Genetic differentiation level of microsatellite nSSR loci in studied Scots pine populations.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"1328",leadTitle:null,fullTitle:"Hydropower - Practice and Application",title:"Hydropower",subtitle:"Practice and Application",reviewType:"peer-reviewed",abstract:"Hydroelectric energy is the most widely used form of renewable energy, accounting for 16 percent of global electricity consumption. This book is primarily based on theoretical and applied results obtained by the authors during a long time of practice devoted to problems in the design and operation of a significant number of hydroelectric power plants in different countries. It was preferred to edit this book with the intention that it may partly serve as a supplementary textbook for students on hydropower plants. The subjects being mentioned comprise all the main components of a hydro power plant, from the upstream end, with the basin for water intake, to the downstream end of the water flow outlet.",isbn:null,printIsbn:"978-953-51-0164-2",pdfIsbn:"978-953-51-6140-0",doi:"10.5772/1798",price:139,priceEur:155,priceUsd:179,slug:"hydropower-practice-and-application",numberOfPages:334,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"08b3b6e6e1b5339cad8f69c9d483a594",bookSignature:"Hossein Samadi-Boroujeni",publishedDate:"March 9th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1328.jpg",numberOfDownloads:64344,numberOfWosCitations:60,numberOfCrossrefCitations:11,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:68,numberOfDimensionsCitationsByBook:2,hasAltmetrics:0,numberOfTotalCitations:139,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 31st 2011",dateEndSecondStepPublish:"April 28th 2011",dateEndThirdStepPublish:"September 2nd 2011",dateEndFourthStepPublish:"October 2nd 2011",dateEndFifthStepPublish:"January 30th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"94088",title:"Dr.",name:"Hossein",middleName:null,surname:"Samadi-Boroujeni",slug:"hossein-samadi-boroujeni",fullName:"Hossein Samadi-Boroujeni",profilePictureURL:"https://mts.intechopen.com/storage/users/94088/images/2496_n.jpg",biography:"Dr. Hossein Samadi-Boroujeni, assistant professor at the Water Resources Research Center, Shahrekord University, has nearly 16 years of experience in the field of hydraulic structures and sediment transport. He worked as a senior manager of Dez hydropower rehabilitation project from 1999 to 2004, in Iran. He has published more than 20 papers in referred journals and more than 60 papers at international and national conferences. He has also published a Persian book on Inter-basin water transfer in 2010. He has supervised around 25 MS.c. theses at Shahrekord University since 2004.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Shahrekord University",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"770",title:"Renewable Energy",slug:"engineering-energy-engineering-renewable-energy"}],chapters:[{id:"31390",title:"Sustainable Hydropower – Issues and Approaches",doi:"10.5772/31768",slug:"sustainable-hydropower-issues-and-approaches",totalDownloads:3773,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Helen Locher and Andrew Scanlon",downloadPdfUrl:"/chapter/pdf-download/31390",previewPdfUrl:"/chapter/pdf-preview/31390",authors:[{id:"88621",title:"Dr.",name:"Helen",surname:"Locher",slug:"helen-locher",fullName:"Helen Locher"},{id:"89601",title:"Mr.",name:"Andrew",surname:"Scanlon",slug:"andrew-scanlon",fullName:"Andrew Scanlon"}],corrections:null},{id:"31391",title:"Hydropower – The Sustainability Dilemma",doi:"10.5772/34242",slug:"hydropower-the-sustainability-dilemma",totalDownloads:2499,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Wilson Cabral de Sousa Junior and Célio Bermann",downloadPdfUrl:"/chapter/pdf-download/31391",previewPdfUrl:"/chapter/pdf-preview/31391",authors:[{id:"99322",title:"Prof.",name:"Wilson",surname:"De Sousa Jr",slug:"wilson-de-sousa-jr",fullName:"Wilson De Sousa Jr"},{id:"147572",title:"Prof.",name:"Celio",surname:"Bermann",slug:"celio-bermann",fullName:"Celio Bermann"}],corrections:null},{id:"31392",title:"Hydrological Statistics for Regulating Hydropower",doi:"10.5772/34137",slug:"hydrological-statistics-for-regulating-hydropower",totalDownloads:2948,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Anders Wörman",downloadPdfUrl:"/chapter/pdf-download/31392",previewPdfUrl:"/chapter/pdf-preview/31392",authors:[{id:"98878",title:"Prof.",name:"Anders",surname:"Wörman",slug:"anders-worman",fullName:"Anders Wörman"}],corrections:null},{id:"31393",title:"Assessment of Impact of Hydropower Dams Reservoir Outflow on the Downstream River Flood Regime – Nigeria’s Experience",doi:"10.5772/33180",slug:"assessment-of-impact-of-hydropower-dams-reservoir-outflow-on-the-downstream-river-flood-regime-niger",totalDownloads:3900,totalCrossrefCites:0,totalDimensionsCites:7,hasAltmetrics:0,abstract:null,signatures:"David O. Olukanni and Adebayo W. Salami",downloadPdfUrl:"/chapter/pdf-download/31393",previewPdfUrl:"/chapter/pdf-preview/31393",authors:[{id:"94356",title:"Dr.",name:"David",surname:"Olukanni",slug:"david-olukanni",fullName:"David Olukanni"},{id:"97346",title:"Dr.",name:"Adebayo",surname:"Salami",slug:"adebayo-salami",fullName:"Adebayo Salami"}],corrections:null},{id:"31394",title:"Discharge Measurement Techniques in Hydropower Systems with Emphasis on the Pressure-Time Method",doi:"10.5772/33142",slug:"some-recent-achievements-in-discharge-measurements-",totalDownloads:8400,totalCrossrefCites:2,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Adam Adamkowski",downloadPdfUrl:"/chapter/pdf-download/31394",previewPdfUrl:"/chapter/pdf-preview/31394",authors:[{id:"94197",title:"Prof.",name:"Adam",surname:"Adamkowski",slug:"adam-adamkowski",fullName:"Adam Adamkowski"}],corrections:null},{id:"31395",title:"Sediment Management in Hydropower Dam (Case Study – Dez Dam Project)",doi:"10.5772/33115",slug:"sediment-management-in-hydropower-dam-case-study-dez-dam-project-",totalDownloads:5620,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:null,signatures:"H. Samadi Boroujeni",downloadPdfUrl:"/chapter/pdf-download/31395",previewPdfUrl:"/chapter/pdf-preview/31395",authors:[{id:"94088",title:"Dr.",name:"Hossein",surname:"Samadi-Boroujeni",slug:"hossein-samadi-boroujeni",fullName:"Hossein Samadi-Boroujeni"}],corrections:null},{id:"31396",title:"Application of Microseismic Monitoring Technique in Hydroelectric Projects",doi:"10.5772/31625",slug:"application-of-microseismic-monitoring-technique-in-hydroelectric-projects",totalDownloads:4412,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Nuwen Xu, Chun’an Tang, Hong Li and Zhengzhao Liang",downloadPdfUrl:"/chapter/pdf-download/31396",previewPdfUrl:"/chapter/pdf-preview/31396",authors:[{id:"87997",title:"Dr.",name:"Nuwen",surname:"Xu",slug:"nuwen-xu",fullName:"Nuwen Xu"},{id:"97862",title:"Prof.",name:"Chun'An",surname:"Tang",slug:"chun'an-tang",fullName:"Chun'An Tang"}],corrections:null},{id:"31397",title:"Limnology of Two Contrasting Hydroelectric Reservoirs (Storage and Run-of-River) in Southeast Brazil",doi:"10.5772/31829",slug:"limnology-of-two-contrasting-hydroelectric-reservoirs-storage-and-run-of-river-in-southeast-brazil",totalDownloads:2491,totalCrossrefCites:0,totalDimensionsCites:23,hasAltmetrics:0,abstract:null,signatures:"Marcos Gomes Nogueira, Gilmar Perbiche-Neves and Danilo A. O. Naliato",downloadPdfUrl:"/chapter/pdf-download/31397",previewPdfUrl:"/chapter/pdf-preview/31397",authors:[{id:"88870",title:"Prof.",name:"Marcos",surname:"Nogueira",slug:"marcos-nogueira",fullName:"Marcos Nogueira"},{id:"99645",title:"MSc.",name:"Gilmar",surname:"Perbiche-Neves",slug:"gilmar-perbiche-neves",fullName:"Gilmar Perbiche-Neves"},{id:"99647",title:"MSc.",name:"Danilo",surname:"Naliato",slug:"danilo-naliato",fullName:"Danilo Naliato"}],corrections:null},{id:"31398",title:"Reservoir Operation Applied to Hydropower Systems",doi:"10.5772/33298",slug:"reservoir-operation-applied-to-hydropower-systems",totalDownloads:3798,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"João Luiz Boccia Brandão",downloadPdfUrl:"/chapter/pdf-download/31398",previewPdfUrl:"/chapter/pdf-preview/31398",authors:[{id:"94816",title:"Dr.",name:"João",surname:"Brandão",slug:"joao-brandao",fullName:"João Brandão"}],corrections:null},{id:"31399",title:"Hydropower Scheduling in Large Scale Power Systems",doi:"10.5772/32649",slug:"hydropower-scheduling-in-large-scale-power-systems",totalDownloads:3841,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Monica Zambelli, Ivette Luna Huamani, Secundino Soares, Makoto Kadowaki and Takaaki Ohishi",downloadPdfUrl:"/chapter/pdf-download/31399",previewPdfUrl:"/chapter/pdf-preview/31399",authors:[{id:"92235",title:"Dr.",name:"Monica S.",surname:"Zambelli",slug:"monica-s.-zambelli",fullName:"Monica S. Zambelli"},{id:"99219",title:"Dr.",name:"Ivette Luna",surname:"Huamani",slug:"ivette-luna-huamani",fullName:"Ivette Luna Huamani"},{id:"99222",title:"MSc.",name:"Makoto",surname:"Kadowaki",slug:"makoto-kadowaki",fullName:"Makoto Kadowaki"},{id:"99225",title:"Prof.",name:"Takaaki",surname:"Ohishi",slug:"takaaki-ohishi",fullName:"Takaaki Ohishi"},{id:"99226",title:"Prof.",name:"Secundino",surname:"Soares",slug:"secundino-soares",fullName:"Secundino Soares"}],corrections:null},{id:"31400",title:"Fuzzy Scheduling Applied on Hydroelectric Power Generation",doi:"10.5772/34458",slug:"fuzzy-scheduling-applied-on-hydroelectric-power-generation",totalDownloads:2417,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Carlos Gracios-Marin, Gerardo Mino-Aguilar, German A. Munoz-Hernandez, José Fermi Guerrero-Castellanos, Alejandro Diaz-Sanchez, Esteban Molina Flores and Eduardo Lebano-Perez",downloadPdfUrl:"/chapter/pdf-download/31400",previewPdfUrl:"/chapter/pdf-preview/31400",authors:[{id:"27194",title:"Dr.",name:"Esteban",surname:"Molina Flores",slug:"esteban-molina-flores",fullName:"Esteban Molina Flores"},{id:"28646",title:"Dr.",name:"Gerardo",surname:"Mino-Aguilar",slug:"gerardo-mino-aguilar",fullName:"Gerardo Mino-Aguilar"},{id:"83985",title:"Dr.",name:"Carlos",surname:"Gracios-Marin",slug:"carlos-gracios-marin",fullName:"Carlos Gracios-Marin"},{id:"111745",title:"Prof.",name:"German A.",surname:"Muñoz-Hernandez",slug:"german-a.-munoz-hernandez",fullName:"German A. Muñoz-Hernandez"},{id:"111747",title:"Prof.",name:"José Fermi",surname:"Guerrero-Castellanos",slug:"jose-fermi-guerrero-castellanos",fullName:"José Fermi Guerrero-Castellanos"},{id:"111748",title:"Prof.",name:"Alejandro",surname:"Diaz-Sanchez",slug:"alejandro-diaz-sanchez",fullName:"Alejandro Diaz-Sanchez"},{id:"111753",title:"Dr.",name:"Eduardo",surname:"Lebano-Perez",slug:"eduardo-lebano-perez",fullName:"Eduardo Lebano-Perez"}],corrections:null},{id:"31401",title:"Integration of Small Hydro Turbines into Existing Water Infrastructures",doi:"10.5772/35251",slug:"integration-of-small-turbines-into-water-infrastructure",totalDownloads:7896,totalCrossrefCites:3,totalDimensionsCites:13,hasAltmetrics:0,abstract:null,signatures:"Aline Choulot Vincent Denis, and Petras Punys",downloadPdfUrl:"/chapter/pdf-download/31401",previewPdfUrl:"/chapter/pdf-preview/31401",authors:[{id:"103616",title:"Prof.",name:"Petras",surname:"Punys",slug:"petras-punys",fullName:"Petras Punys"},{id:"110844",title:"MSc.",name:"Vincent",surname:"Denis",slug:"vincent-denis",fullName:"Vincent Denis"},{id:"110845",title:"MSc.",name:"Aline",surname:"Choulot",slug:"aline-choulot",fullName:"Aline Choulot"}],corrections:null},{id:"31402",title:"Project Design Management for a Large Hydropower Station",doi:"10.5772/32124",slug:"project-design-management-for-a-large-hydropower-station",totalDownloads:9265,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Xuanhua Xu, Yanju Zhou and Xiaohong Chen",downloadPdfUrl:"/chapter/pdf-download/31402",previewPdfUrl:"/chapter/pdf-preview/31402",authors:[{id:"90259",title:"Dr.",name:"Xuanhua",surname:"Xu",slug:"xuanhua-xu",fullName:"Xuanhua Xu"},{id:"136670",title:"Prof.",name:"Xiaohong",surname:"Chen",slug:"xiaohong-chen",fullName:"Xiaohong Chen"}],corrections:null},{id:"31403",title:"Damming China’s and India’s Periphery: An Overview over the Region’s Rapid Hydropower Development",doi:"10.5772/34183",slug:"damming-china-s-and-india-s-periphery-overview-over-the-regions-rapid-hydropower-development",totalDownloads:3089,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Thomas Hennig",downloadPdfUrl:"/chapter/pdf-download/31403",previewPdfUrl:"/chapter/pdf-preview/31403",authors:[{id:"99080",title:"Dr.",name:"Thomas",surname:"Hennig",slug:"thomas-hennig",fullName:"Thomas Hennig"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:[{id:"65",label:"highly cited contributor"}]},relatedBooks:[{type:"book",id:"3633",title:"Solar Energy",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"solar-energy",bookSignature:"Radu D Rugescu",coverURL:"https://cdn.intechopen.com/books/images_new/3633.jpg",editedByType:"Edited by",editors:[{id:"8615",title:"Prof.",name:"Radu",surname:"Rugescu",slug:"radu-rugescu",fullName:"Radu Rugescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4479",title:"Solar Cells",subtitle:"New Approaches and Reviews",isOpenForSubmission:!1,hash:"f6907a79a7d35f34d0c719d6297a2667",slug:"solar-cells-new-approaches-and-reviews",bookSignature:"Leonid A. Kosyachenko",coverURL:"https://cdn.intechopen.com/books/images_new/4479.jpg",editedByType:"Edited by",editors:[{id:"6262",title:"Prof.",name:"Leonid A.",surname:"Kosyachenko",slug:"leonid-a.-kosyachenko",fullName:"Leonid A. Kosyachenko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1288",title:"Solar Cells",subtitle:"Dye-Sensitized Devices",isOpenForSubmission:!1,hash:"05a255471069664ecf5fbf8778b92076",slug:"solar-cells-dye-sensitized-devices",bookSignature:"Leonid A. Kosyachenko",coverURL:"https://cdn.intechopen.com/books/images_new/1288.jpg",editedByType:"Edited by",editors:[{id:"6262",title:"Prof.",name:"Leonid A.",surname:"Kosyachenko",slug:"leonid-a.-kosyachenko",fullName:"Leonid A. Kosyachenko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"877",title:"Third Generation Photovoltaics",subtitle:null,isOpenForSubmission:!1,hash:"c3bdfaebac38dab83a69c488bcda219d",slug:"third-generation-photovoltaics",bookSignature:"Vasilis Fthenakis",coverURL:"https://cdn.intechopen.com/books/images_new/877.jpg",editedByType:"Edited by",editors:[{id:"68723",title:"Dr.",name:"Vasilis",surname:"Fthenakis",slug:"vasilis-fthenakis",fullName:"Vasilis Fthenakis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1290",title:"Solar Cells",subtitle:"New Aspects and Solutions",isOpenForSubmission:!1,hash:"52415367e48e5b68d47325bdfc81cdce",slug:"solar-cells-new-aspects-and-solutions",bookSignature:"Leonid A. Kosyachenko",coverURL:"https://cdn.intechopen.com/books/images_new/1290.jpg",editedByType:"Edited by",editors:[{id:"6262",title:"Prof.",name:"Leonid A.",surname:"Kosyachenko",slug:"leonid-a.-kosyachenko",fullName:"Leonid A. Kosyachenko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3118",title:"Solar Cells",subtitle:"Research and Application Perspectives",isOpenForSubmission:!1,hash:"5502d7fd7559d60419f2615615ae4cf5",slug:"solar-cells-research-and-application-perspectives",bookSignature:"Arturo Morales-Acevedo",coverURL:"https://cdn.intechopen.com/books/images_new/3118.jpg",editedByType:"Edited by",editors:[{id:"90486",title:"Prof.",name:"Arturo",surname:"Morales-Acevedo",slug:"arturo-morales-acevedo",fullName:"Arturo Morales-Acevedo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3676",title:"Solar Collectors and Panels",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:null,slug:"solar-collectors-and-panels--theory-and-applications",bookSignature:"Reccab Manyala",coverURL:"https://cdn.intechopen.com/books/images_new/3676.jpg",editedByType:"Edited by",editors:[{id:"12002",title:"Associate Prof.",name:"Reccab",surname:"Manyala",slug:"reccab-manyala",fullName:"Reccab Manyala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1289",title:"Solar Cells",subtitle:"Silicon Wafer-Based Technologies",isOpenForSubmission:!1,hash:"76fb5123cd9acbf3c37678c5e9bd056a",slug:"solar-cells-silicon-wafer-based-technologies",bookSignature:"Leonid A. Kosyachenko",coverURL:"https://cdn.intechopen.com/books/images_new/1289.jpg",editedByType:"Edited by",editors:[{id:"6262",title:"Prof.",name:"Leonid A.",surname:"Kosyachenko",slug:"leonid-a.-kosyachenko",fullName:"Leonid A. Kosyachenko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2154",title:"Energy Storage",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"98b5e296523724495675754b80db6245",slug:"energy-storage-technologies-and-applications",bookSignature:"Ahmed Faheem Zobaa",coverURL:"https://cdn.intechopen.com/books/images_new/2154.jpg",editedByType:"Edited by",editors:[{id:"39249",title:"Dr.",name:"Ahmed F.",surname:"Zobaa",slug:"ahmed-f.