List of reported
Abstract
The thermoelectric material ZnSb has been studied intensively in recent years and has shown promising features. The other zinc‐antimonide compound, Zn4Sb3 has remarkable low thermal conductivity, but it is accompanied with phase transitions at moderate temperature and has inherent stability problems. Compared to that, ZnSb is relatively phase stable and has a relative high charge carrier mobility and Seebeck coefficient, thus yielding a decent power factor. Meanwhile, its thermal conductivity can be reduced by means of nanostructuring, thus giving a good figure of merit at moderate temperatures, 400–600 K. Many researchers have dedicated their efforts to study and improve ZnSb properties, and the figure of merit has been reported to be above one. Still, ZnSb as a thermoelectric material has features and behaviours that are not well‐understood. The behaviour and properties of its intrinsic defects are not understood, but have interested researchers in recent years. This chapter intends to offer a comprehensive review on ZnSb to the readers. By combining own experiences from research on thermoelectric materials, the authors address the prospect for improving the thermoelectric properties of ZnSb and the concerns of transferring lab results to manufacturing.
Keywords
- zinc antimonide
- impurity band conduction
- intrinsic defects
- vacancies
- p‐type
1. Introduction
The thermoelectric effect in ZnSb has been known for almost two centuries. The first documented encounter can be traced back to the original work of Seebeck on thermoelectric current generation on different materials and alloy pairs in 1819–1827 [1, 2]. Quantitative measurements of the Seebeck voltage of ZnSb have been carried out by Becquerel in 1866 [3], and thermoelectric generators using Zn‐Sb alloy were fabricated for practical purposes since 1870 [4]. From the early twentieth century, many attempted to solve the crystal structure, but were barely successful [5–7], until Almin, finally, in 1948 determined the crystal structure of ZnSb together with CdSb [8]. A large interest in ZnSb followed and was benefitted by the progress on semiconductors since the 1950s. Figure 1 shows a thermoelectric device made by ZnSb in the 1950s. It shows a solar thermoelectric generator prototype built by

Figure 1.
Solar thermoelectric generator. (Reprinted from [
Table 1 lists some reported figure of merit
Report year | At temperature (K) | Sample | Reference | |
---|---|---|---|---|
(1961) | 0.6 | 460 | Single crystal | [13] |
(1964) | 0.42 | 300 | Single crystal | [14] |
(1964) | 0.3 | 300 | Polycrystalline | [14] |
(1966) | 0.2 | 273 | Single crystal | [15] |
(2010) | 0.07 | 373 | Polycrystalline | [16] |
(2010) | 0.8 | 573 | Polycrystalline | [17] |
(2012) | 0.9 | 659 | Polycrystalline with Cu | [18] |
(2013) | 1.15 | 670 | Polycrystalline with Ag | [19] |
(2014) | 0.9 | 635 | Polycrystalline with Ag | [20] |
(2014) | 0.8 | 600 | Polycrystalline with Cu | [20] |
(2014) | 1 | 630 | Polycrystalline with Sn+Cd | [21] |
(2014) | 1.5 | 673 | Polycrystalline with Cu | [22] |
(2015) | 0.8 | 700 | Polycrystalline with Zn vacancies | [23] |
(2015) | 0.55 | 525 | Polycrystalline | [24] |
Table 1.
2. Crystal structure of ZnSb
2.1. Crystallographic structure and covalent bonds
The crystallographic structure of ZnSb has been determined by Almin [8]. According to this determination, ZnSb has orthorhombic crystal structure, oP16 and belongs to the space group Pbca no. 61. The structure of ZnSb has been studied and confirmed by different techniques, albeit gave slightly different interatomic distances [25–28]. Figure 2 shows the crystal structure of ZnSb that was generated by the structural data from Mozharivskyj [27].

Figure 2.
Crystal structure, bonding and coordination environment of ZnSb. (Reprinted with author's permission from [
The crystal structure can be viewed as a deformed zinc blende structure. The distorted edge‐sharing ZnSb4 tetrahedra generate a peculiar five‐fold coordination of each atom, as seen in Figure 2a: one of the same kind and four of the other kind. In the context of bonding and its relation to conduction, all atoms in the crystal structure are tied together in a network—a point, we will return to below.
Another way to systematize the structure is to group the atoms together in planar rhomboid rings of Zn2Sb2 that have short Zn‐Zn bonds connected to two different longer Zn‐Sb bonds, as seen in Figure 2a. These motifs are also tied together in a network that completes the crystal structure. The crystal structure can be recognized in atomic scale by scanning transmission electron microscopy (STEM), as shown in Figure 2b.
The interatomic distances for each bond are also annotated in Figure 2a. The bonds in ZnSb have been categorized in three groups, shown in Figure 2c and d: the bonds
Valence electrons in ZnSb have a certain distribution. Figure 3 shows the theoretical

Figure 3.
Deformation charge density distribution in electron per Å2 in the plane of a Zn2Sb2‐ring calculated by GGA–PBE. The colour map indicates the isocharge density lines: red indicates accumulation of electrons, whereas blue shows loss of electrons in the relaxed structure of the compound compared with the number of electrons in the free atoms [
The results show that a Zn atom transfers a small average fraction of 0.26 electrons to Sb along Zn‐Sb bond [37], which is expected due to the difference in Pauling electronegativity between Zn (1.65 eV) and Sb (1.96 eV). Essentially, the same transfer was found in the calculations of Benson
2.2. Electronic structure
2.2.1. Band calculations
The band structure of ZnSb has been calculated by

Figure 4.
