanche enters during the external magnetic field sweep. The regular vortex pattern present in the lower half of Figure 9(b) that was recorded before the avalanche is suddenly destroyed and a disordered flux distribution sets up in the upper half of the Figure 9(b). From this point, we kept the field constant and we imaged the vortex arrangement that appeared not to match the Py stripe pattern (Figure 9c). We found that the antivortex disorder (with respect to the underlying magnetic background) remains present while the external field is reduced to zero (Figure 9d). To check if the disordered vortex pattern was not due to any modification of the Py stripes, the sample was consequently warmed up above the superconducting critical temperature of the Nb, and the stripe domains proved to remain unchanged from the original configuration.
The scenario of the vortex dynamic is completely different in Nb(200 nm)/Py(2 µm), where spontaneous vortices appear below the superconducting critical temperature. In this case, there is no need to cool down the sample in a negative (positive) magnetic field and then sweep it to the opposite polarity, since both vortices and antivortices are already in the sample. The extremely high mobility of the spontaneous vortices was imaged by keeping the fast‐scan axis as parallel as possible to the stripes in order to follow the vortex motion. Figure 9(e)–(h) shows the MFM maps acquired while the field is sweeping respectively from −60 to −94 Oe, from −159 to −191 Oe, from −289 to −323 Oe, and from −483 to −516 Oe and, due to the continuous motion of the vortices under the tip apex, it was not possible to get a clear image of a single vortex. By sweeping the magnetic field down to -600 G, no occurrences of avalanches were recorded.
6. Magnetization measurements
Temperature‐dependent low‐field magnetization
After that, the FC curve was measured while cooling the sample down to 5 K, in the presence of the applied magnetic field. In the inset of Figure 10(a), we report both the ZFC and FC curves measured in applied magnetic field of 20 Oe perpendicular to the film plane for the sample Nb(200 nm)/Py (2 µm). The ZFC curve, in the main graph of Figure 10(a), shows the characteristic behavior of a superconducting
The magnetic response of the Nb layer at
7. Conclusions
In this work, we studied vortex‐antivortex formation in magnetically coupled Nb/Py bilayers, by varying both the superconducting and ferromagnetic thicknesses. By studying the magnetostatic interaction between S and F layers satisfying the constraint
In summary, we were able to estimate the value of ferromagnet's spontaneous out‐of‐plane magnetization
Acknowledgments
Work at Temple University was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE‐SC0004556. Work at Argonne National Laboratory was supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory (‘Argonne'). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE‐AC02‐06CH11357. We also acknowledge the support of the MIUR (Italian Ministry for Higher Education and Research) under the project “Rientro dei cervelli.”
References
- 1.
V. L Ginzburg and L. D. Landau, J. Exptl. Theoret. Phys. 20, 1064 (1950). - 2.
A.A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957). - 3.
U. Essmann and H. Trauble, Phys. Lett. 24, 526 (1967). - 4.
A. M. Campbell and J.E. Evetts, Critical Currents in Superconductors ‐ Monographs on Physics, Taylor & Francis Ltd., London (1972). - 5.
Y. Otani, B. Pannetier, J. P. Nozieres, and D. Givord, J. Magn. Magn. Mater. 126, 622 (1993). - 6.
M. Baert, V. V. Metlushko, R. Jonckheere, V. V. Moschalkov, and Y. Bruynseraede, Phys. Rev. Lett. 74, 3269 (1995). - 7.
J. I. Martin, M. Velez, J. Nogues, and I. K. Schuller, Phys. Rev. Lett. 79, 1929 (1997). - 8.
J. I. Martin, Y. Jaccard, A. Hoffman, J. Nogues, J. M. George, J. L. Vicent, and I. K. Schuller, J. Appl. Phys. 84, 411 (1998). - 9.
J. I. Martin, M. Velez, J. Nogues, A. Hoffman, Y. Jaccard, and I. K. Schuller, J. Magn. Magn. Mater. 177, 915 (1998). - 10.
J. I. Martin, M. Velez, A. Hoffman, I. K. Schuller, and J. L. Vicent, Phys. Rev. Lett. 83, 1022 (1999). - 11.
M. V. Milošević and F. M. Peeters, Phys. Rev. B 68, 094510 (2003). - 12.
D. B. Jan, J. Y. Coulter, M. E. Hawley, L. N. Bulaevskii, M. P. Maley, Q. X. Jia, B. B. Maranville, F. Hellman, and X. Q. Pan, Appl. Phys. Lett. 82, 778 (2003). - 13.
M. Lange, M. J. Van Bael, Y. Bruynseraede, and V. V. Moshchalkov, Phys. Rev. Lett. 90, 19 (2003). - 14.
M.V. Milošević and F. M. Peeters, Physica C 404, 281 (2004). - 15.
