-->, i.e., the wave vector transfer due to the scattering event, in the case of monochromatic X-rays with an incident wave vector
Due to the small incident and exit angles involved in the GISAXS geometry a description of the sample based on a mean refractive index is sufficient and basically scattering arises from the variations in refractive index Strictly, the responsible for the scattering events is the variation in electron density, which in a simplified manner is taken into account using a mean refractive index.
where
in which
Since diffuse scattering can be ascribed to changes in the refractive index any type of surface roughness or electronic contrast variation gives rise to diffuse scattering which contains the morphological information of the probed film.
On the other hand, in the case of X-rays the refractive index is less than unity, implying that total external reflection takes place for angles below the critical angle
The diffuse scattering at Experimentally, the Yoneda peak is found at Actually, the depth probed in GISAXS depends on both the incident and exit angles since it is defined as the inverse of the imaginary part of
where
Penetration depth for
From the scattering geometry alone, two major advantages of GISAXS over standard microscopic techniques are easily inferred. First, due to the small incident angle used, scattering comes from all the illuminated area within the X-ray footprint—in the order of several mm even for microfocus GISAXS (μGISAXS), i.e., GISAXS performed with X-ray beam sizes of few tenths of microns or lower in both the horizontal and vertical directions—thus providing information of statistical relevance. Second, information not only from the surface but also from buried structures is accessible simply by tuning the incident angle of the X-ray beam with respect to the sample surface normal.
The fact that GISAXS is performed at incident angles close to the critical angle implies that reflection on the surface can occur and thus multiple scattering effects take place. As a consequence the Born approximation (BA) is no longer valid and the diffuse scattering is typically analyzed within the framework of the distorted-wave Born approximation (DWBA) to account for reflection/refraction effects. Nevertheless, the basic concepts from the analysis of transmission scattering still apply, namely the use of a form factor and a structure factor. At present, several software packages are available for modeling of GISAXS data employing the DWBA [18–21].
In the simple BA, the form factor is the Fourier transform of the shape function of the scattering object
In the DWBA, for the case of a simple object located on a solid substrate, this form factor is replaced by the coherent sum of four terms to take into account different scattering events that involve the reflection of the incident or scattered X-ray beam on the substrate. In the more general case, transmission has to be taken into account and the Fresnel transmission coefficients appear also in the expression of the form factor. See, e.g., [22, 23].
being
Schematic representation of the four terms involved in the scattering of a supported object on a solid substrate. The scattering event is represented by the color change of the arrows.
The first term is the simple BA and for
where For this reason, the structure factor, Some of the more commonly applied are the Debye hard core interference function, the Gaussian pair correlation function, the gate-pair correlation function, the Lennard-Jones pair correlation function, etc. See [12] and references therein.
In highly diluted systems
Although sometimes useful for the analysis of horizontal line cuts—i.e., the intensity distribution as a function of
The simplest one is the so called decoupling approximation (DA) that assumes that there is no correlation between the kind of scattering object and its position. This approximation is usually applied when the size polydispersity is small or the surface density of scattering entities is low (Figure 4(a)).
Opposite to DA, when the polydispersity is high, a full correlation of the size of the scattering object and its position is assumed in the local monodisperse approximation (LMA). LMA considers that within the coherence length of the X-ray beam neighboring objects present the same size and shape, i.e., the polydisperse scattering objects are clustered in monodisperse domains whose scattering intensities are incoherently summed up (Figure 4(b)).
In between these extreme cases, the size-spacing correlation approximation (SSCA) [26] was developed to account for more realistic correlations between the size and separation of the scattering entities. Its formalism is derived from the paracrystal theory and introduces a partial correlation of sizes and positions in a probabilistic way. Shortly, within the SSCA, given a scattering object of distinct size and position and a description of the size polydispersity by a statistical function, the probability of finding neighboring objects of particular size and positions with respect to the first scattering object is obtained, considering a particular probability distribution. Thus, both size-dispersion and position disorder are propagated statistically along the arrangement of scattering entities and long-range order is gradually destroyed in a probabilistic way (Figure 4(c)).