Band diagram of ZnSb showing energy states along high symmetry directions in
The zero energy position corresponds to the largest energy of filled states. Thus, the states below 0 correspond to the valence band, while those above correspond to the conduction band. The value of the band gap is severely underestimated by the computational approximations. By using more accurate methods but at the expense of increased computation time, such as HSE‐hybrid functional (Heyd‐Scuseria‐Ernzerhof), the band gap was calculated to be around 0.5 eV [37]. This value is close to the experimental value for single crystal ZnSb. On the other hand, the shape of the bands may be less affected by computational approximations. The band diagram in Figure 4 shares some of the features found in most of the calculations listed. The band gap is indirect with the maximum of the valence band along the symmetry line Γ‐Χ and the minimum of the conduction band along Γ‐Z. One can see that the conduction band contains more satellites within 0.5 eV of the minimum than pockets of the maximum in the valence band. Thus, one can expect ZnSb would have acted better as an
It is worth mentioning the band diagram that was calculated by Yamada in 1978 by using pseudopotentials [43]. The maximum of the valence band was found to be on the line from Γ‐Χ at
2.2.2. Experimental band gap
The band gap has been measured by different methods. Values of 0.5–0.53 eV for single crystal ZnSb, which were measured by optical absorption, have been reported [44, 45]. These values are essentially identical when considering the uncertainties, and 0.5 eV has been considered to be a reference value for single crystal ZnSb. Many research have also determined the thermodynamic band gap from the temperature dependence of the charge carrier concentration in the intrinsic regime. The charge carrier concentration is determined from the Hall coefficient,
For polycrystalline ZnSb, the band gap is often reported to be around 0.31–0.35 eV [13, 48], which is smaller than that of single crystal material. It is justified to discuss whether the band gap really is different, or if it is due to that the idealizations of the measurement methods do not hold for polycrystalline material. One of the methods that has been used for estimating the band gap is to measure the temperature dependence of the Seebeck coefficient. By determining the temperature,
We should also keep in mind that heavily doping may influence the density of states near the band edges, forming tails that are extending into the band gap. The defect states in the band gap also influence the
2.2.3. Effective mass and density of states
The idealized single parabolic band (SPB) model is convenient for analysing experimental results. The model has been successful for finding the optimum doping concentration of many thermoelectric materials [55–57]. When applied to Seebeck measurements on ZnSb with different doping concentrations, it has been observed that Pisarenko plot (the Seebeck coefficient vs. the charge carrier concentration) does not follow the SPB model with a single density of states effective mass
3. Electrical properties and doping effect
3.1. Electrical properties and scattering mechanisms
Table 2 summarizes the band gap, the charge carrier concentration and other electrical and thermal properties reported for ZnSb in the literature.
Reference | Report year | Structure | Dopant | σ (S) | ρ (Ω·cm) | µ (cm2/(V·s)) | α (µV/K) | κ (W/(m·K)) | ||
---|---|---|---|---|---|---|---|---|---|---|
[60] | (1947) | – | – | – | 0.0072 | – | – | 250 | – | 1.4 |
[9] | (1954) | – | 2 at.% Sn + 0.1 at.% Ag | – | 0.0019 | – | – | 210 | – | – |
[61] | (1960) | Single crystal | – | 2.8 | 3.57 | 350 | 5.1 × 1016 | 440 | 0.52–0.57 | – |
[46] | (1961) | Single crystal | – | 3 | 0.33 | 480 | 3 × 1016 | 550 | 0.49 | – |
[62] | (1963) | Single crystal | – | 1.6 | 0.63 | 248 | 4.1 × 1016 | – | – | – |
[62] | (1963) | Single crystal | – | 5.6 | 0.18 | 1150 | 3.1 × 1016 | – | – | – |
[45] | (1964) | Single crystal | – | 6.4 | 0.16 | 10 | 4 × 1018 | 110 | 0.53 | 1.1 |
[14] | (1964) | Single crystal | – | 19.7 | 0.05 | 384 | 3.2 × 1017 | 490 | – | – |
[14] | (1964) | Polycrystalline | – | 20 | 0.05 | 95.2 | 1.3 × 1018 | 375 | – | 1.3 |
[14] | (1964) | Polycrystalline | 0.1 at.% Ga | 2.04 | 0.49 | 210 | 6 × 1016 | 675 | – | – |
[14] | (1964) | Polycrystalline | 0.1 at.% Cu | 110 | – | 680 | 1.1 × 1018 | – | – | – |
[63] | (1964) | Single crystal | – | – | – | 3 × 1017 | – | 0.48 | – | |
[15] | (1966) | Single crystal | 825 | 0.001 | 800 | 2 × 1016 | 182 | – | 3.7 | |
[15] | (1966) | Single crystal | Cu | 42 | 0.02 | 660 | 4 × 1017 | – | – | – |
[15] | (1966) | Single crystal | Cu | 898 | 0.001 | 510 | 1 × 1019 | – | – | – |
[47] | (1967) | Single crystal | Au | 26.9 | 0.04 | 233 | 4.2 × 1017 | 404 | 0.47–0.65 | – |
[47] | (1967) | Single crystal | In | 37.5 | 0.03 | 326 | 7.7 × 1017 | 288 | 0.47–0.65 | – |
[47] | (1967) | Single crystal | Te | 51 | 0.02 | 379 | 8.3 × 1017 | 400 | 0.47–0.65 | – |
[16] | (2010) | Polycrystalline | 2 wt.% Ag | – | 0.01 | – | – | 185 | – | 2.3 |
[17] | (2010) | Polycrystalline | 28.2–32.1 | – | – | – | 400–500 | – | 1.41 | |
[19] | (2013) | Polycrystalline | 0.002 at.% Ag | – | 0.0016 | 111 | 2.6 × 1019 | 181 | – | 1.5 |
[20] | (2014) | Polycrystalline | Sn | 180 | – | – | 4.9 × 1018 | 250 | – | 1.8 |
[64] | (2014) | Polycrystalline | Cu | 640 | – | – | 2.5 × 1019 | 134 | – | – |
[21] | (2014) | Polycrystalline | 0.15 at.% Cu | 935 | – | – | 2.4 × 1019 | 142 | – | – |
[23] | (2015) | Polycrystalline | 3 at.% VZn | 800 | 0.0012 | 66 | 7.9 × 1017 | 275 | 0.29 | 1.75 |
Table 2.
Summary of electrical properties of ZnSb.
Given the crystal structure, single crystal ZnSb exhibits anisotropic conduction, which is strongly dependent on the anisotropic effective mass [58]. Böttger
There is much literature devoted to scattering mechanisms in semiconductors [65], while there are fewer reports dealing with that topic specifically for ZnSb. It is expected that ZnSb has similar behaviour to those semiconductors which have been much studied and follows similar trends. ZnSb appears to have favourably small polarity due to small electronegativity difference between Zn and Sb. This would in turn lead to a negligible polar optical phonon scattering compared to III–V and II–VI compounds where polar optical phonon scattering may be dominant. Roughly, transport in ZnSb is dominated by impurity scattering at low temperature, while at higher temperature, when lattice vibrations are stronger, longitudinal acoustic phonon scattering dominates (deformation potential scattering). The hole mobility varies with temperature as

Figure 5.