M.V. Milošević and F. M. Peeters, Phys. Rev. Lett. 93, 267006 (2004). - 16.
M. V. Milošević and F. M. Peeters, Phys. Rev. B 69, 104522 (2004). - 17.
M.V. Milošević and F. M. Peeters, Phys. Rev. Lett. 94, 227001 (2005). - 18.
A. V. Silhanek, W. Gillijns, M. V. Milošević, A. Volodin, V. V. Moshchalkov, and F. M. Peeters, Phys. Rev. B 76, 100502(R) (2007). - 19.
A. Angrisani Armenio, C. Bell, J. Aarts, and C. Attanasio, Phys. Rev. B 76, 054502 (2007). - 20.
T. G. Holesinger, L. Civale, B. Maiorov, D. M. Feldmann, J. Y. Coulter, D. J. Miller, V. A. Maroni, Z. Chen, D. C. Larbalestier, R. Feenstra, X. Li, Y. Huang, T. Kodenkandath, W. Zhang, M. W. Rupich, and A. P. Malozemoff, Adv. Mater. 20, 391 (2008). - 21.
T. Aytug, M. Paranthaman, K. J. Leonard, K. Kim, A. O. Ijaduola, Y. Zhang, E. Tuncer, J. R. Thompson, and D.K. Christen, J. Appl. Phys. 104, 043906 (2008). - 22.
T. Shapoval, V. Metlushko, M. Wolf, V. Neu, B. Holzapfel, and L. Schultz, Physica C 470, 867 (2010). - 23.
T. Shapoval, V. Metlushko, M. Wolf, B. Holzapfel, V. Neu, and L. Schultz, Phys. Rev. B 81, 092505 (2010). - 24.
A. V. Kapra, V. R. Misko, D. Y. Vodolazov, and F. M. Peeters, Supercond. Sci. Technol. 24, 024014 (2011). - 25.
D.H. Tran, W.B.K. Putri, C.H. Wie, B. Kang, N.H. Lee, W.N. Kang, J.Y. Lee, W.K. Seong, Thin Solid Films 526, 241 (2012). - 26.
O. Polat, M. Ertuŭgrul, J. R. Thompson, K. J. Leonard, J. W. Sinclair, M. P. Paranthaman, S. H. Wee, Y. L. Zuev, X. Xiong, V. Selvamanickam, D. K. Christen, and T. Aytuŭg, Supercond. Sci. Technol. 25, 025018 (2012). - 27.
V. Selvamanickam, Y. Chen, Y. Zhang, A. Guevara, T. Shi, Y. Yao, G. Majkic, C. Lei, E. Galtsyan, and D. J. Miller, Supercond. Sci. Technol. 25, 045012 (2012). - 28.
C.F. Tsai, J.H. Lee, and H. Wang, Supercond. Sci. Technol. 25, 075016 (2012). - 29.
V. Selvamanickam, Y. Chen, T. Shi, Y. Liu, N. D. Khatri, J. Liu,Y. Yao, X. Xiong, C. Lei, S. Soloveichik, E. Galstyan, and G. Majkic, Supercond. Sci. Technol. 26, 035006 (2013). - 30.
A.V. Khoryushin, P. B. Mozhaev, J. E. Mozhaeva, N. H. Andersen, J.C. Grivel, J. B. Hansen, and C. S. Jacobsen, Physica C 485, 39 (2013). - 31.
L. N. Bulaevskii, and E. M. Chudnovsky, M. P. Maley, Appl. Phys. Lett. 76, 18 (2000). - 32.
M. Lange, M. J. Van Bael, V. V. Moshchalkov, and Y. Bruynseraede, Appl. Phys. Lett. 81, 322 (2002). - 33.
S. Erdin, I. F. Lyuksyutov, V. L. Pokrovsky, and V. M. Vinokur, Phys. Rev. Lett. 88, 1 (2002). - 34.
I. F. Lyuksyutov and V. L. Pokrovsky, Adv. Phys. 54, 1 (2005). - 35.
M.V. Milošević, G.R. Berdiyorov, and F. M. Peeters, Phys. Rev. Lett. 95, 147004 (2005). - 36.
W. Gillijns, A. Yu. Aladyshkin, A. V. Silhanek, and V. V. Moshchalkov, Phys. Rev. B 76, 060503(R) (2007). - 37.
A. Y. Aladyshkin, A. V. Silhanek, W. Gillijns, and V. V. Moshchalkov, Supercond. Sci. Technol. 22, 053001 (2009). - 38.
G. Karapetrov, M. V. Milošević, M. Iavarone, J. Fedor, A. Belkin, V. Novosad, and F. M. Peeters, Phys. Rev. B 80, 180506(R) (2009). - 39.