Schematic representation of the size-space correlation of scattering entities within (a) the decoupling approximation (DA), (b) the local monodisperse approximation (LMA), and (c) the size-spacing correlation approximation (SSCA). In (b), the red dotted circles represent the coherent X-ray domains.
During the last decade or so, GISAXS has been established as a very powerful technique to reveal the kinetics of deposition processes for thin film preparation employing different approaches. In particular, GISAXS is strongly contributing to reveal the mechanism of thin film growth and self-assembly both for vacuum and wet deposition processes that are relevant not only from a fundamental point of view but also for technological development. GISAXS presents two decisive advantages over standard microscopic techniques for the investigation of the growth kinetics and self-assembly: first, it provides averaged information over a large sample area—the beam footprint on the sample—thus the information acquired is of statistical significance; second, time resolutions down to several milliseconds are accessible due to the high X-ray intensities offered by third-generation synchrotron sources and the development of fast 2D X-ray detectors, thus fast kinetic processes can be studied.
In this section, exemplary results will be presented illustrating the strong capabilities of in-situ time-resolved GISAXS for the investigation of the stages governing the kinetics of thin film growth and self-assembly, both phenomena of high importance to gain control over the processes so as to tune the thin film properties to the required functionality.
Vacuum deposition of nanostructured metallic films constitutes a very important technological and research field with applications ranging from coatings for antibacterial activity and catalysis to plasmonics, optoelectronics and sensors. In most cases, the morphology is closely related to the functionality of the film. Therefore, it is extremely important to achieve a deep understanding of the growth mechanism and morphological development of the nanostructures so as to allow for tailoring the nanostructured metallic thin film to the desired application.
In order to investigate in-situ vacuum deposition processes using GISAXS, deposition chambers have been specifically designed to be installed at synchrotron beamlines [27–29]. In addition, a growing amount of systems have been investigated during the last years—some examples can be found in [30–33] —from which, in the following, only some selected results will be discussed.
In-situ μGISAXS has been applied to study the sputter deposition process of both Au and Ag on SiO
(a) Selected 2D μGISAXS patterns during sputter deposition of Ag on SiO
The growth kinetics of Au during sputter deposition, apart from being of industrial and technological relevance, is of significant importance from a basic point of view. To simulate the complete 2D μGISAXS patterns along the deposition process, a geometrical model based on the 2D hexagonal paracrystalline arrangement of hemispherical clusters was developed [34] allowing for extracting important parameters such as the surface coverage, film porosity or cluster density, thus enabling to predict morphology-dependent properties of the thin film such as the optoelectronic response.
Since the growth of Ag on SiO
On the other hand, the deposition kinetics of Au on a quasi-regular hexagonal array of self-assembled cadmium selenide (CdSe) quantum dots has also been investigated by in-situ μGISAXS [36]. Opposite to the growth of Au and Ag on SiO
In-situ GISAXS has also contributed to shed light on an intriguing issue during the growth of metallic thin films, namely the influence of the chemical affinity between the metal and the substrate on the deposition kinetics and thin film morphology. This is highly important in the case of, e.g., the deposition of metallic electrodes on organic solar cells or light emitting diodes where, in some cases, the electrodes represent the limiting factor in device performance. The great capabilities of in-situ GISAXS studies for this purpose has been demonstrated during the sputter deposition of Al and Ag on tris(8-hydroxyquinolinato)aluminum (Alq3), a key material in organic light emitting diodes. Alq3 presents a strong chemical interaction with Al whereas it interacts weakly with Ag, which translates into different growth mechanisms. In the case of Al deposition, three different stages of growth were identified and modeling of the 2D patterns revealed the formation of Al nanopillars after diffusion of Al in Alq3 and subsequent metal complex agglomeration [37]. On the other hand, without diffusing into the Alq3 thin film, Ag presents a morphological transition from truncated sphere clusters to cylindrical nanostructures upon surpassing the Ag percolation threshold at an effective film thickness of 5.0 nm (Figure 6), which was attributed to the different Ag-Ag and Ag-Alq3 interactions [38].