-zobaa",fullName:"Ahmed F. Zobaa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"295",title:"Solar Cells",subtitle:"Thin-Film Technologies",isOpenForSubmission:!1,hash:"ad5cda9b208fbf385f7cdf7a5c16baae",slug:"solar-cells-thin-film-technologies",bookSignature:"Leonid A. Kosyachenko",coverURL:"https://cdn.intechopen.com/books/images_new/295.jpg",editedByType:"Edited by",editors:[{id:"6262",title:"Prof.",name:"Leonid A.",surname:"Kosyachenko",slug:"leonid-a.-kosyachenko",fullName:"Leonid A. Kosyachenko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"65666",slug:"erratum-metrology-organic-solvents-in-the-shoes-industry-to-sfax-city-tunisia",title:"Erratum - Metrology Organic Solvents in the Shoes Industry to Sfax City (Tunisia)",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/65666.pdf",downloadPdfUrl:"/chapter/pdf-download/65666",previewPdfUrl:"/chapter/pdf-preview/65666",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/65666",risUrl:"/chapter/ris/65666",chapter:{id:"62241",slug:"metrology-organic-solvents-in-the-shoes-industry-to-sfax-city-tunisia-",signatures:"Imed Gargouri and Moncef Khadhraoui",dateSubmitted:"October 10th 2017",dateReviewed:"May 4th 2018",datePrePublished:null,datePublished:"January 30th 2019",book:{id:"6671",title:"Paint and Coatings Industry",subtitle:null,fullTitle:"Paint and Coatings Industry",slug:"paint-and-coatings-industry",publishedDate:"January 30th 2019",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/6671.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",middleName:"Sad",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"186371",title:"Associate Prof.",name:"Imed",middleName:null,surname:"Gargouri",fullName:"Imed Gargouri",slug:"imed-gargouri",email:"imed.gargouri@fmsf.rnu.tn",position:null,institution:{name:"University of Sfax",institutionURL:null,country:{name:"Tunisia"}}},{id:"230836",title:"Dr.",name:"Khadhraoui",middleName:null,surname:"Moncef",fullName:"Khadhraoui Moncef",slug:"khadhraoui-moncef",email:"montunisia@yahoo.com",position:null,institution:null}]}},chapter:{id:"62241",slug:"metrology-organic-solvents-in-the-shoes-industry-to-sfax-city-tunisia-",signatures:"Imed Gargouri and Moncef Khadhraoui",dateSubmitted:"October 10th 2017",dateReviewed:"May 4th 2018",datePrePublished:null,datePublished:"January 30th 2019",book:{id:"6671",title:"Paint and Coatings Industry",subtitle:null,fullTitle:"Paint and Coatings Industry",slug:"paint-and-coatings-industry",publishedDate:"January 30th 2019",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/6671.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",middleName:"Sad",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"186371",title:"Associate Prof.",name:"Imed",middleName:null,surname:"Gargouri",fullName:"Imed Gargouri",slug:"imed-gargouri",email:"imed.gargouri@fmsf.rnu.tn",position:null,institution:{name:"University of Sfax",institutionURL:null,country:{name:"Tunisia"}}},{id:"230836",title:"Dr.",name:"Khadhraoui",middleName:null,surname:"Moncef",fullName:"Khadhraoui Moncef",slug:"khadhraoui-moncef",email:"montunisia@yahoo.com",position:null,institution:null}]},book:{id:"6671",title:"Paint and Coatings Industry",subtitle:null,fullTitle:"Paint and Coatings Industry",slug:"paint-and-coatings-industry",publishedDate:"January 30th 2019",bookSignature:"Faris Yilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/6671.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"36900",title:"Dr.",name:"Faris",middleName:"Sad",surname:"Yılmaz",slug:"faris-yilmaz",fullName:"Faris Yılmaz"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11601",leadTitle:null,title:"Econometrics - Recent Advances and Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tAcademicians and policy-makers are always searching for new econometric methods to answer specific policy questions. More importantly, the advent in the advances of computing power has enabled more advanced econometric techniques to be computed with ease. Econometrics uses statistical methods and real-world data to predict and establish specific trends within economics and other social sciences.
\r\n\r\n\tThis volume attempts to explore the practical aspects of econometrics to economics, and other social sciences that use econometric methods. This volume is expected to cover a broad range of topics that include but are not limited to spatial econometrics, time series, forecasting, and machine learning, This volume hopes to attract dynamic stochastic general equilibrium (DSGE) models which are gaining prominence in applied macroeconomics. This proposed volume could serve as a reference for academicians, researchers, policy-makers, graduate students, and very abled undergraduate students who are seeking current research on the various applications of econometrics as used in research and to answer specific policy questions.
",isbn:"978-1-80356-525-5",printIsbn:"978-1-80356-524-8",pdfIsbn:"978-1-80356-526-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"bc8ab49e2cf436c217a49ca8c12a22eb",bookSignature:"Dr. Brian Sloboda",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",keywords:"Bayesian, Spatial Durbin Models, Spatial Autocorrelation, Spatial Panel Regression, Forecasting Models, Cointegration, Dynamic Factor Modes, State-Space Models, Causality, Clustering, Dynamic Stochastic General Equilibrium (DSGE), Loss Curves",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 9th 2022",dateEndSecondStepPublish:"May 13th 2022",dateEndThirdStepPublish:"July 12th 2022",dateEndFourthStepPublish:"September 30th 2022",dateEndFifthStepPublish:"November 29th 2022",remainingDaysToSecondStep:"8 days",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A mission-driven educator with expertise in Applied Econometrics, Regional Economics, and Labor Economics. Also, a skilled communicator who excels at interacting with students and motivating them to achieve their educational and career goals.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"452331",title:"Dr.",name:"Brian",middleName:null,surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda",profilePictureURL:"https://mts.intechopen.com/storage/users/452331/images/system/452331.jpg",biography:"Professional Profile Accredited as an Accredited Professional Statistician™ (PSTAT) by the American Statistical Association (ASA). Reaccredited through Aug.2022.\n\nComputer-proficient researcher skilled in statistical and econometric software, including E-Views, STATA, SPSS, and SAS Studio®. Working knowledge of MATHLAB and Dynare.\n\nResearch Fellow, Global Labor Organization (GLO), Oct.2017 to present\nAcademic and Professional Profiles \nResearch gate Profile:https: // www. researchgate. net/ profile/ Brian_ Sloboda\nORCID:https: // orcid. org/ 0000-0003-0007-1725\nGoogle Scholar Profile https: // scholar. google. com/ citations? user= RSLTrCsAAAAJ&hl= en\nEducation: Ph.D. Economics, Southern Illinois University at Carbondale,1997.\nThesis: The Economic Impact of Southern Illinois University on the State of Illinois: The Human Capital Approach\nM.S. Economics, Southern Illinois University at Carbondale,1992.\nB.A. Economics, Rowan University,1990.Minor: Mathematics.\nFields of Interest: Regional Economics, Economic Growth, Labor Economics, Economic and Statistical Education",institutionString:"University of Maryland, Global Campus",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"7",title:"Business, Management and Economics",slug:"business-management-and-economics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429339",firstName:"Jelena",lastName:"Vrdoljak",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/429339/images/20012_n.jpg",email:"jelena.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"51943",title:"Microsatellite Markers in Analysis of Forest‐Tree Populations",doi:"10.5772/64867",slug:"microsatellite-markers-in-analysis-of-forest-tree-populations",body:'\nThe sustainable management of forest genetic resources requires a good knowledge of the genetic diversity of species. Because of their longevity and wide geographic distribution, forest‐tree species have developed a high level of genomic heterogeneity as a genetic potential through which they adapt to the specific environmental factors of a given habitat [1, 2]. Human industrial activities and changing environmental conditions have exposed many species to the threat of extinction, and, with a view to the appropriate gene‐conservation measures being taken, many governments are aware of the need for forest management to maintain the biodiversity of locally adapted species. Equally, not only endangered forest‐tree species but also economically important ones should be protected in a specific conservation programs based on valuable genetic data [3].
\nIf the conservation of forest‐tree genetic resources is to be pursued, molecular markers such as DNA sequences would seem suitable where the study of the genetic variation among trees is concerned [4–6]. Appropriate marker systems can facilitate investigation of the genetic relationships between forest‐tree stands and the mapping of gene positions on chromosomes. For these purposes, several methods of DNA diversity assessment are commonly used, for example, RAPD (random‐amplified polymorphic DNA), AFLP (amplified fragment length polymorphism), RFLP (restriction fragment length polymorphism), STS (sequence‐tagged site), and microsatellites [4, 5, 7–12].
\nSince the early 1990s, a powerful molecular marker has emerged in the shape of the microsatellite sequences discovered in the genomes of all living organisms. Microsatellites (or SSRs—simple sequence repeats) comprise tandem repeats of short DNA sequences from one to six base‐pair motifs, largely distributed over the entire genome. They are considered to be highly polymorphic DNA markers with codominant inheritance and selectively neutral behavior [4, 5, 13]. SSR sequences are present in all living organisms, including protists, prokaryotes, eukaryotes, and fungi. In many species, the majority (48–67%) of tandem repeats are dinucleotides, mostly localized in noncoding regions of the genome [14]. Mononucleotide repeats are considered to be the most abundant class of microsatellites in primates, while tri‐, tetra‐, and hexanucleotide SSR repeats are reported in other organisms. Exposed to high incidences of mutation ranging from 10-2 to 10-6 nucleotide per locus and per generation, microsatellites are characterized by considerable polymorphism and species specificity [4, 14].
\nDespite the neutrality assigned to microsatellite markers, the SSR sequences seem to serve some function in different eukaryotic organisms [15]. So far, no evident role for the abundant tandem‐repeated sequences has been found, though the SSRs are presumably involved in chromatin organization in the nucleus, DNA replication, regulation of gene expression, and (putatively) in the mismatch‐repair system [4, 16]. Tandem‐repeated sequences located in the introns of genes could trigger the disruption of the triplet‐reading code. The new reading frame may be lethal, or present some advantage from the evolutionary point of view. In fact, the microsatellite triplets are more often subjected to polymerase slippage during the replication and transcription of genes. Long trinucleotide repeats, for example, CAG, CTG, CGG, and CCG, may also form secondary structures of DNA strands and influence recombination [4, 5]. Many promoters contain repeated cis‐acting DNA fragments, while microsatellites may also be involved in the regulation of gene expression.
\nThe precise identification of biological samples based on microsatellite loci remains a fundamental for population genetics study [17, 18]. These markers present many advantages, for example, locus specificity, the small amount of DNA required, the almost absolute sizing of alleles, and fast detection [4, 5, 19]. The SSR fragments (also called alleles) are screened by their length expressed in base pairs, and the differences in allele sizing among individuals of one species are caused by varying numbers of repeats in microsatellite motifs.
\nFrom practical point of view, an unexpected allele sizing of microsatellite sequences sometimes occurs. In many genomes, the microsatellites mutate by errors in replication or unequal crossing over during recombination process [20]. Moreover, homoplasy, null alleles, and short allele dominance may cause problems during microsatellite scoring [5, 14, 21, 22].
\nHomoplasy concerns the alleles of the same size but presenting different base‐pair composition. Null alleles mean the lack of polymerase chain reaction (PCR) amplification of allele caused by nucleotide mutation in primer‐binding sites. The short allele dominance is observed when large allele size dropout occurs. The amplification of nonexpected allele size often results from polymerase slippage during PCR. First of all, long and nonperfect motif repeats of microsatellite loci, especially with polyA tracks in the internal sequence, may enhance polymerase slippage [23]. Furthermore, some fluorescent dyes such as Ned, 6‐Fam, and Hex in ABI sequencer 3500 Genetic Analyzer (Life Technologies™) or Well‐Red D2, D3, and D4 dyes in CEQ™ 8000 Genetic Analysis System (Beckman Coulter, Fullerton, CA) used to label the primers can modify the mobility of the PCR products on the gel [24], and generate nonstandard scoring of alleles. The various lengths of SSR‐flanking regions should also be taken into consideration as a putative source of nonstandard allele polymorphism [24]. Sometimes, the microsatellite allele sizes alone are insufficient to determine species biogeography for organisms with predominant asexual mode of reproduction [25].
\nIn conifers, mostly di‐, tri‐, and tetranucleotide repeats are present in high proportion in the genome [19, 26]. In the case of
The transferability of the microsatellite loci between conifers is generally difficult. Many microsatellites need to be isolated
The structure of the Scots pine genome is complex. Nevertheless, some studies of microsatellites in European Scots pine populations reveal a low level of genetic differentiation [9, 37–39]. These data are concordant with the low genetic variation in polymorphism frequencies of Scots pine stands assessed with isozyme markers in Europe [40]. The main reason for this limited genetic variation in Scots pine populations lies in the transfer of seed material in the past, as enhanced by the long‐distance gene flow occurring among Scots pine stands in Europe [41].
\nThe microsatellite markers in forest‐tree species are analyzed following the general pathway composed by four general steps: (1) isolation of genomic DNA from plant tissue, (2) DNA amplification by polymerase chain reaction, (3) fragment length sizing and allele determination of the obtained PCR products performed using a capillary electrophoresis in automatic sequencer, and (4) statistical analyses of population genetic variation and differentiation.
\nMany methods of genomic DNA extraction from plant tissue have been proposed, for example, cetyltrimethylammonium bromide (CTAB) method‐based isolation described by Doyle and Doyle [42], DNeasy Plant Mini Kit (Qiagen®), MagAttract 96 DNA Plant Core Kit (Qiagen®) [43], and NucleoSpin Plant II (Macherey‐Nagel®) [43]. The mentioned methods yield c.a. 1–2 µg of DNA per 50–100 mg of plant tissue, which is sufficient for nuclear and organelle DNA amplification. According to the tissue type, that is, cambium, sapwood, or hardwood, a different yield of the DNA may be obtained, in favor of cambial cells in
Sometimes, the genomic DNA isolation step may be overcome by a direct PCR performed on fresh plant tissue with Phire® Plant Direct PCR kit (Finnzymes®, Vantaa, Finland), as demonstrated for silver fir samples [43].
\nPrior to amplification, the quality of DNA is checked by electrophoresis or with NanoDrop® ND‐1000 spectrophotometer (Wilmington, USA). The first method relies on classical gel‐based separation in the electric field of DNA fragments in c.a. 1% agarose gel or on chip‐based electrophoresis in Bioanalyzer apparatus using Agilent DNA 1000 kit (Agilent Techn. Waldbronn, Germany). Good quality and sufficient quantity of DNA molecules guarantee high yield of further amplification by polymerase chain reaction. Developed in 1983 [47], the PCR consists in three major steps: (1) initial denaturation of double‐stranded DNA matrix generally in temperature of 94–98°C for 30 s, to 1 mi; (2) annealing of primers in temperature of 50–60°C for 20–30 s; and (3) extension and elongation step in 72°C. The time and the temperature of each step strongly depend on primer structure and polymerase used in the reaction [48]. All steps are repeated 30–40 times in a thermal cycler, for example, Veriti 96 Thermal Cycler (Life Technologies™, USA), T1000 Touch™ Thermal Cycler (Bio‐Rad Laboratories, Inc., USA), or TPersonal Thermocycler (Biometra®, Germany). At the end, several thousands of copies of initial DNA matrix are generated.