G. Carapella, P. Sabatino, and G. Costabile, Phys. Rev. B 81, 054503 (2010). - 40.
H. Yamazaki, N. Shannon, and H. Takagi, Phys. Rev. B 81, 094503 (2010). - 41.
L. Y. Zhu, M. Z. Cieplak, and C. L. Chien, Phys. Rev. B 82, 060503(R) (2010). - 42.
V. Vlasko‐Vlasov, U. Welp, W. Kwok, D. Rosenmann, H. Claus, A. A. Buzdin, and A. Melnikov, Phys. Rev. B 82, 100502(R) (2010). - 43.
A. Yu. Aladyshkin, A. S. Mel'nikov, I. M. Nefedov, D. A. Savinov, M. A. Silaev, and I. A. Shereshevskii, Phys. Rev B 85, 184528 (2012). - 44.
V. Vlasko‐Vlasov, A. Buzdin, A. Melnikov, U. Welp, D. Rosenmann, L. Uspenskaya, V. Fratello, and W. Kwok, Phys. Rev. B 85, 064505 (2012). - 45.
M. Z. Cieplak, Z. Adamus, M. Ko’nczykowski, L. Y. Zhu, X. M. Cheng, and C. L. Chien, Phys. Rev. B 87, 014519 (2013). - 46.
M. Iavarone, S. A. Moore, J. Fedor, S. T. Ciocys, G. Karapetrov, J. Pearson, V. Novosad, and S. D. Bader, Nat. Comm. 5, 4766 (2014). - 47.
M. Iavarone, A. Scarfato, F. Bobba, M. Longobardi, G. Karapetrov, V. Novosad, V. Yefremenko, F. Giubileo, and A. M. Cucolo, Phys. Rev B 84, 024506 (2011). - 48.
M. Iavarone, A. Scarfato, F. Bobba, M. Longobardi, S. A. Moore, G. Karapetrov, V. Yefremenko, V. Novosad, and A. M. Cucolo, IEEE Trans. Magn. 48, 3275 (2012). - 49.
A. M. Cucolo, A. Scarfato, M. Iavarone, M. Longobardi, F. Bobba, G. Karapetrov, V. Novosad, and V. Yefremenko, J. Supercond. Nov. Magn. 25, 2167 (2012). - 50.
F. Bobba, C. Di Giorgio, A. Scarfato, M. Longobardi, M. Iavarone, S. A. Moore, G. Karapetrov, V. Novosad, V. Yefremenko, and A. M. Cucolo, Phys. Rev. B 89, 214502 (2014). - 51.
R. Laiho, E. Lähderanta, E.B. Sonin, and K.B. Traito, Phys. Rev. B 67, 144522 (2003). - 52.
G.M. Genkin, V.V. Skuzovaktin, I.D. Tokman, J. Magn. Magn. Mater. 130, 51 (1993). - 53.
J. J. Krebs, B. T. Jonker, and G. A. Prinz, J. Appl. Phys. 61, 3744 (1987). - 54.
A. Berger and M. R. Pufall, Appl. Phys. Lett. 71, 965 (1997). - 55.
L. Louail, K. Ounadjela, and R. Stamps, J. Magn. Magn. Mater. 167, L189 (1997). - 56.
W.S. Kim, W. Andra, and W. Kleeman, Phys. Rev. B 58, 6346 (1998). - 57.
A. Berger and M. R. Pufall, J. Appl. Phys. 85, 4583 (1999). - 58.
K. Ha and R. C. O'Handley, J. Appl. Phys. 87, 5944 (2000). - 59.
G. Grimaldi, A. Leo, A. Nigro, S. Pace, and R. P. Huebener, Phys. Rev. B 80, 144521 (2009). - 60.
G. Grimaldi, A. Leo, A. Nigro, A. V. Silhanek, N. Verellen, V. V. Moshchalkov, M.V. Milošević, A. Casaburi, R. Cristiano, and S. Pace, Appl. Phys. Lett. 100, 202601 (2012). - 61.
G. Grimaldi, A. Leo, P. Sabatino, G. Carapella, A. Nigro, S. Pace, V. V. Moshchalkov, and A. V. Silhanek, Phys. Rev. B 92, 024513 (2015). - 62.
A. Huxley, Springer Series in Solid-State Sciences Volume: 132 Pages: 301–320 Published:2002 Workshop on Vortices in Unconventional Superconductors and SuperFluids Location: Dresden, Germany, Date: Feb 28 – Mar 03, 2000. - 63.
S. Mühlbauer, C. Pfleiderer, P. Böni, M. Laver, E. M. Forgan, D. Fort, U. Keiderling, and G. Behr, Phys. Rev. Lett. 102, 136408 (2009). - 64.