Morphological transition in cluster shape upon surpassing the percolation threshold (effective film thickness of 5.0 nm) during sputter deposition of Ag on a 36.0 nm thick Alq3 film. (a–c) Experimental 2D μGISAXS pattern, simulated 2D μGISAXS pattern and geometrical model used to simulate the data, respectively, at an effective Ag film thickness of 1.0 nm. (d-f) Experimental 2D μGISAXS pattern, simulated 2D μGISAXS pattern and geometrical model used to simulate the data, respectively, at an effective Ag film thickness of 7.6 nm. In both cases, the DWBA and the LMA were employed to simulate the scattering patterns. Adapted and reprinted with permission from Yu et al. [
The differences in metal interaction and nanocluster diffusion coefficient on different materials can be exploited to tailor the thin film morphology. In this sense, an interesting approach consists in employing polymer thin films as templates in the nanoscale, given the known ability of block copolymers to spontaneously form nanostructures due to phase segregation. In general, when employing vacuum deposition of metals on organic thin films, in a first deposition stage, the metal diffuse into the film which influences the subsequent growth kinetics and, in the case of block copolymers, a selective wetting of the metal on one of the domains is commonly observed, which is ascribed not only to the different metal-polymer interaction but also to the differences in metal diffusion in each of the blocks. From in-situ μGISAXS measurements, the surface diffusion coefficient of Au on polystyrene (PS) has been extracted and a correlation of the developed Au morphology with the optical properties of the film could be achieved by combining μGISAXS with real-time UV-Vis spectroscopic measurements during the growth [39].
On the other hand, Metwalli et al. [40] have taken advantage of the selective wetting of Co on spontaneously nanostructured polystyrene-block-poly(ethylene oxide) (PS-b-PEO) to prepare ordered Co nanoclusters along highly oriented PS domains. The morphology of the polymer thin film consisted of alternating highly oriented crystalline PEO and PS domains with a periodicity of around 30 nm and the in-situ GISAXS experiments demonstrated that selective wetting occurred below the Co thin film percolation threshold. They also elucidated the growth kinetics of Co on the block co-polymer nanostructured template.
A thorough study on the nanostructure development of transition metals on a PS-b-PEO template has also been recently reported [41]. It has been clearly revealed that the growth of Au, as a fairly inert element, was not influenced by the template, whereas Ag demonstrated slightly improved wetting on the PS domain, forming clusters. In the case of reactive metals, e.g., Fe, Ni, and Pt, well-defined and uniform nanocluster patterns were grown selectively on the PS domains. Additionally, by performing in-situ GISAXS experiments, it has been found that the substrate temperature plays an important role in shaping the metal clusters, showing that above the glass transition temperature,
The complicated growth kinetics of hierarchical anisotropic gold nanostructures on polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) thin films has been also studied with in-situ GISAXS [42]. An anisotropic shape of the deposited metal clusters was achieved by employing a glancing angle deposition (GLAD) geometry. In GLAD, the deposition plume is positioned at an oblique angle regarding the sample surface, which produced nonsymmetric Au clusters and its anisotropic shape manifested as nonsymmetric 2D scattering patterns with respect to the scattering plane (
Organic thin films are especially important since they are increasingly used in devices. In particular, organic semiconductors are employed in organic light emitting diodes (OLEDs), organic field-effect transistors (OFETs), and organic solar cells (OSCs). However, the basic processes of molecular thin film growth are still far from being understood and connecting molecular and nanoscopic/microscopic processes such as molecular diffusion and island size evolution, remains a major challenge. To this purpose in-situ GISAXS, being a non-invasive technique, is increasingly contributing.