\nThe PCR products are generally analyzed with capillary sequencer, for example, CEQ8000™ (Beckman‐Coulter®, USA) or 3500 Genetic Analyzer (Life Technologies™, USA) using appropriate software for data collection. The typical programs are: CEQ™8000 Genetic Analysis System version 9.0 (Beckman Coulter®) in the case of the CEQ8000 apparatus, and 3500 Data Collection Software and GeneMapper® v. 5 in the case of the 3500 Genetic Analyzer (Life Technologies™, USA).
\nIn general, statistical analyses of population genetic variation and differentiation comprise the parameters describing population genetic variation and differentiation, that is, observed and expected number of alleles (
All statistical methods should consider the effect of interaction between genotype and the environment, in order to precise the estimation values of observed genotype in given conditions. Forest‐genetic field experiments are based on tests of adjustment for local environmental factors and on the estimation of breeding values. The multi‐trait selection measures attempt to predict trees’ response to the selection effect. The assessment of valuable quantitative trait loci (QTL) mapping, gene‐expression analysis, or the long‐term response of evolutionary selection makes use of several programs, for example, analysis of variance (ANOVA), statistical analysis system (SAS, restricted maximum likelihood (RML), and S‐Plus [38].
\nIn order to illustrate the genetic similarity between studied populations, usually the dendrogram based on the distance matrix is constructed. To this end, very often the UPGMA (unweighted pair group method with arithmetic mean) method is applied [50, 53]. To produce a dendrogram of genetic similarity, the UPGMA method employs a sequential clustering algorithm. For instance, the DendroUPGMA software is a good tool for computing the clustering from the sets of variables [49, 54], with several factors such as Pearson coefficient, Jaccard similarity coefficient, and Dice coefficient.
\nThe resulting tree (dendrogram) of genetic similarity gathers the populations in branches defined by, for example, 100‐bootstrap replicates, which give an estimation of probability for particular node. The calculation of the CoPhenetic correlation coefficient (
Scots pine (
Recent advances in regard to the genetic diversity
The extraction of total DNA from the 100 mg of needles was performed using Qiagen DNeasy Plant Mini kit according to the manufacturer’s instruction (Qiagen® Hilden, Germany). The quality and purity of DNA were analyzed by absorption in 230, 260, and 280 nm in NanoDrop® spectrophotometer (Wilmington, USA). Four nuclear microsatellite DNA markers were amplified, that is, SPAG 7.14, SPAC 12.5, PtTX3025, and SsrPt‐ctg4363 [9, 31, 38]. For all loci, Well‐Red labeled primers were synthetized by Sigma‐Aldrich Company (St Louis, USA). The PtTX primers were originally designed for
Population (Forest Directorate, Forest stand) | \nLocation | \n|||||||
---|---|---|---|---|---|---|---|---|
1. Czarna Białostocka, Polanki | \n53°18′N, 22°25′E | \n50 | \n16.500 | \n10.211 | \n2.163 | \n0.710 | \n0.795 | \n0.785 | \n
2. Czarna Białostocka, Budzisk | \n53°17′N, 23°18′E | \n48 | \n16.750 | \n10.250 | \n2.175 | \n0.798 | \n0.802 | \n0.793 | \n
3. Dojlidy | \n53°05′N, 23°11′E | \n50 | \n15.500 | \n8.630 | \n2.115 | \n0.741 | \n0.800 | \n0.791 | \n
4. Supraśl | \n53°17′N, 23°30′E | \n50 | \n16.250 | \n9.726 | \n2.217 | \n0.832 | \n0.824 | \n0.815 | \n
5. Waliły | \n53°12′N, 23°39′E | \n48 | \n16.750 | \n9.325 | \n2.235 | \n0.750 | \n0.833 | \n0.823 | \n
6. Żednia, Nowa Wola | \n52°59′N, 23°33′E | \n50 | \n16.750 | \n9.540 | \n2.210 | \n0.815 | \n0.819 | \n0.810 | \n
7. Żednia, Borsukowina | \n53°15′N, 23°38′E | \n50 | \n16.750 | \n9.715 | \n2.223 | \n0.828 | \n0.831 | \n0.822 | \n
8. Hajnówka | \n54°15′N, 23°05′E | \n50 | \n19.250 | \n11.499 | \n2.278 | \n0.776 | \n0.802 | \n0.793 | \n
9. Browsk | \n52°55′N, 23°36′E | \n48 | \n18.500 | \n10.532 | \n2.250 | \n0.789 | \n0.811 | \n0.802 | \n
10. Bielsk | \n52°36′N, 23°23′E | \n50 | \n17.000 | \n8.750 | \n2.231 | \n0.751 | \n0.828 | \n0.818 | \n
11. Rudka | \n52°54′N, 22°52′E | \n50 | \n16.250 | \n8.974 | \n2.124 | \n0.785 | \n0.782 | \n0.774 | \n
12. Knyszyn, Szelągówka | \n53°20′N, 22°41′E | \n50 | \n17.000 | \n10.269 | \n2.244 | \n0.783 | \n0.824 | \n0.815 | \n
13. Knyszyn, Kopisk | \n53°17′N, 23°04′E | \n50 | \n17.000 | \n10.028 | \n2.161 | \n0.733 | \n0.804 | \n0.796 | \n
14. Augustów | \n53°46′N, 23°10′E | \n50 | \n17.750 | \n9.315 | \n2.228 | \n0.780 | \n0.818 | \n0.810 | \n
Total | \n\n | 1260 | \n30.750 | \n12.400 | \n2.488 | \n0.778** | \n0.849** | \n|
\n | \n | \n | \n | \n | \n | \n | \n |
Genetic differentiation level of microsatellite nSSR loci in studied Scots pine populations.
Parameters of genetic diversity (
The dendrogram of genetic distances between studied populations was constructed using DendroUPGMA software [63], validated by
Spectrophotometrical assessment of the genomic DNA isolated from Scots pine samples yielded good quantity and quality of the nucleic acids (Figure 1). For all samples, the mean DNA purity (
Spectrophotometrical assessment of the DNA extracts from Scots pine leaf samples population Browsk, in the spectrophotometer NanoDrop® ND‐1000 (TK-Biotech, USA).
The studied trees harbored both heterozygotes and homozygotes in four microsatellite loci as illustrated in Figure 2. All loci were very polymorphic (mean
Example of microsatellite nuclear DNA analysis in Scots pine populations from North‐eastern Poland: two alleles 159 and 177 base pairs in locus SPAG 7.14 (blue color) and two alleles 192 and 204 bp in locus SPAC 12.5 (black color) (A), one allele 102 bp in locus SsrPt‐ctg4363 (green color) and two alleles 276 and 288 bp in locus PtTX3025 (black color) (B). Obtained from DNA capillary electrophoresis after Beckman Coulter® software CEQ™ 8000 Genetic Analysis System v 9.0 (Fullerton, USA).
Total allele frequency distribution of SPAG 7.14 locus among studied Scots pine populations. *Polymerase slippage.
All allele frequency distribution according to their size for SPAC 12.5 locus among studied Scots pine populations. *Polymerase slippage.
All alleles distribution according to their size of PtTX3025 microsatellite locus in Scots pine stands. *Polymerase slippage.
Total allele frequency distribution of SsrPt‐ctg4363 locus among studied Scots pine populations. *Polymerase slippage
\n | pop1 | \npop2 | \npop3 | \npop4 | \npop5 | \npop6 | \npop7 | \npop8 | \npop9 | \npop10 | \npop11 | \npop12 | \npop13 | \npop14 | \n
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pop1 | \n0 | \n1.262 | \n0.062 | \n0.090 | \n0.085 | \n0.051 | \n0.076 | \n0.030 | \n0.039 | \n0.073 | \n0.048 | \n0.073 | \n1.173 | \n0.067 | \n
pop2 | \n\n | 0 | \n1.393 | \n1.434 | \n1.175 | \n1.245 | \n1.189 | \n1.372 | \n1.383 | \n1.069 | \n1.347 | \n1.264 | \n0.037 | \n1.111 | \n
pop3 | \n\n | \n | 0 | \n0.086 | \n0.058 | \n0.054 | \n0.042 | \n0.061 | \n0.043 | \n0.084 | \n0.059 | \n0.068 | \n1.354 | \n0.070 | \n
pop4 | \n\n | \n | \n | 0 | \n0.115 | \n0.094 | \n0.094 | \n0.085 | \n0.091 | \n0.156 | \n0.116 | \n0.062 | \n1.391 | \n0.111 | \n
pop5 | \n\n | \n | \n | \n | 0 | \n0.074 | \n0.062 | \n0.091 | \n0.063 | \n0.091 | \n0.074 | \n0.089 | \n1.113 | \n0.113 | \n
pop6 | \n\n | \n | \n | \n | \n | 0 | \n0.061 | \n0.045 | \n0.056 | \n0.081 | \n0.066 | \n0.057 | \n1.191 | \n0.056 | \n
pop7 | \n\n | \n | \n | \n | \n | \n | 0 | \n0.071 | \n0.057 | \n0.079 | \n0.062 | \n0.056 | \n1.165 | \n0.052 | \n
pop8 | \n\n | \n | \n | \n | \n | \n | \n | 0 | \n0.046 | \n0.066 | \n0.045 | \n0.062 | \n1.283 | \n0.062 | \n
pop9 | \n\n | \n | \n | \n | \n | \n | \n | \n | 0 | \n0.086 | \n0.041 | \n0.056 | \n1.309 | \n0.062 | \n
pop10 | \n\n | \n | \n | \n | \n | \n | \n | \n | \n | 0 | \n0.072 | \n0.109 | \n0.996 | \n0.086 | \n
pop11 | \n\n | \n | \n | \n | \n | \n | \n | \n | \n | \n | 0 | \n0.087 | \n1.329 | \n0.084 | \n
pop12 | \n\n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | 0 | \n1.240 | \n0.053 | \n
pop13 | \n\n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | 0 | \n1.100 | \n
pop14 | \n\n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | \n | 0 | \n
Distance matrix based on SSR marker frequencies in studied Scots pine populations.
Genetic differentiation level of microsatellite nSSR loci in studied Scots pine populations has been resumed and is listed in Table 1. All populations exhibited high genetic parameter variation, with total mean observed (
The dendrogram built on the distance matrix based on SSR markers frequencies (Table 2) revealed two main clusters of populations (Figure 7). Two populations from the first group of dendrogram (number 2, Czarna Białostocka Budzisk, and 13, Knyszyn Kopisk) were separated by a distance of 0.612 from the second group. Moreover, two populations from the first group were closely located one to another in North‐eastern Poland (Figure 8). Nevertheless, the robust MCMC analysis revealed only one cluster of population genetic grouping, proved also by CoPhenetic Correlation Coefficient value close to 1 (
Dendrogram of genetic distances of Nei [
Geographical distribution of two genetically related groups of populations of Scots pine from North‐eastern Poland, according to the dendrogram of genetic distances (
The development of an appropriate genetic conservation strategy for native Scots pine populations in European countries seems to be a very relevant priority. Numerous nuclear microsatellite markers have already been described for different conifer species, for example, fir, larch, pine, and spruce (for review, see [9, 14, 19, 31, 33, 65–69]). Some DNA markers have also been used to characterize the genetic variation of
In Poland, Scots pine resources are classified by reference to 26 seed regions, based on the boundary delineation of physicogeographical features, for example, a homogeneous climate and geographic conditions [12]. Programs for the
In the present study, low genetic differentiation level of 14 Scots pine stands from the North‐eastern Poland was determined thanks to the DNA profiles established on a basis of four microsatellite nuclear DNA loci (SPAG 7.14, SPAC 12.5, PtTX3025, and SsrPt‐ctg4363). These data support previous investigations of the genetic structure performed using four nuclear microsatellite markers on 42 Scots pine populations located in different regions in Poland [38]. Pine trees from 42 stands were characterized by high polymorphism level (
Scattered distribution of genetically related populations of Scots pine seems to reflect the historical events such as colonization of Poland by this species from different postglacial refugia and/or by significant human management practiced in the past. These data were supported by mitochondrial gene study, which have a maternal mode of transmission, and non‐recombinational nature in conifers was used in the study of maternal lineages and the postglacial migration of
Another type of microsatellite sequences located in chloroplast genome (cpSSR) could also present an interesting tool to which the genetic diversity and gene flow among
Recently, investigation focusing on nuclear and chloroplast microsatellite DNA markers in wood tissue identification is an efficient method to be used for forensic purposes. The present methodology helps to compare detailed DNA patterns of Scots pine (
Both adaptive and neutral markers (e.g., microsatellites) present many advantages in modern forest genetics [60, 65, 75, 78, 80]. In order to find the genetic basis of the neutral or adaptive diversity of natural populations, simulations based on adaptive traits, quantitative trait loci, and neutral markers are performed [81].
\nThe conservation of genetic variability is a major focus in forest‐tree selection and sustainable forest management (SFM). The preservation of genetic diversity in different forest‐tree species facing changes of environmental conditions and increasing human industrial activity is still the great challenge for researchers involved in adaptive and evolutionary genetics. Genetic variation may be investigated by means of several molecular techniques using DNA markers. Among them, the microsatellites are the most powerful and suitable tool in the identification and characterization of the genetic resources in forest. Because of their relatively high mutation rate, microsatellites are often used to study genetic variation and population structure. The SSR markers constitute an effective tool by which the European Scots pine populations have been studied on the basis of nuclear and chloroplast DNA. In this context, stress is placed on the accurateness of the chosen marker for a given purpose, as well as the statistical methods of calculation.
\nThe nuclear SSRs are mainly used in studying genomic differentiation. The discriminatory power of nuclear SSR markers points out their applicability to the study of various forest‐tree populations. The comparative study of dominant and codominant nuclear markers in forest‐tree genetics shows that even a few microsatellite loci can be used in the high‐accuracy prediction levels of genetic diversity. It is supposed that the populations with low level of genetic variation are generally less genetically stable and more vulnerable to pathogenic infections and harmful changes of environmental conditions [1, 39, 41]. The researchers involved in the field of forestry foresee the need for further analysis using molecular genetic tools.
\nParticular attention should be drawn to the avoidance of some errors occurring during the scoring of microsatellite allele (in Scots pine or other organisms, we can meet null allele, short allele dominance, and polymerase slippage). The use of the specialized genotyping software is therefore strongly advised.
\nMany approaches to the conservation of genetic diversity, the exploration of plant‐genetic resources, and the design of plant‐improvement programs require a specific knowledge on the amount and distribution of genetic diversity within investigated species. The genetic information contained in DNA, particularly in microsatellite sequences, offers valuable input when it comes to the
The results mentioned in this chapter are parts of the research funded by the General Directorate of State Forests (grant BLP‐309). Many thanks are expressed to colleagues from the Forest Research Institute IBL Poland, especially Jolanta Bieniek, Małgorzata Borys, M.Sc., Dr Anna Zawadzka, Dr Jan Kowalczyk, Michał Zawadzki, M.Sc., and Jerzy Przyborowski involved in plant material collection and laboratory DNA analyses.
\nDrought stress is the primary environmental factor influencing the growth, development and productivity of crops and its significance is expected to increase in the wake of global climate change [1, 2, 3, 4]. This presents a serious challenge to the food and nutrition security of an ever-rising world human population. Moreover, the current transition from carbon/fossil intensive fuel driven economies to modern climate-smart low-carbon economies further strains our crop production systems [5]. Adapting field crops to drought stress therefore becomes critical for sustainable agricultural production under such climate change scenario [6]. To achieve that goal, breeding drought resilient crop cultivars that maintain yield stability under such conditions befits the most economical, effective and sustainable strategy. This is particularly relevant for cereal grain crops.
Cereal grain crops, chiefly rice (
In the last century, conventional breeding approach has proven itself capable of sustaining productivity growth in various crops [11]. Meanwhile, modern technological advancements have accelerated the pace and impact of new cultivar development. Such technologies include high throughput omics approaches, identification of quantitative trait loci (QTL) underlying abiotic and biotic stress resistances, marker assisted selection (MAS) and gene cloning [12, 13, 14, 15]. Despite this significant progress in elucidating the mechanisms underlying drought tolerance, considerable challenges remain and our understanding of the crop drought tolerance mechanisms is still abstract.
In this chapter, therefore, we look at various aspects of drought stress in major cereal grain crops such as maize, sorghum, wheat, rice and finger millet. We also discuss the current approaches in identifying drought tolerance genes and metabolic pathways. Further, we highlight the progress made to date on elucidation of key drought stress responses, phenotyping and QTL mapping for drought tolerance, genetic engineering of drought tolerant crops and management of crops. We conclude by offering an integrated strategy for adapting cereal grain crops to drought stress in the context of climate change.