P. L. Gammel, D. J. Bishop, G. J. Dolan, J. R. Kwo, C. A. Murray, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. Lett. 59, 2592 (1987). - 65.
P. Vavassori, Appl. Phys. Lett. 77, 1605 (2000). - 66.
G. Gubbiotti, G. Carlotti, M. G. Pini, P. Politi, A. Rettori, P. Vavassori, M. Ciria, and R. C. O'Handley, Phys. Rev. B 65, 214420 (2002). - 67.
P. E. Goa, H. Hauglin, A. A. F. Olsen, D. Shantsev, and T. H. Johansen, Appl. Phys. Lett. 82, 1 (2003). - 68.
H. Stillrich, C. Menk, R. Fromter, and H. P. Oepen, J. Appl. Phys. 105, 07C308 (2009). - 69.
A. Tonomura, J. Supercond. 7, 2 (1994). - 70.
S. Okayasu, IEEE T. Appl. Supercond. 15, 2 (2005). - 71.
A. Oral, S. J. Bending, R. G. Humphreys, and M. Henini, J. Low Temp. Phys. 105, 1135 (1996). - 72.
R. B. G. Kramer, A.V. Silhanek, W. Gillijns, and V.V. Moshchalkov, Phys. Rev. X 1, 021004 (2011). - 73.
A. Kohen, T. Cren, Th. Proslier, Y. Noat, W. Sacks, D. Roditchev, F. Giubileo, F. Bobba, A. M. Cucolo, N. Zhigadlo, S. M. Kazakov, and J. Karpinski, Appl. Phys. Lett. 86, 212503 (2005). - 74.
G. Karapetrov, J. Fedor, M. Iavarone, M. T. Marshall, and R. Divan, Appl. Phys. Lett. 87, 162515 (2005). - 75.
H. Suderow, I Guillamón, J G Rodrigo, and S Vieira, Supercond. Sci. Technol. 27, 063001 (2014). - 76.
A.P. Volodin and M.V. Marchevsky, Ultramiroscopy 42–44, 757 (1992). - 77.
A. Volodin, K. Temst, C. Van Haesendonck, and Y. Bruynseraede, Appl. Phys. Lett. 73, 8 (1998). - 78.
E. W. J. Straver, J. E. Hoffman, O. M. Auslaender, D. Rugar, and K. A. Moler, Appl. Phys. Lett. 93, 172514 (2008). - 79.
O. M. Auslaender, L. Luan, E. W. J. Straver, J. E. Hoffman, N. C. Koshnick, E. Zeldov, D. A. Bonn, R. Liang, W. N. Hardy, and K. A. Moler, Nat. Phys. 5, 35 (2009). - 80.
A.I. Buzdin, Rev. Mod. Phys. 77, 935 (2005). - 81.
A.I. Gubin, K.S. Il'in, S.A. Vitusevich, M. Siegel, and N. Klein, Phys. Rev. B 72, 064503 (2005). - 82.
B.V. Petukhov, and V.R. Chechetkin, Zh. Eksp. Teor. Fiz. 65, 1653 (1973) [Sov. Phys. JETP]. - 83.
L.P. Gorkov, Zh. Eksp. Teor. Fiz. 36, 1918 (1959) [Sov. Phys. JEPT 9, 1364 (1959)]. - 84.
P.H. Kes and C.C. Tsuei, Phys. Rev. B 28, 5126 (1983). - 85.
J. B. Youssef, N. Vukadinovic, D. Billet, and M. Labrune, Phys. Rev. B 69, 174402 (2004). - 86.
Y. Murayama, J. Phys. Soc. Jpn. 21, 2253 (1966). - 87.
S. Chikazumi, Physics of Ferromagnetism, Oxford University Press Inc., New York (1997). - 88.
N. Amos, R. Fernandez, R. Ikkawi, B. Lee, A. Lavrenov, A. Krichevsky, D. Litvinov, and S. Khizroev, J. Appl. Phys. 103, 07E732 (2008). - 89.
D. Mancusi, C. Di Giorgio, F. Bobba, A. Scarfato, A. M. Cucolo, M. Iavarone, S. A. Moore, G. Karapetrov, V. Novosad, and V. Yefremenko, Supercond. Sci. Technol. 27 (2014) 125002. - 90.
A. Belkin, V. Novosad, M. Iavarone, J. Fedor, J.E. Pearson, A. Petrean‐Troncalli, G. Karapetrov, Appl. Phys. Lett. 93, 0725110 (2008). - 91.
A. Belkin, V. Novosad, M. Iavarone, R. Divan, J. Hiller, T. Proslier, J.E. Pearson, G. Karapetrov, Appl. Phys. Lett. 96, 092513 (2010).