As in the case of vacuum deposition of metals, several organic deposition chambers have been designed and built so as to perform in-situ X-ray scattering and/or diffraction measurements at synchrotron beamlines [43, 44].
To study these particular systems, in-situ grazing incidence X-ray diffraction (GIXD) and in-situ X-ray reflectivity (XRR) are most commonly applied [45–48], though the information provided by in-situ GISAXS is also very valuable since the dimensions probed are different. Whereas GIXD provides access to the crystal structure and molecular arrangement, GISAXS gives complementary information on the island shape and island-island distances as well as on the island electron density. Therefore, the combination of both techniques provides the necessary information to make a link between the molecular and micrometer size crystallite regimes.
These systems are usually investigated in the so called anti-Bragg geometry, i.e., at incident angles so that the specular peak corresponds to the anti-Bragg point of a given ( An introduction to surface X-ray diffraction, including the evanescent wave method that corresponds to GIXD, can be found in [17].
Note that in Eq. (11) only
At this particular geometry, the specular intensity presents an oscillatory behavior during the growth—the so-called growth oscillations—which arises from destructive interference between neighboring odd and even monolayers (MLs) —lattice planes—so that the scattering from the first, third, fifth ML is cancelled by the growth of the second, fourth, sixth ML, etc. [49]. In the common case of (initial) layer-by-layer growth in organic heteroepitaxy, the periodicity of the oscillations consists in 2 MLs although interference between reflections at the growing surface, the substrate and the interfaces between different film layers can lead to more complex oscillatory behavior. For instance, considering an out-of-phase reflection on the substrate, the oscillations maxima appear at even instead of at odd numbers since an additional reflection occurs or, e.g., the oscillations period can change to 1 ML in the case of homoepitaxy. See [49].
The abovementioned geometry has been applied to investigate, e.g., the growth of multilayers of fullerene C60 molecules on mica in real time [55]. From the growth oscillations, a layer-by-layer growth was deduced whereas from the in-situ μGISAXS data the mean island distance was extracted and converted into surface island density assuming a hexagonal island arrangement. Interestingly, the GISAXS out-of-plane peaks present intensity oscillations with a period of 1 ML, in contrast to the 2 ML period of the specular intensity at the anti-Bragg point (Figure 7). This is due to the fact that diffuse scattering occurs only for uncomplete layers since this is the situation where a lateral variation in electron density—or, in other words, in refractive index—is present, whereas the growth oscillations are due to interference from the reflections at layer interfaces—plus at the substrate and at the growing layer—i.e., diffuse scattering is probing lateral contrast whereas the specular peak probes the structures in the surface normal direction. Through kinetic Monte Carlo simulations and a comparison to the experiments, values of the energy barriers were obtained—namely, the diffusion barrier and lateral binging energy for intralayer events and an Ehrlich-Schwoebel barrier for interlayer diffusion—and, more importantly, this set of parameters was demonstrated to be sufficient to describe the growth of a C60 layer on underlying C60 layers, of crucial importance so as to predict the growth dependence on the deposition rate and substrate temperature.
(a) Scattering geometry employed showing the simultaneous acquisition of specular and diffuse scattering. The incident angle is chosen so that the specular peak corresponds to the anti-Bragg position of the C60 (1 1 1) reflection. (b) Intensity at the anti-Bragg point
The simultaneous acquisition of the specular intensity and GISAXS signal has also been applied to in-situ investigate the molecular diffusion and island evolution during the growth of diindenoperylene (DIP, C32H16) on SiO
Another organic semiconductor with rod-like morphology whose growth has been in-situ investigated performing GISAXS using the anti-Bragg geometry is
Wet deposition encompasses a collection of different methods for the fabrication of thin solid films from a liquid solution and/or suspension as precursor. All of them exploit self-assembly concepts to prepare thin films such as colloidal crystals, thin polymer films and nanocomposites with applications ranging from photonic crystals to polymer solar cells and superhydrophobic or superhydrophilic coatings. During wet deposition, the interaction between the suspended particles—or the dissolved compounds—together with the liquid flow—responsible of internal mass transport—govern the drying kinetics and self-assembly. Hence, tuning these parameters makes it possible to control the self-assembly, thus adjusting the morphology of the dried thin film (ideally) on demand.
