Annual distribution of waste according to their function of Almeria [11].
\r\n\t
",isbn:"978-1-83881-111-2",printIsbn:"978-1-83880-992-8",pdfIsbn:"978-1-83881-112-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"acb2875b3bfc189c9881a9b44b6a5184",bookSignature:"Dr. Abdo Abou Jaoudé",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11865.jpg",keywords:"Linear Operators, Normal Operators, Spectral Theorem, Applications, Differential Operators, Integral Operators, Functional Calculus, Complex Variables, Complex Analysis, Theory, Recent Advances, Latest Trends",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 13th 2022",dateEndSecondStepPublish:"May 11th 2022",dateEndThirdStepPublish:"July 10th 2022",dateEndFourthStepPublish:"September 28th 2022",dateEndFifthStepPublish:"November 27th 2022",remainingDaysToSecondStep:"11 days",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Abdo Abou Jaoudé is a pioneering Associate Professor of Mathematics and Statistics at Notre Dame University-Louaizé. He holds two PhDs in Mathematics and Prognostics from the Lebanese University and Aix-Marseille University. His research interests are in the field of mathematics.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"248271",title:"Dr.",name:"Abdo",middleName:null,surname:"Abou Jaoudé",slug:"abdo-abou-jaoude",fullName:"Abdo Abou Jaoudé",profilePictureURL:"https://mts.intechopen.com/storage/users/248271/images/system/248271.jpg",biography:"Abdo Abou Jaoudé has been teaching for many years and has a passion for researching and teaching mathematics. He is currently an Associate Professor of Mathematics and Statistics at Notre Dame University-Louaizé (NDU), Lebanon. He holds a BSc and an MSc in Computer Science from NDU, and three PhDs in Applied Mathematics, Computer Science, and Applied Statistics and Probability, all from Bircham International University through a distance learning program. He also holds two PhDs in Mathematics and Prognostics from the Lebanese University, Lebanon, and Aix-Marseille University, France. Dr. Abou Jaoudé's broad research interests are in the field of applied mathematics. He has published twenty-three international journal articles and six contributions to conference proceedings, in addition to seven books on prognostics, pure and applied mathematics, and computer science.",institutionString:"Notre Dame University - Louaize",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Notre Dame University – Louaize",institutionURL:null,country:{name:"Lebanon"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"15",title:"Mathematics",slug:"mathematics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"252211",firstName:"Sara",lastName:"Debeuc",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/252211/images/7239_n.png",email:"sara.d@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"52510",title:"The Hypoxia-Reoxygenation Injury Model",doi:"10.5772/65339",slug:"the-hypoxia-reoxygenation-injury-model",body:'This chapter gives an overview of the hypoxia-reoxygenation model, provides guidance to perform hypoxia-reoxygenation or oxygen-glucose deprivation (OGD) experiments and discusses the mechanism of cellular damage in this model.
The hypoxia/OGD models are simple experimental models that do not require expensive laboratory instruments. Regular cell culture plasticware can be placed in a gas-tight chamber and the culture atmosphere replaced with oxygen-free gas mixture using an inexpensive flow meter. In addition, OGD can be induced by replacement of the culture medium with glucose-free medium. The reoxygenation period is initiated by glucose supplementation and by returning the culture vessels to regular atmosphere. The severity of the injury can be adjusted to specific needs by varying the length of the hypoxic/OGD period. Therapeutic interventions may be delivered prior to hypoxia induction or immediately following the reoxygenation modelling preventive or reperfusion therapies.
In most hypoxia experiments, above the hypoxic and OGD groups it is essential to use normoxia controls with normal glucose concentration or to expose normoxic controls to glucose deprivation (GD). Since the normoxic and hypoxic cells must be physically separated during the hypoxic period, identical cell plates must be prepared for the hypoxia and simultaneous normoxia exposures. Culture medium is replaced with fresh medium either containing glucose or without glucose prior to the induction of hypoxia. Serum deprivation may be necessary for complete removal of glucose in OGD injury. To induce hypoxia, the culture plates are placed in gas-tight incubation chambers (Billups-Rothenberg Inc., Del Mar, CA) and the chamber is flushed with oxygen-free gas mixture at 25–30 L/min flow rate for 5–10 min to completely remove oxygen [1–5, 7, 10]. Hypoxia is maintained by clamping and incubating the chambers at 37°C for the requested period. The composition of the gas mixture may vary depending on the bicarbonate content of the culture medium and the required level of acidity change (pH level), since hypercapnia can mimic the rapid development of acidic pH of ischemic tissues [11]. The CO2 content is typically between 5 and 20% with 80–95% N2. This procedure removes oxygen from the atmosphere but dissolved oxygen remains in all fluids in the chamber including the culture medium and additionally in water used for humidification, thus complete anoxia is reached with a delay, following depletion of the remaining oxygen. Following the hypoxic exposure, restoration of the normal culture conditions is achieved by supplementing the culture medium with glucose and foetal bovine serum (FBS) and by reoxygenating the culture vessels in regular culture atmosphere. In most cells, the cellular ATP level is recovered during a recovery period of 16–24 hours that might be the period of interest in most experiments.
Drug treatments may be administered before the hypoxia induction to test preventive effects or following the hypoxic period to test the therapeutic potential in ischemic diseases [1–3]. For gene silencing small interfering RNAs may be added 48 hours prior to the hypoxia exposure to effectively reduce RNA and protein levels of the gene of interest at the time of the hypoxia experiment [4, 5]. Unfortunately, gene silencing cannot be selectively used to study the hypoxic or the reoxygenation phase. Pharmacological treatments using small compounds allow specific post-hypoxic treatments that permit the specific study of the recovery phase.
Hypoxia and glucose deprivation cause energy depletion in the cells and may be directly responsible for the viability reduction caused by the injury. Since the lack of oxygen blocks aerobic metabolism, which is responsible for the larger part of ATP production in the cells, the cells need to use other pathways to produce sufficient ATP for survival. Most cells can adapt to low oxygen conditions in cell culture, producing ATP solely by anaerobic metabolism if adequate glucose supply is present. However, the anaerobic pathways, glycolysis and pentose phosphate pathway need to use high amounts of glucose to produce comparable output. Glycolysis produces only two ATP molecules, but oxidative phosphorylation is capable to produce ~30 ATPs per glucose molecule oxidized [12]. The typical mitochondrial ATP production is lower than the theoretical maximum, since up to 20% of the basal metabolic rate may be used to drive the proton leak [13], but it is still more than 10 times higher than the anaerobic ATP production. The compensatory increase in anaerobic metabolism would be stopped by the limited availability of NAD+, since protons are transferred to NAD+ by glyceraldehyde phosphate dehydrogenase to produce NADH during glycolysis, if lactate dehydrogenase (LDH) did not recycle NAD+. This step helps maintain the higher anaerobic metabolic rate, but at the expense of metabolic acidosis (lactic acidosis).
However, in the absence of glucose, the ATP production will drop rapidly as the cellular energy storage is depleted and cell death will be induced. Most cells can survive in culture if the cellular ATP concentration will be reduced by less than 75–80% the normal ATP level [1–3, 5]. Following an OGD injury that does not reduce the cellular ATP concentration below 20% of the initial baseline value full recovery is expectable if optimal culture conditions are provided. Since the cells try to maintain normal ATP level and use all resources that can be utilized for energy production during the OGD phase, the recovery process is time-consuming: all precursor molecules need to be resynthesized in the cells. A more robust injury that decreases the cellular ATP concentration below 20% will initiate severe viability loss in the cell population [2] (Figure 1).
Post-hypoxic recovery of the cellular ATP content. (A and B) LLC-PK1 cells were subjected to hypoxia in the absence (OGD) or presence of 300 µM adenosine (ADE), inosine (INO) or glucose (GLC) to reduce the cellular ATP content to 5, 10 or 20% of normoxic controls, and ATP concentration was measured during the 24-hour-long recovery period. (A) ATP content gradually increased proportional to the hypoxic ATP depletion. (B) ATP resynthesis requires both adenosine deaminase (ADA) and adenosine kinase (AK) activity in the cells. Blockage of ADA by EHNA (10 µM) and/or AK by ABT 702 (ABT, 30µM) blocks the recovery of the cellular ATP content. (Data are shown as mean ± SD values. *
The cellular energy production remains impaired following an OGD injury: the cellular ATP production is slow even if the energy sources are provided in liberal amounts. The loss of all high-energy molecules is responsible for the diminished ATP synthesis following OGD. Not only ATP, but also adenosine diphosphate (ADP) and NAD+ are greatly reduced in the cells to minimize the ATP loss that will sustain the metabolic suppression [5]. ATP is the central coenzyme in the cells that functions as universal energy currency to transfer chemical energy. ATP molecules are generated in large quantities by constant recycling of ADP to ATP; the daily estimated ATP synthesis is around 1000 g/kg bodyweight [14]. Organic compounds are catabolized via a series of redox reactions in the cells and ultimately generate carbon dioxide and water. During these reactions, energy is collected via transferring electrons from organic donors to the acceptor molecule NAD+ and reducing it to NADH. Energy is retrieved from NADH in the mitochondria as the electrons are gradually transferred to oxygen through the electron transport chain and ATP is produced in the coupled oxidative phosphorylation reaction. Thus, the energy stored by NAD+ molecules is interconvertible to ATP molecules and the lack of NAD+ can severely limit the ATP generation.
NAD+ biosynthesis occurs either via the
Compartmentalization of NAD+ biosynthesis. The ‘
The lack of NAD+ affects both mitochondrial respiration and anaerobic metabolism following the OGD injury [5]. Severe metabolic suppression is detectable following the OGD injury if the resynthesis of NAD+ is prevented by NamPRT inhibition: the mitochondrial oxygen consumption of the cells is severely reduced in the cells (Figure 3). The respiratory capacity of the cells is suppressed following OGD and while normal cells typically use no more than ~50–60% of their respiratory capacity under baseline conditions, the cells use their full respiratory capacity following hypoxia of OGD injury. While the basal anaerobic metabolism is less affected by the lack of NAD+ the anaerobic compensation is reduced by 70%, which makes the cells extremely sensitive to other injuries that require excess energy. At this stage, NAD+ is functionally shared between the mitochondrial and cytoplasmic pools, as the blockage of mitochondrial NAD+ recycling by inhibition of ATP synthase immediately draws a halt to anaerobic metabolism. This phenomenon can help explain the vulnerability of the cells: any injury that causes mitochondrial impairment can simultaneously block the anaerobic metabolism in the cells.