A decrease in water inputs into an agro/ecosystem over time that is sufficient to cause soil water deficit (SWD) is often termed drought, and this encompasses various forms such as rainfall anomalies, irrigation failure, seasonal or annual dry spells [16]. In agricultural context, drought signifies a period of below-average precipitation when the available soil water in the plant rhizosphere drops beyond the thresholds for efficient growth and biomass production [17]. The resultant oxidative stress emanating from such SWD is dubbed drought stress.
Numerous research reports have reflected on the effects of drought stress on cereal crops. Drought stress effects span from morphological to molecular levels, and are exhibited at all phenological growth stages at whatever stage the water deficit takes place. Generally, drought stress impairs seed germination resulting in poor crop stand establishment [1, 18]. Drought stress reduces the plant cellular water potential and turgor pressure, thereby increasing the cytosolic and extracellular matrices solute concentrations. Resultantly, cell growth is diminished due to the reduction in turgor pressure [19]. Additionally, abscisic acid (ABA) and compatible osmolytes such as proline are excessively accumulated, causing plant wilting. Simultaneously, reactive oxygen species (ROS) such as H2O2 are overly produced. Although they function as signal transduction molecules, over-accumulation of ROS could result in extensive cellular oxidative damage and inhibition of photosynthesis [20].
Moreover, when moisture deficit becomes severe, cell elongation becomes inhibited by the interruption of water flow from the xylem vessels to the surrounding elongating cells [21]. Consequently, vegetative growth, dry matter partitioning, reproductive organ development and reproductive processes, grain filling and grain quality are disrupted [22]. In cereal grain crops, reproductive processes and grain filling are more susceptible to water deficit stress, with optimum and ceiling temperatures that are relatively lower than those for seedling and vegetative growth stages [21, 23, 24, 25]. Moisture deficit stress reduces yield by delaying silking, thus increasing the anthesis-to-silking interval [11]. Drought stress at flowering period is critical as it can increase pollen sterility resulting in hampered grain set [26].
Drought stress induced yield reduction in cereal crops depends upon the severity and duration of the stress period. The reduction in photosynthesis, emanating from the decrease in leaf expansion, impaired photosynthesis machinery, premature leaf senescence and related food production decreases, is the major contributing factor on yield reduction [21, 23]. Drought stress induced yield reductions have been reported and reviewed in maize [1, 21, 26, 27, 28, 29], wheat [26, 27, 30, 31], rice [1], sorghum [32, 33] and pearl millet [25].
Plants have evolved numerous dynamic acclimation and adaptive ways of responding to and surviving short-term and long-term drought stresses [34]. The physiology of plants’ drought response at the whole plant level is complicated as it encompasses lethal and adaptive alterations. Moreover, how plants respond to drought stress differ significantly at various organizational levels, and this is generally dependent on plant species; the nature, duration and intensity of the drought stress; plant growth and phenological state at the time of stress exposure [19].
Drought stress triggers a wide range of plant structural changes which are essential for plants to respond to such drought stress conditions. These adjustments include morphological adaptations such as reduced growth rate, deepened rooting system, and root-to-shoot ratio modifications. The increased root-to-shoot ratio under drought stress conditions enables water and nutrient uptake and maintenance of osmotic pressure [19, 26, 35]. Additionally, in their response to moisture fluctuations in the soil rhizosphere, plants alter their physiology, modify their root growth and architecture, and regulate the closure of stomata on their aboveground structures. Such tissue-specific responses adjust the cell signals flux, consequently inducing stunted growth or premature flowering, and generally reduced yield [36]. Thus, drought stress is associated with alterations in leaf anatomy and ultrastructure. Reduced leaf size, decreased number of stomata; thickened leaf cell walls and induced premature senescence are some of those morphological changes [19].
Plants resist drought stress through a combination of strategies, which have been widely classified as drought escape, drought avoidance and drought tolerance [18, 21, 37, 38]. Drought escape is achieved by matching the duration of the crop cycle to water supply through genetic variation in phenology [39]. Plants prioritize early flowering and completing their life cycles before the effects of drought cause harm [21].
Drought avoidance denotes plant’s ability to maintain high tissue water potential under drought conditions. Usually, plants achieve drought avoidance through morphological and physiological alterations, including reduced stomatal conductance, decreased leaf area, promotion of extensive rooting systems and increased root to shoot ratios [38]. Drought avoidance mechanisms help in maintaining favorable cellular water balance, by enhancing water absorption, decreasing water loss, or allowing desiccation tolerance at low leaf water potential [34]. Stomatal closure, reduction of leaf growth and increased root length and density all contribute to increased water use efficiency under drought stress conditions. Further, water flux into the plant is reduced or water uptake enhanced to achieve drought avoidance [19].
On the other hand, plants attain a state of drought tolerance by cell and tissue specific physiological, biochemical, and molecular mechanisms. Drought tolerance is a complex trait which refers to the capacity of the plant to be more productive under drought stress [40]. In other words, it denotes the potential of crop plants to maintain their growth and development under drought stress [21]. The main aspects of plant drought tolerance mechanism include homeostasis maintenance, via ionic balance and osmotic adjustment; ROS scavenging and antioxidant enzyme activation; growth regulation and recovery by way of phytohormones; specific gene expression; and accumulation of specific stress responsive proteins [1, 2, 19, 21, 26].
To protect themselves against ROS induced oxidative stress and photo inhibition, plants activate an efficient antioxidant (enzymatic and non-enzymatic) defense system [17, 18, 21, 41]. Enzymatic antioxidant enzymes include superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX) and glutathione S-transferase (GST) among others. SOD acts as the first line of defense by converting singlet oxygen into H2O2. APX and GSTs then detoxify H2O2 [42]. Non-enzymatic antioxidants including glutathione (GSH), ascorbic acid (AsA), carotenoids, tocopherols and flavonoids are also crucial for ROS homeostasis in plants [43].
At the molecular level, our current knowledge thus far regarding drought stress response pathway suggest that, sequentially, the stress is relayed through the following chain: signal perception, signal transduction, transcriptional control by way of transcription factors (TFs), stress responsive genes activation, and in-turn activation of physiological and metabolic responses [1, 19, 37, 44].
Stress signal perception in plants has revealed the role of plasma membrane in perceiving and transmitting signals to the cell interior, where molecules such as receptor-like kinases and G-proteins function as primary receptor molecules [45]. The roles of Ca+ and ROS as secondary messengers in stress perception and signaling have also been well acknowledged [4]. These secondary messengers adjust the calcium levels and activate protein phosphorylation. Then, phosphorylation of inactive proteins may be directly involved in cellular protection by protein folding or activation of stress specific genes. The dominant plant signal transduction pathways involve the mitogen activated protein kinase (MAPK) and calcium dependent protein kinases (CDPK) cascades, and their role in abiotic stress response have been well reviewed [38, 42, 46].
Upon drought exposure, the resulting signal transduction triggers the production of several biochemicals, including phytohormones, to respond and adapt to the ensuing drought stress [47]. Phytohormones are molecules produced in low concentrations but are critical in regulating plant growth, development, response to biotic and abiotic stresses, and other physiological processes [48]. These phytohormones include ABA, salicylic acid (SA), ethylene (ET), cytokinins (CKs), gibberellin acid (GA), jasmonic acid (JA) and brassinosteroids (BRs) among others. Among these, ABA is the key and most extensively studied hormone that regulates drought resistance in plants [38, 49]. ABA acts as the second messenger coordinating hormonal cross-talk between several stresses signaling cascades, thereby leading to adaptations to changing physiological and environmental conditions [50]. Additionally, SA, ET, JA, CKs, GA, and BRs play vital roles in regulating various phenomena in plants acclimatization to drought stress [51].
At the molecular level, plants institute stress responsive proteins, TFs and signaling pathways among other strategies. Several studies [52, 53] have identified conserved and species-specific drought responsive genes, including membrane stabilizing proteins and late embryogenic abundant (LEA) proteins, which increase cells’ water binding capacity [1, 14]. Several heat shock proteins (HSPs), which play a major role in stabilizing protein structure, were also identified [54, 55]. The HSPs are chiefly involved in unwinding some folded proteins and averting protein denaturation under abiotic stress conditions. The membrane stabilizing proteins, LEA proteins, detoxification enzymes, water channel proteins and ion transporter genes all constitute a group of functional proteins, that is, a group of important enzymes and metabolic proteins which directly function to protect cells from stress [37, 56]. Besides functional genes, regulatory genes are also critical for drought tolerance. These encodes various regulatory proteins such as transcriptional factors (TFs), protein kinases and protein phosphatases – involved in regulating signal transduction and gene expression in response to stress [57, 58]. Several TFs that regulate a large spectrum of downstream stress-responsive genes and provide adaptive response under drought stress have been identified and reviewed, including myeloblastosis (MYB), abscisic acid responsive elements binding factor (ABF), ABRE binding (AREB), dehydration responsive element binding (DREB), C-repeat binding factor (CBF), [NAM, ATAF1/2, and CUC2 containing proteins] (NAC) and WRKYs [59, 60, 61, 62, 63].
Additionally, protein kinases and protein phosphatases mediate phosphorylation and dephosphorylation of proteins, respectively. In several signal transduction pathways; they are vital and an effective mechanism for stress signal relaying [19, 56, 63]. At the phosphorylation cascade terminals, protein kinases or phosphatases activate or suppress TFs, respectively. The TFs further specifically bind to cis-elements in the promoters of stress responsive genes, thereby modulating their transcription [64]. The TFs are further subjected to post translational modifications (PTMs), including ubiquitination and sumoylation, thereby forming an intricate regulatory network to modulate stress responsive genes, which consequently trigger the activation of appropriate physiological and metabolic responses [62, 65].
The recent convergence of crop physiology, next generation sequencing and molecular biology approaches has offered us convenience in deciphering mechanisms underlying plants’ response to various abiotic stresses [13, 15, 66]. Whereas plant physiology enhances our understanding of the complex network of traits related to drought tolerance and improving selection efficiency, genomics and molecular biology methods identify the candidate genes and quantitative trait loci (QTLs) underlying these traits [11, 13]. The classical cDNA and oligonucleotide microarrays have been widely employed to identify candidate genes for drought tolerance in several cereal grain crops including maize [67, 68], rice [69, 70] and barley [71]. Additionally, the use of tilling microarrays has allowed for the identification of differentially expressed DNA sequences at the whole genome level [72]. Other techniques such as differential display; cDNA amplified fragment length polymorphism (cDNA-AFLP); and serial analysis of gene expression (SAGE) have been essential in analyzing global gene expression profiles in functional genomics studies [56, 73, 74].
Analysis of large scale, high throughput sequencing data is now facilitating the identification and cloning of important genes at target QTLs. Additionally, the ‘omics’ analysis approaches are showing monumental capacity to quicken and broaden our understanding of the molecular, genetic and functional basis of crop drought stress tolerance [12, 75]. Encouragingly, some novel insights meant to help us develop new drought tolerant cultivars are being generated [76]. Due to its low cost, high-throughput, and high sensitivity, RNA sequencing (RNA-seq) has offered us breakthrough in performing transcriptome analysis of plants’ drought stress responses [77]. Resultantly, we have obtained transcripts from RNA in a tissue- or cell-specific manner, and transcribed at a different developmental stage or functional state; this has been fundamental to fishing out functional genes [78]. Therefore, our knowledge pertaining to gene expression networks modulating drought stress tolerance has been significantly improved. RNA-seq technology has been used in several drought stress response studies in cereal crops and numerous genes have been identified [79, 80, 81].
Recently, large scale, high-throughput proteomics has become a very powerful tool for performing comprehensive analysis of crop proteins and identification of stress responsive proteins in comparative abiotic stress studies [82, 83]. Proteomic approaches, particularly gel free methods, that is, those involving digestion of intact proteins into peptides prior to separation, have now become very popular in proteome profiling, comparative expression analysis of two or more protein samples, localization and identification of post translational modifications (PTMs) [14]. For instance, isobaric tags for relative and absolute quantitation (iTRAQ) and isotope-coded affinity tags (ICAT) based methods have become widely used in descriptive and comparative drought stress proteomic studies in cereals [84, 85, 86, 87]. The iTRAQ- based method allows for the time-dependent analysis of plant stress responses or biological replicates in a single experiment [88]. Besides, proteomics offers complementarity to genomics; providing clues on the molecular mechanisms underlying plant growth and stress responses, as well as being a crucial link between transcriptomics and metabolomics [82]. Moreover, genomics based methods offer access to agronomically desirable alleles localized at QTLs that affect particular physiological responses. This helps us to effectively improve the drought resilience and yield of crops. Additionally, MAS has aided us in improving drought-related traits [12, 89].
Further, a systems biology approach, premised on the advancement and integration of omics (genomics, transcriptomics, metabolomics, phonomics and proteomics) methods to establish a meaningful relationship between the genotype, phenotype and subsequent abiotic stress tolerance, has also become prominent [76]. Integrated knowledge of the morphological, physiological, biochemical, genetic and molecular events in plants allows for in depth understanding of the complex physiological and cellular processes involved in drought stress adaptation. Thus, meaningful interpretations from complex networks and component integrations can be developed from voluminous omics data, which helps us better decipher the mechanisms underlying cereal crops drought tolerance [63].
Meanwhile, the physiological analysis on contrasting genotypes provides information on the mechanisms underlying drought tolerance and aids as a useful screening strategy for drought tolerance [41]. Therefore, it is important to realize that physiological analysis remains essential in corroborating the molecular analyses in abiotic stress response studies. Thus, it would be essential that, going forward, we build on the progress made to date by harnessing the full potential of genomics-assisted breeding, and integrating our knowledge on the physiological and molecular basis of drought tolerance. This calls for crop physiologists, molecular geneticists, breeders and cytogeneticists to collaborate in a multidisciplinary manner [12].
By applying genetic, biochemical and molecular approaches, we have identified essential genes central in plant responses to drought stress. For instance, several physiological responses contributing to drought tolerance in cereal crops have been identified including thermal dissipation of light energy, stomatal closure, decreased hydraulic conductance, altered source-sink relations and carbon partitioning, ABA biosynthesis, among others (Table 1).
No. | Physiological response | Purpose | Reference |
---|---|---|---|
1 | Thermal dissipation of light energy | Uncoupling of photophosphorylation and electron transport | [41, 90] |
2 | Activation of photosynthesis (PSII) proteins | Preventing photoinhibition of the PSII and improving leaf photosynthetic capacity | [81, 91] |
3 | Altered source–sink relations and carbon partitioning | Induction of root growth | [92] |
4 | Prioritized supply of CHOs to rapidly growing or metabolically hyperactive cells or tissues | Promotion of early seedling/hypoctyle growth | [80] |
5 | Cell wall biosynthesis | Enhancing cellular contents preservation | [81, 93, 94] |
6 | Cell wall remodeling | Increasing cell wall elasticity to maintain tissue turgidity | [80] |
7 | Amino acid biosynthesis | Enhanced protein biogenesis | [80] |
8 | Osmotic adjustment through increased synthesis of soluble solutes (proline, soluble sugars, etc.) | Increased cellular homeostasis maintenance | [11, 40, 95, 96] |
9 | Changes in ROS scavenging and enzyme activities | Prevention of cellular oxidative damage | [18, 81] |
10 | ABA biosynthesis | Stomatal closure regulation and improved stress signaling | [11, 40] |
11 | Stomatal closure and reduced hydraulic conductance | Prevention of water loss through transpiration | [97] |
12 | Alteration in root morphology and physiology | Increased water and nutrient absorption under drought conditions | [98, 99] |
13 | Reduced stomatal density and enhanced control of stomatal opening and closure | Improved cellular water conservation | [100] |
14 | Alternative oxidase pathway, uncoupling proteins, NADPH dehydrogenases down-regulated | Uncoupling of oxidative phosphorylation and electron transport | [101] |
Some key drought stress tolerance mechanisms identified in cereals.
Besides the mechanisms highlighted in Table 1, several drought responsive genes have been identified and validated in different crop species. For instance, recent excellent reviews [4, 26, 102, 103, 104, 105, 106] provide highly informative details about some crop drought tolerance conferring genes that have been functionally validated to date. Some of these genes are listed in Table 2.