(a) Hall mobility along the
Not only the intentional dopants, but also defects, that are ionized or neutralized, screened or unscreened, contribute to scattering. Likely scattering centres are Zn vacancies, interstitials, internal strain, grain boundaries and dislocations. Figure 5b shows the resistivity for an unprocessed ZnSb ingot that was obtained directly from solidification and hot‐pressed ZnSb pellets with different dopant concentrations. The temperature coefficient,
3.2. Doping effects
The most direct purpose of doping is to vary the charge carrier concentration. A broad range of dopant elements has been reported for ZnSb. The selection of dopant is often rationalized based on the same valence electron counting scheme that is applied to the elemental group IV, III–V or II–VI tetrahedrally bonded semiconductors. These considerations are applied for acceptors, while donors are challenging. One will have acceptors by replacing group I elements for Zn or group IV elements for Sb. It is expected that donors can be substitutes for group III elements on Zn sites and group VI elements on Sb sites. In all cases, there may be an issue with doping efficiency, i.e. not all the added dopant atoms will be electrically active. It is common and qualitatively well‐understood for other semiconductors that this inefficiency involves segregation (solid solubility limit), clustering of dopant atoms and/or agglomeration of complexes of dopant atoms and point defects. A theoretical calculation predicts that the optimum hole concentration for the thermoelectric efficiency of ZnSb is around 2 × 1019 cm-3 [53], which is achievable in
3.2.1. Acceptors
3.2.1.1. IZn—acceptors as elements of group I
CuZn, AuZn, AgZn all yield
3.2.1.2. IVSb—acceptors as the elements of group IV
Hole concentrations around (4–14) × 1018 cm-3 were obtained in materials with a content of (0.06–3) at.% Sn [53, 68]. The hole concentration variations with Sn doping concentrations where apparently opposite for these two studies. The highest hole concentration of 14 × 1018 cm-3 was obtained for content 0.1 at.% Sn [68] and yielded the highest mobility. It was suggested that two different doping mechanisms are effective in different temperature ranges involving different intrinsic defects, Sn on different lattice sites and their variation with temperature [68].
3.2.1.3. IZnIVSb—co‐doping
Hole concentrations of (2–2.5) × 1019 cm-3 have been reported by co‐doping of group I (0.15 at.% Cu or Ag)/IV (0.6 at.% Pb, Sn, or Ge)/Cd [20, 21]. The measured transport coefficients at different regions indicate two types of impurity acceptor: one embedded into Zn sites, and another into Sb sites. Here, Cd is not expected to act as an acceptor, but for increasing the phonon scattering and thereby reducing the thermal conductivity. A similar intended function has been applied by adding P to increase alloy phonon scattering in the Cu doped ZnSb [18, 69].
3.2.2. Donors
3.2.2.1. IIIZn—donors as elements of group III
Group III elements have been used as donors to yield
3.2.2.2. VISb—donors as elements of group VI
Some success with Te doping has been reported. Ueda
3.2.2.3. n‐Type to p‐type transition
A temporary
4. Zn vacancies and intrinsic defects
The theoretical intrinsic charge carrier concentration of perfect ZnSb at room temperature is approximately 2 × 1014 cm-3 given by

Figure 6.
Schematic drawing of occupancy of localized states associated with the Zn vacancy in ZnSb. (Reprinted with author's permission from [
The vacancy can in principle have any charge states, but only -2, -1 and 0 seem readily accessible by doping and temperature variation. The formation energy for VZn- in this configuration was calculated to be 0.32 eV. The net hole concentration in ZnSb without any doping was then calculated from the requirement of charge neutrality and assuming equilibrium number of vacancies in different charge states (-1 and -2 dominated). The net hole concentration in this configuration was calculated to be 8.8 × 1017 cm-3 at room temperature, which is in the range of the experimental Hall concentrations measured by Böttger
There have been many reports on changes in charge carrier concentration after heat treatments, both for single crystal and polycrystalline ZnSb. Many observed a slow recovery to the initial values of the charge carrier concentration [15, 20, 44, 45, 47, 61, 77]. Andronik
Recently, we have studied evaporation of Zn by thermogravimetry and Zn vacancy created during vaporization [29]. The net hole concentration was measured to be about 6 × 1018 cm-3, corresponding to a vacancy concentration of about 0.03 at.%. Schematically, two processes in series were considered as:
Reaction (1) occurs when the VZn was created but within the dilute limit, while reaction (2) applies to a situation where the Zn vacancy concentration is beyond the solubility limit and ZnSb decomposes into Sb phase and Zn vapour.
5. Impurity band conduction
In an idealized semiconductor, which is well‐approximated by pure Si crystals [78], the charge carrier concentration shows the so‐called freeze out at low (cryogenic) temperatures: the dopant atoms are not ionized and the charge carrier concentration goes towards zero, characterized by an infinite Hall coefficient in Hall measurements. However, the Hall coefficient in undoped ZnSb has shown a turning point at low temperatures, typically below 50 K, as seen in Figure 7, and then a decrease with further cooling, which is explained by impurity band conduction [79]. Here, the term impurity band is most likely tied to defects, but observed phenomena are similar to what can be observed for high doping concentration in semiconductors. Impurity band conduction has been reported in many materials [80–82]. It was also observed for ZnSb by Justi

Figure 7.
The Hall coefficient of an undoped hot‐pressed ZnSb sample. (Reprinted with author's permission from [
Let us here analyse sketchily the conditions for observing the characteristics shown in Figure 7. The specifics of this observation are given in [79]. The changes in hole concentration as the sample was cooled is in principle similar to that of a textbook low doping concentration semiconductor, where the charge carriers are frozen out of the valence band. The valence band of the sample in Figure 7 will be nearly empty (for holes) at the lowest temperature. The holes are transferred to the acceptor‐based impurity band. However, the holes are mobile in the impurity band and contribute to conduction and Hall effect. Thus, the Hall coefficient decreases with cooling to the lowest temperatures. In order to get conduction in the impurity band, some donor compensating centres are needed. (Without donor level, the impurity band would be full of holes, i.e. empty for electrons and there is no conduction).