Suppressed cellular metabolism following oxygen-glucose deprivation (OGD). (A–F) H9c2 cells were transfected with PARP-1 (siPARP-1) or CTL siRNA and 48 hours later the cells were exposed to hypoxia or oxygen-glucose deprivation for 8 hours. Following the hypoxic phase, glucose and serum concentrations were normalized and the cells were treated with NamPRT inhibitor FK866 (10 μM) to block NAD+ resynthesis (or vehicle) at normal oxygen tension for 16 hours. The metabolic profile of the cells was determined by extracellular flux analysis. (A and D) The oxygen consumption rate (OCR) and (C and F) the extracellular acidification rate (ECAR) were monitored using Oligomycin (1 μg/mL), FCCP (0.3 μM) and antimycin A (2 μg/mL) injections. (B and E) Basal oxygen consumption and total respiratory capacity were determined following the addition of FCCP. NamPRT inhibition severely blocks the recovery of the respiratory capacity and prevents the anaerobic metabolic compensation. PARP-1 silencing increases the respiratory capacity in cells with diminished NAD+ content. (
Oxidative stress is an important contributor to cellular damage in hypoxia- or OGD-reoxygenation injury. While it is recognized as the major cause of cellular damage in ischemia-reperfusion injury
Superoxide is produced by the mitochondrial electron transport chain itself, most importantly at complex III: a low percentage of electrons from quinone molecules are transferred to oxygen instead of complex III even in healthy mitochondria [30–34]. The amount of ROS generation is relatively low, approximately 0.2–2% of the oxygen consumed by the mitochondria is reduced to superoxide [28]. However, this process would leave behind excess protons in the intermembrane space and increase the mitochondrial membrane potential, if mitochondria did not possess a safety mechanism against it. Uncoupling proteins and especially UCP2 are responsible for protecting against hyperpolarization. The elevated mitochondrial membrane potential directly increases the mitochondrial superoxide generation [35, 36]. This action is reversible: if the mitochondrial membrane potential is normalized, the superoxide generation will decrease to normal levels [27, 34, 37]. However, the action of UCP2 and UCP3 is regulated by reactive oxygen species (ROS) generation as their activity is affected by glutathionylation: increase in ROS production prompts the deglutathionylation and activation of proton conductivity via UCP2 and UCP3, while at low ROS levels the uncoupling proteins are glutathionylated that effectively deactivates the proton conductance process [28, 38]. During hypoxia or OGD, the absence of oxygen completely deactivates UCPs in the cell and it excludes the compensation for the hyperpolarization in the beginning of the reoxygenation phase. While an increase is detectable in the mitochondrial membrane potential, the amount of superoxide generation hardly exceeds the normal levels immediately following hypoxia or OGD due to the suppressed mitochondrial activity [5], but increased ROS production can be detected in the cells even after full recovery of the cellular ATP and NAD+ contents [5] (Figure 4).
Mitochondrial oxidant production in hypoxia-reoxygenation injury. (A–F) H9c2 cardiomyocytes were exposed to hypoxia or oxygen-glucose deprivation (OGD) for 8 hours, followed by 16-hour-long recovery. Cells were simultaneously maintained at normoxia in glucose-containing culture medium as controls (CTL) or subjected to glucose deprivation (GD). (A and B) ATP and (C and D) NAD+ contents were determined both at the end of the hypoxia (A and C) and following the recovery (B and D). (E and F) The mitochondrial potential and (G and H) superoxide production were measured by JC-1 and MSOX Red (MSOX) at the end of the hypoxia (E and G) and following the recovery (F and H). (
Oxidative stress damages the DNA and RNA molecules causing modified bases and strand breaks and also induces oxidative protein damage. To minimize further dysfunction caused by impaired molecules, repair processes are promptly activated in the cells and PARP-1 is the key enzyme that orchestrates this process. The activation of PARP-1 is an easily detectable sign of oxidative stress in the cells and tissues [39–41].
PARP-1 is the major isoform of poly(ADP-ribose) polymerases in the cells that mainly resides in the nucleus. It detects DNA strand breaks and plays a role in base excision repair by adding multiple ADP-ribose units to the DNA associated histone proteins using NAD+ as a substrate. It promotes DNA repair by recruiting components of the repair machinery and also by providing sequestered energy source for the repair in the form of ADP-ribose. Poly(ADP-ribose) (PAR) induces conformation changes in the DNA due to its negative charge, which may serve as a surface for interaction in DNA repair. The removal of PAR is catalyzed by poly(ADP-ribose) glycohydrolase (PARG), an enzyme that is mainly localized to the cytoplasm and needs to translocate to the nucleus to counteract PARP.
While the far-reaching activity of PARP-1 in DNA repair suggests that it is essential for DNA integrity and cell survival, PARP-1 knockout mice are viable and do not exhibit high susceptibility for spontaneous tumour development [42]. There is no human ‘PARP-1 deficiency syndrome’. Single nucleotide polymorphisms of the PARP gene have been identified, but only few studies found association with functional changes and increased risk of cancer, nephritis or arthritis [43–46]. DNA repair processes possibly rely on redundant actions of many other components or PARP-1 is substituted by other PARP isoforms [47, 48]. On the other hand, the principal role of PARP-1 is indisputable in cell metabolism and oxidative stress-induced cell death.
In oxidative stress, the enzyme is capable of over-activation by creating huge branching PAR polymers within minutes, thereby depleting the available NAD+ pool of the cells and causing energetic failure [40, 49, 50]. Inhibition of PARP activity prevents necrotic cell death in oxidative stress and promotes cell survival and apoptosis, a favourable cell death form. During apoptosis PARP is inactivated by caspase cleavage that dissociates the DNA binding and catalytic domains of PARP and prevents PARP activation by DNA strand breaks. Apart from caspases, various proteases (cathepsin, calpain, granzyme B) may inactivate PARP by proteolytic cleavage following OGD or hypoxia injury [2]. PARP also catalyzes its self-PARylation and this auto-modification reduces the catalytic activity of the enzyme, thus, it also serves as a control of its activity. It was suggested that other post-translational modifications of the enzyme (phosphorylation, acetylation) are also implicated in the regulation of PARP activity [49, 51].
PARP also regulates gene transcription via interacting with other transcription factors or by directly binding to promoter regions to control cellular metabolism [52, 53]. Among others, the PAR-degrading enzyme PARG, the nuclear NAD+ synthesis enzyme NMNAT-1 and Nuclear Respiratory Factor 1, which activates the expression of metabolic genes regulating cellular growth and mitochondrial respiration, were identified as PARP interactors [53–56]. The interplay between PARP-1 and the NAD+ biosynthesis enzyme NMNAT-1 is particularly interesting because it suggests that under baseline conditions the nuclear NAD+ utilization and recycling are fully coupled processes [54, 57].
PARP activation may cause mitochondrial dysfunction in cells exposed to oxidative stress that is best characterized by reduced mitochondrial reserve capacity [58]. The cellular NAD+ pool is compartmentalized within the cells and since the NAD+ pools are non-exchangeable between the nucleus and the mitochondria [22], the PARP-mediated nuclear NAD+ depletion may develop mitochondrial failure via prior depletion of the cytoplasmic NAD+ pool and inhibition of glycolysis. There seems to be a competition for substrate between PARP-1 and other NAD+ -consuming enzymes including the sirtuins [40, 59]. The sirtuin family members use NAD+ for their deacetylation function and are mainly implicated in the regulation of glucose and lipid metabolism [59, 60]. The various sirtuins show distinct intracellular localization profile, Sirt1, Sirt6 and Sirt7 are predominantly nuclear proteins [59]. While PARP and sirtuins share their common substrate, the NAD+ consumption by sirtuins is hardly comparable to that of PARP, thus competition for substrate has little impact on PARP activity. Still Sirt1 may affect the action of PARP-1 via direct interaction of the two proteins and by modulating PARP activity via deacetylation [61]. On the other hand, the nuclear sirtuins are possibly affected by PARP1-mediated NAD+ consumption under oxidative stress, since the lack of PARP-1 increases Sirt-1 activity and stimulates the mitochondrial metabolism [62]. Thus, it suggests that sirtuins and especially Sirt-1 may play a role in PARP-mediated mitochondrial suppression, as PARP-mediated NAD+ consumption decreases Sirt-1 activity and mitochondrial metabolism.
PARP-1 activation is generally associated with necrotic cell death, but PARP-1 may be involved in other cell death forms. The obligatory trigger of PARP activation is DNA single strand break, which can be induced by a variety of oxidants. In pathophysiological conditions, reactive species capable of inducing DNA strand breakage, and thereby PARP activation, include hydroxyl radical, nitroxyl radical, as well as peroxynitrite (a reactive oxidant produced from the reaction of nitric oxide and superoxide) [63–65]. In response to DNA damage, PARP becomes activated and, using NAD+ as a substrate, catalyzes the building of homopolymers of adenosine diphosphate ribose units. Depending of the severity of DNA damage this process can be overwhelming and it may deplete the cellular NAD+ and ATP pools and can eventually lead to cell death via the necrotic route [39]. Hypoxia- or OGD-reoxygenation injury predisposes the cells to PARP-1 mediated NAD+ depletion: lower level of oxidative stress and PARP-1 activity can exhaust the cellular NAD+ pool and lead to necrosis (Figure 5).
The mechanism of energetic failure in hypoxia-reoxygenation injury. The events of hypoxia/OGD-reoxygenation injury leading to ATP depletion with the contribution of PARP labelled in red.
The activation of PARP-1 is a regulated process and the enzyme also plays an important role in programmed cell death forms [66, 67]. PARP-1 activity level depends on the severity of oxidative stress, and its high catalytic activity is necessary to promote immediate DNA repair. This protective mechanism helps maintain genome integrity: the ADP-ribose units provide energy source for base excision repair and the negatively charged polymer recruits other repair proteins to the site of the damage [68]. Low level of PARP activity is always detectable, and it is associated with normal gene expression and physiological maintenance of DNA integrity. Severe DNA damage that occurs under pathological conditions induces excessive activation of the enzyme that can rapidly deplete the cellular NAD+ content. Less severe oxidative damage can induce moderate PARP activation to restore the DNA integrity and if the repair process is unsuccessful, apoptosis may be induced [39, 40, 66]. The apoptotic process follows the intrinsic or mitochondrial pathway in this case [69], and it requires a nuclear-to-mitochondrial signal for initiation. The signalling molecules have not been unequivocally identified, but PARP-1 and the PAR polymer might be directly involved in this process [70]. PARP-1 can generate large PAR polymers that may escape from the nucleus. The PAR polymer itself can induce membrane damage, mitochondrial depolarization and apoptosis-inducing factor (AIF) release [70]. AIF released from the mitochondria translocates to the nucleus and plays a role in cell death progression [71]. This PAR-mediated cell death program is occasionally discriminated from necrosis and apoptosis as parthanatos, a distinct cell death form [70]. Triggering of the mitochondrial apoptotic signal leads to caspase activation, which becomes detectable 1 hour following the start of reoxygenation and remains elevated for several hours in hypoxia-reoxygenation injury [2]. During apoptosis caspase cleavage inactivates PARP-1 by removing the catalytic region of the protein from the DNA binding region to avoid unnecessary NAD+ consumption caused by the fragmented DNA [72].