No. | Gene name | Donor | Host | Physiological change | References |
---|---|---|---|---|---|
1 | Maize | Enhanced photosynthetic efficiency and root development | [81, 107] | ||
2 | Arabidopsis | Maize | ABA signaling | [108] | |
3 | Arabidopsis | Maize | Improved ABA biosynthesis | [104, 109] | |
4 | Mannitol-1-phosphate dehydrogenase ( | Wheat | Improved fresh and dry weights, plant height, and flag leaf length | [110] | |
5 | Arabidopsis | Maize | Higher photosynthesis capacity | [102, 111] | |
6 | Arabidopsis | Rice | Higher Fv/fm | [112] | |
7 | Arabidopsis | Rice, wheat | Shoot growth retardation at the expense of root growth | [102] | |
8 | Arabidopsis | Rice | Enhanced WUE and photosynthesis efficiency | [113] | |
Rice | Rice | Sluggish water loss and lessened leaf wilting | [114] | ||
10 | Arabidopsis | Maize | Increased ABA biosynthesis | [115] | |
11 | Barley | Rice | Higher WUE | [116] | |
12 | Barley | Wheat | Enhanced biomass accumulation and WUE | [26, 117] | |
13 | Escherichia coli | Wheat | Accumulation of glycine betaine | [118] | |
14 | Tobacco | Maize | Preventing dehydration damage to the photosynthesis machinery | [119] | |
15 | Arabidopsis | Rice | ABA-hypersensitive, stomatal shutdown | [120, 121] | |
16 | Sorghum | Maize | Increased Pn rate and higher WUE | [122] | |
17 | Light harvest complex related genes ( | Maize | Maize | Balancing light capture in the PSII | [91, 93] |
Examples of drought tolerance conferring genes that have been functionally validated in cereal crops.
Further, several metabolic pathways implicated in drought stress tolerance in cereal grain crops have been identified through comparative physiological and omic analysis approaches. Chief among these pathways are those related to photosynthesis, secondary metabolites biosynthesis, plant hormone signaling, starch and sucrose metabolism, and nitrogen metabolism. Chloroplasts, particularly the thylakoid membranes—PSII reaction centers, are one of the organelles most influenced by drought stress [123, 124]. Photosynthesis (antenna protein) pathway related genes
Phenylpropanoid metabolism is the first step of the secondary metabolites (flavonoids, phenylpropanoids, phenolic compounds and lignin) biosynthesis and phenylpropanoids act as antioxidants to protect plants against oxidative damage [128, 129]. Flavonoids play different molecular functions in plants, including stress protection. All these compounds are widely synthetized in response to several abiotic stresses, including drought [130]. In wheat leaves, an increase in flavonoid and phenolic acids content was shown together with stimulation of genes involved in flavonoid biosynthesis pathway in response to drought stress [131]. Moreover, secondary metabolites biosynthesis related pathways were found to be significantly enriched in response to drought stress in maize [80] and sorghum [37], suggesting their involvement in plant protection. A coordinated reaction of the genes and pathways involved in secondary metabolite biosynthesis is therefore vital for improved drought stress tolerance in plants [80]. Plant hormone signaling pathway participates in drought stress response via either ubiquitin-mediated proteolysis or ABA-mediated response [132], and was observed to be significantly enriched in pearl millet response to drought stress [127].
Sucrose is widely acknowledged to play a crucial role as a key molecule in energy transduction and as a regulator of cellular metabolism [130]. Additionally, sucrose and other sugars are energy and carbon sources required for defense response and are necessary for plant survival under drought stress conditions [133]. Further, sucrose can act as primary messenger controlling the expression of several sugar metabolism related genes [134]. Nitrogen metabolism pathway, being the most basic and central physiological metabolic process during plants’ growth period, directly influences the formation of cellular components and regulation of cellular activities, as well as the transformation of photosynthetic products, mineral nutrient absorption and protein synthesis. It therefore follows that the nitrogen pathway is directly affected by drought, hence its significant enrichment under such conditions [80, 127]. These key identified drought responsive pathways should be used as targets for future genetic engineering of drought stress tolerant genotypes.
Most yield-related traits in cereal crops are quantitative. Therefore, cloning of the causal genes and deciphering the underlying mechanisms influencing these traits remains critical for continuous genetic improvement [135]. Precisely, drought tolerance is a complex quantitative trait that is multi-genic in its expression and one of the most challenging traits to study and characterize [11]. In comparison to conventional approaches, genomics offers unparalleled opportunities for dissecting quantitative traits into their single genetic determinants, known as QTL, thereby facilitating MAS, gene cloning and their direct manipulation via genetic engineering [12]. Through advances in next generation sequencing, identification of major QTLs regulating specific drought responses has been made possible, via the development of large numbers of genetic markers such as single nucleotide polymorphisms (SNPs) and insertion-deletions (InDels), thereby opening the doors for an efficient way to improving drought tolerance in cereal crops [89]. Additionally, large-scale genome-wide association studies (GWAS) have been conducted to detect genomic regions and candidate genes for various agronomic traits, including drought tolerance in cereals [13, 136, 137]. Resultantly, hundreds of studies reporting thousands of major drought-responsive genes and QTLs in cereal grain crops can be found in the literature, including those for maize [13, 138, 139, 140], rice [12, 13, 105, 138, 141, 142], wheat [13, 31, 137, 138, 143], sorghum [138, 144, 145], barley [138, 146], and pearl millet [136, 147, 148]. The high number of studies on QTL mapping suggests that for the past decade, QTL has been the focal target of research to identify the genetic loci regulating the adaptive response of crops to drought stress. Although several QTLs for drought tolerance have already been mapped in these cereal crops, there has been little success in introgression of those QTLs and the number of causal genes that have been confirmed within these QTL regions remains relatively small as compared to Arabidopsis and rice [11, 106].
Going forward, MAS remains a useful tool for major QTL, whereas QTL cloning is increasingly becoming a more routine activity. This has been necessitated by increased use of high-throughput sequencing, precise phenotyping and identification of appropriate candidate genes through omics approaches [89, 136, 137]. Cloned QTL facilitate a more targeted search for novel alleles and will offer novel insights for genetic engineering of drought resilient cereal crops [13]. Moreover, compared to other crops, research in millets is still lagging behind. However, with millets considered predominantly climate resilient crops, millets could serve as valuable source of novel genes, alleles and QTLs for drought tolerance. Therefore, the identification and functional characterization of these genes, alleles and QTLs in millets is critical for their introgression and drought tolerance improvement in cereal grain crops [89].
Phenotyping has become an integral component of the crop improvement programme by contributing towards understanding of the genetics behind crop drought tolerance [105, 149]. Since many component traits of drought tolerance are controlled quantitatively, improving the accuracy of phenotyping has become more important to improve the heritability of the traits, and the target traits would require rapid and precise measurement [106]. High throughput phenotyping now provides an essential link in translating laboratory research to the field. This is vital in developing novel genotypes that incorporate gene(s) expressing promising trait (s) into breeding lines adapted to target field environments [150].
Auspiciously, the recent advances in phenotyping technology and robotics for measuring large number of plants means that large numbers of genotypes could be readily phenotyped [34, 151, 152, 153]. More promising approaches that target complex traits tailored to specific requirements at the different main crop growth stages are now available [150]. Precise phenotyping of drought-related physiological traits often requires the utilization of sophisticated and expensive techniques. These include magnetic resonance imaging (MRI) and positron emission tomography (PET), near-infrared (NIR) spectroscopy on agricultural harvesters, canopy spectral reflectance (SR) and infrared thermography (IRT), nuclear magnetic resonance, hyperspectral imaging, laser imaging, 3D imaging and geographical information systems (GIS), among others [34, 138, 154, 155]. For example, 3D visual modeling can be used to determine the plasticity of the canopy architecture, and to evaluate the architectural and physiological characteristics that contribute to the higher productivity of the super rice varieties under drought stress conditions [156]. Though currently expensive, up scaling the use of these phenotyping platforms will eventually enhance our understanding of crop growth kinetics and aid us improve crop models for systems biology and drought tolerance breeding programs.
Selection of primary (grain yield and yield contributing traits) and secondary agronomically important traits (ASI, root architecture, stay green, etc.) is the way to achieve drought tolerance in cereal grain crops [31, 35, 106, 152]. Yield and yield attributing factors are targeted for direct selection whilst secondary traits are vital in conferring drought tolerance and contributing to final yield indirectly [157]. Crucially, considering that under drought stress conditions, the genetic correlation between grain yield and some secondary traits increases meaningfully, and the heritability of some secondary traits remains high, identification and selection of those highly heritable secondary traits that are positively correlated with yield related traits in the target environment, and responsive to high throughput phenotyping, will be critical in achieving the desired drought tolerance goals [11, 152, 158]. Managed stress screening approaches through the utilization of phenomics offers an opportunity to keep heritability high and phenotyping under controlled environments can be helpful in large-scale characterization studies such as trait mapping experiments [13]. However, great caution needs to be taken when phenotyping for drought stress tolerance since controlled environments may fail to mimic the real field conditions, thereby becoming less useful to study the genotype × environment interactions which are very essential to dissect the drought tolerance mechanisms [106].
The development of tolerant crops by genetic engineering requires the identification of key genetic determinants underlying stress tolerance in plants, and introducing these genes into crops [159, 160]. The momentous progress garnered in abiotic stress response research in the model plant Arabidopsis has created an avenue for the identification of drought tolerance conferring genes and the development of transgenics carrying these genes in other crop species. Therefore, genetic engineering approach has opened the door to the development of new crop genotypes with improved drought tolerance [103]. Over the past decade, numerous articles and reviews on drought stress tolerant transgenic crop species have been gathered [4, 26, 102, 103, 104, 105, 106, 160]. A selected list of transgenic cereal grain crops, which includes information on transgenes used for the transformations and the resultant drought stress tolerance mechanisms, has already been provided above in Table 2. Despite the availability of numerous reports in the scientific literature of transgenic approaches to improving drought tolerance, restrictions on the establishment of transgenic plants in the field presents a bottleneck in true testing of the effectiveness of transgenic approaches to improve crop drought tolerance [161].
In recent years, transgenesis has taken center stage in our crop improvement efforts. Advances in genome engineering has made it possible to precisely alter DNA sequences in living cells, providing unprecedented control over a plant’s genetic material [162]. The genome engineering approaches, also known as gene editing or genome editing techniques, involve the use of programmable site-directed nucleases (SDNs) engineered to modify target genes at desirable locations on the genome [163]. These SDNs cleave the double-stranded DNA at a particular location by means of clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9), zinc finger nucleases (ZFNs), or transcriptional activator-like effector nucleases (TALENs). The double-stranded DNA break then undergoes natural reparation either via homologous recombination or non-homologous end joining [105, 164]. The restoration of the DNA break can be directed to create a variety of targeted DNA sequence modifications such as DNA deletions or insertions of large arrays of transgenes [162].
Among the several genome editing methods developed to date, CRISPR-Cas9 is the most advanced and has received much attention because of its great accuracy, quickness, adaptability and simplicity [165, 166]. This technique has been successfully used in major food crops [167, 168, 169]. Whereas convectional genomics and breeding approaches alone cannot resolve the global food security challenge [170], genetic engineering approaches have great potential to improve crops that feed the burgeoning populations of developing countries [162, 166, 171]. However, the extent of regulation imposed upon crop cultivars generated through genetic engineering will have a huge impact on the cost of their development itself and how rapidly they will be deployed into the food supply chain. Linked to that, the readiness with which the public will accept food products made from genetically engineered crops will also play a role in the extent to which this new technology will be fully utilized for crop improvement, particularly in the developing countries where cereal grain crops are staple diets [162].
Genetic and management strategies that are aimed at improving grain yields under water constrained environments target three variables, which are the amount of water captured by the plant (W), the efficiency with which that water is converted to biomass (water use efficiency, WUE), and the harvest index (HI) or the proportion of biomass forming grain. Interestingly, each of these variables can be altered [172]. For instance, WUE can be maximized by early planting of crops, and by maintaining healthy leaves with high levels of nutrients [173]. Additionally, extending leaves` longevity through selection for delayed leaf senescence is commonly regarded important for maintaining WUE and root health, as well as increasing the kernel filling duration [172]. Supplementation of irrigation, where available, would be the major means for combating drought stress condition, besides being a prime approach to the intensification of agriculture and the generation of stable income for farmers [174]. However, its uptake will depend on various environmental, economic and social factors on both micro and macro levels [175].
Additionally, agronomic interventions, that is, improved crop management methods can complement the use of drought tolerant cultivars, contributing meaningfully to enhanced and stabilized yields under water constrained environments. Conservation agriculture (CA), a collection of practices embodying the use of reduced tillage and mulch to reduce evaporation of soil water, is an obvious means of increasing water available to the plants [172, 176]. Scaling up CA, which has recently gained wider acceptance in developing countries, offers a great potential of increasing drought resilience and sustainability of cropping systems and ensuring food security. The use of plastic mulch in semi-arid cooler areas on the Loess Plateau of China has significantly increased WUE in maize [177]. Moreover, CA has become the cornerstone of dryland systems in some regions of USA, Canada and Australia [174]. Recently, the application of melatonin with date (
All these approaches and decision support systems, when integrated, would birth a more holistic strategy for adapting cereal grain crops to future climate change induced drought stress as summarized in Figure 1.
Proposed holistic approach to cereal crop drought stress adaptation.
Currently, crop improvement efforts are shifting focus from solely yield, quality, or abiotic stress resistance to a holistic approach integrating breeding for a combination of these factors. For example, targeting breeding for combined drought and heat stress tolerance [179, 180], drought tolerance and nutritional quality [161] or drought tolerance and disease resistance [3, 181] are being underlined. Drought-tolerant micro-nutrient dense cereal crop cultivars have been developed [8]. In that regard, future-proofing of global food security would call for double-pronged transformation aimed at developing high yielding cultivars possessing both adaptability to abiotic or biotic stresses and higher nutritional quality. Thus, going forward, it is necessary that more breeding programs use high-priority abiotic stresses in their portfolios [11]. In the wake of addressing malnutrition challenges in developing countries, breeding for bio-fortified drought tolerant cultivars should be strengthened [8, 182]. In addition, promising genotypes in trials for fall armyworm (
In our ‘omics research’, future proteomics studies should intensify the identification, quantification and analysis of stress-responsive proteins PTMs, since PTMs can affect protein functions, interactions, subcellular targeting and stability [183]. Moreover, breeding for resource use efficiency, for instance, nitrogen use efficiency (NUE) should be integrated in future drought tolerance breeding programs. Previously, researchers have revealed that improving NUE in crops such as paddy rice and cotton will be critical in greenhouse gas emission management [184, 185, 186, 187, 188]. Additionally, application of biochar, either singly [189] or in combination with P [190] has been shown to alleviate heat-induced oxidative stress damage on the cellular physiological processes in rice plants. Thus, as we navigate the future, breeding for NUE and its proper management in the field remains essential in helping adapting crop plants to abiotic stresses such as drought.
Another area of focus will be crop physiology. Since photosynthesis is the basis of plant growth, improving photosynthesis can significantly contribute towards greater food security in the future. Multiple targets for manipulation of crop photosynthesis have been extensively reviewed. These include improving Rubisco kinetic properties and improving canopy architecture to enhance light penetration [191]. Therefore, harnessing the benefits of improved photosynthesis for greater yield potential will require that we intensify manipulation of these targets.
Furthermore, the microbes resident in the rhizosphere can potentially improve plant growth and enhance crop resilience to abiotic stresses [192]. For instance, phosphate-solubilizing bacteria can nullify the antagonistic effect of soil calcification on bioavailable phosphorus in alkaline soils, and thus, can be one of the best options for improving soil P nutrition [193]. It would be crucial to investigate, understand and quantify the complex feedback mechanisms occurring between root and microbial responses to drought stress, particularly in cereal crops. Integrating crop ecology, physiology and molecular methodologies in a multi-disciplinary approach would be central [194].
In the short to medium term, exogenous application of plant growth regulators at different crop growth phases would be an important strategy in inducing drought resistance. In a very short term, seed priming will be of value [3]. The crucial roles of plant phytohormones and growth-promoting rhizobacteria in abiotic stress responses have been extensively reviewed [195, 196, 197]. Particularly, the exogenously applied plant growth regulators can enhance morpho-physiological, growth and abiotic stress responses of crops such as rice [198, 199, 200, 201, 202, 203]. Recently, Saleem et al. [204] have shown that exogenously applied gibberrellic acid (GA3) can reduce metal toxicity induced oxidative stress in jute (
Meanwhile, the potential of transgenic technologies across developing countries, particularly in Sub-Saharan Africa, is being hampered by uncoordinated over-regulation by authorities. Unfortunately, the biosafety framework leading to ordered testing and deregulation in such countries is being developed on individual countries basis, instead of a more efficient resource-use regional approach. Moreso, present systems are modeled on overestimated, not science-evidence-based risks [172]. There is need for policy makers to revisit their stance on genetically modified organisms (GMOs) with science guaranteed evidence, not political grand-standing, guiding formulation, adoption and utilization of GMO related polices for food and nutritional security.