We turn to a situation where the doping concentration is much higher than that of the sample in Figure 7, and first consider the large difference in characteristic features of the change in the charge carrier concentration with temperature. Figure 8 compares the Hall concentration of the charge carrier and the Hall mobility (inset) at low temperature for high (0.3 at.% Cu) and lower concentration (no Cu), respectively (data in Refs. [52, 79]). One can see that the characteristic feature of impurity band conduction vanished in the highly doped sample at low temperature. The situation is qualitatively as follows: A highly doped sample is equivalent to a degenerate semiconductor, where the hole concentration is high and the Fermi level is located in the valence band. The native impurity band would be full of holes and so would the top of the valence band. At the lowest temperatures, the conduction will occur within the valence band. Therefore, one cannot have a similar change with temperature as in the case of undoped ZnSb where there was a vanishing conduction in the valence band at the lowest temperature.

Figure 8.
Temperature dependence of the Hall concentration of charge carriers at the temperature lower than 300 K of highly doped ZnSb (0.3 at.% Cu content) and undoped ZnSb. (Reprinted with author's permission from [
5.1. The impurity band in ZnSb—its nature, origin and specific points of interest
The nature and theoretical treatment of general impurity band can be found in textbooks [84]. The band states are considered to come from interactions, which set in for concentrations above a certain value of defect species, such as dopant atoms, impurities or intrinsic crystal defects.
The formation of impurity band is illustrated in Figure 9 for an

Figure 9.
Schematics of impurity state/band and conduction band (CB) for
The mobility in the impurity band is typically small because the band is relatively narrow, and as a consequence, one would have a small dispersion curvature in
Usually, the Mott criterion for when the transition occurs is
With the doping concentrations for optimum thermoelectric performance that typically is ∼1019 cm-3, it is reasonable to expect that the formation of impurity bands is rather common in thermoelectric materials. Also, impurity band formation is just one of several high doping effects one should expect, such as the Mott transition, band tailing and band gap renormalization [84]. Thus, one should discuss thermoelectric material in the framework of the theory related to heavily doped semiconductors.
When it comes to ZnSb specifically, it has been estimated that the impurity band may exist for the impurity concentrations that are well within the observed doping concentrations. We have determined the critical impurity concentration in ZnSb to be about 6 × 1017 cm-3 in previous study, which is around the acceptor concentrations used in the model to fit the low temperature measurements [79]. For the doping concentration of 1018–1019 cm-3 in ZnSb, one can expect impurity bands to form. For undoped or very lightly doped material, we suggested that point defects, especially Zn vacancies can be expected to be involved in impurity bands. From the discussion of vacancy formation in Section 4, it appears likely that a high concentration of vacancies can be created by annealing, even to some extent they could combine with any other possible impurities or defects in impurity band. The impurities will likely be dependent on the specific dopants and the preparation technique. For example, oxygen is expected to be an impurity in ball‐milled material and the amount introduced will depend upon the atmosphere during processing. Presently, one cannot make a conclusion about the importance of oxygen in this context and the solid solubility of oxygen is unknown. Fedorov
5.2. Impact of impurity band on thermoelectric properties
An impurity band will have an effect on the transport properties and the thermoelectric device properties. It may not be immediately transparent how. The conduction in the impurity band is perhaps a minor effect in this context. The most important effect may be on the Seebeck coefficient.
5.2.1. Effect on conduction
The effect of impurity bands on the electrical conductivity is expected to be largest when holes in the valence band (for
5.2.2. Effect upon Seebeck—effective density of states mass
The density of states effective mass may be affected by an impurity band. The density of states may be changed by several high doping effects including the formation of impurity bands. Qualitatively a smear of the impurity band and valence band is expected. Thus, even though the conduction of impurity band is often only observable at low temperature, the Seebeck coefficient can be affected above room temperature. The details to calculate the transport coefficients can be found in Ref. [79]. The Seebeck coefficient is sensitive to the position of the Fermi level and how the density of states varies with energy. Both these factors can be affected by an impurity band. There have been reports on change of density of states effective mass with varying doping concentration [53]. From a Pisarenko plot, one can find the density of states effective mass by fitting measured data. In Ref. [52], we obtained the best fitting by assuming an impurity band. Further, it was shown that camel‐shaped curves of Seebeck coefficient with temperature, which is unusual in ZnSb, could be modelled by a temperature‐dependent impurity band. It has been suggested that if one could engineer the energy structure of impurity band, then one could have a tool to enhance the thermoelectric performance [87].
Another impact of the impurity band may be on the
6. ZnSb synthesis techniques
Common synthesis methods for most of bulk thermoelectric materials can be categorized into three groups according to different processing steps, namely stoichiometric melts (SM), powder metallurgic method (PM), pseudo‐pulverized and intermixed elements sintering method (Pseudo‐PIES), as shown in Figure 10.

Figure 10.
Flow chart of synthesis procedures. (Reprinted with author's permission from [
Polycrystalline ZnSb ingots can be synthesized by the so‐called SM methods, i.e. melting of the elemental zinc and antimony followed by solidification in air or quenching in cold water. The purity of the starting elemental zinc and antimony materials has a significant impact on the resulting electrical properties. For example, starting materials with purities of 99.99% and 99.9999% allows to obtain the charge carrier concentration of ∼1019 and ∼1016 cm-3, respectively, on undoped polycrystalline ZnSb [14]. Since ZnSb does not melt congruently, solidification will result in a mix of the phases, Zn4Sb3, ZnSb and Sb. This mix can be homogenized by sufficient heat treatments to reach the thermodynamic equilibrium state with a single uniform ZnSb phase [14, 15]. Another problem with the solidification is that the sample contains cracks that significantly influence on the electron transport [13].