PARP-1 itself can exit the nucleus in oxidative stress and interact with cytoplasmic or mitochondrial proteins [4]. Thereby, PARP-1 can have direct access to the cytoplasmic or mitochondrial NAD+ pools and can PARylate cytoplasmic and mitochondrial proteins [73]. In this process, the PAR-binding E3 ubiquitin ligase RNF146 (ring finger protein 146, dactylidin also named Iduna) is involved [74–76], which can capture the PARP-1 protein and promote its ubiquitination and proteasomal degradation [4]. RNF146 was discovered as a neuroprotective gene product that when over-expressed exerted protection against NMDA excitotoxicity and MNNG-induced PARP-1 dependent cell death
Post-hypoxic cells show increased sensitivity to oxidant-induced cellular injury due to (1) diminished ATP and NAD+ pools, (2) low mitochondrial metabolic output and (3) reduced antioxidant capacity. Hypoxia and glucose deprivation decrease the intracellular concentrations of ATP and NAD+ that greatly reduce the tolerance to cytotoxic injuries since they are associated with enhanced energy consumption. Oxidant-induced cellular damage is further aggravated by the diminished NAD+ and ATP synthesis due to mitochondrial dysfunction and restricted glycolytic capacity. The exposure to low oxygen atmosphere induces down-regulation of antioxidant genes that reduces the buffering capacity during the reoxygenation phase [85, 86]. Changes in oxygen supply are detected via reduced levels of oxidants and hypoxia-inducible factor-α (HIF-1α) is responsible for transcriptional regulation of the antioxidant enzymes [87, 88]. The diminished scavenging capability and the higher oxidant generation during the recovery period greatly reduce the tolerance to oxidants. Overall, these factors increase the vulnerability of the cells and oxidants can induce devastating damage during the reoxygenation period.
The cells may be treated with exogenous oxidants following the
Hypoxia and OGD increases the sensitivity to exogenous oxidants. H9c2 cells were subjected to 8-hour-long hypoxia/OGD or GD, and then following the normalization of glucose concentration and oxygen tension the cells were exposed to various concentrations of H2O2 for 3 hours. (A and B) The viability of the cells was evaluated by the MTT assay. (C and D) LDH activity was measure in the supernatant. Non-linear curve-fitting was applied to the raw data (A and C) and the concentration of H2O2 that caused 50% reduction in the viability (B) or 50% increase in the LDH release (D) are shown. GD and OGD resulted in narrower range of H2O2 tolerance (steeper curves). From Ref. [
In drug discovery, the ultimate goal of using
Interventions that reduce the cellular damage in hypoxia-reoxygenation injury and enhance recovery following hypoxia or OGD exposure may target (1) the metabolism and energy resources, (2) the oxidative stress pathways and antioxidant responses or (3) the proteasome and proteolytic activity. Apart from these universal cellular targets, some tissue-specific receptors were also found to have beneficial effects in some models. Energy replenishment using adenosine or inosine is effective in various cell types exposed to OGD injury since the pentose part of these nucleosides can be anaerobically metabolized through the pentose phosphate pathway [1–3]. Purine nucleosides are preferable to glucose in hypoxia since their metabolism can produce more ATP molecules than glycolysis and their utilization is more effective at low concentrations. Furthermore, they possess anti-inflammatory and weak PARP inhibitor activity that supports their activity
The hypoxia-reoxygenation model is a valuable tool in hypoxia and ischemia research that may be combined with other injury models to fully reproduce features of inflammatory and vascular diseases. This low-cost model does not require advanced research skills and may be optimized within a short time in the laboratory. The cellular damage mostly occurs as a consequence of energetic failure and shows necrotic characteristics in this model. Both the hypoxic phase and the post-hypoxic recovery period involve massive changes in the cellular metabolism: a characteristic suppression of mitochondrial energy production is caused by the lack of oxygen and later by the shortage of NAD+ supply. The recovery from this state is a delicate process that recreates the balance in cellular energetics.
D.G. received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme under the grant agreement number 628100.
Nowadays, the horticultural field is exploring with its various utilization. An ever-demanding market is going on with its various options. Vast cultivation in field level with fabulous export potential makes the horticultural product market more outstanding. The global horticultural market value about 20.77 billion USD was estimated in 2021 and targeted to 40.24 billion USD till 2026 [1]. From the kitchen to processing industry, the uses of horticultural product are remarkable today. With its flexibility of uses, problems also arise with various means. The by-products or wastes in horticultural point of view is getting worst day by day for lack of proper utilization not taken. Both developing and developed countries such as Bangladesh, Cambodia, India, Indonesia, Malaysia, Philippines, Thailand, and Vietnam are suffering from various environmental pollutions in concern with water, soil, and air pollution. The increasing trend of population is found to be the major cause of waste generation [2]. Increased population make wastes more usual in homestead generally produced by unnecessarily.
From the production of horticultural foods, various factors involve for the hazardous environmental appearance. Uncontrolled uses of pesticide and residual effects of various chemicals initiate the primary threats to nature by creating bad impact on the wildlife, soil, human, and animal communities [3]. Sometimes these chemicals (about 5–15%) that introduced in the global market for field management are counterfeit in nature [4]. The food wastes evolved in kitchen is noteworthy in many countries such as China, containing solid food wastes between 88% and 94% [5]. Processing industries greatly influence the environment pollution as so many by-products discarded to the environment from this sector while these by-products contain some high quantities of phytochemicals that can be reusable enough for the better disposal [6]. Massive climate issues arise from the undisposed waste available in the environment [7]. Greenhouse gases increases are also introduced in nature by the inappropriate waste disposal method. So, proper and alternative process of waste disposal is compulsory for economic viability and environmental stability.
Increasing the recycling and developing various disposal methods can ensure the proper mitigation of environmental pollution. The industrial and various sources of horticultural wastes are getting importance for its valuable compositions. Recycling can develop the new opportunities with commercial benefits. Biofuels, enzymes, vitamins, antioxidants, and various important chemicals are manufactured from the industrial wastes today. Waste to wealth can be the modern thought of waste disposal. The management of these wastes can be supervised by the government with its regular monitoring, because the waste disposal with its economic benefits can bring the sustainability for both environment and industrial concern [8].
The affluence of horticulture in industrial and environmental perspective is greatly significant today. Whereas there are some phenomena arising day by day with management and utilization of horticultural wastes. The nature of wastes in horticultural end is multidisciplinary. Some create chemical hazard; some are alarming for their biological and thermal point of view also. Postharvest handling and storage occur about 54% of wastes that is upstream, while 46% happens “downstream,” at the processing, distribution, and consumption stages [9]. These wastes disposal is our major concern in case of sustainable waste management.
The pragmatic scenario of waste evolving is associated with the increasing of population. With higher population, increasing rate demands the higher agricultural produce. In other words, more food demand may arise with the population increasing rate.
Agricultural production nowadays is more than three times than the last five decades [10]. With technological advancement, the productivity may increase in horticultural sectors also. On the contrary with the increasing productivity, it generates the higher quantities of wastes also. Some of them are green wastes, and some are recyclable solid wastes.
Mainly this sector may generate waste most in quantities. The whole process demands lots of intercultural operations such as training, pruning, thinning, earthing up, etc., of various fruits and vegetables can provide some wastes. For example, leaf residues, debris, dead leaves. However, these wastes sometimes added the additional organic matter in the soil. But if the maintenance is not sound enough in horticultural production chain, then the waste becomes burden for the environment. If we enlighten on the data (Table 1) given by Gmada et al. in 2019, according to their own supervision in the farm of Almeria, there are high amount of wastes distribution in various horticultural production systems. Greenhouses have the higher wastes in 39,215 ton out of 90,738 tons of total wastes, which is 43% of the total waste. Another approach of waste getting is disinfection having the second highest waste getting percentage that is 23%. So, there are different steps and period of waste getting and without waste management of horticultural products we the environment will be depleted day by day at the negative manner.
Function | Weight | Volume | ||
---|---|---|---|---|
t | % | m3 | % | |
Greenhouses | 39,215 | 43 | 49,798 | 27 |
Substrates | 1219 | 1 | 1598 | 1 |
Water storage | 576 | 1 | 730 | 0 |
Disinfection | 21,061 | 23 | 24,066 | 13 |
Shading | 10 | 0 | 10 | 0 |
Transplanting | 698 | 1 | 40,714 | 22 |
Tunnels | 2259 | 2 | 2429 | 1 |
Padding | 4900 | 5 | 5065 | 3 |
Supporting system | 6448 | 7 | 4891 | 3 |
Irrigation | 4967 | 5 | 20,760 | 11 |
Plant protection | 4034 | 4 | 17,333 | 9 |
Pollination | 2469 | 3 | 26 | 0 |
Harvesting | 2883 | 3 | 19,630 | 13 |
Total | 90,738 | 100 | 187,050 | 100 |
Annual distribution of waste according to their function of Almeria [11].
These wastes are generated from the continuous use of pesticides, insecticides, and herbicides during the cultivation. These are mainly solid wastes such as pesticides containers, bottles. The activities of using these types of chemicals in developing countries are mostly handled by the rural uneducated farmers. So, the disposal of these types of solid wastes usually gets ignorance by the farmers or the users. Such types of ignorance result in the degraded mode of the environmental balance. About 2% of pesticides usually remain unused in the containers, and then the disposal of these hazardous material is done by the throwing these into the nearest ponds or on the open field condition; the ultimate environmental issues may arise by this as food poisoning, water pollution, air pollution, etc., by this type of ignorance [12].
Postharvest food loss is any loss in physical weight, edibility, nutritional quality, caloric value, consumer adequacy happens between the period of reap and the time it reaches the consumer, while food waste is a subset of the food losses [13], and this might occur through human activity or inaction such as discarding produce, not consuming accessible food before its expiry date, or taking serving sizes beyond one’s ability to consume [14]. Horticultural crops are highly perishable products. As it is perishable so that handling and the maintenance are really tough. For this kind of phenomena, the developing countries are the real sufferers of this type of problems. Postharvest loss and wastes of perishable commodities in horticulture are up to 60% depending on the seasons, commodity, and the region of production [15]. So, the wastes after harvesting threaten the sustainable environmental security with environmental pollution. Postharvest loss is not the issue of reduction of food availability for the consumers; it may cause negative externalities to the societies with the increasing cost effect of waste management, greenhouse gas production, and loss of scarce resources used in production [16].