Though a daunting task, breeding for drought tolerance in cereal crops remains the most economical, effective and sustainable strategy for ensuring food security for the ever increasing human population. While a significant progress has been made to date towards achieving that goal, our understanding of the mechanisms underpinning plant drought stress tolerance remains fragmentary. In the face of global climate change, a multi-disciplinary research strategy becomes obligatory to integrate physiological, genotypic, omics and epigenetics data essential to dissect the complex networks regulating plant drought tolerance, which can then be manipulated through genetic engineering to develop drought resilient crops. Additionally, cereal crop breeding programs should integrate high-priority abiotic stresses, particularly drought and heat, with other goals such as resource use efficiency, biotic resistance, and nutritional improvement. Further, formulation and effective deployment of efficient screening and precise phenotyping approaches at both laboratory and field levels to identify drought tolerant genotypes or mutants remains critical. Promisingly, our new cultivar development thrusts are now endowed with some innovative methodologies that include high-throughput phenotyping, doubled haploidy, mutation and speed breeding, as well as CRISP-Cas 9 technologies. Going forward, we should harness the potential of these technologies. Eventually, our understanding of the crop drought tolerance mechanisms will be quickened and broadened, greatly assisting our development of new drought-resilient cereal crop cultivars. This should be supported by robust, science-evidence-based and progressive policy frameworks that recognize the centrality of GMOs and modern biotechnology in increasing food production. Consequently, this would lead to improved sustainable crop productivity and global food security.
We acknowledge the funding received from the National Key Research and Development Project of China (Selection and Efficient Combination Model of Wheat and Maize Water Saving, High Yield and High Quality Varieties; Grant No. 2017YFD0300901).
Authors declare that they have no conflict of interests.
You have been successfully unsubscribed.
",metaTitle:"Unsubscribe Successful",metaDescription:"You have been successfully unsubscribed.",metaKeywords:null,canonicalURL:"/page/unsubscribe-successful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",topicId:"13"},books:[{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12145",title:"Yeasts",subtitle:null,isOpenForSubmission:!0,hash:"262e4f155a168f8953bdbe9eb517127d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12145.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12160",title:"DNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"5a948eb875a3a62c3abf115c4b5ace84",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12160.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12161",title:"Retroviruses",subtitle:null,isOpenForSubmission:!0,hash:"0cd85c9ce7748f1211685d5add521ebb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12161.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12162",title:"Helicobacter pylori",subtitle:null,isOpenForSubmission:!0,hash:"1d5df6d5558615ea58030bb3e50ad9dd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12162.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12163",title:"Escherichia coli",subtitle:null,isOpenForSubmission:!0,hash:"23a6ce1ea4992eca56018c9e85bad165",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12163.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12164",title:"Advances in Probiotics",subtitle:null,isOpenForSubmission:!0,hash:"cc0a28c4126b8d6fd1a5ebead8a0421f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12164.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12291",title:"Acidophiles",subtitle:null,isOpenForSubmission:!0,hash:"830753134a4180a8e6cf05774aefb9fb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12291.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12292",title:"New Findings on Human Papillomavirus",subtitle:null,isOpenForSubmission:!0,hash:"d2e7304c38c5e293e509ae9bd1ce8b33",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12292.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12294",title:"Updates on Adenoviruses",subtitle:null,isOpenForSubmission:!0,hash:"9346d0ed80380776aab0a8ac9e503414",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12294.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:41},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:18},{group:"topic",caption:"Engineering",value:11,count:44},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:13},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:106},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:8},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:11},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4389},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"18",title:"Neuroscience",slug:"life-sciences-neuroscience",parent:{id:"2",title:"Life Sciences",slug:"life-sciences"},numberOfBooks:65,numberOfSeries:0,numberOfAuthorsAndEditors:1649,numberOfWosCitations:1070,numberOfCrossrefCitations:724,numberOfDimensionsCitations:1692,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"18",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10922",title:"Music in Health and Diseases",subtitle:null,isOpenForSubmission:!1,hash:"6a079df045b086b404399c5ed4ac049a",slug:"music-in-health-and-diseases",bookSignature:"Amit Agrawal, Roshan Sutar and Anvesh Jallapally",coverURL:"https://cdn.intechopen.com/books/images_new/10922.jpg",editedByType:"Edited by",editors:[{id:"100142",title:"Prof.",name:"Amit",middleName:null,surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10554",title:"Proprioception",subtitle:null,isOpenForSubmission:!1,hash:"e104e615fbd94caa987df3a8d8b3fb8b",slug:"proprioception",bookSignature:"José A. Vega and Juan Cobo",coverURL:"https://cdn.intechopen.com/books/images_new/10554.jpg",editedByType:"Edited by",editors:[{id:"59892",title:"Prof.",name:"José A.",middleName:null,surname:"Vega",slug:"jose-a.-vega",fullName:"José A. Vega"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9853",title:"Connectivity and Functional Specialization in the Brain",subtitle:null,isOpenForSubmission:!1,hash:"79f611488f3217579b5c84978f870863",slug:"connectivity-and-functional-specialization-in-the-brain",bookSignature:"Thomas Heinbockel and Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9853.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",biography:"Yongxia Zhou obtained a Ph.D. in Biomedical Imaging from the University of Southern California. Her research interest is radiology and neuroscience technology and application. She had been trained as an imaging scientist at several prestigious institutes including Columbia University, the University of Pennsylvania, and the National Institutes of Health (NIH). Her research focuses on multi-modal neuroimaging integration such as MRI/PET and EEG/MEG instrumentation to make the best use of multiple modalities for better interpretation of underlying disease mechanisms. She is the author and editor of more than twelve books for well-known publishers including IntechOpen and Nova Science. She has published more than 100 papers and abstracts in many reputed international journals and conferences and served as reviewer and editor for several academic associations.",institutionString:"University of Southern California",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10475",title:"Smart Biofeedback",subtitle:"Perspectives and Applications",isOpenForSubmission:!1,hash:"8d2bd9997707c905959eaa41e55ba8f1",slug:"smart-biofeedback-perspectives-and-applications",bookSignature:"Edward Da-Yin Liao",coverURL:"https://cdn.intechopen.com/books/images_new/10475.jpg",editedByType:"Edited by",editors:[{id:"3875",title:"Dr.",name:"Edward Da-Yin",middleName:null,surname:"Liao",slug:"edward-da-yin-liao",fullName:"Edward Da-Yin Liao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8059",title:"Neurostimulation and Neuromodulation in Contemporary Therapeutic Practice",subtitle:null,isOpenForSubmission:!1,hash:"8cc2c649900edf37ff3374fdc96a1586",slug:"neurostimulation-and-neuromodulation-in-contemporary-therapeutic-practice",bookSignature:"Denis Larrivee and Seyed Mansoor Rayegani",coverURL:"https://cdn.intechopen.com/books/images_new/8059.jpg",editedByType:"Edited by",editors:[{id:"206412",title:"Prof.",name:"Denis",middleName:null,surname:"Larrivee",slug:"denis-larrivee",fullName:"Denis Larrivee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8851",title:"Advances in Neural Signal Processing",subtitle:null,isOpenForSubmission:!1,hash:"a44ac118b233b29a3d5b57d61680ec38",slug:"advances-in-neural-signal-processing",bookSignature:"Ramana Vinjamuri",coverURL:"https://cdn.intechopen.com/books/images_new/8851.jpg",editedByType:"Edited by",editors:[{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8751",title:"Somatosensory and Motor Research",subtitle:null,isOpenForSubmission:!1,hash:"86191c18f06e524e0f97a5534fdb2b4c",slug:"somatosensory-and-motor-research",bookSignature:"Toshiaki Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/8751.jpg",editedByType:"Edited by",editors:[{id:"70872",title:"Prof.",name:"Toshiaki",middleName:null,surname:"Suzuki",slug:"toshiaki-suzuki",fullName:"Toshiaki Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9347",title:"Neuroimaging",subtitle:"Neurobiology, Multimodal and Network Applications",isOpenForSubmission:!1,hash:"a3479e76c6ac538aac76409c9efb7e41",slug:"neuroimaging-neurobiology-multimodal-and-network-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9347.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8938",title:"Inhibitory Control Training",subtitle:"A Multidisciplinary Approach",isOpenForSubmission:!1,hash:"bd82354f3bba4af5421337cd42052f86",slug:"inhibitory-control-training-a-multidisciplinary-approach",bookSignature:"Sara Palermo and Massimo Bartoli",coverURL:"https://cdn.intechopen.com/books/images_new/8938.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6998",title:"Synucleins",subtitle:"Biochemistry and Role in Diseases",isOpenForSubmission:!1,hash:"2b4b802fec508928ce8ab9deebd1375f",slug:"synucleins-biochemistry-and-role-in-diseases",bookSignature:"Andrei Surguchov",coverURL:"https://cdn.intechopen.com/books/images_new/6998.jpg",editedByType:"Edited by",editors:[{id:"266540",title:"Dr.",name:"Andrei",middleName:null,surname:"Surguchov",slug:"andrei-surguchov",fullName:"Andrei Surguchov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:65,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"46296",doi:"10.5772/57398",title:"Physiological Role of Amyloid Beta in Neural Cells: The Cellular Trophic Activity",slug:"physiological-role-of-amyloid-beta-in-neural-cells-the-cellular-trophic-activity",totalDownloads:5878,totalCrossrefCites:18,totalDimensionsCites:31,abstract:null,book:{id:"3846",slug:"neurochemistry",title:"Neurochemistry",fullTitle:"Neurochemistry"},signatures:"M. del C. Cárdenas-Aguayo, M. del C. Silva-Lucero, M. Cortes-Ortiz,\nB. Jiménez-Ramos, L. Gómez-Virgilio, G. Ramírez-Rodríguez, E. Vera-\nArroyo, R. Fiorentino-Pérez, U. García, J. Luna-Muñoz and M.A.\nMeraz-Ríos",authors:[{id:"42225",title:"Dr.",name:"Jose",middleName:null,surname:"Luna-Muñoz",slug:"jose-luna-munoz",fullName:"Jose Luna-Muñoz"},{id:"114746",title:"Dr.",name:"Marco",middleName:null,surname:"Meraz-Ríos",slug:"marco-meraz-rios",fullName:"Marco Meraz-Ríos"},{id:"169616",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Cardenas-Aguayo",slug:"maria-del-carmen-cardenas-aguayo",fullName:"Maria del Carmen Cardenas-Aguayo"},{id:"169857",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Silva-Lucero",slug:"maria-del-carmen-silva-lucero",fullName:"Maria del Carmen Silva-Lucero"},{id:"169858",title:"Dr.",name:"Maribel",middleName:null,surname:"Cortes-Ortiz",slug:"maribel-cortes-ortiz",fullName:"Maribel Cortes-Ortiz"},{id:"169859",title:"Dr.",name:"Berenice",middleName:null,surname:"Jimenez-Ramos",slug:"berenice-jimenez-ramos",fullName:"Berenice Jimenez-Ramos"},{id:"169860",title:"Dr.",name:"Laura",middleName:null,surname:"Gomez-Virgilio",slug:"laura-gomez-virgilio",fullName:"Laura Gomez-Virgilio"},{id:"169861",title:"Dr.",name:"Gerardo",middleName:null,surname:"Ramirez-Rodriguez",slug:"gerardo-ramirez-rodriguez",fullName:"Gerardo Ramirez-Rodriguez"},{id:"169862",title:"Dr.",name:"Eduardo",middleName:null,surname:"Vera-Arroyo",slug:"eduardo-vera-arroyo",fullName:"Eduardo Vera-Arroyo"},{id:"169863",title:"Dr.",name:"Rosana Sofia",middleName:null,surname:"Fiorentino-Perez",slug:"rosana-sofia-fiorentino-perez",fullName:"Rosana Sofia Fiorentino-Perez"},{id:"169864",title:"Dr.",name:"Ubaldo",middleName:null,surname:"Garcia",slug:"ubaldo-garcia",fullName:"Ubaldo Garcia"}]},{id:"58070",doi:"10.5772/intechopen.72427",title:"MRI Medical Image Denoising by Fundamental Filters",slug:"mri-medical-image-denoising-by-fundamental-filters",totalDownloads:2553,totalCrossrefCites:17,totalDimensionsCites:30,abstract:"Nowadays Medical imaging technique Magnetic Resonance Imaging (MRI) plays an important role in medical setting to form high standard images contained in the human brain. MRI is commonly used once treating brain, prostate cancers, ankle and foot. The Magnetic Resonance Imaging (MRI) images are usually liable to suffer from noises such as Gaussian noise, salt and pepper noise and speckle noise. So getting of brain image with accuracy is very extremely task. An accurate brain image is very necessary for further diagnosis process. During this chapter, a median filter algorithm will be modified. Gaussian noise and Salt and pepper noise will be added to MRI image. A proposed Median filter (MF), Adaptive Median filter (AMF) and Adaptive Wiener filter (AWF) will be implemented. The filters will be used to remove the additive noises present in the MRI images. The noise density will be added gradually to MRI image to compare performance of the filters evaluation. The performance of these filters will be compared exploitation the applied mathematics parameter Peak Signal-to-Noise Ratio (PSNR).",book:{id:"6144",slug:"high-resolution-neuroimaging-basic-physical-principles-and-clinical-applications",title:"High-Resolution Neuroimaging",fullTitle:"High-Resolution Neuroimaging - Basic Physical Principles and Clinical Applications"},signatures:"Hanafy M. Ali",authors:[{id:"213318",title:"Dr.",name:"Hanafy",middleName:"M.",surname:"Ali",slug:"hanafy-ali",fullName:"Hanafy Ali"}]},{id:"41589",doi:"10.5772/50323",title:"The Role of the Amygdala in Anxiety Disorders",slug:"the-role-of-the-amygdala-in-anxiety-disorders",totalDownloads:9654,totalCrossrefCites:4,totalDimensionsCites:28,abstract:null,book:{id:"2599",slug:"the-amygdala-a-discrete-multitasking-manager",title:"The Amygdala",fullTitle:"The Amygdala - A Discrete Multitasking Manager"},signatures:"Gina L. Forster, Andrew M. Novick, Jamie L. Scholl and Michael J. Watt",authors:[{id:"145620",title:"Dr.",name:"Gina",middleName:null,surname:"Forster",slug:"gina-forster",fullName:"Gina Forster"},{id:"146553",title:"BSc.",name:"Andrew",middleName:null,surname:"Novick",slug:"andrew-novick",fullName:"Andrew Novick"},{id:"146554",title:"MSc.",name:"Jamie",middleName:null,surname:"Scholl",slug:"jamie-scholl",fullName:"Jamie Scholl"},{id:"146555",title:"Dr.",name:"Michael",middleName:null,surname:"Watt",slug:"michael-watt",fullName:"Michael Watt"}]},{id:"26258",doi:"10.5772/28300",title:"Excitotoxicity and Oxidative Stress in Acute Ischemic Stroke",slug:"excitotoxicity-and-oxidative-stress-in-acute-ischemic-stroke",totalDownloads:7148,totalCrossrefCites:6,totalDimensionsCites:24,abstract:null,book:{id:"931",slug:"acute-ischemic-stroke",title:"Acute Ischemic Stroke",fullTitle:"Acute Ischemic Stroke"},signatures:"Ramón Rama Bretón and Julio César García Rodríguez",authors:[{id:"73430",title:"Prof.",name:"Ramon",middleName:null,surname:"Rama",slug:"ramon-rama",fullName:"Ramon Rama"},{id:"124643",title:"Prof.",name:"Julio Cesar",middleName:null,surname:"García",slug:"julio-cesar-garcia",fullName:"Julio Cesar García"}]},{id:"62072",doi:"10.5772/intechopen.78695",title:"Brain-Computer Interface and Motor Imagery Training: The Role of Visual Feedback and Embodiment",slug:"brain-computer-interface-and-motor-imagery-training-the-role-of-visual-feedback-and-embodiment",totalDownloads:1438,totalCrossrefCites:13,totalDimensionsCites:23,abstract:"Controlling a brain-computer interface (BCI) is a difficult task that requires extensive training. Particularly in the case of motor imagery BCIs, users may need several training sessions before they learn how to generate desired brain activity and reach an acceptable performance. A typical training protocol for such BCIs includes execution of a motor imagery task by the user, followed by presentation of an extending bar or a moving object on a computer screen. In this chapter, we discuss the importance of a visual feedback that resembles human actions, the effect of human factors such as confidence and motivation, and the role of embodiment in the learning process of a motor imagery task. Our results from a series of experiments in which users BCI-operated a humanlike android robot confirm that realistic visual feedback can induce a sense of embodiment, which promotes a significant learning of the motor imagery task in a short amount of time. We review the impact of humanlike visual feedback in optimized modulation of brain activity by the BCI users.",book:{id:"6610",slug:"evolving-bci-therapy-engaging-brain-state-dynamics",title:"Evolving BCI Therapy",fullTitle:"Evolving BCI Therapy - Engaging Brain State Dynamics"},signatures:"Maryam Alimardani, Shuichi Nishio and Hiroshi Ishiguro",authors:[{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro"},{id:"231131",title:"Dr.",name:"Maryam",middleName:null,surname:"Alimardani",slug:"maryam-alimardani",fullName:"Maryam Alimardani"},{id:"231134",title:"Dr.",name:"Shuichi",middleName:null,surname:"Nishio",slug:"shuichi-nishio",fullName:"Shuichi Nishio"}]}],mostDownloadedChaptersLast30Days:[{id:"29764",title:"Underlying Causes of Paresthesia",slug:"underlying-causes-of-paresthesia",totalDownloads:192588,totalCrossrefCites:3,totalDimensionsCites:7,abstract:null,book:{id:"1069",slug:"paresthesia",title:"Paresthesia",fullTitle:"Paresthesia"},signatures:"Mahdi Sharif-Alhoseini, Vafa Rahimi-Movaghar and Alexander R. Vaccaro",authors:[{id:"91165",title:"Prof.",name:"Vafa",middleName:null,surname:"Rahimi-Movaghar",slug:"vafa-rahimi-movaghar",fullName:"Vafa Rahimi-Movaghar"}]},{id:"63258",title:"Anatomy and Function of the Hypothalamus",slug:"anatomy-and-function-of-the-hypothalamus",totalDownloads:4546,totalCrossrefCites:6,totalDimensionsCites:12,abstract:"The