Grazing incidence X-ray scattering (GIXS) techniques has been applied to study wet deposition processes such as solution casting [58, 59], spin-coating [60], dip-coating [61, 62], and blade coating [63]. Nevertheless, although these deposition methods are very useful for device fabrication at research scale, they are not easily scaled-up and/or they are restricted to specific substrate geometries. In this sense, it is important to explore other wet deposition methods of potential industrial relevance.
In recent years, spray coating is gaining interest due to its easy scale-up and integration into production lines as well as to its lack of substrate geometry/size constrains. Moreover, it has already been successfully applied to fabricate operating devices such as polymer solar cells [64–66]. Nevertheless, although there are evident similarities to, e.g., solution casting, the drying kinetics present some particularities still not well understood. To this respect, GISAXS has been used to study the self-assemble of colloidal particles during spray coating [65, 67, 68]. In particular, Herzog et al. [67] were able to identify three different stages during the spray deposition of polystyrene (PS) nanoparticles and subsequent drying corresponding to the formation of a structureless thin liquid film, which subsequently breaks up into small droplets allowing for possible transient nanoparticle ordering and a final freezing of a self-assembled colloidal nanostructure once the solvent is fully evaporated, respectively. These three stages were revealed in the in-situ μGISAXS patterns as first, a decrease in the overall scattered intensity due to the homogeneous liquid film right after a 100 ms spray shot; second, an increase and broadening of the Yoneda peak ascribed to the homogeneity loss of the liquid film that breaks into small droplets as the solvent evaporation proceeds and last, the emergence of well-defined out-of-plane symmetric peaks regarding the scattering plane (Figure 8). In addition, controlling the evaporation rate by adjusting the substrate temperature the assembly process of the nanocolloids can be managed to achieve different film morphologies, what has been investigated in-situ by μGISAXS as well [68].
(a) Out-of-plane cuts (along
Apart from spray coating, another interesting approach for large scale low-cost production of organic photovoltaic (OPV) devices is inkjet printing, a method that has drawn considerable attention from an industrial point of view as the field of organic flexible electronics is maturing. As in the case of spray coating, GIXS has been applied to in-situ investigate the structure development during inkjet printing of, e.g., conductive polymer thin films widely used as electrodes in OPV devices [69] as well as of the active layer in bulk-heterojunction (BHJ) polymer solar cells [70]. The film morphology in OPV devices has a direct relationship with its performance and the combination of in-situ wide- and small angle scattering (GIWAXS/GISAXS) allowed developing qualitative models of the structural evolution of the semicrystalline polymer thin films morphology.
Finally, although it does not present the current large-scale production promises of spray coating and inkjet printing, an interesting approach for wet deposition consist in employing microfluidics, which may be critical for lab-on-chip applications. Here, the peculiarity lies in the nondrying nature of the deposition, i.e., the self-assembly process on the substrate does not take place during solvent evaporation but at the liquid-solid interface during liquid flow. In order to in-situ follow deposition processes using microfluidics by GISAXS—among others; see Section 4—special flow cells have been designed [71]. In this kind of experiments, it is extremely important to adjust the X-ray beam footprint on the substrate to the size of the fluidic channel so as to prevent an overillumination of the sample not in contact with the fluid, thus minimizing undesired signal that could obscure the accessible information. Therefore, the use of μGISAXS becomes essential [72]. This specific setup has been used to investigate the attachment of Au nanoparticles to a polymer thin film (Figure 9) and different stages could be identified, namely the dried polymer film before the liquid inlet was opened (denoted as 1 in Figure 9), a wetted film by the liquid vapor once the liquid inlet was opened (denoted as 2 in Figure 9) and the attachment of Au nanoparticles once the liquid flow reached the probed thin film position (denoted as 3 in Figure 9). Moreover, the increase in intensity of the out-of-plane peak as the experiment proceeded indicated a cumulative deposition of the Au nanoparticles from which it is possible to analyze the deposition kinetics.