One part of the world’s population is struggling every day with the hunger and scarcity of food, whereas in some parts of the world, people waste food without thinking about the food security. Horticultural foods such as vegetables, fruits, and grain crops are wasted daily in our home and appear as the kitchen wastes. In America, horticultural wastages consist of fruits nearly 20%, vegetables 30%, others 25% [17]. General estimation of food waste annually is about trillion US dollars [18]. The whole world scenario is also alarming in this concern.
There are lots of food processing industries. These industries use some hazardous materials for food processing such as coloring agents, dyes, by-products such as banana peels, coconut husks, and other extraneous bioactive compounds phenols, flavonoids, flavanols, anthocyanins always evolved in the processing industries as by-products (Table 2). Heavy and rapid disposal is required for this kind of wastes. If it is not disposed with the time, then it will appear as a biggest threat for human survival and environmental balance. Higher emissions of pollutant make the environment more vulnerable. So, without utilizing these types of compounds it can be delectable enough to make our environment polluted.
Biowaste | Bioactive compounds |
---|---|
Avocado peel and seed | Phenols, carotenoids |
Tomato peel | Flavonols, phenolic acid, flanones, carotenoids |
Banana peel | Phenols, carotenoids, flavonols, flavonoids |
Mango peel and seed | Phenolic acids, flavonoids, flavonols, gallotanins, carotenoids, bioactive lipids |
Pineapple by products | Phenols, cinnamic acid, amino acids, proteins |
Citrus peel and seed | Flavonones |
Pomegranate peel and seed | Bioactive lipids, anthocyanins, ascorbic acid |
Orange peel | Phenolic acids |
Watermelon peel | Anthocyanins |
Apple peel | Flavonoids and anthocyanin |
Papaya peel | Carotenoids, amino acids, proteins |
Apple pomace | Flavonoid and anthocyanin |
Carrot pomace | Carotenoids |
Onion waste | Quercetin |
Red beet waste | Betalins |
Potato peel | Phenolic acids |
Tomato peel | Lycopene |
Environment day by day is threatened with the undisposed wastes derived from various sources of horticultural sectors, from both farming and industrial perspective. Air, water, and soil are major three components of the environment that get affected by the pollutants derived from the horticultural wastes.
Sometimes, we disposed some waste with the burning. But these types of waste management are not fruitful always as burning of crop stubbles possesses some hazardous emissions of many harmful gaseous components. As a result, the atmosphere represents monoxide, nitrogen oxide, nitrogen dioxide, sulfur dioxide, methane associated with other toxic hydrocarbons. These types of dangerous gases and particulate matters make a negative impact on air and are harmful for both human and animal health (Table 3) [21, 22, 23].
Category | Pollutantsx | Source |
---|---|---|
Particulates | SPM (PM100) | Incomplete combustion of in organic material, particle on burnt soil |
RPM (PM10) FPM (PM25) | Condensation after combustion of gases and incomplete combustion of organic matter | |
Gases | CO | Incomplete combustion of organic matter |
NO2 and N2O | Oxidation of N2 in air at high temperature | |
O3 | Secondary pollutant, form due to Nitrogen Oxide and Hydrocarbon | |
CH4/Benzene PAH5 | Incomplete combustion of organic matter Incomplete combustion of organic matter |
Major air pollutants emitted during crop residue burning [24].
SPM small particulate matter, PM particulate matter; FPM fine particulate matter.
Besides burning of crop stubbles, nitrous oxide is derived from microbial processes in cultivated soil and manures. Machineries used in crop cultivation require fuel combustion resulting in the rapid production of CO2. The ultimate result of air pollution leads to the temperature rising, ecological disbalance, and degradable sustainability of the environment.
Only the industrial solid wastes with heavy metals are not the headache for water contamination today. Agricultural wastes, more specifically the horticultural wastes within horticultural cultivation system and processing by-products, can hamper the water quality in various ways. Fertilizer and other pesticide chemicals are responsible for both ground and surface water contamination. Toxic trace elements make the essential nutrients unavailable, and beneficial soil-borne microorganisms become extinct. Water pollution pyramid (Figure 1) stated that groundwater use has become unsafe for the toxicity of the chemicals. Erosion, sedimentation, salinity are the typical after-effects of continuous cultivation system.
Water pollution pyramid [
Only agricultural field makes the water polluted about 70% worldwide [26]. Besides, different intercultural operations have the major influence in water contamination (Table 4).
Impacts | ||
---|---|---|
Farm activities | surface water | Groundwater |
Tillage/plowing | Sediment/turbidity: sediments carry phosphorus and pesticides adsorbed to sediment particles; siltation of river beds and loss of habitat, spawning ground, etc. | |
Fertilizing | Runoff of nutrients, especially phosphorus, leading to eutrophication causing taste and odor in public water supply, excess algae growth leading to deoxygenation of water and fish kills. | Leaching of nitrate to groundwater; excessive levels are a threat to public health |
Manure spreading | Carried out as a fertilizer activity; spreading on frozen ground results in high levels of contamination of receiving waters by pathogens, metals, phosphorus and nitrogen, leading to eutrophication and potential contamination | Contamination of groundwater, especially by nitrogen. |
Pesticides | Runoff of pesticides leads to contamination of surface water and biota; dysfunction of ecological system in surface waters by loss of top predators due to growth inhibition and reproductive failure; public health impacts from eating contaminated fish. Pesticides are carried as dust by wind over very long distances and contaminate aquatic systems thousands of miles away (e.g. tropical/subtropical pesticides found in Arctic mammals). | Some pesticides may leach into groundwater causing human health problems from contaminated wells. |
Feedlots/animal corrals | Contamination of surface water with many pathogens (bacteria, viruses, etc.) leading to chronic public health problems. Also, contamination by metals contained in urine and feces. | Potential leaching of nitrogen, metals, etc. to groundwater |
Irrigation | Runoff of salts leading to salinization of surface waters; runoff of fertilizers and pesticides to surface waters with ecological damage, bioaccumulation in edible fish species, etc. High levels of trace elements such as selenium can occur with serious ecological damage and potential human health impacts | Enrichment of groundwater with salts, nutrients (especially nitrate). |
Clear cutting | Erosion of land, leading to high levels of turbidity in rivers, siltation of bottom habitat, etc. Disruption and change of hydrologic regime, often with loss of perennial streams; causes public health problems due to loss of potable water. | Erosion of land, leading to high levels of turbidity in rivers, siltation of bottom habitat, etc. Disruption and change of hydrologic regime, often with loss of perennial streams; causes public health problems due to loss of potable water |
Wastes effect in different horticultural operation on water pollution [27].
Long-term fertilization and indecomposable plastics solid waste make the soil barren for the crop cultivation. Besides, some plant residues contain the toxic chemicals (secondary metabolites, volatile terpenes, phenolic compounds), which can suppress the growth and production of other crops. This type of phenomenon is addressed as crop-crop allelopathy. Postharvest residues are mainly the source of this kind of allelopathic effects [28].
Horticultural waste such as the peels, seeds, and other constituents of vegetables and fruits that contain high amount of phytochemical compounds and essential nutrients are used to produce different industrial products. It can be utilized to extract as well as obtain bioactive compounds that can be used in food, textile, and pharmaceutical industries as shown in Figure 2.
Utilization of fruits and vegetable peel-based waste into novel industrial products [
The techniques of horticultural wastes management consist of different applied strategies for different kinds of wastes. Generally chemical, biological, biofuels, and thermal strategies are followed throughout the world (Table 5).
From various by-products we find some starch, cellulose; where starch is a white granular, organic compound with soft, tasteless powdery appearance insoluble in cold water, alcohol or different solvents, and cellulose found by peeling of horticultural crops as it is available in primary cell wall of green plants [30] Amylose and amylopectin are the branched form of starch, whereas linear polymer is the simplest one [31] Starch nowadays is produced from banana peels, corn, pea, potato, cassava roots. Banana peels can be processed for bioplastic production and sometimes sodium metabisulfite used as antimicrobial agent, glycerol used for more flexibility. Degradation of bioplastics produced from starch starts after 3–4 months date of production [32] By this, starch-producing strategies can give the commercial aspects for many emerging entrepreneurships. This is also nonhazardous for the environment because it is readily disposable after a short period of time. Not only banana but also cassava will completely be degraded on the ninth day after production of bioplastic [33] On the contrary, plastic materials are nondegradable products that can hamper the balance of the environment. Cellulose sometimes coverts into starch or glucose by decomposing called cellulolysis with the help of microbes such as
Chemical | Biological | Biofuels | Thermal |
---|---|---|---|
|
|
|
|
Strategies for horticultural wastes management [19].
Food product | By-product | Formulation/Storage conditions | Dietary fiber/prebiotic compound | Optimal dosage (s) | Impact on senzorial characteristics | Other impacts |
---|---|---|---|---|---|---|
Cake | Potato peels | Powder (drying- > grinding) | Dietary fiber | 5% | No major changes in the product were noticed, just more darkness color. | Increasing the strength and elasticity of the dough. |
Donut | Carrot pomace | Powder (drying- > grinding- > sift) | Dietary fiber: pectin, lignin, cellulose, hemicellulose | 6.45% | The sample showed a smaller volume. Consumers have suggested adding a glaze. | Significant impairment of physico- chemical properties. |
Biscuits | Carrot pomace | Powder (whitening-grinding-sif) | Dietary fiber: pectin, lignin, cellulose, hemicellulose | 10% | — | Neutralization of free radicals |
Eriste (Turkish noodle) | Grapes, pomegranates, rosehips seeds | Powder (grinding- > sift) | Dietary fiber | 10% | The sample enriched with pomegranate seed powder obtained the highest appreciations from a sensory point of view. | Increase in antioxidant activity. |
Corn chips | Mango peels | Powder (freeze drying) | Dietary fiber | 10–15% | Improving and maintaining the smell, texture, color and aroma. | Increasing the content of total phenolic compounds. |
Ice cream | Red pitaya peels | Powder (grinding- > sift) | Dietary fiber: pectin, lignin, cellulose, hemicellulose | 1% | Melting rate and color were not affected. | Improving rheological qualities and increasing nutritional value. |
Ice cream | Grapefruit peels | Stem-shaped crystals | Nanofibril cellulose | 0.4% | Texture improvement. | Reducing caloric intake. |
Agitated type yogurt | Carrot pomace | Powder | Dietary fiber: pectin, lignin, cellulose, hemicellulose | 1% | The color and smell of the sample were affected and strawberry flavor was added to improve them. | Reducing syneresis. |
Chocolate | Grapes pomace | Powder (drying- > grinding- > sift) | Dietary fiber and prebiotic compound: lignin, cellulose, oligosaccha- ride | 3–5% | At a higher dosage there is a slightly bitter taste due to phenols. The greatest impact on the product occurred in the particle size. | Water activity and stability increased. |
Instant drinks | Mango peels | Powder (bleaching- > drying with hot air) | Prebiotic compound | 5 g/250 mL | During storage, the sensory characteristics decrease. | Improvement of phyto- chemical parameters and stability increases during storage. |
Vienna sausages | Pineapple pomace | Powder (pressure steaming− + lyophilized or hot air dried) | Dietary fiber: lignin, cellulose, hemicellulose | The educing effect on nitrites, moisture, shear strength and shrinkage was obtained in sausages, while carotenoids and antioxidant polyphenols increased. Increased | ||
Buffalo meat | Apple pomace | Powder | Dietary fiber: lignin, cellulose, hemicellulose | 6% | The firmness increased, and the color became redder and darker. | Cooking efficiency, water retention capacity, pasta diameter. |
Flour | Feijoa peels | Steam discoloration-rice bath- > drying in a convective oven- > grinding | Dietary fiber: lignin, cellulose, hemicellulose | — | — | Alternative source of bioactive ingredients. |
Powder | Olive pomace | Liquid-enriched pomace powder (the liquid fraction was lyophilized and the solid fraction was dried) | Dietary fiber: pectin, lignin, cellulose, hemicellulose | — | Food preservative and source of mannitol. |
Recent (last 5 years) report of utilization of fruits and vegetable wastes, dietary fibers, and prebiotic compounds in different food products [35].