hypothalamus is a small but important area of the brain formed by various nucleus and nervous fibers. Through its neuronal connections, it is involved in many complex functions of the organism such as vegetative system control, homeostasis of the organism, thermoregulation, and also in adjusting the emotional behavior. The hypothalamus is involved in different daily activities like eating or drinking, in the control of the body’s temperature and energy maintenance, and in the process of memorizing. It also modulates the endocrine system through its connections with the pituitary gland. Precise anatomical description along with a correct characterization of the component structures is essential for understanding its functions.",book:{id:"6331",slug:"hypothalamus-in-health-and-diseases",title:"Hypothalamus in Health and Diseases",fullTitle:"Hypothalamus in Health and Diseases"},signatures:"Miana Gabriela Pop, Carmen Crivii and Iulian Opincariu",authors:null},{id:"57103",title:"GABA and Glutamate: Their Transmitter Role in the CNS and Pancreatic Islets",slug:"gaba-and-glutamate-their-transmitter-role-in-the-cns-and-pancreatic-islets",totalDownloads:3471,totalCrossrefCites:3,totalDimensionsCites:9,abstract:"Glutamate and gamma-aminobutyric acid (GABA) are the major neurotransmitters in the mammalian brain. Inhibitory GABA and excitatory glutamate work together to control many processes, including the brain’s overall level of excitation. The contributions of GABA and glutamate in extra-neuronal signaling are by far less widely recognized. In this chapter, we first discuss the role of both neurotransmitters during development, emphasizing the importance of the shift from excitatory to inhibitory GABAergic neurotransmission. The second part summarizes the biosynthesis and role of GABA and glutamate in neurotransmission in the mature brain, and major neurological disorders associated with glutamate and GABA receptors and GABA release mechanisms. The final part focuses on extra-neuronal glutamatergic and GABAergic signaling in pancreatic islets of Langerhans, and possible associations with type 1 diabetes mellitus.",book:{id:"6237",slug:"gaba-and-glutamate-new-developments-in-neurotransmission-research",title:"GABA And Glutamate",fullTitle:"GABA And Glutamate - New Developments In Neurotransmission Research"},signatures:"Christiane S. Hampe, Hiroshi Mitoma and Mario Manto",authors:[{id:"210220",title:"Prof.",name:"Christiane",middleName:null,surname:"Hampe",slug:"christiane-hampe",fullName:"Christiane Hampe"},{id:"210485",title:"Prof.",name:"Mario",middleName:null,surname:"Manto",slug:"mario-manto",fullName:"Mario Manto"},{id:"210486",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Mitoma",slug:"hiroshi-mitoma",fullName:"Hiroshi Mitoma"}]},{id:"35802",title:"Cross-Cultural/Linguistic Differences in the Prevalence of Developmental Dyslexia and the Hypothesis of Granularity and Transparency",slug:"cross-cultural-linguistic-differences-in-the-prevalence-of-developmental-dyslexia-and-the-hypothesis",totalDownloads:3597,totalCrossrefCites:2,totalDimensionsCites:7,abstract:null,book:{id:"673",slug:"dyslexia-a-comprehensive-and-international-approach",title:"Dyslexia",fullTitle:"Dyslexia - A Comprehensive and International Approach"},signatures:"Taeko N. Wydell",authors:[{id:"87489",title:"Prof.",name:"Taeko",middleName:"N.",surname:"Wydell",slug:"taeko-wydell",fullName:"Taeko Wydell"}]},{id:"58597",title:"Testosterone and Erectile Function: A Review of Evidence from Basic Research",slug:"testosterone-and-erectile-function-a-review-of-evidence-from-basic-research",totalDownloads:1330,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Androgens are essential for male physical activity and normal erectile function. Hence, age-related testosterone deficiency, known as late-onset hypogonadism (LOH), is considered a risk factor for erectile dysfunction (ED). This chapter summarizes relevant basic research reports examining the effects of testosterone on erectile function. Testosterone affects several organs and is especially active on the erectile tissue. The mechanism of testosterone deficiency effects on erectile function and the results of testosterone replacement therapy (TRT) have been well studied. Testosterone affects nitric oxide (NO) production and phosphodiesterase type 5 (PDE-5) expression in the corpus cavernosum through molecular pathways, preserves smooth muscle contractility by regulating both contraction and relaxation, and maintains the structure of the corpus cavernosum. Interestingly, testosterone deficiency has relationship to neurological diseases, which leads to ED. Testosterone replacement therapy is widely used to treat patients with testosterone deficiency; however, this treatment might also induce some problems. Basic research suggests that PDE-5 inhibitors, L-citrulline, and/or resveratrol therapy might be effective therapeutic options for testosterone deficiency-induced ED. Future research should confirm these findings through more specific experiments using molecular tools and may shed more light on endocrine-related ED and its possible treatments.",book:{id:"5994",slug:"sex-hormones-in-neurodegenerative-processes-and-diseases",title:"Sex Hormones in Neurodegenerative Processes and Diseases",fullTitle:"Sex Hormones in Neurodegenerative Processes and Diseases"},signatures:"Tomoya Kataoka and Kazunori Kimura",authors:[{id:"219042",title:"Ph.D.",name:"Tomoya",middleName:null,surname:"Kataoka",slug:"tomoya-kataoka",fullName:"Tomoya Kataoka"},{id:"229066",title:"Prof.",name:"Kazunori",middleName:null,surname:"Kimura",slug:"kazunori-kimura",fullName:"Kazunori Kimura"}]}],onlineFirstChaptersFilter:{topicId:"18",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81646",title:"Cortical Plasticity under Ketamine: From Synapse to Map",slug:"cortical-plasticity-under-ketamine-from-synapse-to-map",totalDownloads:14,totalDimensionsCites:0,doi:"10.5772/intechopen.104787",abstract:"Sensory systems need to process signals in a highly dynamic way to efficiently respond to variations in the animal’s environment. For instance, several studies showed that the visual system is subject to neuroplasticity since the neurons’ firing changes according to stimulus properties. This dynamic information processing might be supported by a network reorganization. Since antidepressants influence neurotransmission, they can be used to explore synaptic plasticity sustaining cortical map reorganization. To this goal, we investigated in the primary visual cortex (V1 of mouse and cat), the impact of ketamine on neuroplasticity through changes in neuronal orientation selectivity and the functional connectivity between V1 cells, using cross correlation analyses. We found that ketamine affects cortical orientation selectivity and alters the functional connectivity within an assembly. These data clearly highlight the role of the antidepressant drugs in inducing or modeling short-term plasticity in V1 which suggests that cortical processing is optimized and adapted to the properties of the stimulus.",book:{id:"11374",title:"Sensory Nervous System - Computational Neuroimaging Investigations of Topographical Organization in Human Sensory Cortex",coverURL:"https://cdn.intechopen.com/books/images_new/11374.jpg"},signatures:"Ouelhazi Afef, Rudy Lussiez and Molotchnikoff Stephane"},{id:"81582",title:"The Role of Cognitive Reserve in Executive Functioning and Its Relationship to Cognitive Decline and Dementia",slug:"the-role-of-cognitive-reserve-in-executive-functioning-and-its-relationship-to-cognitive-decline-and",totalDownloads:21,totalDimensionsCites:0,doi:"10.5772/intechopen.104646",abstract:"In this chapter, we explore how cognitive reserve is implicated in coping with the negative consequences of brain pathology and age-related cognitive decline. Individual differences in cognitive performance are based on different brain mechanisms (neural reserve and neural compensation), and reflect, among others, the effect of education, occupational attainment, leisure activities, and social involvement. These cognitive reserve proxies have been extensively associated with efficient executive functioning. We discuss and focus particularly on the compensation mechanisms related to the frontal lobe and its protective role, in maintaining cognitive performance in old age or even mitigating the clinical expression of dementia.",book:{id:"11742",title:"Neurophysiology",coverURL:"https://cdn.intechopen.com/books/images_new/11742.jpg"},signatures:"Gabriela Álvares-Pereira, Carolina Maruta and Maria Vânia Silva-Nunes"},{id:"81093",title:"Prehospital and Emergency Room Airway Management in Traumatic Brain Injury",slug:"prehospital-and-emergency-room-airway-management-in-traumatic-brain-injury",totalDownloads:48,totalDimensionsCites:0,doi:"10.5772/intechopen.104173",abstract:"Airway management in trauma is critical and may impact patient outcomes. Particularly in traumatic brain injury (TBI), depressed level of consciousness may be associated with compromised protective airway reflexes or apnea, which can increase the risk of aspiration or result in hypoxemia and worsen the secondary brain damage. Therefore, patients with TBI and Glasgow Coma Scale (GCS) ≤ 8 have been traditionally managed by prehospital or emergency room (ER) endotracheal intubation. However, recent evidence challenged this practice and even suggested that routine intubation may be harmful. This chapter will address the indications and optimal method of securing the airway, prehospital and in the ER, in patients with traumatic brain injury.",book:{id:"11367",title:"Traumatic Brain Injury",coverURL:"https://cdn.intechopen.com/books/images_new/11367.jpg"},signatures:"Dominik A. Jakob, Jean-Cyrille Pitteloud and Demetrios Demetriades"},{id:"81011",title:"Amino Acids as Neurotransmitters. The Balance between Excitation and Inhibition as a Background for Future Clinical Applications",slug:"amino-acids-as-neurotransmitters-the-balance-between-excitation-and-inhibition-as-a-background-for-f",totalDownloads:19,totalDimensionsCites:0,doi:"10.5772/intechopen.103760",abstract:"For more than 30 years, amino acids have been well-known (and essential) participants in neurotransmission. They act as both neuromediators and metabolites in nervous tissue. Glycine and glutamic acid (glutamate) are prominent examples. These amino acids are agonists of inhibitory and excitatory membrane receptors, respectively. Moreover, they play essential roles in metabolic pathways and energy transformation in neurons and astrocytes. Despite their obvious effects on the brain, their potential role in therapeutic methods remains uncertain in clinical practice. In the current chapter, a comparison of the crosstalk between these two systems, which are responsible for excitation and inhibition in neurons, is presented. The interactions are discussed at the metabolic, receptor, and transport levels. Reaction-diffusion and a convectional flow into the interstitial fluid create a balanced distribution of glycine and glutamate. Indeed, the neurons’ final physiological state is a result of a balance between the excitatory and inhibitory influences. However, changes to the glycine and/or glutamate pools under pathological conditions can alter the state of nervous tissue. Thus, new therapies for various diseases may be developed on the basis of amino acid medication.",book:{id:"10890",title:"Recent Advances in Neurochemistry",coverURL:"https://cdn.intechopen.com/books/images_new/10890.jpg"},signatures:"Yaroslav R. Nartsissov"},{id:"80821",title:"Neuroimmunology and Neurological Manifestations of COVID-19",slug:"neuroimmunology-and-neurological-manifestations-of-covid-19",totalDownloads:41,totalDimensionsCites:0,doi:"10.5772/intechopen.103026",abstract:"Infection with SARS-CoV-2 is causing coronavirus disease in 2019 (COVID-19). Besides respiratory symptoms due to an attack on the broncho-alveolar system, COVID-19, among others, can be accompanied by neurological symptoms because of the affection of the nervous system. These can be caused by intrusion by SARS-CoV-2 of the central nervous system (CNS) and peripheral nervous system (PNS) and direct infection of local cells. In addition, neurological deterioration mediated by molecular mimicry to virus antigens or bystander activation in the context of immunological anti-virus defense can lead to tissue damage in the CNS and PNS. In addition, cytokine storm caused by SARS-CoV-2 infection in COVID-19 can lead to nervous system related symptoms. Endotheliitis of CNS vessels can lead to vessel occlusion and stroke. COVID-19 can also result in cerebral hemorrhage and sinus thrombosis possibly related to changes in clotting behavior. Vaccination is most important to prevent COVID-19 in the nervous system. There are symptomatic or/and curative therapeutic approaches to combat COVID-19 related nervous system damage that are partly still under study.",book:{id:"10890",title:"Recent Advances in Neurochemistry",coverURL:"https://cdn.intechopen.com/books/images_new/10890.jpg"},signatures:"Robert Weissert"},{id:"80391",title:"COVID-19 and Seizures",slug:"covid-19-and-seizures",totalDownloads:43,totalDimensionsCites:0,doi:"10.5772/intechopen.102540",abstract:"The past two years were deeply marked by the emergence of a global pandemic caused by the worldwide spread of the virus severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection. The plethora of repercussions on the health of those affected is extensive, ranging from asymptomatic individuals, mild flu-like disease, and severe respiratory failure, eventually leading to death. Despite this predilection for the respiratory system, the virus is responsible for multisystemic manifestations and soon became clear that neurological involvement was a frequent issue of coronavirus disease 2019 (COVID-19). Much have been pointed out about the neurotropic nature of the virus, the ways by which it invades and targets specific structures of the central nervous system, and the physiopathology behind the neurologic manifestations associated with it (namely encephalomyelitis, Guillain-Barré syndrome, lacunar infarcts, and vascular dysfunction, just to list a few). This chapter aims to raise light about the association between COVID-19 and the mechanisms of acute symptomatic seizures, through neurotropism and neuroinvasion features of SARS-CoV-2, and to review the variety of clinical presentations reported so far.",book:{id:"10890",title:"Recent Advances in Neurochemistry",coverURL:"https://cdn.intechopen.com/books/images_new/10890.jpg"},signatures:"Rafael Jesus, Carolina Azoia, Paulo Coelho and Pedro Guimarães"}],onlineFirstChaptersTotal:9},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"May 19th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:4,paginationItems:[{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{paginationCount:7,paginationItems:[{id:"11476",title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",hash:"8d41fa5f3a5da07469bbc121594bfd3e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 24th 2022",isOpenForSubmission:!0,editors:[{id:"335401",title:"Prof.",name:"Margherita",surname:"Mori",slug:"margherita-mori",fullName:"Margherita Mori"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11460",title:"Pluralistic Approaches for Conservation and Sustainability in Biodiversity",coverURL:"https://cdn.intechopen.com/books/images_new/11460.jpg",hash:"ab014f8ed1669757335225786833e9a9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 22nd 2022",isOpenForSubmission:!0,editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 2nd 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81298",title:"Roles of Extracellular Vesicles in Cancer Metastasis",doi:"10.5772/intechopen.103798",signatures:"Eman Helmy Thabet",slug:"roles-of-extracellular-vesicles-in-cancer-metastasis",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81246",title:"Role of Carotenoids in Cardiovascular Disease",doi:"10.5772/intechopen.102750",signatures:"Arslan Ahmad, Sakhawat Riaz, Muhammad Shahzaib Nadeem, Umber Mubeen and Khadija Maham",slug:"role-of-carotenoids-in-cardiovascular-disease",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}}]},subseriesFiltersForOFChapters:[{caption:"Plant Physiology",value:13,count:5,group:"subseries"},{caption:"Human Physiology",value:12,count:13,group:"subseries"},{caption:"Cell Physiology",value:11,count:25,group:"subseries"}],publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1},{group:"subseries",caption:"Bioinspired Technology and Biomechanics",value:8,count:2},{group:"subseries",caption:"Bioinformatics and Medical Informatics",value:7,count:9}],publicationYearFilters:[{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:3}],authors:{paginationCount:302,paginationItems:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/198499/images/system/198499.jpeg",biography:"Dr. Daniel Glossman-Mitnik is currently a Titular Researcher at the Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua, Mexico, as well as a National Researcher of Level III at the Consejo Nacional de Ciencia y Tecnología, Mexico. His research interest focuses on computational chemistry and molecular modeling of diverse systems of pharmacological, food, and alternative energy interests by resorting to DFT and Conceptual DFT. He has authored a coauthored more than 255 peer-reviewed papers, 32 book chapters, and 2 edited books. He has delivered speeches at many international and domestic conferences. He serves as a reviewer for more than eighty international journals, books, and research proposals as well as an editor for special issues of renowned scientific journals.",institutionString:"Centro de Investigación en Materiales Avanzados",institution:{name:"Centro de Investigación en Materiales Avanzados",country:{name:"Mexico"}}},{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",biography:"Dr. Mirza Hasanuzzaman is a Professor of Agronomy at Sher-e-Bangla Agricultural University, Bangladesh. He received his Ph.D. in Plant Stress Physiology and Antioxidant Metabolism from Ehime University, Japan, with a scholarship from the Japanese Government (MEXT). Later, he completed his postdoctoral research at the Center of Molecular Biosciences, University of the Ryukyus, Japan, as a recipient of the Japan Society for the Promotion of Science (JSPS) postdoctoral fellowship. He was also the recipient of the Australian Government Endeavour Research Fellowship for postdoctoral research as an adjunct senior researcher at the University of Tasmania, Australia. Dr. Hasanuzzaman’s current work is focused on the physiological and molecular mechanisms of environmental stress tolerance. Dr. Hasanuzzaman has published more than 150 articles in peer-reviewed journals. He has edited ten books and written more than forty book chapters on important aspects of plant physiology, plant stress tolerance, and crop production. According to Scopus, Dr. Hasanuzzaman’s publications have received more than 10,500 citations with an h-index of 53. He has been named a Highly Cited Researcher by Clarivate. He is an editor and reviewer for more than fifty peer-reviewed international journals and was a recipient of the “Publons Peer Review Award” in 2017, 2018, and 2019. He has been honored by different authorities for his outstanding performance in various fields like research and education, and he has received the World Academy of Science Young Scientist Award (2014) and the University Grants Commission (UGC) Award 2018. He is a fellow of the Bangladesh Academy of Sciences (BAS) and the Royal Society of Biology.",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",country:{name:"Bangladesh"}}},{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",biography:"Kusal K. Das is a Distinguished Chair Professor of Physiology, Shri B. M. Patil Medical College and Director, Centre for Advanced Medical Research (CAMR), BLDE (Deemed to be University), Vijayapur, Karnataka, India. Dr. Das did his M.S. and Ph.D. in Human Physiology from the University of Calcutta, Kolkata. His area of research is focused on understanding of molecular mechanisms of heavy metal activated low oxygen sensing pathways in vascular pathophysiology. He has invented a new method of estimation of serum vitamin E. His expertise in critical experimental protocols on vascular functions in experimental animals was well documented by his quality of publications. He was a Visiting Professor of Medicine at University of Leeds, United Kingdom (2014-2016) and Tulane University, New Orleans, USA (2017). For his immense contribution in medical research Ministry of Science and Technology, Government of India conferred him 'G.P. Chatterjee Memorial Research Prize-2019” and he is also the recipient of 'Dr.Raja Ramanna State Scientist Award 2015” by Government of Karnataka. He is a Fellow of the Royal Society of Biology (FRSB), London and Honorary Fellow of Karnataka Science and Technology Academy, Department of Science and Technology, Government of Karnataka.",institutionString:"BLDE (Deemed to be University), India",institution:null},{id:"243660",title:"Dr.",name:"Mallanagouda Shivanagouda",middleName:null,surname:"Biradar",slug:"mallanagouda-shivanagouda-biradar",fullName:"Mallanagouda Shivanagouda Biradar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243660/images/system/243660.jpeg",biography:"M. S. Biradar is Vice Chancellor and Professor of Medicine of\nBLDE (Deemed to be University), Vijayapura, Karnataka, India.