(a) Sketch of the μGISAXS setup with microfluidic cell. (b) Illustration of the X-ray beam transmitting the channel walls and the footprint on the sample surface. For clarity the incident angle and X-ray beam size are not in scale. (c) Detector cuts (along
In addition to the aforementioned deposition processes, a different kind of studies in which in-situ GIXS is increasingly contributing consist in thin film processing. GIXS has been performed during thin film nanostructuring in order to gain insight into the morphology transformation processes, e.g., metal nanocluster formation through high temperature annealing induced dewetting [73, 74], dewetting of organic multilayer films [75], or refinement of block co-polymer thin film morphology during solvent vapor annealing [76]. Furthermore, working devices have also been investigated by in-situ GIXS so as to identify the structural changes that the active thin film undergo during operation with the aim of improving the device design and final performance, e.g., catalysis on nanoparticles [77], roughening of surfaces during electrodeposition [78], electrochemistry in ionomer matrices of interest in fuel-cell devices [79], or BHJ polymer solar cells [80, 81]. As in the previous section, the development of specific environmental cells to be installed at synchrotron beamlines commonly constitutes a prerequisite to conduct this kind of experiments. In the following, we will shortly describe some recent exemplary results of in-operando and in-situ GISAXS during thin film processing.
As mentioned in the previous paragraph, a well-known way of producing – or modifying the morphology of—metal nanoclusters on a surface consists in the thermal induced dewetting of metallic thin films. This process has been in-situ investigated by GISAXS for the case of Au on Si (1 1 1) up to the bulk eutectic point
In the case of semiconductor materials, ion beam bombardment is a very useful process to induce surface nanostructuring. During the erosion of a surface by accelerated ions, the produced instabilities can lead to the formation of self-assembled patterns of nanostructures and different surface topographies can be obtained as a function of the ion mass, ion energy and bombardment geometry. In-situ GISAXS with partially coherent X-ray beams (Co-GISAXS) has been employed to study the nanodot formation on a gallium antimonide (GaSb) (0 0 1) surface by normal incidence bombardment of 500 eV Ar ions [83]. The use of partially coherent beams allows not only accessing the kinetic phenomena but also the dynamics. Under a coherent illumination, the scattered intensity consists of a speckle pattern (Figure 10) and the speckle distribution and speckle intensity fluctuations reflect the underlying dynamics of the surface morphology [84]. From a kinetic point of view—GISAXS analysis—the mean size and distance of the nanodots as a function of time was extracted and the kinetic regimes and onsets derived. More interestingly, though the characteristic GISAXS signal remained stable after saturation of the nanostructuring process, the dynamics showed that ageing—slow down of the dynamics—was occurring, mainly ascribed to hindered mass redistribution phenomena. The dynamics was extracted from the speckle analysis through the so-called two-time correlation function that accounts for the fast variation of intensity redistribution within the scattering peak with respect to the averaged intensity distribution over time. Finally, a dynamical transition to a regime dominated by the build-up of stress at the surface was identified.