Animal feed can be the good approach for productive waste disposal. That can provide manures, which influence reduction of synthetic fertilizer use tendency. Fermentation industries are established on the basis of wastes types (Table 7). This provides the ultimate economic outcome without creating the environment hazards in nature.
Plant origin | Fermentation industry |
---|---|
Bran | Grain |
Waste flour | Sugarcane industry (molasses, bagasse) |
Wastes from grain-cleaning process | Potato distillers soluble |
Wheat | Brewery waste |
Corn | Bacteria and fungi biomass |
Rye germs | Winemaking industry (grape pomace) |
By-products of oil industry | Citrus by-products (molasses, citrus-activated sludge) |
By-products of sugar and starch industry | Anthocyanins |
By-products of fruit and vegetable industry | Effluents from biogas production |
Plant by-products (husk and pods) | Dairy industry |
Horticultural wastes were used in animal feed [19].
Compost is most demandable nutrient source in the crop field. This approach allows growers to spend less money for their initial cultivation inputs. Also, higher yield will be observed by using compost instead of synthetic fertilizer [36]. Different types of composting methods are used on the basis of grower’s choice and wastes types (Figure 3).
Different composting methods [
Waste can be disposed through converting the wastes and by-products into biofuels. Bioethanol and biogas production nowadays appears as the most sustainable waste management program, which has some significant economic values.
Bioethanol can be processed through horticultural by-products such as carrot peels, banana peels, and other crops parts, which previously can be dried in the sun. The product can be ground and sieved for further processing. After that, the products can be pretreated with 1 N NaOH for 2 hours. Then draining or in other words alkali subsequent washing can be done. Enzymatic hydrolysis by cellulase enzyme leads to saccharification. Then the inoculation of
Flow chart for bioethanol production by cellulase enzyme [
The other way for wastes disposal as the biofuel source is biogas production. Nowadays we can see the rapid adaptation of this disposal system in our rural areas also.
In case of biofuel products, horticultural by-products can be utilized in effective way. Different content of organic matters can yield the sufficient amount of methane gas (Table 8).
Substrate | Organic dry matter in % | Methane yield in Nm3/t ODM |
---|---|---|
Banana peel | 87–94 | 243,322 |
Citrus waste | 89–97 | 433,732 |
Coriander waste | 80–86 | 283,325 |
Mango peel | 89–98 | 370–523 |
Oil palm fiber | 94 | 183 |
EFB | 79–84 | 200–400 |
Onion peels | 88 | 400 |
Pine apple waste | 93–95 | 355,357 |
Pomegranate | 87–97 | 312–430 |
Sapot peels | 96 | 244 |
Tomato waste | 93–98 | 211–384 |
Water hyacinth | 81 | 211–310 |
Coffee waste (pulp) | 380 (biogas yield) |
Biogas generation rate from the horticultural by-products [39].
Combustion of wastes materials to achieve waste to energy is called incineration. High-temperature thermal treatment converts wastes into ash, flue gas, and heat. It requires localized combined heat and power facilities to encourage its heating process. Japan, Denmark, Singapore, and Netherlands follow this technique usually to dispose the wastes [40]. This method can reduce wastes up to 90%; but this is one type of waste reduction process rather than the disposal process as it is associated with the fire disaster and production of greenhouse gases [41]. Energy produced as coal could save about 2.26 MT of CO2 eq/year [42].
Waste composition can determine the effectiveness of pyrolysis. It has several advantages comparing the incineration process. Lower temperature is preferable, and the plant for pyrolysis more flexible enough; product derived from pyrolysis can be converted through alternating the temperature and heating performance [43]. The pollutant emissions are lower in this disposal process as there is absence of oxygen and with low processing temperature, although emissions of other compounds simultaneously could increase with lower oxygen ratio [44]. Biochar production can be done by fruits and vegetable peels and other residues from, for example, spinach, bananas, peas, and tomatoes [45]. There are two types of pyrolysis, i.e., slow and fast. For biochar and gas production, slow pyrolysis is preferable, and bio-oil can be produced better in fast pyrolysis (Figure 5).
Bar diagram of pyrolysis produced product. (a) Fast pyrolysis and (b) slow pyrolysis [
It is obvious that waste disposal is not an easy task as it requires bigger margin of resources and right methods to minimize its after-effects. All the techniques or methods of repealing wastes are not efficient enough always. Food recovery hierarchy published by US EPA showed that there are different methods or approaches are proficient at different level. Landfilling and incineration (combustion of the waste materials) are the last resort of wastes disposal, because sometimes it is harmful for our environment. Soil pollution and abundance of toxic gases are visible by this kind of disposal system. Then the composting creates a nutrient-rich soil amendment. It requires specialized area away from the home, and it requires more time for disposal. Industrial uses of wastes are just above from the composting in that pyramid as it provides waste oils for rendering and duel conversion and food scraps for digestion to recover energy. Lots of commercial industries are developing today with the new hope with horticultural by-product establishing. Although some wastes also are considered developing the industries but commercial exposure may be spread rapidly. Main effective approach will be the source reduction and sometimes we waste food more than we consume so that extra food can be donated to food banks, shelters can reduce the possibility food wasting. Public awareness is the big thing for food waste management in horticultural sectors also (Figure 6).
Food recovery or management hierarchy [
Various environmental concerns and some economic benefits demand the appropriate disposal of horticultural wastes. Minimizing of wastes can maximize the environmental stability. However, people are not so aware about the impact of horticultural wastes. So, the proper awareness with the effective implementation of wastes is a crying need for today. Meanwhile, sustainability can be brought through adapting the modern disposal methods with longer effects and economic flexibility. In addition, the growth of the wastes disposal industries also gives the new dimension for the sustainable waste management. Finally, it can be enunciated that waste management provides green ecology, which can serve environmental stability with industrial prosperity.
IntechOpen implements a robust policy to minimize and deal with instances of fraud or misconduct. As part of our general commitment to transparency and openness, and in order to maintain high scientific standards, we have a well-defined editorial policy regarding Retractions and Corrections.
",metaTitle:"Retraction and Correction Policy",metaDescription:"Retraction and Correction Policy",metaKeywords:null,canonicalURL:"/page/retraction-and-correction-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\\n\\n1. RETRACTIONS
\\n\\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\\n\\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\\n\\nPublishing of a Retraction Notice will adhere to the following guidelines:
\\n\\n1.2. REMOVALS AND CANCELLATIONS
\\n\\n2. STATEMENTS OF CONCERN
\\n\\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\\n\\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\\n\\n3. CORRECTIONS
\\n\\nA Correction will be issued by the Academic Editor when:
\\n\\n3.1. ERRATUM
\\n\\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\\n\\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n3.2. CORRIGENDUM
\\n\\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\\n\\n4. FINAL REMARKS
\\n\\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\\n\\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\\n\\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\\n\\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\\n\\nPolicy last updated: 2017-09-11
\\n"}]'},components:[{type:"htmlEditorComponent",content:'IntechOpen’s Retraction and Correction Policy has been developed in accordance with the Committee on Publication Ethics (COPE) publication guidelines relating to scientific misconduct and research ethics:
\n\n1. RETRACTIONS
\n\nA Retraction of a Chapter will be issued by the Academic Editor, either following an Author’s request to do so or when there is a 3rd party report of scientific misconduct. Upon receipt of a report by a 3rd party, the Academic Editor will investigate any allegations of scientific misconduct, working in cooperation with the Author(s) and their institution(s).
\n\nA formal Retraction will be issued when there is clear and conclusive evidence of any of the following:
\n\nPublishing of a Retraction Notice will adhere to the following guidelines:
\n\n1.2. REMOVALS AND CANCELLATIONS
\n\n2. STATEMENTS OF CONCERN
\n\nA Statement of Concern detailing alleged misconduct will be issued by the Academic Editor or publisher following a 3rd party report of scientific misconduct when:
\n\nIntechOpen believes that the number of occasions on which a Statement of Concern is issued will be very few in number. In all cases when such a decision has been taken by the Academic Editor the decision will be reviewed by another editor to whom the author can make representations.
\n\n3. CORRECTIONS
\n\nA Correction will be issued by the Academic Editor when:
\n\n3.1. ERRATUM
\n\nAn Erratum will be issued by the Academic Editor when it is determined that a mistake in a Chapter originates from the production process handled by the publisher.
\n\nA published Erratum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n3.2. CORRIGENDUM
\n\nA Corrigendum will be issued by the Academic Editor when it is determined that a mistake in a Chapter is a result of an Author’s miscalculation or oversight. A published Corrigendum will adhere to the Retraction Notice publishing guidelines outlined above.
\n\n4. FINAL REMARKS
\n\nIntechOpen wishes to emphasize that the final decision on whether a Retraction, Statement of Concern, or a Correction will be issued rests with the Academic Editor. The publisher is obliged to act upon any reports of scientific misconduct in its publications and to make a reasonable effort to facilitate any subsequent investigation of such claims.
\n\nIn the case of Retraction or removal of the Work, the publisher will be under no obligation to refund the APC.
\n\nThe general principles set out above apply to Retractions and Corrections issued in all IntechOpen publications.
\n\nAny suggestions or comments on this Policy are welcome and may be sent to permissions@intechopen.com.