The solidified ingots are often milled into fine powder and pressed to pellets, which is a procedure that includes the basic ingredients of standard powder metallurgy (PM). Milling offers access to nanosized grains, thus providing possibility to enhance the thermoelectric properties. Earlier studies show that different milling techniques led to a trend of grain size as 80.0, 44.6 and 32.4 nm for manually grinding, dry‐milling and wet‐milling [16], as well as 10 nm for cryo‐milling [88], respectively.
The PIES method (pulverized and intermixed elements sintering method) has been introduced into preparation of thermoelectric (Bi/Sb)2(Te/Se)3 materials, where all the elements are initially mixed and milled to fine powder before hot‐pressing (no melting process) [89]. The electrical conductivity of the sample that was synthesized by this method has been reported about 5 times higher than that for the SM sample [90]. Distinguished from a typical PIES method, we often used pseudo‐PIES for ZnSb, which partially mixed the dopant element with SM ingot in ball‐milling, and then processed hot‐pressing.
There are different kinds of compaction techniques that follows powder metallurgy and have been used for fabrication of ZnSb samples. The most common ones are cold‐pressing (at room temperature with ultra‐pressure 2–10 GPa [83, 91]), hot‐pressing (>450°C with pressure of 20–300 MPa [16, 19, 20, 35]), and spark plasma sintering (SPS) (the electrical current is passed through the sample with 5 min reaction time at 350–450°C [83, 92]). One important difference among hot‐presses is the manipulation of secondary phases; both removal and proportioning are possible, and obviously depends upon the temperature and duration, but also on details of the instrument design and the environment of the ZnSb powder. Xiong
Another important consideration of the synthesis technique is the ability to produce large amounts of thermoelectric materials in a cost‐effective way. Considering that one of the favourable aspects of ZnSb from a commercial point of view is the low materials cost, there have been several efforts where the cost efficiency of the synthesis technique is important [92–94].
7. From laboratory to fabrication
ZnSb practical devices have been produced [9, 95], and there has been a promising achievement on thermoelectric performance of ZnSb in the laboratory. However, it is still challenging to transfer the achievement from laboratory to modern manufacturing. Progress in synthesis from different points of view have also to go through many tests regarding machinability, mechanical stability, thermal stability, thermal cycling and long‐term stability, as well as compatibility with targeted fabrication techniques. Several of these issues are expected to contribute to—as well as benefit from—a further fundamental understanding of ZnSb, when practical solutions on short and long timescales are targeted. On a short to medium timescale, ZnSb can take advantage of new fabrication technologies that has been developed, but using traditional approaches for the device functionality. On a longer perspective, ZnSb may also be brought further into the explorations of new nanotechnology approaches to improve the performance of possible future generations of thermoelectrics.
One hindrance towards an ideal thermoelectric module made entirely of ZnSb is the inability to synthesis of stable
The thermal stability of the synthesized ZnSb needs to be tested and probably be improved. This is one area where both fundamental studies and practical solutions may enter. ZnSb samples are subjected to Zn evaporation at high temperatures. The evaporation depends naturally very much on the ambient and the surface conditions. It is possible that protective layers can be applied to minimize evaporation. The situation has some similarities to that of several binary electronic materials, such as III–V materials, where one of the elements have a much higher vapour pressure, than what can be tolerated at the desired processing temperature. For GaAs, dielectric films SiO2 and Si3N4 have been used for the purpose of preventing arsenic evaporation. A similar approach with a conformal deposition of a protective dielectric layer may be advantageous for ZnSb. Thermal stability also has to do with the thermal generation of point defects and their diffusion at elevated temperatures. The understanding of the phenomena is unsatisfactory from an academic point of view, in particular on the level of defect chemistry and electronic structure, but there are many experimental observations of the simple electrical parameters. Several authors have reported that after a heat treatment of ZnSb, the electrical conductivity and the charge carrier concentration increased, while the Seebeck coefficient decreased. The change was followed by a slow recovery towards the initial values at room temperature [15, 20, 44, 45, 47, 61, 77]. The characteristics can be related it to the VZn‐ZnI Frenkel pair formation at elevated temperatures, and the recovery caused by their slower recombination at lower temperature. The vacancy concentration was linked to hole concentration. It was rationalized that these hysteresis effects would not be significant at high doping concentrations [15]. The doping effect on the vacancy concentration was then not considered. A detailed understanding of the vacancies, interstitials and their energy levels, ionization and formation energies is needed to understand the influence for higher doping concentration. The influence of more complicated defects can also be a large challenge. There are also reports on various temperature‐cycling phenomena [52, 96, 97], involving the doping atoms and energy levels of these. Some of these effects may differ for different synthesis details.
The thermal stability is referring to all properties of the material, including the thermal conductivity. We have reported grain growth induced by heating, particularly in nanostructured bulk samples [88]. The grain growth will naturally induce a change of thermal conductivity due to the dependence on phonon scattering. To which extent, it constitutes a practical problem depends upon the targeted operation temperature. Approaches to minimize grain growth usually consist of adding atoms that segregate in grain boundaries, thereby preventing grain growth. This is an area that needs further study.
There are various routes that can make ZnSb a part of long‐term exploration to improve thermoelectrics by nanostructures (not just nanograins). Some of them may use ways of depositing films of ZnSb, such as by MOCVD, sputtering [98, 99] and electroplating [11, 100],
Acknowledgments
The authors acknowledge support by the Norwegian Research Council under contract NFR11‐40‐6321 (NanoThermo) and the University of Oslo. The authors also thank to Dr. Patricia Almeida Carvalho for her contribution to transmission electron microscopic imaging.
References
- 1.
Seebeck, T.J., Magnetische Polarisation der Metalle und Erze durch Temperatur Differenz. A. J. v. Oettingen, 1823. - 2.
Berland, K., et al.: Enhancement of thermoelectric properties by energy filtering: Theoretical potential and experimental reality in nanostructured ZnSb. Journal of Applied Physics. 2016; 119 (12):125103. - 3.
Becquerel, E.: Mempire sur les pouvoirs thermo‐electroiques des corps et sur les piles thermo‐electroques. Annales de chimie et de physique, 1866; 4 (8):389. - 4.
in La Nature. 1874. p. 19. - 5.
Halla F, Adler J.:, Röntgenographische Untersuchungen im System Cadmium‐Antimon. Zeitschrift für anorganische und allgemeine Chemie. 1929; 185 (1):184‐192. - 6.