Left: Evolution of the GISAXS out-of-plane peak as a function of ion bombardment time. The onset of surface nanostructuring is evidenced by the emergence of the side peak 1 min after erosion started. After around 5 min the out-of-plane peak remained at constant position revealing the saturation of the nanostructuring process. The upper inset show the speckle distribution within the out-of-plane peak at
On the other hand, nanostructuring of polymer thin films is an intense field of research and different strategies are being employed, e.g., nanoimprint lithography, porous anodic aluminum oxide (AAO) templating or, as mentioned in Section 3.1, the design of block co-polymer morphologies. An interesting approach consists in the formation of nanostructured surfaces by the so-called laser-induced periodic surface structure (LIPSS) formation, a technique that has been used for years to nanostructure metals and semiconductors but has only recently been applied to polymers [85, 86]. In LIPSS, a pulsed laser of a definite polarization is shined on the material at fluences (optical energy per surface area) well below the ablation threshold and the material surface gets nanostructured by interference of the incoming and scattered electromagnetic wave through a feeding mechanism not yet well understood. In the common case of linearly polarized incident light the process induces ripple formation on the surface with a periodicity resembling the wavelength of the laser employed. By performing in-situ GISAXS measurements while irradiating a poly(trimethylene therephthalate) (PTT) thin film the onset of ripple formation at different laser repetition rates and fluences has been revealed [87]. Moreover, the results support a feeding mechanism based on a local heating of the polymer thin film so that LIPSS formation becomes more efficient the shorter is the laser pulse separation, whereas for long enough laser pulse separation heat dissipation takes place between pulses hindering the ripple formation.
A different way in which polymer thin films are processed does not consist in the promotion of structuring to tailor the material properties but in the processes that polymeric materials undergo during operation. For instance, in several applications the polymeric material is in contact with fluids, e.g., in the case of polymeric materials used in human implants. Here, the combination of μGISAXS and microfluidics offers unique capabilities for investigating the morphological changes of polymer thin films in contact with a fluid flow.
A model system comprising of a thin film of sodium alginate with embedded dispersed PS nanoparticles have been investigated by in-situ μGISAXS during water flow in a microfluidic device [88]. This system served as a model to investigate the detachment of thin films and nanoparticle aggregates therein by a fluid flow, both with and without additional sodium alginate cross-linking. More interestingly, the combination of in-situ μGISAXS and a microfluidic cell have resulted in the accurate description of the swelling behavior of the thermo-responsive poly(
(a) Experimental (upper row) and simulated (lower row) 2D μGISAXS patterns during swelling of a PNIPAM thin film under water flow in a microfluidic cell. The scattering patterns correspond to exposure to water vapor (left), after 30 s of water flow (middle) and after 48 s of water flow (right). The GISAXS patterns were continuously acquired before and during water flow with a time resolution of 1 s. The DWBA and the LMA were employed to simulate the scattering patterns. (b) Schematic drawings of the glass-supported, as-spun PNIPAM film, possessing partially correlated interfaces (left) and the corresponding morphological model used in the simulations (right). The parameters that were varied to simulate the water uptake process are the thickness of the PNIPAM layer, d, and the diameter of the PNIPAM discs, D. (c) Illustration of the surface restructuration in the course of the swelling of the thin, glass-supported PNIPAM film. Left: sorption of liquid water, filling the accessible free PNIPAM volumes and inducing the devitrification of its near-surface layer. Right: mainly 1D swelling occurs as the gel-glass phase boundary propagates into the depth of the film; the surface flattens as the mobility of the macromolecules is sufficient. Reprinted (adapted) with permission from Philipp et al. [
Other polymeric thin films that have been investigated by in-situ GISAXS during operation are the active layers of BHJ polymer solar cells (Figure 12). In general, although polymer solar cells hold the promise of future low-cost flexible solar cells, a major problem of these OPV devices is the performance loss during operation. In this sense, in-operando μGISAXS studies have revealed that the active layer suffer from morphological changes during operation [90]. These morphological changes are directly related to the decrease in short-circuit current density (SCCD) that was derived from the simultaneous measurement of current-voltage curves while the device was illuminated by a solar simulator. In order to demonstrate this unequivocal relationship between performance loss and morphological transformation, Monte Carlo (MC) simulations of the SCCD were performed using the structural parameters extracted from modeling of the μGISAXS patterns. The agreement between the MC simulations and the measured SCCD was excellent (Figure 12(c)) concluding that an increase in P3HT domain size and separation during illumination is responsible for the decrease of effective light harvesting area, thus decreasing the exciton splitting events, whereas the PCBM domain size and distance remained fairly constant. Moreover, a temperature effect was ruled out since the solar cell did not exceed 45°C during the experiments due to Peltier cooling.