\n\nPolicy last updated: 2017-09-11
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132763},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"8"},books:[{type:"book",id:"12073",title:"Solvents",subtitle:null,isOpenForSubmission:!0,hash:"d31c0b4deb8e2005ddefc42a4be8e451",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12073.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12074",title:"Updates on Titanium Dioxide",subtitle:null,isOpenForSubmission:!0,hash:"8642ed95890654474416a163e3236afb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12074.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12075",title:"Arsenic",subtitle:null,isOpenForSubmission:!0,hash:"a1156f4143737baa68f568837f9edc94",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12075.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12076",title:"Ruthenium",subtitle:null,isOpenForSubmission:!0,hash:"08bd1ab70c296e319165eb763b112e00",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12076.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12077",title:"Heavy Metals",subtitle:null,isOpenForSubmission:!0,hash:"bcf87da8936c737e7fdd61cdc825128e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12077.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Heterocycles",subtitle:null,isOpenForSubmission:!0,hash:"fcadb070d3dbdf21157b1290d9880c3e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12080",title:"Density Functional Theory",subtitle:null,isOpenForSubmission:!0,hash:"fcd6287912c74f409babc8937c6d0fd1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12080.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12288",title:"High Performance Liquid Chromatography",subtitle:null,isOpenForSubmission:!0,hash:"e4da091f5998b22c0f82cad58a344bf3",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12288.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12289",title:"Surfactants and Detergents",subtitle:null,isOpenForSubmission:!0,hash:"761fb919055b9f8ddf695a4c7e9be001",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12289.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12290",title:"Electrochemiluminescence",subtitle:null,isOpenForSubmission:!0,hash:"7a3bf39f9a3f87b0697d6855ab2d695b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12290.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12293",title:"Cobalt",subtitle:null,isOpenForSubmission:!0,hash:"c841e0833d63ee0f5962a22defe6d0b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12293.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12295",title:"Noble Gases",subtitle:null,isOpenForSubmission:!0,hash:"ef0dbba5426cbb55e8b0150ff3642aae",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12295.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:41},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:32},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:106},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:8},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:17},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"42",title:"Alimentology",slug:"alimentology",parent:{id:"6",title:"Biochemistry, Genetics and Molecular Biology",slug:"biochemistry-genetics-and-molecular-biology"},numberOfBooks:13,numberOfSeries:0,numberOfAuthorsAndEditors:283,numberOfWosCitations:135,numberOfCrossrefCitations:137,numberOfDimensionsCitations:255,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"42",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",isOpenForSubmission:!1,hash:"8b43add5389ba85743e0a9491e4b9943",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",editedByType:"Edited by",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11021",title:"B-Complex Vitamins",subtitle:"Sources, Intakes and Novel Applications",isOpenForSubmission:!1,hash:"ad50bc292cda8d24f11aef2f5ef88f51",slug:"b-complex-vitamins-sources-intakes-and-novel-applications",bookSignature:"Jean Guy LeBlanc",coverURL:"https://cdn.intechopen.com/books/images_new/11021.jpg",editedByType:"Edited by",editors:[{id:"67023",title:"Dr.",name:"Jean Guy",middleName:null,surname:"LeBlanc",slug:"jean-guy-leblanc",fullName:"Jean Guy LeBlanc"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",isOpenForSubmission:!1,hash:"6c3ddcc13626110de289b57f2516ac8f",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",editedByType:"Edited by",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10631",title:"Vitamin D",subtitle:null,isOpenForSubmission:!1,hash:"34a58a10957f49842f0b13d78ccacb09",slug:"vitamin-d",bookSignature:"Öner Özdemir",coverURL:"https://cdn.intechopen.com/books/images_new/10631.jpg",editedByType:"Edited by",editors:[{id:"62921",title:"Dr.",name:"Öner",middleName:null,surname:"Özdemir",slug:"oner-ozdemir",fullName:"Öner Özdemir"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7038",title:"Vitamin D Deficiency",subtitle:null,isOpenForSubmission:!1,hash:"ba24f0913341357b0779ff9529c4bbfc",slug:"vitamin-d-deficiency",bookSignature:"Julia Fedotova",coverURL:"https://cdn.intechopen.com/books/images_new/7038.jpg",editedByType:"Edited by",editors:[{id:"269070",title:"Prof.",name:"Julia",middleName:null,surname:"Fedotova",slug:"julia-fedotova",fullName:"Julia Fedotova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8594",title:"Fads and Facts about Vitamin D",subtitle:null,isOpenForSubmission:!1,hash:"1731029867f0d79c633e3408fc03ebd2",slug:"fads-and-facts-about-vitamin-d",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/8594.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,isOpenForSubmission:!1,hash:"dad04a658ab9e3d851d23705980a688b",slug:"vitamin-a",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",editedByType:"Edited by",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7033",title:"Vitamin C",subtitle:"an Update on Current Uses and Functions",isOpenForSubmission:!1,hash:"719a5742e3271393fe43864e13e996cd",slug:"vitamin-c-an-update-on-current-uses-and-functions",bookSignature:"Jean Guy LeBlanc",coverURL:"https://cdn.intechopen.com/books/images_new/7033.jpg",editedByType:"Edited by",editors:[{id:"67023",title:"Dr.",name:"Jean Guy",middleName:null,surname:"LeBlanc",slug:"jean-guy-leblanc",fullName:"Jean Guy LeBlanc"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7263",title:"Vitamin E in Health and Disease",subtitle:null,isOpenForSubmission:!1,hash:"6bd8e547b4f3ad7f1675a36b8dbde8f2",slug:"vitamin-e-in-health-and-disease",bookSignature:"Jose Antonio Morales-Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/7263.jpg",editedByType:"Edited by",editors:[{id:"109774",title:"Dr.",name:"Jose Antonio",middleName:null,surname:"Morales-Gonzalez",slug:"jose-antonio-morales-gonzalez",fullName:"Jose Antonio Morales-Gonzalez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6709",title:"B Group Vitamins",subtitle:"Current Uses and Perspectives",isOpenForSubmission:!1,hash:"f34959a0fcc33a2c6fb3d03e9ec544bf",slug:"b-group-vitamins-current-uses-and-perspectives",bookSignature:"Jean Guy LeBlanc and Graciela Savoy de Giori",coverURL:"https://cdn.intechopen.com/books/images_new/6709.jpg",editedByType:"Edited by",editors:[{id:"67023",title:"Dr.",name:"Jean Guy",middleName:null,surname:"LeBlanc",slug:"jean-guy-leblanc",fullName:"Jean Guy LeBlanc"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6549",title:"Genotyping",subtitle:null,isOpenForSubmission:!1,hash:"6eb6c927e6cba4965ea3bbf741f82911",slug:"genotyping",bookSignature:"Ibrokhim Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/6549.jpg",editedByType:"Edited by",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5940",title:"Vitamin C",subtitle:null,isOpenForSubmission:!1,hash:"e23e79359167bb9d4a53edd78c7b5038",slug:"vitamin-c",bookSignature:"Amal H. Hamza",coverURL:"https://cdn.intechopen.com/books/images_new/5940.jpg",editedByType:"Edited by",editors:[{id:"188326",title:"Associate Prof.",name:"Amal",middleName:null,surname:"Hamza",slug:"amal-hamza",fullName:"Amal Hamza"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:13,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"56013",doi:"10.5772/intechopen.69660",title:"Vitamin C: An Antioxidant Agent",slug:"vitamin-c-an-antioxidant-agent",totalDownloads:7736,totalCrossrefCites:23,totalDimensionsCites:51,abstract:"Vitamin C or ascorbic acid (AsA) is a naturally occurring organic compound with antioxidant properties, found in both animals and plants. It functions as a redox buffer which can reduce, and thereby neutralize, reactive oxygen species. It is a cofactor for enzymes involved in regulating photosynthesis, hormone biosynthesis, and regenerating other antioxidants; which also regulates cell division and growth, is involved in signal transduction, and has roles in several physiological processes, such as immune stimulation, synthesis of collagen, hormones, neurotransmitters, and iron absorption, has also roles in detoxifying the body of heavy metals. Severe deficiency of vitamin C causes scurvy, whereas limited vitamin C intake causes symptoms, such as increased susceptibility to infections, loosening of teeth, dryness of the mouth and eyes, loss of hair, dry itchy skin, fatigue, and insomnia. In contrast, vitamin C can also act as a prooxidant, especially in the presence of transition metals, such as iron and copper, starting different hazardous radical reactions. Vitamin C can both act as a strong, efficient, and cheap antioxidant agent and, at the same time, behave as a radical promoter. Further investigations are needed to illuminate the dual roles of vitamin C",book:{id:"5940",slug:"vitamin-c",title:"Vitamin C",fullTitle:"Vitamin C"},signatures:"Fadime Eryılmaz Pehlivan",authors:[{id:"200567",title:"Dr.",name:"Fadime",middleName:null,surname:"Eryılmaz Pehlivan",slug:"fadime-eryilmaz-pehlivan",fullName:"Fadime Eryılmaz Pehlivan"}]},{id:"56440",doi:"10.5772/intechopen.70162",title:"Vitamin C: Sources, Functions, Sensing and Analysis",slug:"vitamin-c-sources-functions-sensing-and-analysis",totalDownloads:6314,totalCrossrefCites:13,totalDimensionsCites:25,abstract:"Vitamin C is a water-soluble compound found in living organisms. It is an essential nutrient for various metabolism in our body and also serves as a reagent for the preparation of many materials in the pharmaceutical and food industry. In this perspective, this chapter can develop interest and curiosity among all practicing scientists and technologists by expounding the details of its sources, chemistry, multifunctional properties and applications.",book:{id:"5940",slug:"vitamin-c",title:"Vitamin C",fullTitle:"Vitamin C"},signatures:"Sudha J. Devaki and Reshma Lali Raveendran",authors:[{id:"187911",title:"Associate Prof.",name:"Sudha",middleName:null,surname:"J Devaki",slug:"sudha-j-devaki",fullName:"Sudha J Devaki"},{id:"204937",title:"Mrs.",name:"Reshma",middleName:null,surname:"Laly Ravindran",slug:"reshma-laly-ravindran",fullName:"Reshma Laly Ravindran"}]},{id:"50921",doi:"10.5772/63712",title:"Menaquinones, Bacteria, and Foods: Vitamin K2 in the Diet",slug:"menaquinones-bacteria-and-foods-vitamin-k2-in-the-diet",totalDownloads:3264,totalCrossrefCites:10,totalDimensionsCites:21,abstract:"Vitamin K2 is a collection of isoprenologues that mostly originate from bacterial synthesis, also called menaquinones (MKs). Multiple bacterial species used as starter cultures for food fermentation are known to synthesize MK. Therefore, fermented food is the best source of vitamin K2. In the Western diet, dairy products are one of the best known and most commonly consumed group of fermented products.",book:{id:"5169",slug:"vitamin-k2-vital-for-health-and-wellbeing",title:"Vitamin K2",fullTitle:"Vitamin K2 - Vital for Health and Wellbeing"},signatures:"Barbara