Halla, F, Nowotny H, Tompa H.: Röntgenographische Untersuchungen im System (Zn, Cd)–Sb.II. Zeitschrift für anorganische und allgemeine Chemie. 1933; 214 (2):196‐200. - 7.
Olander A.: The Crystal Structure of CdSb. Zeitschrift für Kristallographie. 1935; 91 (3/4):243‐247. - 8.
Almin KE.: The Crystal Structure of CdSb and ZnSb. Acta Chemica Scandinavica. 1948; 3 (3‐4):400‐407. - 9.
Telkes M.: Solar Thermoelectric Generators. Journal of Applied Physics. 1954; 25 (6):765‐777. - 10.
Vedernikov MV, Iordanishvili EK. A.F. Ioffe and origin of modern semiconductor thermoelectric energy conversion. In: Proceedings of The XVII International Conference on Thermoelectrics (ICT 98); 1998. p. 37‐42. - 11.
Saadat S, et al.: Template‐Free Electrochemical Deposition of Interconnected ZnSb Nanoflakes for Li‐Ion Battery Anodes. Chemistry of Materials. 2011; 23 (4):1032‐1038. - 12.
Wang G, et al.: Investigation on pseudo‐binary ZnSb‐Sb2Te3 material for phase change memory application. Journal of Alloys and Compounds, 2015:341‐346. - 13.
Miller RC. Survey of Known Thermoelectric Materials: ZnSb, In: Heikes RR, Ure Jr. RW, editors. Thermoelectricity: Science and engeneering. New York: Interscience Publishers; 1961. p. 405. - 14.
Justi E, Rasch W, Schneider G.: Untersuchungen an zonengeschmolzenen ZnSb‐einkristallen. Advanced Energy Conversion. 1964; 4 (1):27‐38. - 15.
Shaver PJ, Blair J.: Thermal and Electronic Transport Properties of p‐Type ZnSb. Physical Review. 1966; 141 (2):649‐663. - 16.
Böttger PHM, et al.: Influence of Ball‐Milling, Nanostructuring, and Ag Inclusions on Thermoelectric Properties of ZnSb. Journal of Electronic Materials, 2010. 39 (9): p. 1583‐1588. - 17.
Okamura C, Ueda T, Hasezaki K.: Preparation of Single‐Phase ZnSb Thermoelectric Materials Using a Mechanical Grinding Process. Materials Transactions. 2010; 51 (5):860‐862. - 18.
Valset K, et al.: Thermoelectric properties of Cu doped ZnSb containing Zn3P2 particles. Journal of Applied Physics. 2012; 111 (2):023703. - 19.
Xiong D‐B, Okamoto NL, Inui H.: Enhanced thermoelectric figure of merit in p‐type Ag‐doped ZnSb nanostructured with Ag3Sb. Scripta Materialia. 2013; 69 (5):397‐400. - 20.
Fedorov MI, et al.: New Interest in Intermetallic Compound ZnSb. Journal of Electronic Materials. 2014; 43 (6):2314‐2319. - 21.
Fedorov MI, et al.: Thermoelectric efficiency of intermetallic compound ZnSb. Semiconductors. 2014; 48 (4):432‐437. - 22.
Valset K, Song X, Finstad TG. Stability and thermoelectric properties of Cu doped ZnSb. In: Proceedings of The European Conference on Thermoelectrics (ECT 2014); 2014. Madrid, Spain. - 23.
Guo Q, Luo S.: Improved thermoelectric efficiency in p‐type ZnSb through Zn deficiency. Functional Materials Letters. 2015; 08 (02):1550028. - 24.
Valset K. A Technique to Measure Thermoelectric Figure of Merit and Heat Flow at High Temperatures by Cancelling Heat Losses. In: Proceedings of The 12th European Conference on Thermoelectrics; Materials Today. 2015; 2 (2):721‐728. - 25.
Carter FL, Mazelsky R.: The ZnSb structure; A further enquiry. Journal of Physics and Chemistry of Solids. 1964; 25 (6):571‐581. - 26.
Mikhaylushkin AS, Nylén J, Häussermann U.: Structure and Bonding of Zinc Antimonides: Complex Frameworks and Narrow Band Gaps. Chemistry – A European Journal. 2005; 11 (17):4912‐4920. - 27.
Mozharivskyj Y, et al.: A Promising Thermoelectric Material: Zn4Sb3 or Zn6‐δSb5. Its Composition, Structure, Stability, and Polymorphs. Structure and Stability of Zn1‐δSb. Chemistry of Materials. 2004; 16 (8):1580‐1589. - 28.
Toman K.: On the structure of ZnSb. Journal of Physics and Chemistry of Solids. 1960; 16 (1): 160‐161. - 29.
Song X. Thermoelectric Transport and Microctructure of ZnSb, In: Department of Physics. 2016, University of Oslo: Oslo, Norway. p. 138. - 30.
Mooser E, Pearson WB.: Chemical Bond in Semiconductors. Physical Review. 1956; 101 (5): 1608‐1609. - 31.
Haussermann U, Mikhaylushkin AS.: Electron‐poor antimonides: complex framework structures with narrow band gaps and low thermal conductivity. Dalton Transactions. 2010. 39 (4):1036‐1045. - 32.
Arushanov EK.: Crystal growth, characterization and application of II‐V compounds. Progress in Crystal Growth and Characterization. 1986. 13 (1):1‐38. - 33.
Justi E, Lautz G.: Über die Störstellen‐ und Eigenhalbleitung intermetallischer Verbindungen. In: Zeitschrift für Naturforschung A. 1952. p. 191. - 34.
Velický B, Frei V.: The chemical bond in CdSb. Cechoslovackij fiziceskij zurnal B. 1963; 13 (8):594‐598. - 35.
Fischer A, et al.: Synthesis, Structure, and Properties of the Electron‐Poor II–V Semiconductor ZnAs. Inorganic Chemistry. 2014; 53 (16):8691‐8699. - 36.
Niedziolka K, et al.: Theoretical and experimental search for ZnSb‐based thermoelectric materials. Journal of Physics: Condensed Matter., 2014; 26 (36):365401. - 37.