(a) 2D μGISAXS pattern of the polymer solar cell before illumination. (b) Difference scattering patterns, i.e., 2D μGISAXS measurements obtained at different operation times after subtraction of the initial scattering pattern within the marked window (red box) in (a). Negative values mean a loss of signal with respect to the initial measurement. (c) Simulated (black dots) and measured short-circuit current density (red line). The simulated short-circuit current density was derived from the morphological parameters extracted by μGISAXS. The insets show the inner film morphology at different times as generated by the Monte Carlo simulations. The inset on the right presents the domain morphology model used in the simulations and extracted from the μGISAXS experiments: red correspond to the core of P3HT domains, green to the effective light harvesting area and blue to the non-active effective area of the solar cell. Reproduced with permission from Schaffer et al. [
In this chapter, we have reviewed the current trends in the application of time-resolved GISAXS for in-situ and in-operando studies during thin film formation and processing. It has been shown that GISAXS presents unique capabilities as a noninvasive technique with intrinsic statistical relevance and time resolutions down to the millisecond regime. Moreover, GISAXS constitutes a very versatile technique that can be applied to a large variety of materials with a vast range of applications, and the relative easiness of combining it with other characterization techniques for simultaneous measurements offers the possibility of correlating the film structure to its properties, of utmost importance in most of the applications of thin films.
In the near future, the present developments for the next generation of 2D X-ray photon counting pixel detectors will allow investigating even faster processes since frame rates higher than 10 kHz with large detector dynamic ranges are foreseen. Additionally, the application of present technique improvements to in-situ studies will further contribute to gain deeper knowledge of thin film fabrication and processing. In this sense, the present advances in grazing incidence resonant soft X-ray scattering (GI-RSoXS), with its inherent material contrast through tuning the incident beam energy to one of the absorption edges of the materials under investigation, will certainly help in understanding, e.g., alloying, blending or phase segregation phenomena in-situ with adequate time resolution. Furthermore, the decrease in beam emittance at synchrotrons is currently enabling longer sample to detector distances—up to several tens of meters—which translates in access to lower
Finally, the development of new magnet arrays in storage rings is currently taking place and diffraction-limited sources are not far from becoming available. This will provide an enhanced coherence of the X-ray beams and therefore, it is not difficult to anticipate a growth in the application of time-resolved coherent GISAXS (Co-GISAXS). So far, most of the GISAXS experiments are noncoherent, thus the scattered photon phase is lost making modeling indispensable during data analysis. On the contrary, in Co-GISAXS the phase information can be directly retrieved via mathematical algorithms so that, to some extent, the morphology of the scattering entity can be directly reconstructed from the experimental data. Furthermore, as already known from other X-ray coherent techniques such as X-ray photon correlation spectroscopy (XPCS), not only kinetics but also dynamics of the nano-objects may be probed. However, a good resolution of the speckles is necessary to guarantee an accurate determination of the dynamical processes. This requires a high
We would like to kindly acknowledge José Ángel Martín-Gago for the critical reading of the chapter as well as Stefan Kowarik for his valuable suggestions in Section 3.2. S.Y. acknowledges the financial support from the Knut and Alice Wallenberg Foundation.
Submitted: March 21st, 2016 Reviewed: July 12th, 2016 Published: January 25th, 2017
© 2017 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.