Walther and Magali Chollet",authors:[{id:"184784",title:"Dr.",name:"Barbara",middleName:null,surname:"Walther",slug:"barbara-walther",fullName:"Barbara Walther"},{id:"188194",title:"Mrs.",name:"Magali",middleName:null,surname:"Chollet",slug:"magali-chollet",fullName:"Magali Chollet"}]},{id:"66098",doi:"10.5772/intechopen.84445",title:"Golden Rice: To Combat Vitamin A Deficiency for Public Health",slug:"golden-rice-to-combat-vitamin-a-deficiency-for-public-health",totalDownloads:3302,totalCrossrefCites:12,totalDimensionsCites:17,abstract:"Vitamin A deficiency (VAD) has been recognised as a significant public health problem continuously for more than 30 years, despite current interventions. The problem is particularly severe in populations where rice is the staple food and diversity of diet is limited, as white rice contains no micronutrients. Golden Rice is a public-sector product designed as an additional intervention for VAD. There will be no charge for the nutritional trait, which has been donated by its inventors for use in public-sector rice varieties to assist the resource poor, and no limitations on what small farmers can do with the crop—saving and replanting seed, selling seed and selling grain are all possible. Because Golden Rice had to be created by introducing two new genes—one from maize and the other from a very commonly ingested soil bacterium—it has taken a long time to get from the laboratory to the field. Now it has been formally registered as safe as food, feed, or in processed form by four industrialised counties, and applications are pending in developing countries. The data are summarised here, and criticisms addressed, for a public health professional audience: is it needed, will it work, is it safe and is it economic? Adoption of Golden Rice, the next step after in-country registration, requires strategic and tactical cooperation across professions, non-governmental organisations (NGOs) and government departments often not used to working together. Public health professionals need to play a prominent role.",book:{id:"7978",slug:"vitamin-a",title:"Vitamin A",fullTitle:"Vitamin A"},signatures:"Adrian Dubock",authors:[{id:"273220",title:"Ph.D.",name:"Adrian",middleName:null,surname:"Dubock",slug:"adrian-dubock",fullName:"Adrian Dubock"}]},{id:"62836",doi:"10.5772/intechopen.79350",title:"The Role of Thiamine in Plants and Current Perspectives in Crop Improvement",slug:"the-role-of-thiamine-in-plants-and-current-perspectives-in-crop-improvement",totalDownloads:1533,totalCrossrefCites:7,totalDimensionsCites:11,abstract:"Current research is focusing on selecting potential genes that can alleviate stress and produce disease-tolerant crop variety. The novel paradigm is to investigate the potential of thiamine as a crop protection molecule in plants. Thiamine or vitamin B1 is important for primary metabolism for all living organisms. The active form, thiamine pyrophosphate (TPP), is a cofactor for the enzymes involved in the synthesis of amino acids, tricarboxylic acid cycle and pentose phosphate pathway. Recently, thiamine is shown to have a role in the processes underlying protection of plants against biotic and abiotic stresses. The aim of this chapter is to review the role of thiamine in plant growth and disease protection and also to highlight that TPP and its intermediates are involved in management of stress. The perspectives on its potential for manipulating the biosynthesis pathway in crop improvement will also be discussed.",book:{id:"6709",slug:"b-group-vitamins-current-uses-and-perspectives",title:"B Group Vitamins",fullTitle:"B Group Vitamins - Current Uses and Perspectives"},signatures:"Atiqah Subki, Aisamuddin Ardi Zainal Abidin and Zetty Norhana\nBalia Yusof",authors:[{id:"240031",title:"Dr.",name:"Zetty-Norhana Balia",middleName:null,surname:"Yusof",slug:"zetty-norhana-balia-yusof",fullName:"Zetty-Norhana Balia Yusof"},{id:"261167",title:"Mr.",name:"Aisamuddin Ardi",middleName:null,surname:"Zainal Abidin",slug:"aisamuddin-ardi-zainal-abidin",fullName:"Aisamuddin Ardi Zainal Abidin"},{id:"261169",title:"Ms.",name:"Atiqah",middleName:null,surname:"Subki",slug:"atiqah-subki",fullName:"Atiqah Subki"}]}],mostDownloadedChaptersLast30Days:[{id:"56440",title:"Vitamin C: Sources, Functions, Sensing and Analysis",slug:"vitamin-c-sources-functions-sensing-and-analysis",totalDownloads:6321,totalCrossrefCites:13,totalDimensionsCites:25,abstract:"Vitamin C is a water-soluble compound found in living organisms. It is an essential nutrient for various metabolism in our body and also serves as a reagent for the preparation of many materials in the pharmaceutical and food industry. In this perspective, this chapter can develop interest and curiosity among all practicing scientists and technologists by expounding the details of its sources, chemistry, multifunctional properties and applications.",book:{id:"5940",slug:"vitamin-c",title:"Vitamin C",fullTitle:"Vitamin C"},signatures:"Sudha J. Devaki and Reshma Lali Raveendran",authors:[{id:"187911",title:"Associate Prof.",name:"Sudha",middleName:null,surname:"J Devaki",slug:"sudha-j-devaki",fullName:"Sudha J Devaki"},{id:"204937",title:"Mrs.",name:"Reshma",middleName:null,surname:"Laly Ravindran",slug:"reshma-laly-ravindran",fullName:"Reshma Laly Ravindran"}]},{id:"56013",title:"Vitamin C: An Antioxidant Agent",slug:"vitamin-c-an-antioxidant-agent",totalDownloads:7743,totalCrossrefCites:23,totalDimensionsCites:51,abstract:"Vitamin C or ascorbic acid (AsA) is a naturally occurring organic compound with antioxidant properties, found in both animals and plants. It functions as a redox buffer which can reduce, and thereby neutralize, reactive oxygen species. It is a cofactor for enzymes involved in regulating photosynthesis, hormone biosynthesis, and regenerating other antioxidants; which also regulates cell division and growth, is involved in signal transduction, and has roles in several physiological processes, such as immune stimulation, synthesis of collagen, hormones, neurotransmitters, and iron absorption, has also roles in detoxifying the body of heavy metals. Severe deficiency of vitamin C causes scurvy, whereas limited vitamin C intake causes symptoms, such as increased susceptibility to infections, loosening of teeth, dryness of the mouth and eyes, loss of hair, dry itchy skin, fatigue, and insomnia. In contrast, vitamin C can also act as a prooxidant, especially in the presence of transition metals, such as iron and copper, starting different hazardous radical reactions. Vitamin C can both act as a strong, efficient, and cheap antioxidant agent and, at the same time, behave as a radical promoter. Further investigations are needed to illuminate the dual roles of vitamin C",book:{id:"5940",slug:"vitamin-c",title:"Vitamin C",fullTitle:"Vitamin C"},signatures:"Fadime Eryılmaz Pehlivan",authors:[{id:"200567",title:"Dr.",name:"Fadime",middleName:null,surname:"Eryılmaz Pehlivan",slug:"fadime-eryilmaz-pehlivan",fullName:"Fadime Eryılmaz Pehlivan"}]},{id:"69402",title:"Vitamin D Deficiency and Diabetes Mellitus",slug:"vitamin-d-deficiency-and-diabetes-mellitus",totalDownloads:1536,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Vitamin D (VD) is a molecule that can be synthesized directly in the humans’ body or enter the organism with food in the form of inactive precursors. To exert its biological action, VD undergoes two-stage hydroxylation (at the 25th and 1st position) catalyzed by cytochromes P450, the presence of which has already been shown in almost all tissues of the human body. The product of hydroxylation is hormone-active form of vitamin D–1,25(OH)2D. 1,25(OH)2D binds to specific vitamin D receptor (VDR) and regulates the expression of genes involved in bone remodeling (classical function) and genes that control immune response, hormone secretion, cell proliferation, and differentiation (nonclassical functions). VD deficiency is prevalent around the globe and may be one of the key factors for diabetes development. The direct association between vitamin D deficiency and type 1 (T1D) and type 2 (T2D) diabetes has been proven. Detection of VDR in pancreas and adipose tissue, skeletal muscles, and immune cells allowed implying the antidiabetic role of vitamin D by enhancing insulin synthesis and exocytosis, increasing the expression of the insulin receptor, and modulating immune cells’ functions. This chapter summarizes data about relationship between VD insufficiency/deficiency and development of T1D and T2D, and their complications.",book:{id:"7038",slug:"vitamin-d-deficiency",title:"Vitamin D Deficiency",fullTitle:"Vitamin D Deficiency"},signatures:"Ihor Shymanskyi, Olha Lisakovska, Anna Mazanova and Mykola Veliky",authors:null},{id:"76108",title:"Vitamin D Metabolism",slug:"vitamin-d-metabolism",totalDownloads:417,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Vitamin D plays an important role in bone metabolism. Vitamin D is a group of biologically inactive, fat-soluble prohormones that exist in two major forms: ergocalciferol (vitamin D2) produced by plants in response to ultraviolet irradiation and cholecalciferol (vitamin D3) derived from animal tissues or 7-dehydrocholesterol in human skin by the action of ultraviolet rays present in sunlight. Vitamin D, which is biologically inactive, needs two-step hydroxylation for activation. All of these steps are of crucial for Vitamin D to show its effect properly. In this section, we will present vitamin D synthesis and its action steps in detail.",book:{id:"10631",slug:"vitamin-d",title:"Vitamin D",fullTitle:"Vitamin D"},signatures:"Sezer Acar and Behzat Özkan",authors:[{id:"29878",title:"Dr.",name:"Behzat",middleName:null,surname:"Özkan",slug:"behzat-ozkan",fullName:"Behzat Özkan"},{id:"348287",title:"Dr.",name:"Sezer",middleName:null,surname:"Acar",slug:"sezer-acar",fullName:"Sezer Acar"}]},{id:"50754",title:"Medicinal Chemistry of Vitamin K Derivatives and Metabolites",slug:"medicinal-chemistry-of-vitamin-k-derivatives-and-metabolites",totalDownloads:1867,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Vitamin K acts as a cofactor for γ‐glutamyl carboxylase. Recently, various biological activities of vitamin K have been reported. Anti‐proliferative activities of vitamin K, especially in vitamin K3, are well known. In addition, various physiological and pharmacological functions of vitamin K2, such as transcription modulators as nuclear steroid and xenobiotic receptor (SXR) ligands and anti‐inflammatory effects, have been revealed in the past decade. Characterization of vitamin K metabolites is also important for clinical application of vitamin K and its derivatives. In this chapter, recent progress on the medicinal chemistry of vitamin K derivatives and metabolites is discussed.",book:{id:"5169",slug:"vitamin-k2-vital-for-health-and-wellbeing",title:"Vitamin K2",fullTitle:"Vitamin K2 - Vital for Health and Wellbeing"},signatures:"Shinya Fujii and Hiroyuki Kagechika",authors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika"},{id:"180529",title:"Dr.",name:"Shinya",middleName:null,surname:"Fujii",slug:"shinya-fujii",fullName:"Shinya Fujii"}]}],onlineFirstChaptersFilter:{topicId:"42",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:25,totalDimensionsCites:0,doi:"10.5772/intechopen.103016",abstract:"Potassium is an essential cation critical in fluid and electrolyte balance, acid–base regulation, and neuromuscular functions. The normal serum potassium is kept within a narrow range of 3.5–5.2 meq/L while the intracellular concentration is approximately 140–150 meq/L. The total body potassium is about 45–55 mmol/kg; thus, a 70 kg male