Niedziółka K, Jund P.: Influence of the Exchange‐Correlation Functional on the Electronic Properties of ZnSb as a Promising Thermoelectric Material. Journal of Electronic Materials. 2015; 44 (6):1540‐1546. - 38.
Benson D, Sankey OF, Häussermann U.: Electronic structure and chemical bonding of the electron‐poor II‐V semiconductors ZnSb and ZnAs. Physical Review B. 2011; 84 (12):125211. - 39.
Böttger PHM, et al.: Electronic structure of thermoelectric Zn‐Sb. Journal of Physics: Condensed Matter. 2011; 23 (26):265502. - 40.
Bjerg L, Madsen GKH, Iversen BB.: Enhanced Thermoelectric Properties in Zinc Antimonides. Chemistry of Materials 2011; 23 (17):3907‐3914. - 41.
Zhao J‐H, et al.: First Principles Study on the Electronic Properties of Zn64Sb64-xTex Solid Solution (x = 0, 2, 3, 4). International Journal of Molecular Sciences. 2011; 12 (5):3162‐3169. - 42.
Jund P, et al.: Physical properties of thermoelectric zinc antimonide using first‐principles calculations. Physical Review B. 2012; 85 (22):224105. - 43.
Yamada Y.: Band structure calculation of ZnSb. physica status solidi (b). 1978; 85 (2):723‐732. - 44.
Turner WJ, Fischler AS, Reese WE.: Physical Properties of Several II‐V Semiconductors. Physical Review. 1961; 121 (3):759‐767. - 45.
Komiya H, Masumoto K, Fan HY.: Optical and Electrical Properties and Energy Band Structure of ZnSb. Physical Review. 1964; 133 (6A):A1679‐A1684. - 46.
Eisner RL, Mazelsky R, Tiller WA.: Growth of ZnSb Single Crystals. Journal of Applied Physics 1961; 32 (10):1833‐1834. - 47.
Kostur NL, Psarev VI.: Electrical properties of doped single crystals of ZnSb. Soviet Physics Journal. 1967; 10 (2):21‐23. - 48.
Zhang LT, et al.: Effects of ZnSb and Zn inclusions on the thermoelectric properties of β‐Zn4Sb3. Journal of Alloys and Compounds. 2003; 358 (1‐2):252‐256. - 49.
Goldsmid HJ, Sharp JW.: Estimation of the thermal band gap of a semiconductor from Seebeck measurements. Journal of Electronic Materials. 1999; 28 (7):869‐872. - 50.
Schmitt J, et al.: Resolving the true band gap of ZrNiSn half‐Heusler thermoelectric materials. Materials Horizons. 2015; 2 (1):68‐75. - 51.
Gibbs ZM, et al.: Band gap estimation from temperature dependent Seebeck measurement‐Deviations from the 2e|S|maxTmax relation. Applied Physics Letters. 2015; 106 (2):022112. - 52.
Valset K, Song X, Finstad TG.: A study of transport properties in Cu and P doped ZnSb. Journal of Applied Physics. 2015; 117 (4):045709. - 53.
Böttger PHM, et al.: Doping of p‐type ZnSb: Single parabolic band model and impurity band conduction. physica status solidi (a). 2011; 208 (12):2753‐2759. - 54.
Van Overstraeten RJ, Mertens RP.: Heavy doping effects in silicon. Solid‐State Electronics. 1987; 30 (11):1077‐1087. - 55.
Toberer ES, et al.: Traversing the Metal‐Insulator Transition in a Zintl Phase: Rational Enhancement of Thermoelectric Efficiency in Yb14Mn1-xAlxSb11. Advanced Functional Materials. 2008; 18 (18):2795‐2800. - 56.
May AF, et al.: Characterization and analysis of thermoelectric transport in n‐type Ba8Ga16‐xGe30+x. Physical Review B. 2009; 80 (12):125205. - 57.
Toberer ES, May AF, Snyder GJ.: Zintl Chemistry for Designing High Efficiency Thermoelectric Materials. Chemistry of Materials. 2010; 22 (3):624‐634. - 58.
Mlnaříková L, Tříska A, Štourač L.: The transport phenomena of pure and doped p‐type ZnSb. Czechoslovak Journal of Physics B. 1970; 20 (1):63‐72. - 59.
Stevenson MJ, Cyclotron Resonance in II‐V Semiconductcors. In: Proceedings of The International Conference on Semiconductor Physics. 1961. Prague: Czechoslovakian Academy of Science. - 60.
Telkes M.: The Efficiency of Thermoelectric Generators. I. Journal of Applied Physics. 1947; 18 (12):1116‐1127. - 61.
Kot MV, Kretsu IV.: Anisotropy of certain electrical properties of single crystals of Zinc Antimony. Fiz.Tverd.Tela. 1960; 2:1250 (Soviet Physics‐Solid State. 1960; 2:1134). - 62.
Hrubý A, Beránková J, Míšková V.: Growth of ZnSb Single Crystals. physica status solidi (b). 1963; 3 (2):289‐293. - 63.
Závêtová M.: Absorption Edge of ZnSb. physica status solidi (b). 1964; 5 (1):K19‐K21. - 64.
Prokofieva LV, et al.: Doping and defect formation in thermoelectric ZnSb doped with copper. Semiconductors. 2014; 48 (12):1571‐1580. - 65.
Ridley BK. Quantum Processes in Semiconductors. 4th ed. Oxford: Oxford Science Publications; 1999. - 66.
Goldsmid HJ. Introduction to Thermoelectricity. Oxford: Oxford University Press; 2009. - 67.
Ito M, Ohishi Y, Muta H, Kurosaki K, Yamanaka S.: Thermoelectric properties of Zn‐Sn‐Sb based alloys. In: MRS Proceedings Symposium LL – Thermoelectric Materials for Solid‐State Power Generation and Refrigeration. 2011. - 68.
Prokofieva LV, Konstantinov PP, Shabaldin AA.: On the tin impurity in the thermoelectric compound ZnSb: Charge‐carrier generation and compensation. Semiconductors. 2016; 50 (6): 741‐750. - 69.