\nHe obtained his MD with a gold medal in General Medicine and\nhas devoted himself to medical teaching, research, and administrations. He has also immensely contributed to medical research\non vascular medicine, which is reflected by his numerous publications including books and book chapters. Professor Biradar was\nalso Visiting Professor at Tulane University School of Medicine, New Orleans, USA.",institutionString:"BLDE (Deemed to be University)",institution:{name:"BLDE University",country:{name:"India"}}},{id:"289796",title:"Dr.",name:"Swastika",middleName:null,surname:"Das",slug:"swastika-das",fullName:"Swastika Das",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/289796/images/system/289796.jpeg",biography:"Swastika N. Das is Professor of Chemistry at the V. P. Dr. P. G.\nHalakatti College of Engineering and Technology, BLDE (Deemed\nto be University), Vijayapura, Karnataka, India. She obtained an\nMSc, MPhil, and PhD in Chemistry from Sambalpur University,\nOdisha, India. Her areas of research interest are medicinal chemistry, chemical kinetics, and free radical chemistry. She is a member\nof the investigators who invented a new modified method of estimation of serum vitamin E. She has authored numerous publications including book\nchapters and is a mentor of doctoral curriculum at her university.",institutionString:"BLDEA’s V.P.Dr.P.G.Halakatti College of Engineering & Technology",institution:{name:"BLDE University",country:{name:"India"}}},{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248459/images/system/248459.png",biography:"Akikazu Takada was born in Japan, 1935. After graduation from\nKeio University School of Medicine and finishing his post-graduate studies, he worked at Roswell Park Memorial Institute NY,\nUSA. He then took a professorship at Hamamatsu University\nSchool of Medicine. In thrombosis studies, he found the SK\npotentiator that enhances plasminogen activation by streptokinase. He is very much interested in simultaneous measurements\nof fatty acids, amino acids, and tryptophan degradation products. By using fatty\nacid analyses, he indicated that plasma levels of trans-fatty acids of old men were\nfar higher in the US than Japanese men. . He also showed that eicosapentaenoic acid\n(EPA) and docosahexaenoic acid (DHA) levels are higher, and arachidonic acid\nlevels are lower in Japanese than US people. By using simultaneous LC/MS analyses\nof plasma levels of tryptophan metabolites, he recently found that plasma levels of\nserotonin, kynurenine, or 5-HIAA were higher in patients of mono- and bipolar\ndepression, which are significantly different from observations reported before. In\nview of recent reports that plasma tryptophan metabolites are mainly produced by\nmicrobiota. He is now working on the relationships between microbiota and depression or autism.",institutionString:"Hamamatsu University School of Medicine",institution:{name:"Hamamatsu University School of Medicine",country:{name:"Japan"}}},{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",biography:"Mohammed Khalid received his B.S. degree in chemistry in 2000 and Ph.D. degree in physical chemistry in 2007 from the University of Khartoum, Sudan. He moved to School of Chemistry, Faculty of Science, University of Sydney, Australia in 2009 and joined Dr. Ron Clarke as a postdoctoral fellow where he worked on the interaction of ATP with the phosphoenzyme of the Na+/K+-ATPase and dual mechanisms of allosteric acceleration of the Na+/K+-ATPase by ATP; then he went back to Department of Chemistry, University of Khartoum as an assistant professor, and in 2014 he was promoted as an associate professor. In 2011, he joined the staff of Department of Chemistry at Taif University, Saudi Arabia, where he is currently an assistant professor. His research interests include the following: P-Type ATPase enzyme kinetics and mechanisms, kinetics and mechanisms of redox reactions, autocatalytic reactions, computational enzyme kinetics, allosteric acceleration of P-type ATPases by ATP, exploring of allosteric sites of ATPases, and interaction of ATP with ATPases located in cell membranes.",institutionString:"Taif University",institution:{name:"Taif University",country:{name:"Saudi Arabia"}}},{id:"63810",title:"Prof.",name:"Jorge",middleName:null,surname:"Morales-Montor",slug:"jorge-morales-montor",fullName:"Jorge Morales-Montor",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/63810/images/system/63810.png",biography:"Dr. Jorge Morales-Montor was recognized with the Lola and Igo Flisser PUIS Award for best graduate thesis at the national level in the field of parasitology. He received a fellowship from the Fogarty Foundation to perform postdoctoral research stay at the University of Georgia. He has 153 journal articles to his credit. He has also edited several books and published more than fifty-five book chapters. He is a member of the Mexican Academy of Sciences, Latin American Academy of Sciences, and the National Academy of Medicine. He has received more than thirty-five awards and has supervised numerous bachelor’s, master’s, and Ph.D. students. Dr. Morales-Montor is the past president of the Mexican Society of Parasitology.",institutionString:"National Autonomous University of Mexico",institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"217215",title:"Dr.",name:"Palash",middleName:null,surname:"Mandal",slug:"palash-mandal",fullName:"Palash Mandal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217215/images/system/217215.jpeg",biography:null,institutionString:"Charusat University",institution:null},{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",biography:"Leszek Szablewski is a professor of medical sciences. He received his M.S. in the Faculty of Biology from the University of Warsaw and his PhD degree from the Institute of Experimental Biology Polish Academy of Sciences. He habilitated in the Medical University of Warsaw, and he obtained his degree of Professor from the President of Poland. Professor Szablewski is the Head of Chair and Department of General Biology and Parasitology, Medical University of Warsaw. Professor Szablewski has published over 80 peer-reviewed papers in journals such as Journal of Alzheimer’s Disease, Biochim. Biophys. Acta Reviews of Cancer, Biol. Chem., J. Biomed. Sci., and Diabetes/Metabol. Res. Rev, Endocrine. He is the author of two books and four book chapters. He has edited four books, written 15 scripts for students, is the ad hoc reviewer of over 30 peer-reviewed journals, and editorial member of peer-reviewed journals. Prof. Szablewski’s research focuses on cell physiology, genetics, and pathophysiology. He works on the damage caused by lack of glucose homeostasis and changes in the expression and/or function of glucose transporters due to various diseases. He has given lectures, seminars, and exercises for students at the Medical University.",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",country:{name:"Poland"}}},{id:"173123",title:"Dr.",name:"Maitham",middleName:null,surname:"Khajah",slug:"maitham-khajah",fullName:"Maitham Khajah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/173123/images/system/173123.jpeg",biography:"Dr. Maitham A. Khajah received his degree in Pharmacy from Faculty of Pharmacy, Kuwait University, in 2003 and obtained his PhD degree in December 2009 from the University of Calgary, Canada (Gastrointestinal Science and Immunology). Since January 2010 he has been assistant professor in Kuwait University, Faculty of Pharmacy, Department of Pharmacology and Therapeutics. His research interest are molecular targets for the treatment of inflammatory bowel disease (IBD) and the mechanisms responsible for immune cell chemotaxis. He cosupervised many students for the MSc Molecular Biology Program, College of Graduate Studies, Kuwait University. Ever since joining Kuwait University in 2010, he got various grants as PI and Co-I. He was awarded the Best Young Researcher Award by Kuwait University, Research Sector, for the Year 2013–2014. He was a member in the organizing committee for three conferences organized by Kuwait University, Faculty of Pharmacy, as cochair and a member in the scientific committee (the 3rd, 4th, and 5th Kuwait International Pharmacy Conference).",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"195136",title:"Dr.",name:"Aya",middleName:null,surname:"Adel",slug:"aya-adel",fullName:"Aya Adel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/195136/images/system/195136.jpg",biography:"Dr. Adel works as an Assistant Lecturer in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. Dr. Adel is especially interested in joint attention and its impairment in autism spectrum disorder",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"94911",title:"Dr.",name:"Boulenouar",middleName:null,surname:"Mesraoua",slug:"boulenouar-mesraoua",fullName:"Boulenouar Mesraoua",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94911/images/system/94911.png",biography:"Dr Boulenouar Mesraoua is the Associate Professor of Clinical Neurology at Weill Cornell Medical College-Qatar and a Consultant Neurologist at Hamad Medical Corporation at the Neuroscience Department; He graduated as a Medical Doctor from the University of Oran, Algeria; he then moved to Belgium, the City of Liege, for a Residency in Internal Medicine and Neurology at Liege University; after getting the Belgian Board of Neurology (with high marks), he went to the National Hospital for Nervous Diseases, Queen Square, London, United Kingdom for a fellowship in Clinical Neurophysiology, under Pr Willison ; Dr Mesraoua had also further training in Epilepsy and Continuous EEG Monitoring for two years (from 2001-2003) in the Neurophysiology department of Zurich University, Switzerland, under late Pr Hans Gregor Wieser ,an internationally known epileptologist expert. \n\nDr B. Mesraoua is the Director of the Neurology Fellowship Program at the Neurology Section and an active member of the newly created Comprehensive Epilepsy Program at Hamad General Hospital, Doha, Qatar; he is also Assistant Director of the Residency Program at the Qatar Medical School. \nDr B. Mesraoua's main interests are Epilepsy, Multiple Sclerosis, and Clinical Neurology; He is the Chairman and the Organizer of the well known Qatar Epilepsy Symposium, he is running yearly for the past 14 years and which is considered a landmark in the Gulf region; He has also started last year , together with other epileptologists from Qatar, the region and elsewhere, a yearly International Epilepsy School Course, which was attended by many neurologists from the Area.\n\nInternationally, Dr Mesraoua is an active and elected member of the Commission on Eastern Mediterranean Region (EMR ) , a regional branch of the International League Against Epilepsy (ILAE), where he represents the Middle East and North Africa(MENA ) and where he holds the position of chief of the Epilepsy Epidemiology Section; Dr Mesraoua is a member of the American Academy of Neurology, the Europeen Academy of Neurology and the American Epilepsy Society.\n\nDr Mesraoua's main objectives are to encourage frequent gathering of the epileptologists/neurologists from the MENA region and the rest of the world, promote Epilepsy Teaching in the MENA Region, and encourage multicenter studies involving neurologists and epileptologists in the MENA region, particularly epilepsy epidemiological studies. \n\nDr. Mesraoua is the recipient of two research Grants, as the Lead Principal Investigator (750.000 USD and 250.000 USD) from the Qatar National Research Fund (QNRF) and the Hamad Hospital Internal Research Grant (IRGC), on the following topics : “Continuous EEG Monitoring in the ICU “ and on “Alpha-lactoalbumin , proof of concept in the treatment of epilepsy” .Dr Mesraoua is a reviewer for the journal \"seizures\" (Europeen Epilepsy Journal ) as well as dove journals ; Dr Mesraoua is the author and co-author of many peer reviewed publications and four book chapters in the field of Epilepsy and Clinical Neurology",institutionString:"Weill Cornell Medical College in Qatar",institution:{name:"Weill Cornell Medical College in Qatar",country:{name:"Qatar"}}},{id:"282429",title:"Prof.",name:"Covanis",middleName:null,surname:"Athanasios",slug:"covanis-athanasios",fullName:"Covanis Athanasios",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/282429/images/system/282429.jpg",biography:null,institutionString:"Neurology-Neurophysiology Department of the Children Hospital Agia Sophia",institution:null},{id:"190980",title:"Prof.",name:"Marwa",middleName:null,surname:"Mahmoud Saleh",slug:"marwa-mahmoud-saleh",fullName:"Marwa Mahmoud Saleh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/190980/images/system/190980.jpg",biography:"Professor Marwa Mahmoud Saleh is a doctor of medicine and currently works in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. She got her doctoral degree in 1991 and her doctoral thesis was accomplished in the University of Iowa, United States. Her publications covered a multitude of topics as videokymography, cochlear implants, stuttering, and dysphagia. She has lectured Egyptian phonology for many years. Her recent research interest is joint attention in autism.",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259190/images/system/259190.png",biography:"Dr. Naqvi is a radioanalytical chemist and is working as an associate professor of analytical chemistry in the Department of Chemistry, Government College University, Faisalabad, Pakistan. Advance separation techniques, nuclear analytical techniques and radiopharmaceutical analysis are the main courses that he is teaching to graduate and post-graduate students. In the research area, he is focusing on the development of organic- and biomolecule-based radiopharmaceuticals for diagnosis and therapy of infectious and cancerous diseases. Under the supervision of Dr. Naqvi, three students have completed their Ph.D. degrees and 41 students have completed their MS degrees. He has completed three research projects and is currently working on 2 projects entitled “Radiolabeling of fluoroquinolone derivatives for the diagnosis of deep-seated bacterial infections” and “Radiolabeled minigastrin peptides for diagnosis and therapy of NETs”. He has published about 100 research articles in international reputed journals and 7 book chapters. Pakistan Institute of Nuclear Science & Technology (PINSTECH) Islamabad, Punjab Institute of Nuclear Medicine (PINM), Faisalabad and Institute of Nuclear Medicine and Radiology (INOR) Abbottabad are the main collaborating institutes.",institutionString:"Government College University",institution:{name:"Government College University, Faisalabad",country:{name:"Pakistan"}}},{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",country:{name:"Hungary"}}},{id:"277367",title:"M.Sc.",name:"Daniel",middleName:"Martin",surname:"Márquez López",slug:"daniel-marquez-lopez",fullName:"Daniel Márquez López",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/277367/images/7909_n.jpg",biography:"Msc Daniel Martin Márquez López has a bachelor degree in Industrial Chemical Engineering, a Master of science degree in the same área and he is a PhD candidate for the Instituto Politécnico Nacional. His Works are realted to the Green chemistry field, biolubricants, biodiesel, transesterification reactions for biodiesel production and the manipulation of oils for therapeutic purposes.",institutionString:null,institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",country:{name:"Argentina"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",biography:"Francisco Javier Martín-Romero (Javier) is a Professor of Biochemistry and Molecular Biology at the University of Extremadura, Spain. He is also a group leader at the Biomarkers Institute of Molecular Pathology. Javier received his Ph.D. in 1998 in Biochemistry and Biophysics. At the National Cancer Institute (National Institute of Health, Bethesda, MD) he worked as a