has an estimated ~136 g and 60 kg female has ~117 g of potassium. In total, 98% of the total body potassium is intracellular. Skeletal muscle contains ~80% of body potassium stores. The ratio of intracellular to extracellular potassium concentration (Ki/Ke) maintained by Na+/K+ ATPase determines the resting membrane potential. Disturbances of potassium homeostasis lead to hypo- and hyperkalemia, which if severe, can be life-threatening. Prompt diagnosis and management of these problems are important.",book:{id:"10794",title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg"},signatures:"Sairah Sharif and Jie Tang"},{id:"79194",title:"Potassium in Solid Cancers",slug:"potassium-in-solid-cancers",totalDownloads:120,totalDimensionsCites:0,doi:"10.5772/intechopen.101108",abstract:"Electrolyte disorders are a frequent finding in cancer patients. In the majority of cases the etiologies of such disorders are common to all cancer types (i.e. diuretic-induced hyponatremia or hypokalemia). Sometimes, electrolyte disorders are caused by paraneoplastic syndromes or are due to cancer therapy. Potassium is one of the most important electrolytes of the human body since it is involved in the regulation of muscle contraction, maintenance of the integrity of the skeleton, blood pressure and nerve transmission as well as in the normal function of cells. Potassium homeostasis is strictly regulated since the gap between the recommended daily dietary intake (120 mEq/day) and the levels stored in the extracellular fluid (around 70 mEq) is huge. Alterations of potassium homeostasis are frequent in cancer patients as well alterations in potassium channels, the transmembrane proteins that mediate potassium fluxes within the cells. The present chapter is focused on the clinical significance of potassium homeostasis and potassium channels in patients with solid tumors.",book:{id:"10794",title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg"},signatures:"Jessica Iorio, Lisa Lastraioli and Elena Lastraioli"},{id:"78820",title:"Potassium Homeostasis",slug:"potassium-homeostasis",totalDownloads:108,totalDimensionsCites:0,doi:"10.5772/intechopen.100368",abstract:"The average potassium intake in the United States population ranges from 90 to 120 mEq/day. About 98% of the total body’s potassium is intracellular, and only 2% is present in the extracellular compartment. This distributional proportion is essential for cellular metabolic reactions and maintaining a gradient for resting membrane potential. A loss of this gradient results in hyper- or hypopolarization of the cell membrane, especially in cardiac muscles leading to life-threatening arrhythmias. Multiple mechanisms in human maintain homeostasis. Transient initial changes are due to transcellular shifts activating sodium-potassium ATPase pumps on the cell membrane. The kidneys essentially take part in excess potassium excretion, maintaining total body stores constant within normal range. Gastrointestinal secretion of potassium is insignificant in individuals with normal renal function, however plays an essential role in individuals with compromised renal function. So far, a classic feedback mechanism was thought to maintain potassium homeostasis; however, a recently recognized feedforward mechanism acting independently also helps preserve potassium homeostasis. Hence, potassium homeostasis is vital for humans to function at a normal level.",book:{id:"10794",title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg"},signatures:"Shakuntala S. Patil and Sachin M. Patil"},{id:"78193",title:"Potassium and Cardiac Surgery",slug:"potassium-and-cardiac-surgery",totalDownloads:177,totalDimensionsCites:0,doi:"10.5772/intechopen.99735",abstract:"Potassium homeostasis affects cardiac rhythm and contractility, along with vascular reactivity and vascular smooth muscle proliferation. This chapter will focus on potassium dynamics during and after cardiac surgery involving cardioplegic arrest and cardiopulmonary bypass (CPB). Hyperkalemic, hypothermic solutions are frequently used to induce cardioplegic arrest and protect the heart during cardiac surgery involving CPB. Common consequences of hyperkalemic cardioplegic arrest and reperfusion include microvascular dysfunction involving several organ systems and myocardial dysfunction. Immediately after CPB, blood potassium levels often drop precipitously due to a variety of factors, including CPB -induced electrolyte depletion and frequent, long-term administration of insulin during and after surgery. Meanwhile, some patients with pre-existing kidney dysfunction may experience postoperative hyperkalemia following cardioplegia. Any degree of postoperative hyper/hypokalemia significantly elevates the risk of cardiac arrythmias and subsequent myocardial failure. Therefore, proper management of blood potassium levels during and after cardioplegia/CPB is crucial for optimizing patient outcomes following cardiac surgery.",book:{id:"10794",title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg"},signatures:"Shawn Kant, Frank W. Sellke and Jun Feng"}],onlineFirstChaptersTotal:4},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11675",title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",hash:"e1d9662c334dd78ab35bfb57c3bf106e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 19th 2022",isOpenForSubmission:!0,editors:[{id:"281317",title:"Dr.",name:"Fabio",surname:"Iannotti",slug:"fabio-iannotti",fullName:"Fabio Iannotti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11677",title:"New Insights in Mammalian Endocrinology",coverURL:"https://cdn.intechopen.com/books/images_new/11677.jpg",hash:"c59dd0f87bbf829ca091c485f4cc4e68",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"321396",title:"Prof.",name:"Muhammad Subhan",surname:"Qureshi",slug:"muhammad-subhan-qureshi",fullName:"Muhammad Subhan Qureshi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11676",title:"Recent Advances in Homeostasis",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",hash:"63eb775115bf2d6d88530b234a1cc4c2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 10th 2022",isOpenForSubmission:!0,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:49,paginationItems:[{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81533",title:"Prenylation of Natural Products: An Overview",doi:"10.5772/intechopen.104636",signatures:"Kantharaju Kamanna and Aravind Kamath",slug:"prenylation-of-natural-products-an-overview",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kantharaju",surname:"Kamanna"}],book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:47,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:9,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:19,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",slug:"brain-computer-interface",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Vahid Asadpour",hash:"a5308884068cc53ed31c6baba756857f",volumeInSeries:9,fullTitle:"Brain-Computer Interface",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",institutionString:"Kaiser Permanente Southern California",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",slug:"data-mining-concepts-and-applications",publishedDate:"March 30th 2022",editedByType:"Edited by",bookSignature:"Ciza Thomas",hash:"63a4e514e537d3962cf53ef1c6b9d5eb",volumeInSeries:8,fullTitle:"Data Mining - Concepts and Applications",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10651",title:"Machine Learning",subtitle:"Algorithms, Models and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",slug:"machine-learning-algorithms-models-and-applications",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Jaydip Sen",hash:"6208156401c496e0a4ca5ff4265324cc",volumeInSeries:7,fullTitle:"Machine Learning - Algorithms, Models and Applications",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",institutionString:"Praxis Business School",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9869",title:"Self-Driving Vehicles and Enabling Technologies",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9869.jpg",slug:"self-driving-vehicles-and-enabling-technologies",publishedDate:"September 22nd 2021",editedByType:"Edited by",bookSignature:"Marian Găiceanu",hash:"fd451ca2e4785ef098e04b7d695a18d9",volumeInSeries:6,fullTitle:"Self-Driving Vehicles and Enabling Technologies",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9958",title:"Artificial Intelligence",subtitle:"Latest Advances, New Paradigms and Novel Applications",coverURL:"https://cdn.intechopen.com/books/images_new/9958.jpg",slug:"artificial-intelligence-latest-advances-new-paradigms-and-novel-applications",publishedDate:"September 1st 2021",editedByType:"Edited by",bookSignature:"Eneko Osaba, Esther Villar, Jesús L. Lobo and Ibai Laña",hash:"39648fbfdaa11385097d62b1f13aad54",volumeInSeries:5,fullTitle:"Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications",editors:[{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",institutionString:"Tecnalia Research & Innovation",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Computational Neuroscience",value:23,count:1},{group:"subseries",caption:"Evolutionary Computation",value:25,count:1},{group:"subseries",caption:"Machine Learning and Data Mining",value:26,count:3},{group:"subseries",caption:"Applied Intelligence",value:22,count:4}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:2}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:null,institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"22",type:"subseries",title:"Applied Intelligence",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11418,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"13633",title:"Prof.",name:"Abdelhamid",middleName:null,surname:"Mellouk",slug:"abdelhamid-mellouk",fullName:"Abdelhamid Mellouk",profilePictureURL:"https://mts.intechopen.com/storage/users/13633/images/1567_n.jpg",institutionString:null,institution:{name:"Paris 12 Val de Marne University",institutionURL:null,country:{name:"France"}}},{id:"109268",title:"Dr.",name:"Ali",middleName:null,surname:"Al-Ataby",slug:"ali-al-ataby",fullName:"Ali Al-Ataby",profilePictureURL:"https://mts.intechopen.com/storage/users/109268/images/7410_n.jpg",institutionString:null,institution:{name:"University of Liverpool",institutionURL:null,country:{name:"United Kingdom"}}},{id:"3807",title:"Dr.",name:"Carmelo",middleName:"Jose Albanez",surname:"Bastos-Filho",slug:"carmelo-bastos-filho",fullName:"Carmelo Bastos-Filho",profilePictureURL:"https://mts.intechopen.com/storage/users/3807/images/624_n.jpg",institutionString:null,institution:{name:"Universidade de Pernambuco",institutionURL:null,country:{name:"Brazil"}}},{id:"38850",title:"Dr.",name:"Efren",middleName:null,surname:"Gorrostieta Hurtado",slug:"efren-gorrostieta-hurtado",fullName:"Efren Gorrostieta Hurtado",profilePictureURL:"https://mts.intechopen.com/storage/users/38850/images/system/38850.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},{id:"239041",title:"Prof.",name:"Yang",middleName:null,surname:"Yi",slug:"yang-yi",fullName:"Yang Yi",profilePictureURL:"https://mts.intechopen.com/storage/users/239041/images/system/239041.jpeg",institutionString:"Virginia Tech",institution:{name:"Virginia Tech",institutionURL:null,country:{name:"United States of America"}}}]},onlineFirstChapters:{paginationCount:0,paginationItems:[]},publishedBooks:{paginationCount:2,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:{title:"Infectious Diseases",id:"6"},selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/52510",hash:"",query:{},params:{id:"52510"},fullPath:"/chapters/52510",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()