Sottmann J, et al.: Synthesis and Measurement of the Thermoelectric Properties of Multiphase Composites: ZnSb Matrix with Zn4Sb3, Zn3P2, and Cu5Zn8. Journal of Electronic Materials. 2013;. 42 (7):1820‐1826. - 70.
Šmirous K, Hrubý A, Štourač L.: The influence of impurities on the electric and thermoelectric properties of CdSb single crystals. Cechoslovackij fiziceskij zurnal B. 1963; 13 (5):350‐357. - 71.
Schneider G.: Preparation and Properties of n‐Type ZnSb. physica status solidi (b). 1969; 33 (2):K133‐K136. - 72.
Zeid AA, Schneider G.: Various Donors in n‐ZnSb and the Influence of Sample Treatment. Zeitschrift für Naturforschung A. 1975; 30 (3):381. - 73.
Ueda T, et al.: Effect of Tellurium Doping on the Thermoelectric Properties of ZnSb. Journal of the Japan Institute of Metals and Materials. 2010; 74 (2):110‐113. - 74.
Bjerg L, Madsen GKH, Iversen BB.: Ab initio Calculations of Intrinsic Point Defects in ZnSb. Chemistry of Materials. 2012; 24 (11):2111‐2116. - 75.
Silvey GA, Lyons VJ, Silvestri VJ.: The Preparation and Properties of Some II – V Semiconducting Compounds. Journal of The Electrochemical Society. 1961; 108 (7):653‐658. - 76.
Campbell SA. The Science and Engineering of Microelectronic Fabrication. Oxford: University Press; 1996. - 77.
Kretsu IV, Kot MV.: Thermal Dissociation of Cadmium and Zinc Antimonide Crystals. Uchenye Zapiski Kazanskogo Universiteta (Proceedings of Kazan University), 1961; 49 : 105‐111. - 78.
Singleton J, ed. Band Theory and Electronic Properties of Solids. Oxford Master Series in Condensed Matter Physics. 2001. - 79.
Song X, et al.: Impurity band conduction in the thermoelectric material ZnSb. Physica Scripta. 2012; 2012 (T148):014001. - 80.
Hung CS.: Theory of Resistivity and Hall Effect at Very Low Temperatures. Physical Review. 1950; 79 (4):727‐728. - 81.
Hung CS, Gliessman JR.: The Resistivity and Hall Effect of Germanium at Low Temperatures. Physical Review. 1950; 79 (4):726‐727. - 82.
Hung CS, Gliessman JR.: Resistivity and Hall Effect of Germanium at Low Temperatures. Physical Review. 1954; 96 (5):1226‐1236. - 83.
Eklof D, et al.: Transport properties of the II‐V semiconductor ZnSb. Journal of Materials Chemistry A. 2013; 1 (4):1407‐1414. - 84.
Schubert EF. Physical Foundations of Solid‐State Devices. 2006. - 85.
James HM, Ginzbarg AS.: Band Structure in Disordered Alloys and Impurity Semiconductors. The Journal of Physical Chemistry. 1953; 57 (8):840‐848. - 86.
Rawat PK, Paul B, Banerji P.: Impurity‐band induced transport phenomenon and thermoelectric properties in Yb doped PbTe1‐xIx. Physical Chemistry Chemical Physics. 2013; 15 (39):16686‐16692. - 87.
Goldsmid HJ.: Impurity Band Effects in Thermoelectric Materials. Journal of Electronic Materials. 2012; 41 (8):2126‐2129. - 88.
Song X, et al.: Nanostructuring of Undoped ZnSb by Cryo‐Milling. Journal of Electronic Materials. 2015; 44 (8):2578‐2584. - 89.
Ohta T, et al.: Pulverized and Intermixed Elements Sintering Method for (Bi, Sb)2(Te, Se)3 based n‐type Thermoelectric Devices. IEEJ Transactions on Power and Energy. 1991; 111 (6): 670‐674. - 90.
Toshitaka O, Takenobu K.: PIES Method of Preparing Bismuth Alloys, In: CRC Handbook of Thermoelectrics. CRC Press; 1995. - 91.
Zhao WY, Wang Y, Zhai P, Tang X, Zhang Q.: Method for forming ZnSb‐based block thermoelectric material at ultra‐high pressure and cold pressure. 2007, Google Patents. - 92.
Blichfeld AB, Iversen BB.: Fast direct synthesis and compaction of phase pure thermoelectric ZnSb. Journal of Materials Chemistry C. 2015; 3 (40):10543‐10553. - 93.
Lee HB, et al.: Thermoelectric properties of screen‐printed ZnSb film. Thin Solid Films. 2011; 519 (16):5441‐5443. - 94.
Pothin R, et al.: Preparation and properties of ZnSb thermoelectric material through mechanical‐alloying and Spark Plasma Sintering. Chemical Engineering Journal. 2016; 299 : 126‐134. - 95.
Farmer M.G. Improvement in thermo‐electric batteries. 1870, Google Patents. - 96.
Shabaldin AA, et al.: The Influence of Weak Tin Doping on the Thermoelectric Properties of Zinc Antimonide. Journal of Electronic Materials, 2016. 45 (3): p. 1871‐1874. - 97.
Shabaldin AA, et al.: Acceptor Impurity of Copper in ZnSb Thermoelectric. Materials Today: Proceedings of The 12th European Conference on Thermoelectrics. 2015; 2 (2):699‐704. - 98.
Fan P, et al.: Thermoelectric properties of zinc antimonide thin film deposited on flexible polyimide substrate by RF magnetron sputtering. Journal of Materials Science: Materials in Electronics. 2014; 25 (11):5060‐5065. - 99.
Zheng Z‐H, et al.: Enhanced thermoelectric properties of Cu doped ZnSb based thin films. Journal of Alloys and Compounds. 2016; 668 :8‐12. - 100.
Mann O, Freyland W.: Mechanism of formation and electronic structure of semiconducting ZnSb nanoclusters electrodeposited from an ionic liquid. Electrochimica Acta. 2007; 53 (2):518‐524. - 101.
Flage‐Larsen EL, Martin O. Band structure guidelines for higher figure‐of‐merit; analytic band generation and energy filtering. In: Rowe DM, editor. Thermoelectrics and its Energy Harvesting: Materials, Preparation, and Characterization in Thermoelectrics. CRC Press; 2012.